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Abstract. This paper discusses adaptive finite element methods
for the solution of elliptic eigenvalue problems associated with par-
tial differential operators. An adaptive method based on nodal-
patch refinement leads to an asymptotic error reduction property
for the computed sequence of simple eigenvalues and eigenfunc-
tions. This justifies the use of the proven saturation property for a
class of reliable and efficient hierarchical a posteriori error estima-
tors. Numerical experiments confirm that the saturation property
is present even for very coarse meshes for many examples; in other
cases the smallness assumption on the initial mesh may be severe.

1. Introduction

We discuss the error reduction (also called saturation) property in
adaptive finite element methods (AFEM). This property is a frequent
assumption that a mesh refinement procedure will eventually lead to
convergence of the approximate finite element solution to the exact
solution. For boundary value problems associated with linear second
order elliptic partial differential equations (PDEs), this assumption has
been reasonably justified in [DN02], and is used in a number of publi-
cations, [AO00, BS93, Ver96, FLOP10].

For the eigenvalue problem associated with partial differential oper-
ators, the mathematical justification of the ad hoc saturation assump-
tion, see e.g. [MM11, Ney02], is widely open even in the asymptotic
range for extremely small mesh-sizes.

This paper lays the mathematical justification of the saturation prop-
erty for the simplest model problem of an elliptic PDE eigenvalue prob-
lem, i.e., for the Laplace operator on a bounded Lipschitz domain Ω ⊂
R2, which is the problem of determining an eigenvalue/eigenfunction
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pair (λ, u) ∈ R× (H1
0 (Ω;R) ∩H2

loc(Ω;R)) such that

−∆u = λu in Ω and u = 0 on ∂Ω.(1.1)

It is well known, that problem (1.1) has a countable number of eigen-
value/eigenfunction pairs with positive eigenvalues that can be ordered
increasingly [BO91].

We will discuss the case of determining one single and simple eigen-
value λ, i.e., we assume that there is no other eigenvalue in a small
neighborhood of λ, and we present an AFEM for a single sequence of
eigenvalue/eigenfunction pairs (λ`, u`)`∈N0 of the discretized problem.
For this method we will prove the asymptotic saturation condition, that
there exists a constant 0 < ρ < 1 such that any two subsequent mesh
refinement levels ` and `+ 1 with maximal mesh-sizes H`, H`+1 satisfy

|λ− λ`+1|+ |||u− u`+1|||2 ≤ ρ
(
|λ− λ`|+ |||u− u`|||2

)
+ 2λ3

`+1H
4
` .(1.2)

Here and throughout this paper, |·| denotes the Euclidean norm (or the
modulus) while |||·||| := a(·, ·)1/2 is the energy norm associated to the
weak form of the PDE while ‖ · ‖ abbreviates the norm in L2(Ω).

The adaptive algorithm utilizes a patch-oriented refinement process
based on the newest-vertex bisection without interior node property
and there is no need to compute any higher-order or fine-grid solutions.

Note that the remainder term of oscillations λ3
`+1H

4
` in (1.2) is ex-

plicit even with the multiplicative constant 2 in front of it. This justifies
the assumption of [MM11, Ney02] that this remainder may be neglected
for sufficiently small mesh-sizes.

Our results complement those of [CG11] where it is shown that os-
cillations can be neglected under certain particular assumptions on the
meshes; however the same global arguments do not apply in the present
situation.

The numerical examples of Section 5 verify the (asymptotic) relia-
bility and efficiency of the hierarchical error estimator and therefore
confirm the (asymptotic) saturation property. For the smallest eigen-
value, the mesh-size restrictions on H0 are empirically not visible, but
they are certainly more severe for larger eigenvalues with much more
oscillatory eigenfunctions.

The saturation property has to be considered in comparison to the
error estimator reduction in the convergence analysis of adaptive finite
element eigenvalue solvers [CG11, CG12, DXZ08]. In explicit residual-
based error estimators, the mesh-size enters as a weight and hence
reduces under refinement. This implies a reduction property of such
error estimators and eventually leads to linear convergence of some total
error which is a convex combination of the error estimator and the error;
cf. e.g. [CG11, Thm 5.2], [CG12, Lemma 5.3], [DXZ08, Thm 5.2]. In
contrast to this, the saturation property describes the reduction (1.2) of
the error terms without involving any error estimator contribution, but
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with immediate important applications in the context of the solution of
the algebraic eigenvalue problems that have to be solved at each level
of refinement [MM11, Ney02]. The proofs are rather independent, e.g.,
the saturation property (1.2) cannot be proved by simply reducing the
mesh-size.

The outline of the remaining part of this paper is as follows. Sec-
tion 2 describes the AFEM based on patch refinement. The discrete
efficiency of the edge residual a posteriori error estimator is introduced
in Section 3. The proof of the saturation property and its equivalence
to the reliability and the efficiency of the hierarchical error estimator
follow in Section 4. Section 5 verifies the theoretical results for some
numerical benchmark problems on the unit square, the L-shaped do-
main, and two isospectral domains.

Throughout this paper, standard notations on Sobolev and Lebesgue
spaces apply, see e.g. [BS08, Eva10] and

ffl
T
f :=

´
T
f/|T |dx denotes

the integral mean over a triangle T of area |T |. Similar notation applies
to integral means over edges or patches.

The notation x . y abbreviates the inequality x ≤ C1y and x ≈ y
the inequalities C2y ≤ x ≤ C1y with constants C1, C2 > 0 which do
not depend on the mesh-size.

We will call an error estimator η` efficient and reliable if there ex-
ist mesh-size independent constants Ceff (efficiency constant) and Crel
(reliability constant) such that

Ceffη` ≤ |||u− u`||| ≤ Crelη`.

2. Adaptive finite element method

Consider the elliptic eigenvalue problem (1.1) and let T` denote a
shape-regular triangulation of Ω into triangles, see e.g. [BS08, Ver96].
The linear conforming finite element space for the triangulation T` is
defined by

V` :=
{
v ∈ H1

0 (Ω) : for all T ∈ T`, v|T is affine
}
.

The AFEM computes a sequence of discrete subspaces

V0 ( V1 ( V2 ( . . . ( V` ⊂ V

via successive local refinement of the underlying mesh T0, T1, T2, . . . of
the domain Ω through a loop of the form

Solve→ Estimate→ Mark→ Refine.

In the following we briefly summarize these components, for details see
[BS08, CG11]. The input consists of a shape-regular triangulation T0
(with some initialization of the reference edges) and some bulk param-
eter 0 < θ ≤ 1.
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Figure 1. Refinement rules: sub-triangles with corre-
sponding reference edges depicted with a second edge.

Solve. The weak formulation of problem (1.1) consists of determining
an eigenvalue/eigenfunction pair (λ, u) ∈ R× V := R×H1

0 (Ω;R) with
b(u, u) = 1 and

a(u, v) = λb(u, v) for all v ∈ V,

where the bilinear forms a(·, ·) and b(·, ·) are defined by

a(u, v) :=
ˆ

Ω
∇u · ∇v dx and b(u, v) :=

ˆ
Ω
uv dx for u, v ∈ V.

They induce the norms |||·||| := |·|H1(Ω) on V and ‖·‖ := ‖·‖L2(Ω) on
L2(Ω).

The corresponding discrete eigenvalue problem consists of determin-
ing an eigenvalue/eigenfunction pair (λ`, u`) ∈ R×V` with b(u`, u`) = 1
and

a(u`, v`) = λ`b(u`, v`) for all v` ∈ V`.

Using the coordinate representation, the discrete eigenvalue problem
leads to the finite-dimensional generalized algebraic eigenvalue problem

A`x` = λ`B`x`

for the stiffness matrix A` = [a(ϕi, ϕj)]i,j=1,...,N`
and the mass ma-

trix B` = [b(ϕi, ϕj)]i,j=1,...,N`
associated with the nodal basis func-

tions ϕ1, . . . , ϕN`
of V` = {ϕ1, . . . , ϕN`

}, with the discrete eigenvec-
tor x` =: [x`,1, . . . , x`,N`

]T . The approximated eigenfunction is then
expressed as

u` =
N∑̀

k=1
x`,kϕk ∈ V`.
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Estimate. The error in the eigenvalue/eigenfunction pair can be esti-
mated a posteriori via

|λ− λ`|+ |||u− u`|||2 . µ2
` := |||u`−1 − u`|||2.

Recall that . denotes an inequality that holds up to a multiplicative
constant.

Such an a posteriori error estimator for the discussed Laplace eigen-
value problem has been presented in [MM11]. Hierarchical a posteriori
error estimators based on edge bubble-functions were considered in
[GO09, Ney02] for the eigenvalues and eigenfunctions.

Mark. For the triangulation T` let N` (resp. N`(Ω)) denote the set
of nodes (resp. interior nodes) and let E` (resp. E`(Ω)) denote the
set of edges (resp. interior edges). For a node z ∈ N`, we denote by
E`(z) ⊆ E` the subset of edges that share the node z and by ωz the
union of triangles in T` that share the node z. The maximal mesh-size
is denoted by H` := maxT∈T`

diam(T ). For E ∈ E`(Ω) let T+, T− ∈
T` be the two neighboring triangles such that E = T+ ∩ T−. The
jump of the discrete gradient ∇u` along an inner edge E ∈ E`(Ω) in
normal direction νE, pointing from T+ to T−, is defined by [∇u`] ·νE :=(
∇u`|T+ −∇u`|T−

)
· νE.

The patch-oriented marking strategy employs the edge residual a
posteriori error estimator for the eigenvalue problem, see [DPR03,
CG11],

η2
` :=

∑
E∈E`(Ω)

η2
` (E) with η2

` (E) := |E|‖[∇u`] · νE‖2
L2(E),(2.1)

which is reliable and efficient for sufficiently small mesh-sizeH0 [CG11],
in the sense that

|||u− u`||| ≈ η`.(2.2)
Based on the local refinement indicators η`(E), nodes are marked for
refinement. Let M` ⊆ N`(Ω) be the minimal set of refinement nodes
such that for 0 < θ ≤ 1 the bulk criterion [Dör96] is fulfilled, i.e.,

θ
∑

z∈N`(Ω)
η2

` (E`(z)) ≤
∑

z∈M`

η2
` (E`(z)).

Refine. For each refinement node z ∈ M` ⊆ N`(Ω), mark all edges
E`(z) for refinement. In order to preserve the quality of the mesh, i.e.,
the maximal angle condition, additional edges have to be marked by the
closure algorithm before refinement. For each triangle T let one edge
be the uniquely defined reference edge E(T ). The closure algorithm
marks additional edges such that once an edge of a triangle T is marked
for refinement, its reference edge E(T ) is marked for refinement as well.
The refinement T`+1 is then computed by the application of one of the
rules from Figure 1 which shows the sub-triangles together with the
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Figure 2. All possible sub-triangulations for a triangle
T ⊂ ωz in the proof of Theorem 3.1 with values offfl

T
Φzdx.

new reference edges. Note that all triangles T ⊆ ωz, z ∈ M`, are
refined either red or blue.

In the following sections we analyze the properties of this adaptive
FEM technique.

3. Discrete efficiency

This section introduces the discrete efficiency of η` as defined in (2.1).
A key ingredient for the proof is the following fine-grid function. Let
ϕz ∈ V` denote the shape function associated with the node z ∈ N`(Ω).
Under the assumption that all edges E`(z) are refined, let ψE be the
linear shape function of the refined triangulation T`+1 associated with
the midpoint of the edge E ∈ E`, and introduce

Φz := ϕz −
∑

E∈E`(z)
ψE ∈ H1

0 (ωz) ⊆ V.

Theorem 3.1. Consider the adaptive FEM of Section 2. For some
node z ∈ N`(Ω) let all edges E`(z) be bisected in T`+1. If z is not
opposite to the reference edge E(T ) or T is refined by red-refinement
for at least one triangle T of ωz, (see Figure 1), then 

ωz

Φz dx ≈ 1 and
 

E

Φz ds = 0 for all E ∈ E`(ωz).

Proof. The second assertion, that
ffl

E
Φz ds = 0 for all E ∈ E`(ωz)

follows directly from the definition of Φz. For the first assertion all
possible sub-triangulations together with the values of

ffl
T

Φzdx are de-
picted in Figure 2. Note that the sub-triangulations for a triangle T
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Figure 3. All possible sub-triangulations of ωE in the
proof of Theorem 3.2 with values of α.

of ωz that result in values
ffl

T
Φzdx = 0 are excluded by assumption

and that all other possible sub-triangulations share the same sign forffl
T

Φzdx. �

Theorem 3.2 (Discrete efficiency). Consider the adaptive FEM of Sec-
tion 2. Then for any refinement level ` ∈ N0 the following estimate
holds

η` . |||u` − u`+1|||+ λ
3/2
`+1H

2
` .

Proof. In the first step observe that the bulk criterion implies that
η2

` ≤
∑

z∈N`(Ω)
η2

` (E`(z)) ≤ θ−1 ∑
z∈M`

η2
` (E`(z)).(3.1)

The second step is to show that any refinement node z ∈ M` and any
edge E of E`(z) satisfy

η`(E) . ‖∇(u` − u`+1)‖L2(ωz) + λ`+1diam(ωz)2‖∇u`+1‖L2(ωz).(3.2)

Since [∇u`] · νE is constant along the edge E of length |E| with some
sign ± as indicated below, it follows that

±η`(E) = |E|([∇u`] · νE).
The edge basis function ψE from the beginning of this section satisfies
|E| = 2

´
E
ψE ds. Hence,

±η`(E)/2 =
ˆ

E

ψE[∇u`] · νE ds.

Let T± ∈ T` denote the two triangles that share the edge E. Theo-
rem 3.1 shows that

´
E

Φzds = 0. With α being the value from Figure 3,
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this implies that

±η`(E)/2 =
ˆ

E

(ψE + αΦz) [∇u`] · νE ds.

Note that ∆u`|T± ≡ 0 and that the function v`+1 := ψE + αΦz ∈ V`+1
satisfies

´
F
v`+1ds = 0 on all other edges F ∈ E`(ωz)\E. Therefore, the

piecewise Gauss divergence theorem [Eva10] leads to

±η`(E)/2 =
ˆ

ωz

∇v`+1 · ∇u` dx.

In fact all the volume contributions and all other edge contributions
vanish. Hence,

±η`(E)/2 =
ˆ

ωz

∇v`+1 · ∇(u` − u`+1)dx+
ˆ

ωz

∇v`+1 · ∇u`+1dx.(3.3)

The first term in (3.3) is estimated via the Cauchy-Schwarz inequal-
ity [BS08] and the discrete estimate ‖∇v`+1‖L2(ωz) . 1, asˆ

ωz

∇v`+1 · ∇(u` − u`+1)dx ≤ ‖∇(u` − u`+1)‖L2(ωz).

Since v`+1 is supported on ωz, the second term in (3.3) can be written
as ˆ

ωz

∇v`+1 · ∇u`+1dx = a(u`+1, v`+1).

Since v`+1 ∈ V`+1, we then have
a(u`+1, v`+1) = λ`+1b(u`+1, v`+1).

The choice of α as in Figure 3 shows that
ffl

ωz
v`+1dx = 0, and hence

cz :=
ffl

ωz
u`+1dx satisfies

a(u`+1, v`+1) = λ`+1b(u`+1 − cz, v`+1).
Applying Cauchy-Schwarz, Poincaré-Friedrich’s inequality [BS08] plus
the aforementioned discrete estimate

‖v`+1‖L2(ωz) . diam(ωz)‖∇v`+1‖L2(ωz) . diam(ωz)
shows that

λ`+1b(u`+1 − cz, v`+1) . λ`+1diam(ωz)2‖∇u`+1‖L2(ωz).

The combination of the previous four estimates shows thatˆ
ωz

∇v`+1 · ∇u`+1dx . λ`+1diam(ωz)2‖∇u`+1‖L2(ωz).

Altogether, this second step proves (3.2). Step three combines (3.1)–
(3.2) with the finite overlap of all the patches to conclude that

η` . |||u` − u`+1|||+ λ`+1H
2
` |||u`+1|||.

This and the identity |||u`+1||| = λ
1/2
`+1 finish the proof. �
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4. Saturation property

This section is devoted to the main result of this paper, the proof
of the saturation property. It is also remarked that the saturation
property is equivalent to the reliability of the hierarchical a posteriori
error estimator.

Throughout this section, suppose that (λ`, u`) ∈ R × V` as well as
(λ`+1, u`+1) ∈ R × V`+1 is some discrete eigenvalue/eigenfunction pair
associated with the continuous pair (λ, u) ∈ R × V on the level ` and
` + 1, respectively, and set e` := u − u` and e`+1 := u − u`+1. The
eigenvalue error and the errors with respect to the norms |||·||| and ‖·‖
satisfy [SF73]

|||u− u`|||2 = λ‖u− u`‖2 + λ` − λ.(4.1)

Furthermore, the following regularity result [CG11, DPR03] holds for
some 0 < Creg <∞,

‖u− u`‖ ≤ CregH
s
` |||u− u`|||,(4.2)

where the regularity exponent 0 < s ≤ 1 depends on the interior angles
of the polygonal domain Ω and s > 1/2 holds for the pure Dirichlet
boundary conditions of (1.1).

The proof of the saturation assumption requires the following quasi-
orthogonality.

Theorem 4.1 (Quasi-orthogonality). Let T`+1 be a refinement of the
triangulation T` on some level ` in the adaptive FEM of Section 2.
Then there exists ε . H2s

0 such that

|||u`+1 − u`|||2 ≤ (1 + ε)|||e`|||2 − |||e`+1|||2.(4.3)

Proof. The quasi-orthogonality result [CG12, Lemma 3.1] implies that

|||u`+1 − u`|||2 ≤ |||e`|||2 − |||e`+1|||2 + λ‖e`+1‖2 + λ`+1‖u`+1 − u`‖2.

Let G` : V → V` denote the Galerkin projection, a(v − G`v, ·)|V`
= 0

for all v ∈ V . The proof of [CG11, Theorem 3.1] shows that

‖u− u`‖ . Hs
` |||u−G`u|||.

Since V` ⊂ V`+1, the best approximation property of the Galerkin pro-
jection [BS08] leads to

‖u− u`‖+ ‖u− u`+1‖ ≤ 2CregH
s
` |||u− u`|||.

This and the min-max principle [SF73] imply (4.3) with ε := (λ +
4λ0)C2

regH
2s
0 . �

Theorem 4.2 (Saturation property). Consider the adaptive FEM of
Section 2 for some T0 with sufficiently small maximal mesh-size H0.
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Then there exists 0 ≤ % < 1 such that for all ` ∈ N0 the following
inequalities hold

|||u− u`+1|||2 ≤ %|||u− u`|||2 + λ3
`+1H

4
` ;(4.4)

|λ− λ`+1| ≤ %|λ− λ`|+ λ3
`+1H

4
` .(4.5)

Proof. For sufficiently small H0 Theorem 3.2 and (2.2) imply that

|||u− u`|||2 . |||u` − u`+1|||2 + λ3
`+1H

4
` .

This and the quasi-orthogonality of Theorem 4.1 imply the existence
of some generic constant 0 < c ≤ 1 such that

c|||u− u`|||2 ≤ (1 + ε)|||u− u`|||2 − |||u− u`+1|||2 + λ3
`+1H

4
` .

This is equivalent to

|||u− u`+1|||2 ≤ (1 + ε− c)|||u− u`|||2 + λ3
`+1H

4
` .

The assertion follows from this with 0 ≤ % := (1 + ε − c) < 1 for
sufficiently small H0. To prove the second saturation property (4.5),
recall the inequalities (4.1) and (4.2) which imply

|λ− λ`+1| ≤ |||u− u`+1|||2;
|||u− u`|||2 ≤ |λ− λ`|+ λC2

regH
2s
` |||u− u`|||2.

For any H0 < λ−1/(2s)C−1/s
reg , this shows

|||u− u`|||2 ≤
|λ− λ`|

1− λC2
regH

2s
0
.(4.6)

This and (4.4) lead to (4.5) with the constant

0 ≤ % := (1 + ε− c)(1− λC2
regH

2s
0 )−1 < 1. �

Note that the saturation property implies (1.2). A surprising con-
sequence of this saturation property is that the higher-order terms
λ3

`+1H
4
` do not depend on the (possibly reduced) convergence rates

of the errors |||u− u`|||2 + |λ− λ`| on (non-convex) polygonal domains.
In the subsequent theorem we show that the saturation property is

actually equivalent to the reliability of the adaptive FEM.

Theorem 4.3 (Saturation ⇔ reliability). Consider the adaptive FEM
of Section 2 with sufficiently small H0. Then for some 0 ≤ % < 1,
0 < c ≤ 1, and all ` ∈ N0, the following inequalities (4.7) and (4.8) are
equivalent.

|||u− u`+1||| ≤ %|||u− u`|||+ λ
3/2
`+1H

2
` ;(4.7)

c|||u− u`||| ≤ |||u` − u`+1|||+ λ
3/2
`+1H

2
` .(4.8)
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Proof. We first show that (4.7) with 0 ≤ % < 1 implies (4.8) with
c := 1−%. For any 0 ≤ % < 1 the triangle inequality plus the saturation
property (4.7) yield that

|||u− u`||| ≤ |||u− u`+1|||+ |||u` − u`+1|||

≤ %|||u− u`|||+ |||u` − u`+1|||+ λ
3/2
`+1H

2
` .

This proves (4.8) with c := 1− %.
For the converse we show that (4.8) with 0 < c ≤ 1 implies (4.7)

with % := (1 + ε− c2/2). The quasi-orthogonality of Theorem 4.1 leads
to

|||u− u`+1|||2 ≤ (1 + ε)|||u− u`|||2 − |||u` − u`+1|||2.

Inequality (4.8) and Young’s inequality [Eva10], result in
−|||u` − u`+1|||2 ≤ −c2|||u− u`|||2/2 + λ3

`+1H
4
` .

The combination of these inequalities leads to
|||u− u`+1|||2 ≤ (1 + ε− c2/2)|||u− u`|||2 + λ3

`+1H
4
` .

This proves (4.7) with 0 ≤ % := 1 + ε− c2/2 < 1 for sufficiently small
H0. �

Remark 4.4. It is shown in [CG11] that |||u − u`||| ≈ η` holds for suf-
ficiently small H0 without any higher-order terms. But this is an es-
timate for the error |||u − u`||| in contrast to the estimate (4.8) that
involves the discrete error |||u` − u`+1|||. The arguments in the proofs
of [CG11] are global, whereas the present analysis employs the discrete
efficiency of Theorem 3.2 that does not allow for a global L2-projection-
type argument. Hence (4.8) includes the higher-order oscillation terms.

Theorem 4.5 (Efficiency). Consider the adaptive FEM of Section 2.
Let H0 be sufficiently small such that the saturation property of Theo-
rem 4.2 holds for 0 ≤ % < 1. Then

|||u` − u`+1||| ≤ 2|||u− u`|||+ λ
3/2
`+1H

2
` and |||u` − u`+1||| . |||u− u`|||.

Proof. The triangle inequality reads
|||u` − u`+1||| ≤ |||u− u`+1|||+ |||u− u`|||.

The first assertion then follows from the saturation property of The-
orem 4.2. For a proof of the second inequality, the min-max princi-
ple [SF73] and (4.1) imply that

|λ− λ`+1| ≤ |λ− λ`| ≤ |||u− u`|||2.

Together with (4.6) this shows, that for sufficiently small H0

|||u− u`+1|||2 ≤
|||u− u`|||2

1− λC2
regH

2s
0
. �(4.9)
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These estimates hold for all simple eigenvalues in the spectrum. How-
ever, since the constant present in the upper bound depends on the ex-
act eigenvalue λ, we require the initial triangulation to be reasonably
fine in order to obtain reliable and efficient approximations of larger
eigenvalues. On the linear algebra level, due to the use of the Krylov
subspace method, we obviously require a larger number of iteration
steps for larger eigenvalues, otherwise we would have to employ a shift
and invert strategy.

5. Numerical examples

This section is devoted to numerical examples for the solution of the
model problem (1.1) on three different domains Ω: the unit square, the
L-shaped domain and the isospectral domains.

5.1. Preliminary remarks. The numerical experiments show the per-
formance of the proposed AFEM algorithm in comparison to uniform
mesh refinement and compare the two a posteriori error estimators

η2
` :=

∑
E∈E`(Ω)

|E|‖[∇u`] · νE‖2
L2(E) and µ` := |||u` − u`−1|||.

Note that Theorem 4.3 shows that for any level ` and sufficiently small
H0

|||u− u`||| . µ`+1 + λ
3/2
`+1H

2
` .

The use of this estimate, however, requires the knowledge of u`+1. On
the other hand, for sufficiently small initial mesh-size H0 (4.9) shows
that |||u−u`||| . |||u−u`−1|||. The combination with the aforementioned
estimate (employed at level `− 1) gives

|||u− u`||| . µ` + λ
3/2
` H2

` .

In other words, µ` is a reliable a posteriori error estimator if H` is small.
Throughout all of our numerical experiments, µ` is used as a posteriori
error estimator on level `.

5.2. Unit square. Consider the model problem (1.1) on the unit square
Ω = (0, 1)2. The first eigenvalue/eigenfunction pair is

(λ, u) = (2π2, 2 sin(πx) sin(πy)).
Since the solution is smooth, either uniform and adaptive mesh re-
finement leads to optimal convergence rates of O(N−1

` ) for |λ − λ`| in
Figure 4 and of order O(N−1/2

` ) for |||u−u`||| in Figure 5. Note that for
uniform refinement O(N−1/2

` ) = O(H`).
We observe in the experiments that the hierarchical a posteriori er-

ror estimators µ2
` and µ` are closer to the eigenvalue and eigenfunction

errors in the energy norm than the edge residual a posteriori error esti-
mators η2

` and η`. For adaptive refinement µ2
` and µ` are almost exact.

This is an empirical observation which is not mathematically justified
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Figure 4. Convergence history for |λ − λ`|, η2
` and µ2

`

for uniform and adaptive mesh refinements on the unit
square.

by our theoretical analysis, because our estimates contain generic con-
stants.

Note that for the uniform refinement µ` is an upper bound while
for the adaptive refinement µ` provides a lower bound of the eigen-
function error in the energy norm. In contrast to this, η` is always an
upper bound of the eigenfunction error in the energy norm. The same
observations are made for µ2

` , η2
` and the eigenvalue error.

5.3. L-shaped domain. Consider the model problem (1.1) on the L-
shaped domain Ω = (−1, 1)2\([0, 1] × [−1, 0]) with the first approxi-
mated eigenvalue λ = 9.6397238440219, see [BT05]. Since the eigen-
function has a singularity, uniform refinement leads to suboptimal con-
vergence rates of order O(N−2/3

` ), while adaptive refinement leads to
empirical optimal convergence rates of order O(N−1

` ) as displayed in
Figure 6.

As in the previous example µ2
` is an upper bound in the case of

uniform meshes and a lower bound in the case of adaptive meshes,
while η2

` is always an upper bound. In both cases we observe that µ2
`

is much closer to the eigenvalue error than η2
` and that for adaptive

refinement µ2
` is almost exact.
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Figure 5. Convergence history for |||u− u`|||, η` and µ`

for uniform and adaptive mesh refinements on the unit
square.

Figure 7 displays a sequence of mesh refinements that are adaptively
refined towards the corner singularity.

5.4. Isospectral domains. Consider the model problem (1.1) on the
two isospectral domains of Figure 8 with the approximation of the
50-th eigenvalue λ50 = 54.187936, see [BT05]. Figure 9 shows the
convergence history for the eigenvalue error.

We observe that adaptive refinement leads to slightly smaller errors
for larger values of N` than uniform refinement. For uniform refine-
ment both domains are discretized with the same number of degrees of
freedom which results in the same approximated values (up to round-
off errors) for the eigenvalue error and the a posteriori error estimators.
For adaptive refinement the values for the two domains lie asymptoti-
cally on the same convergence line.

Note that the pre-asymptotic range for µ2
` on adaptive meshes is

rather long due to the large eigenvalue and that the pre-asymptotic
values for µ2

` differ for both domains. Again we observe that asymp-
totically µ2

` is almost exact for adaptive refinement.
This experiment provides numerical evidence that the mesh-size re-

striction due to the contributions 2λ3
`+1H

3
` in (1.2) can be severe. De-

spite of this, we observe convergence of the AFEM in all experiments.
This follows from the analysis of [CG12].
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Figure 6. Convergence history for |λ−λ`|, η2
` and µ2

` for
uniform and adaptive mesh refinements on the L-shaped
domain.

Figure 7. Sequence of adaptively refined meshes for the
L-shaped domain for µ` with N` = 93, 201, 378, 694.
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Figure 9. Convergence history for |λ−λ`|, η2
` and µ2

` for
uniform and adaptive mesh refinements on both isospec-
tral domains A and B.

5.5. Three hierarchical adaptive algorithms. The residual-based
AFEM is compared to three different versions of hierarchical AFEMs
based on the a posteriori error estimators µ`,k, k = 2, 3, 4. The hierar-
chical a posteriori error estimators utilize the fine-grid eigenvalue/eigen-
function pairs (λ̂`, û`) of the uniform red-refinement T̂` of T`. The first
version of the hierarchical a posteriori error estimator reads

µ2
`,2 :=

∑
T∈T`

‖∇(u` − û`)‖L2(T ).
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Figure 10. Convergence history for different adaptive
mesh refinements and the isospectral domain A.

The discrete efficiency of Theorem 3.2 leads (for θ = 1) to the a poste-
riori error estimator

µ2
`,3 :=

∑
T∈T`

(
‖∇(u` − û`)‖L2(T ) + λ̂`diam(T )2‖∇û`‖L2(T )

)
.

The third version utilizes a separate marking strategy based on

µ`,4 := |||u` − û`|||+ λ̂
3/2
` H2.

If |||u` − û`||| < λ̂
3/2
` H2 then do uniform red-refinement, otherwise mark

elements accordingly to µ`,2. The residual a posteriori error estimator
[CG12, DPR03] reads

η2
`,2 :=

∑
T∈T`

|T |‖λ`u`‖2
L2(T ) +

∑
E∈E`(Ω)

|E|‖[∇u`] · νE‖2
L2(E).

For the averaging operator A` : P0(T`)2 → {V 2
` ∩C(Ω)2} for the nodal

basis functions ϕz, z ∈ N`,

A`(∇u`) :=
∑

z∈N`

1
|ωz|

(ˆ
ωz

∇u` dx

)
ϕz,

the averaging a posteriori error estimator [CG11] reads

η2
`,3 :=

∑
T∈T`

‖∇u` − A`(∇u`)‖2
L2(T ).

Figure 10 shows a comparison of the AFEM driven by the a posteriori
error estimators η`, η`,2, η`,3, µ`,2, µ`,3, and µ`,4 for λ50 on the isospectral
domain A. Note that µ`,k, k = 2, 3, 4, are plotted versus the degrees
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of freedom N̂` of the fine-grid solution and compared to the fine-grid
eigenvalue errors |λ − λ̂`|. We observe that all AFEM lead to compa-
rable eigenvalue errors but the behavior of the estimators differs. The
averaging estimator η2

`,3 appears to be asymptotically exact. The two
residual estimators η2

` and η2
`,2 are reliable and efficient from the very

beginning and η2
`,2 is larger than η2

` . The three versions of hierarchi-
cal a posteriori error estimators are asymptotically equal but exploit
a different pre-asymptotic behavior. In the pre-asymptotic range, the
convergence of the error estimator µ2

`,2 is too slow while that of µ2
`,3 is

too fast. In contrast, the separate marking strategy of the estimator
µ2

`,4 leads to the best overall convergence.

5.6. Conclusions. We have proved the saturation assumption, as well
as reliability and efficiency for an AFEM applied to the model problem
of computing eigenvalues of the Laplace operator on Lipschitz domains.

The numerical examples confirm the (asymptotic) saturation prop-
erty of Theorem 4.2.

The presented results apply to any simple eigenvalue, but it is clear
that for the approximation of a highly oscillating eigenfunction of a
larger eigenvalue the initial mesh needs to be sufficiently fine such that
the oscillations are resolved.

The (asymptotic) reliability and efficiency of the hierarchical a pos-
teriori error estimator are empirically verified for eigenvalue and eigen-
function errors in the energy norm.

The proposed AFEM leads to empirical optimal convergence rates
for the eigenvalue and eigenfunction errors in the energy norm while
uniform refinements lead to suboptimal rates in the presence of corner
singularities.

The proposed AFEM is globally convergent in the sense that given
any number k ∈ N such that the initial problem at level zero is larger
than or equal to k and that the step SOLVE computes the discrete
eigenvalue λ` with number k (counted increasingly including multiplic-
ity), then the output of the AFEM is a convergent sequence of real
numbers with a limit which is an eigenvalue of (1.1). (For a proof,
note that the bulk criterion in the AFEM of this paper implies that of
[CG11] and then Theorem 5.1 of that paper implies convergence.) The
optimality of AFEM is an open question and the recent progress in
[CG12] does not lead to an immediate result here. The present analy-
sis does not employ any volume contributions and the reliability proof
relies upon some global L2-projection which, seemingly, does not allow
a localized version to prove discrete reliability.

The comparison between the hierarchical and the edge residual a
posteriori error estimator shows that the hierarchical estimator is much
closer to the error than the edge residual estimator. However, the
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hierarchical a posteriori error estimator does not provide guaranteed
error control because it underestimates the error.
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