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ARNOLD–WINTHER MIXED FINITE ELEMENTS FOR

THE STOKES PROBLEM?
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Abstract. The stress-velocity formulation of the stationary Stokes
problem allows an Arnold–Winther mixed finite element formula-
tion with some superconvergent reconstruction of the velocity. This
local postprocessing gives rise to two reliable a posteriori error es-
timators which recover optimal convergence order for the stress
error estimates. The theoretical results are investigated in numer-
ical benchmark examples.

1. Introduction

The stress-velocity-pressure formulation is the original physical model
for incompressible Newtonian flows modeled by the conservation of
momentum and the constitutive law. This model involves symmetric
strain rates and stress tensors and is recast in a mixed form with sym-
metric stress tensors. The use of the deviatoric stress tensor Aσ leads
to the stress-velocity formulation for the Stokes problem

divσ = f in Ω, Aσ − ε(u) = 0 in Ω, and u = g on ∂Ω

for a bounded Lipschitz domain Ω ⊂ R2 and given data f ∈ L2(Ω;R2)
and g ∈ H1(Ω;R2) ∩ C(Ω;R2). The discretization is feasible with
the symmetric Arnold–Winther mixed finite element method (MFEM)
[AW02] proposed in linear elasticity. Since the Arnold–Winther MFEM
has been proven to be stable for any material parameters, it is also a
stable method for the Stokes problem as a limit case of linear elasticity.
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Suppose (σh,uh) is the mixed Arnold–Winther MFEM approximation
of order k ≥ 1 to sufficiently smooth (σ,u). Then it holds in terms of
the standard Sobolev norms ‖·‖s := ‖·‖Hs(Ω), m ∈ N,

‖σ − σh‖0 . hm‖σ‖m, 1 ≤ m ≤ k + 2,

‖div(σ − σh)‖0 . hm‖divσ‖m, 0 ≤ m ≤ k + 1,

‖u− uh‖0 . hm‖u‖m+1, 1 ≤ m ≤ k + 1.

Compared to the stress errors, the last bound appears suboptimal, but
is a consequence of the lower ansatz for the displacement variable re-
duced by two degrees when compared with the stress variable instead of
only one. Here and throughout the paper, for short notation on generic
constants C, for any two real numbers or functions or expressions A
and B, A . B abbreviates A ≤ C B. The point is that this multi-
plicative constant C does not depend on the local or global mesh-sizes
but may depend on the domain Ω, the shape regularity of the mesh,
and the polynomial degree. Similarly, A ≈ B abbreviates A . B . A.
The nonstandard finite element method (FEM) for the Stokes prob-
lem started with [BW91, DDP95, GR86] and the reader is referred to
[AO00, BS01, Ver96] for information on a posteriori error control. The
main results of this paper concern the a priori error estimation of the
superconvergence of some reconstructed velocity field u∗h in the sense
of

‖u− u∗h‖0 . hk+3(‖σ‖k+2 + ‖divσ‖k+1) + hm+1‖u‖m+1

for the restricted class of domains Ω with sufficiently smooth boundary
∂Ω. We refer the reader to [Kim07, LM08, Voh10] for some postpro-
cessing for the Poisson problem from Stenberg [Ste88]. Based on the
discontinuous postprocessed velocity field u∗h and a smooth velocity
field ũh ∈ H1(Ω;R2) we design reliable and efficient a posteriori error
estimators µ and η such that reliability or even equivalence holds in
the sense of

‖A(σ − σh)‖0 + ‖ε(u− ũh)‖0 + osc(f , Th) ≈ µ+ osc(f , Th),
‖A(σ − σh)‖0 + ‖εTh(u− u∗h)‖0 + osc(f , Th) . η + osc(f , Th)

up to oscillations

osc2(f , Th) :=
∑
T∈Th

h2
T‖f − fh‖2

0,T

of the right-hand side f and its piecewise L2 projection fh onto piece-
wise polynomials of degree ≤ k. Note that for the Arnold–Winther
FEM, the oscillations osc(f , Th) of the right-hand side f are of the
same but not of higher order compared to the stress and strain errors.
In principle, the oscillations might dominate the error estimator and
therefore lead to an overestimation of the stress error ‖A(σ − σh)‖0,
which is empirically confirmed in Section 7 by an academic example
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with smooth solution. However, in all practical relevant benchmark
examples of this paper, oscillations vanish for the constant f .

The remainder of this paper is organized as follows: Section 2 intro-
duces necessary notation and the stress-velocity formulation. Section 3
recalls the discrete problem and its mixed Arnold–Winther finite ele-
ment approximation. Section 4 establishes some superconvergent local
postprocessing of the velocity for all fixed polynomial degrees. The a
posteriori error analysis for the two reliable error estimators η and µ
together with the efficiency of µ is presented in Section 5. Section 6
describes some adaptive finite element method (AFEM), and Section 7
presents various numerical examples to verify the theoretical results
and to illustrate the performance of the method. It turns out that
AFEM is very important to meet optimal convergence rates by proper
mesh-design to compensate for corner singularities.

2. Stress Velocity Formulation

For v = (v1, v2)t ∈ R2, τ = (τij)2×2, and σ = (σij)2×2 ∈ R2×2, we
define

curlv :=

(
∂v1
∂y
−∂v1

∂x
∂v2
∂y
−∂v2

∂x

)
, ∇v :=

(
∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y

)
,

curlτ :=

(
∂τ12
∂x
− ∂τ11

∂y
∂τ22
∂x
− ∂τ21

∂y

)
, divτ :=

(
∂τ11
∂x

+ ∂τ12
∂y

∂τ21
∂x

+ ∂τ22
∂y

)
,

tr τ := τ11 + τ22, τv :=

(
τ11v1 + τ12v2

τ21v1 + τ22v2

)
,

τ : σ :=
∑
i,j

τijσij, δ := 2× 2 unit matrix.

We employ the standard notation for the Sobolev spaces Hs(ω) for
s ≥ 0. The associated norm is denoted by ‖ · ‖s,ω. For s = 0, we use
the notation L2(ω) instead of H0(ω). In the case ω = Ω we simply
write ‖ · ‖s,Ω = ‖ · ‖s. We define H−s(ω) := (Hs

0(ω))∗ as the dual
space of Hs

0(ω). Extending the definitions to vector- and matrix-valued
functions, we let Hs(ω;R2) (simply Hs(ω)) and Hs(ω;R2×2) denote
the Sobolev spaces over the set of 2-dimensional vector- and 2 × 2
matrix-valued functions, respectively. Finally, we define the space

H(div,Ω;R2×2) :=
{
τ ∈ L2(Ω;R2×2)

∣∣ divτ ∈ L2(Ω)
}

with the norm

‖τ‖2
H(div,Ω;R2×2) := (τ , τ ) + (divτ ,divτ ).

Here and throughout the paper, (·, ·)ω denotes the L2(ω;R2×2) inner
product

∫
ω
τ : τ dx as well as the L2(ω) inner product

∫
ω
τ · τ dx. In
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the case ω = Ω we simply write (·, ·)Ω = (·, ·). The extended L2(∂Ω)
product along the boundary ∂Ω is denoted by the duality brackets 〈·, ·〉.

On the domain Ω ⊂ R2 with sufficiently smooth Lipschitz boundary
∂Ω filled with a fluid of viscosity ν > 0 and given data f ∈ L2(Ω) and
g ∈H1(Ω) ∩C(Ω), the stationary Stokes problem reads

−ν4u+∇p = −f in Ω,

divu = 0 in Ω,

u = g on ∂Ω

(1)

for the unknown velocity u and pressure p. Suppose that the following
two compatibility conditions hold:∫

∂Ω

g · n = 0 and

∫
Ω

p dx = 0.

Let σ = (σij)2×2 be the stress tensor and

ε(u) :=
1

2

(
∇u+ (∇u)t

)
be the deformation rate tensor. The aforementioned Stokes problem is
derived from the stress-velocity-pressure formulation which is the set
of original physical equations for incompressible Newtonian flow, i.e.,

divσ = f in Ω,

σ + pδ − 2νε(u) = 0 in Ω,

divu = 0 in Ω,

u = g on ∂Ω.

To design the stress-velocity formulation we define the deviatoric op-
erator

A : S→ S

for the symmetric tensors S := {τ ∈ R2×2 | τ = τ t} by

Aτ :=
1

2ν
(τ − 1

2
(tr τ )δ) for all τ ∈ S.

Note that Ker(A) = {qδ ∈ S | q ∈ R} and Aτ is a trace-free ten-
sor called deviatoric. Further, we can easily show that the following
properties of the operator A hold, for all τ ,σ ∈ S:

(Aτ ,σ) = (τ ,Aσ),

(Aτ , 2νAσ) = (Aσ, τ ) =
1

2ν

(
(σ, τ )− 1

2
(trσ, tr τ )

)
,

‖Aτ‖ ≤ 1

2ν
‖τ‖.
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Using the deviatoric operator, we arrive at the stress-velocity formula-
tion for the Stokes problem (1):

divσ = f in Ω,

Aσ − ε(u) = 0 in Ω,

u = g on ∂Ω.

(2)

The second equation of (2) is obtained from

tr ε(u) = divu = 0 and trσ = −2p

and the compatibility condition
∫

Ω
p dx = 0 implies∫

Ω

trσdx = 0.

We have the following well-known regularity results for sufficiently
smooth boundary ∂Ω or a convex domain. For f ∈ L2(Ω), g ∈H2(Ω),
the solutions to problems (1) and (2) satisfy u ∈ H2(Ω) ∩ H1(Ω),
p ∈ H1(Ω)/R, σ ∈H1(Ω;S), and

‖u‖2 + ‖p‖1 + ‖σ‖1 . ‖f‖0 + ‖g‖2.(3)

With V := L2(Ω) and

Φ := H(div,Ω, S)/R ∼
{
τ ∈H(div,Ω, S) |

∫
Ω

tr τdx = 0
}
,

the weak form for the problem (2) reads as follows: Find σ ∈ Φ and
u ∈ V such that

(Aσ, τ ) + (divτ ,u) = 〈g, τn〉 for all τ ∈ Φ,(4)

(divσ,v) = (f ,v) for all v ∈ V .(5)

This problem has a unique solution from the well-known inf-sup con-
dition in the mixed formulation and the following lemma [BF91].

Lemma 2.1. For all τ ∈ Φ, we have

‖τ‖2
0 . ‖A1/2τ‖2

0 + ‖divτ‖2
−1.

3. Mixed finite element method

Let {Th} be a family of quasi-uniform triangulations of Ω by triangles
T of diameter hT . For each Th, let Eh denote the set of all edges of Th
and, given T ∈ Th, let E(T ) be the set of its edges. Further, for an
edge E ∈ E(T ), let tE = (−n2, n1)t be the unit tangential vector along
E for the unit outward normal nE = (n1, n2)t to E with the diameter
hE. Moreover, we define the jump [w] of w by

[w]
∣∣
E

:= (w
∣∣
T+

)
∣∣
E
− (w

∣∣
T−

)
∣∣
E

if E = T+ ∩ T−,

where nE points from T+ into its neighboring element T−, and [w]
∣∣
E

:=

w − g if E = T+ ∩ ∂Ω.
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We define the finite element spaces associated with the regular tri-
angulation Th of Ω into triangles,

AWk(T ) :=
{
τ ∈ Pk+2(T ;S)

∣∣divτ ∈ Pk(T ;R2)
}
,

Φh :=
{
τ ∈ Φ

∣∣ τ |T ∈ AWk(T )
}
,

V h :=
{
v ∈ L2(Ω)

∣∣ v|T ∈ Pk(T ;R2)
}
,

where AWk(T ) is the Arnold–Winther element of index k ≥ 1 of
[AW02], and Pk(T ) is the set of polynomials of total degree k on the
domain T . The space Φh consists of all symmetric polynomial matrix
fields of degree at most k + 1 together with the divergence-free matrix
fields of degree k + 2.

We notice that Φh ⊂ Φ and hence if τ h ∈ Φh, then τ h has continuous
normal components and the constraint

∫
Ω

tr τ hdx = 0 holds.
The MFEM reads as follows: Find σh ∈ Φh and uh ∈ V h such that

(Aσh, τ h) + (divτ h,uh) = 〈g, τ hn〉 for all τ h ∈ Φh,(6)

(divσh,vh) = (f ,vh) for all vh ∈ V h.(7)

By Lemma 2.1 and the discrete inf-sup condition of the AWk element
space (cf. [BF91]), the discrete problem is well-posed and has a unique
solution.

We consider a projection operator over the space Φ. Let Π̃h [AW02]
denote the Arnold–Winther projection operator associated with the
degrees of freedom onto Φh + span{δ}. We define Πh : Φ→ Φh by

Πhτ = Π̃hτ −
∫

Ω
(trΠ̃hτ )dx

2|Ω|
δ for all τ ∈ Φ(8)

with the area |Ω| =
∫

Ω
1 dx of Ω. We notice that

∫
Ω

(trΠhτ )dx = 0. Let

P h be the L2 projection onto V h with the well-known approximation
property

‖P hv − v‖0 . hk+1‖v‖k+1 for all v ∈Hk+1(Ω).(9)

Then the following two lemmas hold [AW02].

Lemma 3.1. The commutative property divΠh = P hdiv holds. Fur-
thermore, for τ ∈ Φ ∩Hk+2(Ω;S), m ∈ N, it holds that

‖τ − Πhτ‖0 . hm‖τ‖m, 1 ≤ m ≤ k + 2,(10)

‖divτ − div(Πhτ )‖0 . hm‖divτ‖m 0 ≤ m ≤ k + 1.(11)

Lemma 3.2. For the exact solution (σ,u) ∈ (Φ ∩ Hk+2(Ω;S)) ×
Hk+2(Ω) of problem (1) and the approximate solution (σh,uh) of prob-
lem (6)–(7), m ∈ N, it holds that

‖σ − σh‖0 . hm‖σ‖m, 1 ≤ m ≤ k + 2,

‖div(σ − σh)‖0 . hm‖divσ‖m, 0 ≤ m ≤ k + 1,

‖u− uh‖0 . hm‖u‖m+1, 1 ≤ m ≤ k + 1.
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Remark 3.3. We note that using the relation p = −trσ/2, we can
define the approximation of the pressure by ph := −trσh/2. Then the
pressure error estimate holds:

‖p− ph‖0 =
1

2
‖trσ − trσh‖0 ≤ ‖σ − σh‖0 . hm‖σ‖m, 1 ≤ m ≤ k + 2.

The estimate for ‖P hu−uh‖0 presented in the following theorem is
used to derive the error estimates of the postprocessed velocity.

Theorem 3.4. With sufficiently smooth boundary ∂Ω, σ ∈Hk+2(Ω;S)
and f = divσ ∈Hk+1(Ω), it holds that

‖P hu− uh‖0 . hk+3 (‖σ‖k+2 + ‖divσ‖k+1) .(12)

Proof. We start with a duality argument. Let (η, z) ∈ Φ × V be the
dual solution to

(Aη, τ ) + (divτ , z) = 0 for all τ ∈ Φ,(13)

(divη,v) = (P hu− uh,v) for all v ∈ V .(14)

The a priori estimate (3) implies

‖z‖2 . ‖P hu− uh‖0 and ‖η‖1 . ‖P hu− uh‖0.(15)

Since (14) and divΠh = P hdiv, we deduce

‖P hu− uh‖2
0 = (P hu− uh,divη)

= (P hu− uh,P hdivη)

= (u− uh,divΠhη).

(16)

The difference of (4)–(5) and (6)–(7) leads to

(A(σ − σh), τ h) + (divτ h,u− uh) = 0 for all τ h ∈ Φh,(17)

(div(σ − σh),vh) = 0 for all vh ∈ V h.(18)

The identities (13), (16)–(18) and the estimates (9)–(10) yield

‖P hu− uh‖2
0 = −(A(σ − σh),Πhη − η)− (σ − σh,Aη)

= −(A(σ − σh),Πhη − η) + (div(σ − σh), z − P hz)

. h‖σ − σh‖0‖η‖1 + h2‖div(σ − σh)‖0‖z‖2.

(19)

Lemma 3.2 and the inequalities (15) and (19) lead to

‖P hu− uh‖0 . hk+3(‖σ‖k+2 + ‖divσ‖k+1). �

4. Postprocessing

Since Aσh is expected to be a good approximation of ε(u), we can
obtain an improved approximate solution of the velocity u through
local postprocessing in the spirit of Stenberg [Ste88]. For m ≥ k + 2
let

W ∗
h = {v ∈ L2(Ω)

∣∣ v|T ∈ Pm(T ;R2) for all T ∈ Th}.
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We define u∗h ∈W ∗
h on each T ∈ Th with P T = P h|T as the solution

to the system

P Tu
∗
h = uh,(20)

(ε(u∗h), ε(v))T = (Aσh, ε(v))T for all v ∈ (δ − P T )W ∗
h|T .(21)

In other words, u∗h|T ∈ Pm(T ;R2) is the Riesz representation of the
linear functional (Aσh, ε(·))T in the Hilbert space (δ − P T )W ∗

h|T ≡
{vm ∈ Pm(T ;R2) | (vm,wk)T = 0 for all wk ∈ Pk(T ;R2)} with scalar
product (ε(·), ε(·))T . The postpocessing on each triangle with Lagrange
multiplier λk ∈ Pk(T ;R2) can be implemented as the linear system of
equations

(ε(u∗h), ε(vm))T + (λk,vm)T = (Aσh, ε(vm))T for all vm ∈ Pm(T ;R2),

(u∗h,wk)T = (uh,wk)T for all wk ∈ Pk(T ;R2).

The Korn inequality yields positive definiteness of (ε(·), ε(·))T on (δ−
P T )W ∗

h|T . Since Pk(T ;R2) ⊂ Pm(T ;R2),

sup
vm∈Pm(T ;R2)

(vm,λk)T/‖vm‖0,T ≥ ‖λk‖0,T for all λk ∈ Pk(T ;R2).

Thus, the Brezzi splitting theorem [Bre74] shows that there exists a
unique solution on each triangle. The identity Aσ = ε(u) and (21)
imply the error identity

(ε(u− u∗h), ε(v))T = (A(σ − σh), ε(v))T ,∀v ∈ (δ − P T )W ∗
h|T .(22)

Theorem 4.1. Let the boundary ∂Ω be sufficiently smooth, u ∈Hm+1(Ω),
σ ∈ Hk+2(Ω;S) and f = divσ ∈ Hk+1(Ω) solve (1). Then it holds
that

‖u− u∗h‖0 . hk+3(‖σ‖k+2 + ‖divσ‖k+1) + hm+1‖u‖m+1,

‖∇Th(u− u∗h)‖0 . hk+2(‖σ‖k+2 + ‖divσ‖k+1) + hm‖u‖m+1,

for the postprocessed velocity u∗h ∈ W ∗
h and the piecewise gradient

(∇Th·)|T := ∇(·|T ).

Proof. Let û be the L2 projection of u onto W ∗
h. The triangle inequal-

ity shows

‖u− u∗h‖0 ≤ ‖u− û‖0+‖P h(û− u∗h)‖0+‖(δ−P h)(û− u∗h)‖0.(23)

Since û is the L2-projection of u onto W ∗
h, the a priori estimate (9)

shows for the first term on the right-hand side of (23)

‖u− û‖0 . hm+1‖u‖m+1 for all u ∈Hm+1(Ω).

For the second term, notice that P Tu
∗
h = uh on each T implies ‖P T (û−

u∗h)‖0,T = ‖P T û− uh‖0,T . Since V h ⊂W ∗
h, Theorem 3.4 shows that

‖P hû− uh‖0 = ‖P hu− uh‖0 . hk+3 (‖σ‖k+2 + ‖divσ‖k+1) .(24)
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In order to bound the third term on the right-hand side of (23), de-
fine v ∈ W ∗

h by v|T = (δ − P T )(û − u∗h) for each T ∈ Th. Since
v|T⊥P0(T ;R2), the Poincaré inequality yields

‖v‖0,T ≤
hT
π
‖∇v‖0,T .

Since (δ − P T )w = 0 for all w ∈ P1(T ;R2), v|T⊥RM := {v =
c + b(x2,−x1)t, c ∈ R2, b ∈ R}. Thus the second Korn inequality
[BS94] leads to

‖v‖0,T . hT‖ε(v)‖0,T .

Then (22) and the Cauchy inequality yield

‖ε(v)‖2
0,T = (ε(û− u∗h), ε(v))T − (ε(P T (û− u∗h)), ε(v))T

= (ε(û− u), ε(v))T + (A(σ − σh), ε(v))T

− (ε(P T (û− u∗h)), ε(v))T

≤ ‖ε(û− u)‖0,T‖ε(v)‖0,T + ‖A(σ − σh)‖0,T‖ε(v)‖0,T

+ ‖ε(P T (û− u∗h))‖0,T‖ε(v)‖0,T .

Since ‖A(σ − σh)‖0,T ≤ ‖σ − σh‖0,T/(2ν), we obtain

‖ε(v)‖0,T ≤ |û− u|1,T + ‖σ − σh‖0,T/(2ν) + |P T (û− u∗h)|1,T .

This inequality and the inverse estimate

|P T (û− u∗h)|1,T . h−1
T ‖P T (û− u∗h)‖0,T

yield

‖(δ − P T )(û− u∗h)‖0,T . hT‖ε(v)‖0,T . ‖P T (û− u∗h)‖0,T

+ hT |û− u|1,T + hT‖σ − σh‖0,T .

Let Ih denote the nodal interpolant Ih|T : Hm(T ) → W ∗
h|T with the

interpolation estimate [BS94]

|u− Ihu|µ,T . hm+1−µ
T ‖u‖m+1,T for all u ∈Hm+1(Ω), µ = 0, 1.(25)

The triangle inequality and an inverse estimate show

|û− u|1,T ≤ |û− Ihu|1,T + |u− Ihu|1,T
. h−1

T ‖û− Ihu‖0,T + |u− Ihu|1,T
≤ h−1

T ‖û− u‖0,T + h−1
T ‖u− Ihu‖0,T + |u− Ihu|1,T

The interpolation estimates (25) and the approximation property (9)
yield

|û− u|1,T . hmT ‖u‖m+1,T .

After squaring and summing over all T ∈ Th, P T = P h|T ,

‖(δ − P h)(û− u∗h)‖0 . ‖P h(û− u∗h)‖0 + hm+1‖u‖m+1 + h‖σ − σh‖0.
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The estimate (24) and Lemma 3.2 lead to

‖(δ − P h)(û− u∗h)‖0 . hk+3 (‖σ‖k+2 + ‖divσ‖k+1) + hm+1‖u‖m+1.

For the second assertion, the triangle inequality shows

|u− u∗h|1,T ≤ |u− û|1,T + |(δ − P h)(û− u∗h)|1,T + |P h(û− u∗h)|1,T .

Hence, the result follows from an inverse inequality for the last two
terms and the presented analysis. �

5. A posteriori error control

This section concerns some a posteriori error estimation of the stress
error. The analysis is based on the unified approach of [Car05]. Let
fh := P hf denote the piecewise L2 projection of f onto V h, i.e.,∫

T

(f − fh)vh dx = 0 for all vh ∈ V h.

The oscillations of f are defined as

osc2(f , Th) :=
∑
T∈Th

h2
T‖f − fh‖2

0,T .

Here and below, the notation ũh ∈H1
g(Ω) := {v ∈H1(Ω)

∣∣v|∂Ω = g}
asserts that ũh is not necessarily a discrete function. The subscript of
ũh indicates that it is closely related to the discontinuous approxima-
tion uh. Let H := H1

0(Ω) and

L := L2(Ω;S)/R =
{
τ ∈ L2(Ω;S) |

∫
Ω

tr τ dx = 0
}
.

For given f ∈ L2(Ω) the primal mixed formulation of the stress-
velocity formulation of the Stokes problem (2) in its weak form seeks
for (σ,u) ∈ L×H1

g(Ω) such that

−(σ, ε(v)) = (f ,v) for all v ∈H ,

(2νAσ,Aτ )− (τ , ε(u)) = 0 for all τ ∈ L.

Then the following lemma from [Car05] holds.

Lemma 5.1. The operator A : X → X∗, defined for (σ,u) ∈ X :=
L×H by

(A(σ,u))(τ ,v) := (2νAσ,Aτ )− (σ, ε(v))− (τ , ε(u))

is linear, bounded and bijective.

One consequence of this lemma is that, for any approximation (σh, ũh)
to (σ,u) ∈ L×H1

g(Ω) such that (g − ũh)|∂Ω = 0, it holds that

‖A(σ − σh)‖0 + ‖ε(u− ũh)‖0 ≈ ‖ResL‖L∗ + ‖ResH‖H∗
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with the residuals defined by

ResH(v) := (f ,v) + (σh, ε(v)) for all v ∈H ,

ResL(τ ) := (2νAσh,Aτ )− (τ , ε(ũh)) for all τ ∈ L.

The natural error ‖A(σ − σh)‖0 + ‖εTh(u− uh)‖0 is unbalanced in
the sense that the convergence rate of ‖A(σ − σh)‖0 is of order k + 2,
while that of ‖u − uh‖0 is of order k + 1. This motivates the error
control of ‖A(σ − σh)‖0 + ‖ε(u− ũh)‖0.

Theorem 5.2. Let (σ,u) ∈ L×H1
g(Ω) be a solution of (4)–(5). Then

(σh, ũh) ∈ L×H1
g(Ω) satisfies

‖A(σ − σh)‖0 + ‖ε(u− ũh)‖0 + osc(f , Th)
≈ µ := ‖Aσh − ε(ũh)‖0 + osc(f , Th).

Proof. Since v|∂Ω = 0, Gauss Theorem yields

ResH(v) =

∫
Ω

(f − divσh)v dx =

∫
Ω

(f − fh)v dx.

Let vh denote the piecewise integral mean value of v ∈ H ; then the
Poincaré inequality leads to

ResH(v) =
∑
T∈T

∫
T

(f − fh)(v − vh) dx . osc(f , Th)|v|1.

The second residual ResL reads

ResL(τ ) =

∫
Ω

(Aσh − ε(ũh)) : τ dx ≤ ‖Aσh − ε(ũh)‖0‖τ‖0.

Since Aσ = ε(u), a triangle inequality shows the efficiency

‖Aσh − ε(ũh)‖0 ≤ ‖A(σ − σh)‖0 + ‖ε(u− ũh)‖0. �

Remark 5.3. In the numerical experiments, ũh is approximated in some
finite element space of order at least k + 2 such that the boundary
condition is not fulfilled. Suppose that g is sufficiently smooth, i.e.,
g ∈ C(∂Ω) with g|E ∈ Hk+3(E) for all E ⊂ ∂Ω. Let w ∈ H1(Ω)
denote a harmonic extension of g − gh to the interior of Ω [BCD04]
such that w|∂Ω = g − gh with supp(w) ⊆ {T ∈ Th : T ∩ ∂Ω 6= ∅}
and the nodal interpolation gh|E ∈ Pk+2(E;R2) of g, for all E ⊂ ∂Ω.
For ũh ∈ gh +H1

0(Ω), Theorem 5.2 along with the triangle inequality
shows

‖A(σ − σh)‖0 + osc(f , Th) . ‖Aσh − ε(ũh)‖0 + |w|1 + osc(f , Th).

The proof of [BCD04, Theorem 4.2] reads

‖∇w‖2
0 .

∑
E∈Eh,E⊆∂Ω

(
h−1
E ‖g − gh‖

2
L2(E) + hE‖∂(g − gh)/∂s‖2

L2(E)

)
.
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By interpolation it holds

‖∇w‖2
0 . h2(k+3)−1‖∂k+3g/∂k+3s‖2

L2(∂Ω) + h2(k+2)+1‖∂k+3g/∂k+3s‖2
L2(∂Ω)

. h2k+5‖∂k+3g/∂k+3s‖2
L2(∂Ω).

Therefore, this term is of higher order ‖∇w‖0 ≈ O(hk+5/2) compared
to ‖A(σ − σh)‖0 ≈ O(hk+2).

The following part of this section is devoted to a second error estima-
tor for which the continuity of ũh is not needed. Instead the estimator
involves some (possibly) discontinuous function u∗h ∈ H1(Th) := {v ∈
L2(Ω)

∣∣v|T ∈ H1(T ) for all T ∈ Th} from the postprocessing of Sec-
tion 4. Let ωE denote the edge patch ωE := int(T+ ∪ T−), ∇Th the
piecewise defined gradient and εTh its piecewise symmetric part.

Theorem 5.4. Let (σ,u) ∈ L×H1
g(Ω) be a solution of (4)–(5). Then

any u∗h ∈H1(Th) satisfies

‖A(σ − σh)‖0 + ‖εTh(u− u∗h)‖0 + osc(f , Th)

. η := ‖Aσh − εTh(u∗h)‖0 +

(∑
E∈Eh

h−1
E ‖[u

∗
h]‖2

0,E

)1/2

+ osc(f , Th).

Proof. Let ũh ∈ H1
g(Ω) denote the global minimizer of ‖εTh(u∗h) −

ε(ũh)‖0. Theorem 5.2 and the triangle inequality yield, for any u∗h ∈
H1(Th), that

‖A(σ−σh)‖0 + ‖εTh(u− u∗h)‖0

≤ ‖A(σ − σh)‖0 + ‖ε(u− ũh)‖0 + ‖εTh(ũh − u∗h)‖0

. ‖Aσh − ε(ũh)‖0 + ‖εTh(u∗h)− ε(ũh))‖0 + osc(f , Th)

. ‖Aσh − εTh(u∗h)‖0 + ‖εTh(u∗h)− ε(ũh))‖0 + osc(f , Th).
For the set of nodes Nh let (ϕz), z ∈ Nh, be a Lipschitz continuous
partition of unity ∑

z∈Nh

ϕz = 1 in Ω,

with ϕz ∈ L2(Ω) and ϕz|T ∈ P1(T ) for all T ∈ Th. For any edge
E ∈ Eh let N (E) denote the set of all z ∈ Nh with E ∈ Eh(z) := {E ∈
Eh |ϕz|E 6≡ 0}. Theorem 3.1 of [CH07] reads

min
v∈H1

g(Ω)
‖∇Th(u∗h − v)‖2

0 .
∑
E∈Eh

∑
z∈N (E)

hE‖∂[ϕzu
∗
h]/∂s‖2

0,E.

Thus ‖εTh(·)‖0 . ‖∇Th(·)‖0 yields

‖εTh(u∗h)− ε(ũh)‖2
0 = min

v∈H1
g(Ω)
‖εTh(u∗h − v)‖2

0

.
∑
E∈Eh

∑
z∈N (E)

hE‖∂[ϕzu
∗
h]/∂s‖2

0,E.
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The local inverse inequality [BS94]

hE‖∂[ϕzu
∗
h]/∂s‖2

0,E . h−1
E ‖[ϕzu

∗
h]‖2

0,E

leads to

‖εTh(u∗h − ũh)‖2
0 .

∑
E∈Eh

∑
z∈N (E)

h−1
E ‖[ϕzu

∗
h]‖2

0,E.

For the linear basis functions it holds that 0 ≤ ϕz ≤ 1 and the cardi-
nality of |N (E)| is bounded for all E ∈ Eh. Thus, it follows that

‖εTh(u∗h − ũh)‖2
0 .

∑
E∈Eh

h−1
E ‖[u

∗
h]‖2

0,E. �

Theorem 5.5. Let the boundary ∂Ω be sufficiently smooth and (σ,u) ∈
L × H1

g(Ω) ∩ Hk+3(Ω) be a solution of (4)–(5). Then the postpro-
cessed velocity field u∗h ∈W ∗

h from Section 4 satisfies for quasi-uniform
meshes

η . ‖σ − σh‖0 + ‖εTh(u− u∗h)‖0 + hm‖u‖m+1 + osc(f , Th).

Proof. The triangle inequality shows that

‖Aσh − εTh(u∗h)‖0 ≤ ‖A(σ − σh)‖0 + ‖εTh(u− u∗h)‖0

. ‖σ − σh‖0 + ‖εTh(u− u∗h)‖0.

Hence, it remains to bound the jump term. Since u is continuous,

‖[u∗h]‖0,E = ‖[u∗h − u]‖0,E.

The trace inequality reads

‖[u∗h − u]‖0,E . h
−1/2
E ‖u∗h − u‖0,ωE

+ h
1/2
E ‖∇Th(u∗h − u)‖0,ωE

and leads to

h−1
E ‖[u

∗
h]‖2

0,E . h−2
E ‖u

∗
h − u‖2

0,ωE
+ ‖∇Th(u∗h − u)‖2

0,ωE
.

The summation over all edges with finite overlap of the edge patches
ωE yields∑

E∈Eh

h−1
E ‖[u

∗
h]‖2

0,E . h−2
min‖u∗h − u‖2

0,ωE
+ ‖∇Th(u∗h − u)‖2

0

with hmin := minE∈Eh hE. The proofs of Theorems 3.4 and 4.1 show

‖u− u∗h‖0 . hm+1‖u‖m+1 + h‖σ − σh‖0 + h osc(f , Th),
‖∇Th(u− u∗h)‖0 . hm‖u‖m+1 + ‖σ − σh‖0 + osc(f , Th).

The quasi-uniformity of the meshes h/hmin . 1 ends the proof. �

Remark 5.6. In most practical examples, u is not as smooth asHm+1(Ω),
and adaptive mesh refinement is needed. However, Theorem 5.5 gives
at least a hint that η might be not only reliable but also efficient for
more general problems and meshes. This is indeed confirmed by the
numerical experiments of Section 7.
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6. The Adaptive Finite Element Method

The adaptive finite element algorithm computes a sequence of dis-
crete subspaces

(Φh0 ,V h0) ( (Φh1 ,V h1) ( . . . ( (Φh`−1
,V h`−1

) ( (Φh` ,V h`) ⊂ (Φ,V )

throughout successive local refinement of the domain Ω. The corre-
sponding sequence of meshes (Th`)` consists of nested regular triangu-
lations. The AFEM consists of the following loop:

Solve→ Estimate→ Mark→ Refine.

Solve. Given a mesh Th the step Solve calculates the solution of the
finite-dimensional saddle point problem A Bt ct

B
c

 x
y
λ

 =

 bg
bf
0

 .

It is assumed throughout the paper that the discrete equations are
solved exactly. The system matrices A and B and the right-hand sides
bg and bg are computed for the bases span{τ j} = Φh and span{vj} =
V h by

Ajk :=

∫
Ω

Aτ j : τ k dx and Bjk :=

∫
Ω

vj · divτ k dx;

bg,j :=

∫
∂Ω

g · (τ jnE) dx and bf,j :=

∫
Ω

f · vj dx.

The discrete solutions for the stress σh and the velocity uh are given
by

σh =

dim(Φh)∑
k=1

xkτ k and uh =

dim(V h)∑
k=1

ykvk.

The condition
∫

Ω
trσh dx = 0 is incorporated into the system using the

Lagrange multiplier λ and

cj :=

∫
Ω

tr τ j dx.

For more details see [CGRT08].

Estimate. The error ‖A(σ−σh)‖0 is estimated based on the discrete
solution (σh,uh) of the underlying saddle point problem

‖A(σ − σh)‖0 . µh and ‖A(σ − σh)‖0 . ηh
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with

µ2
h =

∑
T∈Th

h2
T‖f − fh‖2

0,T +
∑
T∈Th

‖Aσh − ε(ũh)‖2
0,T

+
∑

E∈Eh,E⊆∂Ω

hE‖∂(g − gh)/∂s‖2
L2(E),

ηh
2 =

∑
T∈Th

h2
T‖f − fh‖2

0,T +
∑
T∈Th

‖Aσh − ε(u∗h)‖2
0,T +

∑
E∈Eh

h−1
E ‖[u

∗
h]‖2

0,E.

Here u∗h ∈W ∗
h is the solution of the local postprocessing of Section 4.

To obtain a conforming approximation ũh ∈ gh+H1
0(Ω) the (possibly)

discontinuous function u∗h is smoothen by taking the arithmetic mean
value

ũh(z) :=
1

|{T ∈ Th : z ∈ T}|
∑

T∈Th:z∈T

u∗h(z)|T ,

for each vertex and edge degree of freedom in z ∈ R2. The degrees of
freedom on the boundary in points z ∈ R2 are interpolated ũh(z) =
g(z).

Remark 6.1. In the academic case f 6≡ fh the oscillations might dom-
inate the other terms in the a posteriori error estimators and therefore
lead to a high overestimation of the error ‖A(σ − σh)‖0. For the
realistic benchmark problems of Section 7 the oscillation vanish, and
Theorem 5.2 shows for ũh ≡ u that the error estimate is sharp. Be-
cause of that and ũh being a higher order approximation of u, the
efficiency indices µh/‖A(σ − σh)‖0 are expected to be close to one.

Mark. Based on the refinement indicators, edges and elements are
marked for refinement in a bulk criterion such that Mh ⊆ Th ∪ Eh is
an (almost) minimal set of marked edges with

θη2
h ≤ η2

h(Mh), η2
h(Mh) :=

∑
T∈Mh∩Th

η2
h(T ) +

∑
E∈Mh∩Eh

η2
h(E)

for a bulk parameter 0 < θ ≤ 1. This is done in a greedy algorithm
which marks edges and elements with larger contributions.

Refine. In this step of the AFEM loop, the mesh is refined locally
corresponding to the set Mh of marked edges and elements. Once
an element is selected for refinement, all of its edges will be refined.
In order to preserve the quality of the mesh, i.e., the maximal angle
condition or its equivalents, additionally edges have to be marked by
the closure algorithm before refinement. For each triangle let one edge
be the uniquely defined reference edge E(T ). The closure algorithm
computes a superset Mh ⊃Mh such that{
E(T ) : T ∈ Th with E(T ) ∩Mh 6= ∅ or T ∩Mh 6= ∅

}
⊆Mh.
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Figure 1. Refinement rules: Subtriangles with corre-
sponding reference edges depicted with a second edge.

In other words, once an edge of a triangle or itself is marked for re-
finement, its reference edge E(T ) is among them. After the closure
algorithm is applied, one of the following refinement rules is applicable:
no refinement, red refinement, green refinement, blue left refinement,
or blue right refinement (see Figure 1).

7. Numerical Experiments

This section is devoted to three numerical experiments with known
exact solution and two well-known benchmark problems. The exper-
iments compare the convergence behavior for uniform and adaptive
meshes using the error estimators of Section 6 for the stress error. The
experiments restrict themselves to the lowest order Arnold–Winther fi-
nite element (k = 1) [CGRT08] and the parameter ν = 1. Since the
experiments show some superconvergence phenomenon of fourth order
for the stress error if the right hand side f ≡ 0, the polynomial order for
the postprocessing is accordingly increased by one to u∗h ∈ P4(Th;R2).
In the absence of superconvergence phenomena this is only a minor
computational overhead compared to the postprocessing in P3(Th;R2).

Smooth example. The first example concerns the model problem (2)
in Ω = (0, 1) × (0, 1), with source f = (4π2 sin(π(x − y)), 0)t and the
Dirichlet data g chosen in such a way that the smooth solution reads

u = (sin(πx) cos(πy)− cos(πx) sin(πy), sin(πx) cos(πy)− cos(πx) sin(πy))t,

σ = 2ε(u)− pδ, with p = −2π(cos(πx) cos(πy) + sin(πx) sin(πy)) + 8/π.

The computed solution is displayed in Figure 2 as streamline plot for a
uniform mesh, and the discrete pressure ph := −trσh/2 is visualized on
an adaptive mesh. The convergence history in Figure 3 shows empiri-
cally optimal convergence rates ofO(N−3/2), N := dim(Φh)+dim(V h),
for both uniform and adaptive meshes. Note that for uniform meshes
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Figure 2. Streamline plot of the discrete solution on a
uniform mesh (left) and discrete pressure ph = −trσh/2
on an adaptive mesh with 409 nodes (right) for the
smooth example.
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Figure 3. Convergence history of ‖A(σ −σh)‖0, ‖u−
uh‖0, ‖u−u∗h‖0, µh and ηh on adaptively and uniformly
refined meshes for the smooth example.

it holds that O(N−3/2) ≈ O(h3). Due to the H2-regularity of the solu-
tion, the numerical results for uniform and adaptive refinements do not
differ much. Both error estimators are empirically reliable and efficient.
In this academically smooth example the efficiency index is not close
to one since the oscillations osc(f , Th) dominate both error estimators.
Since the solution is smooth, the postprocessed velocity u∗h is of higher
order O(N−2), which confirms the theoretical result.

Colliding flow. As second example consider the model problem (2)
in Ω = (−1, 1)× (−1, 1) with source f ≡ 0 and the Dirichlet condition
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Figure 4. Streamline plot of the discrete solution on a
uniform mesh (left) and discrete pressure ph = −trσh/2
on an adaptive mesh with 429 nodes (right) for the col-
liding flow example.
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Figure 5. Convergence history of ‖A(σ −σh)‖0, ‖u−
uh‖0, ‖u−u∗h‖0, µh and ηh on adaptively and uniformly
refined meshes for the colliding flow example.

g chosen in such a way that

u = (20xy4 − 4x5, 20x4y − 4y5)t and σ = 2ε(u)− pδ

with p = 120x2y2− 20x4− 20y4− 32/6 is the solution. Figure 4 shows
the streamlines of the approximated velocity field on a uniform refined
mesh and the discrete pressure ph = −trσh/2 on an adaptive refined
mesh. Both error estimators are numerically reliable and efficient as
shown in Figure 5. Since there are no oscillations in this example,
the efficiency indices of both estimators are much closer to one. It is
remarkable that the order of convergence approaches experimentally
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Figure 6. Streamline plot of the discrete solution on a
uniform mesh (left) and discrete pressure ph = −trσh/2
on an adaptive mesh with 223 nodes (right) for the slit
example.
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Figure 7. Convergence history of ‖A(σ −σh)‖0, ‖u−
uh‖0, ‖u−u∗h‖0, µh and ηh on adaptively and uniformly
refined meshes for the slit example.

O(N−2). This superconvergence was previously observed in [CGRT08]
where it is conjectured that this effect takes place due to f ≡ 0. Con-
sequently, the postprocessed velocity u∗h ∈ P4(Th;R2) shows also an
increased empirical convergence rate of O(N−5/2). The fact that the
adaptive mesh refinement algorithm destroys the symmetry of the mesh
might be a reason that the error for adaptively refined meshes is larger
than that for uniform meshes.

Slit example. As an example with a nonconvex domain, consider the
model problem (2) in Ω = (−1, 1)2\[0, 1) × {0}. The right hand side
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Figure 8. Adaptive meshes obtained using µh (left)
with 672 nodes and ηh (right) with 761 nodes for the
slit example.

f and the Dirichlet data g are chosen in such a way that the exact
solution in polar coordinates reads

u =
3
√
r

2

(
cos

(
θ

2

)
− cos

(
3θ

2

)
, 3 sin

(
θ

2

)
− sin

(
3θ

2

))t
,

σ = 2ε(u)− pδ with p = − 6√
r

cos

(
θ

2

)
.

Due to the re-entrant corner at the origin of the domain, this example
allows a singular solution. A discrete approximation of the velocity
and the pressure ph = −trσh/2 on uniformly and adaptively refined
meshes is shown in Figure 6. The convergence history in Figure 7 shows
poor convergence for the error in the case of uniform meshes. On the
other hand, adaptive refinement results in optimal convergence of the
error and in reliable and efficient a posteriori error control, which un-
derlines the importance of adaptivity. It can be observed that ηh is
underestimating the error and that the efficiency index is much smaller
than that from µh, which is close to one. Additionally the error for the
adaptive meshes generated with µh is significant smaller than that gen-
erated with ηh. Figure 8 shows pictures of adaptively refined meshes
for µh and ηh, which show strong refinement towards the singularity
at the origin. The postprocessed velocity u∗h shows empirical super-
convergence with convergence rates of O(N−2) for adaptive meshes for
both estimators.

Backward facing step. This example is a well-known benchmark
problem for flow problems in the domain Ω of Figure 9. Consider the
model problem (2) with f ≡ 0, g(x, y) = (0, 0)t for −2 < x < 8,
g(x, y) = (−y(y − 1)/10, 0)t for x = −2 and g(x, y) = (−(y + 1)(y −
1)/80, 0)t for x = 8. The numerical solution of the velocity field and
the pressure ph = −trσh/2 on uniformly refined meshes are shown
in Figure 9. Note that the pressure is high on the left and low on
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Figure 9. Approximated velocity field (top) and dis-
crete pressure ph = −trσh/2 (bottom) for the backward
facing step example on uniform meshes.

2 1 0 1 2 3 4 5 6 7 8
1

0.5

0

0.5

1

2 1 0 1 2 3 4 5 6 7 8
1

0.5

0

0.5

1

Figure 10. Adaptive meshes obtained using µh (top)
with 760 nodes and ηh (bottom) with 791 nodes for the
backward facing step example.
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Figure 11. Approximated velocity field near the bot-
tom corner for the backward facing step example on uni-
form meshes.
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Figure 12. Approximated velocity field (left) and dis-
crete pressure ph = −trσh/2 (right) for the driven cavity
example on uniform meshes.
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Figure 13. Approximated velocity field near the left
and right lower corner for the driven cavity example on
uniform meshes.

the right. Figure 10 shows two adaptively refined meshes for both
error estimators which look quite similar and show strong refinement
towards the singularity at the origin. A zoom of the lower left corner
in Figure 11 shows not only one eddy, but two streamlines at the left
corner indicate a second one. This indicates a high stability of the
numerical scheme.

Lid-driven cavity flow. As last example consider the lid-driven cav-
ity flow benchmark problem. Consider the model problem (2) in Ω =
(−1, 1) × (1, 1) with f ≡ 0, g(x, y) = (0, 0)t for y < 1 and g(x, y) =
(1, 0)t for y = 1. Figure 12 displays the numerical solution of the veloc-
ity on a uniform mesh with two Moffat eddies at the bottom corners and
an approximation of the pressure ph = −trσh/2 on an adaptive mesh.
The absolute largest values for the pressure occur in the top corners; in
the other areas there seems to be almost no pressure. Figure 13 shows
a zoom towards the Moffat eddies in the left and right lower corners.
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Figure 14. Adaptive meshes obtained using µh (left)
with 422 nodes and ηh (right) with 355 nodes for the
driven cavity example.

Near the bottom corners one or two lines indicate a more detailed res-
olution of the Moffat eddies, which again illustrates the high stability
of the numerical scheme. Both adaptively refined meshes show strong
refinement towards the two left and right top corners in Figure 14. It
seems that the area away from the corners is refined only to prevent
hanging nodes and not due to a high refinement indicator.
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