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Abstract. The elementary analysis of this paper presents ex-
plicit expressions of the constants in the a priori error estimates
for the lowest-order Courant, Crouzeix-Raviart nonconforming and
Raviart-Thomas mixed finite element methods in the Poisson model
problem. The three constants and their dependences on some max-
imal angle in the triangulation are indeed all comparable and allow
accurate a priori error control.

1. Introduction

Quantitative a priori error control for the three most popular lowest-
order conforming, nonconforming, and mixed 2D finite element meth-
ods (FEMs) named after Courant, Crouzeix-Raviart, and Raviart-
Thomas, depicted symbolically in Figure 1.1, is one of the most funda-
mental questions in the numerical analysis of partial differential equa-
tions (PDEs). For the Courant FEM and the Raviart-Thomas mixed
FEM (MFEM), there exist elementwise interpolation operators I and
IF such that the error analysis consists in an estimate of the Lebesgue
norms in the sense of

‖∇(v − Iv)‖L2(T ) ≤ C(T )hT
∥∥D2v

∥∥
L2(T )

for some smooth function v with Hessian D2v and the triangle T with
diameter hT . The point is that the constant C(T ) depends on the shape
of the triangle but not on its size hT . The textbook analysis is based
on the Bramble-Hilbert lemma and so on some compact embeddings
on a reference geometry [Bra01, Cia78]. The transformation formula
then leads to some estimate of C(T ) which is qualitative and can be
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Figure 1.1. Courant, Crouzeix-Raviart, and Raviart-
Thomas FE.

quantified with the help of computer-justified values of some eigenvalue
problem on the reference triangle, cf. e.g., [KL07] for a historic overview
and the references quoted therein, in particular [BA76] for Courant and
[AD99] for Raviart-Thomas FEM. This paper aims at direct elementary
proofs of quantitative error estimates based on the Poincaré inequality
with some known constant plus elementary integration by parts.

The situation is somewhat different for the nonconforming FEMs
because the local interpolation error through the natural interpolation
operator INC is very sharp, even optimal by some averaging property;
but the global error is also driven by the interaction with the inconsis-
tency. The standard textbook analysis employs some Strang-Fix type
argument [Bra01, BS08] which leads to two contributions and gives
the reader the impression that the error analysis is even more sensitive
and perhaps even the scheme is more sensitive than the other two. In
Braess [Bra01] page 111 one can even find the hint that the Crouzeix-
Raviart nonconforming FEM (NCFEM) is more sensitive with respect
to large second order derivatives than the other two methods.

This paper aims at a clarification by the comparison of the best
known constants C(T ) for the three FEMs at hand. In fact, the con-
stant

(1.1) C(α) :=

√
1/4 + 2/j2

1,1

1− | cosα|
,

for a maximal angle 0 < α < π of a triangle T and the first positive
root j1,1 of the Bessel function J1, and its maximum

C(T ) := max
T∈T

C(max]T )
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in a triangulation T of a 2D polygonal domain Ω play a dominant role.
The main results of this paper are the explicit error estimates

|||u− uC ||| ≤ C(T )
∥∥hTD2u

∥∥
L2(Ω)

,(1.2)

‖p− pRT‖L2(Ω) ≤ C(T ) ‖hTDp‖L2(Ω) ,(1.3)

|||u− uCR|||NC ≤
1

j1,1

osc(f, T ) +

√
1

j2
1,1

+ C(T )2
∥∥hTD2u

∥∥
L2(Ω)

(1.4)

for the Courant, Raviart-Thomas and Crouzeix-Raviart finite element
approximations uC , pRT and uCR in a simple Poisson model problem
and the oscillations osc(f, T ) defined in Section 6. In particular, the
constants (which are upper bounds) have the same behaviour as the
angles deteriorate with α ↗ π. The above estimate for the NCFEM
displays the perturbation result for an arbitrary L2 function f as a
right-hand side in the Poisson model problem and thereby corrects
and sharpens a corresponding error analysis in [MS09]. The technique
here bypasses the Strang-Fix argument by the direct connection of the
Raviart-Thomas MFEM with the Crouzeix-Raviart NCFEM usually
attributed to Marini [Mar85, AB85].

The paper is organised as follows. Section 2 presents some prelim-
inaries and Section 3 shows the elementary interpolation estimate for
the nodal interpolation operator I. The model problem and the error
estimate (1.2) for the Courant finite element method is presented in
Section 4. Sections 5 and 6 present the error estimates for the Raviart-
Thomas MFEM (1.3) and the Crouzeix-Raviart NCFEM (1.4).

The contents of this paper reflects the way, finite element methods
are taught by the first author over the years at the universities in
Kiel, Vienna, Berlin, Budapest, and Seoul as well as in his summer
schools in Cape Town, Beijing, Mumbai and on Goa. They seem to be
optimal in the class of arguments and offer some quantitative insight
with surprisingly little effort.

Throughout this paper, standard notation on Lebesgue and Sobolev
spaces is employed. The Lebesgue integral reads

´
, the integral meanffl

, norms |||·||| := ‖∇·‖L2(Ω), |||·|||NC := ‖∇NC ·‖L2(Ω) with piecewise gra-

dient (∇NC ·)|T := ∇(·|T ) for all T ∈ T , and | · | denotes the measure
as the area |T | of the triangle T and the length |E| of an edge E.

2. Elementary Preliminaries

This section is devoted to some preliminaries for the interpolation er-
ror estimates. One is a Poincaré-Friedrichs type estimate, which follows
from the well known trace identity and another is some transformation
stability in the plane. Figure 2.1 displays the geometry of a triangle in
the subsequent two lemmas.
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νx
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H

Figure 2.1. Geometry of the triangle T from
Lemma 2.1 and Lemma 2.2.

Lemma 2.1 (Trace Identity). Let f ∈ W 1,1(T ) on the triangle T =
conv({P} ∪ E) with vertex P and opposite edge E. Then it holds 

E

f ds−
 
T

f dx =
1

2

 
T

(x− P ) · ∇f(x) dx.

Proof. Set g(x) := (x− P )f(x) for all x ∈ T and observe

(x− P ) · νE = dist(P,H) for x ∈ E ⊂ H

for the line H from Figure 2.1 that enlarges E. For x on one of the two
other edges, x − P is parallel to that edge. Hence, the unit normal ν
along ∂T satisfies

(x− P )⊥ν(x) for x ∈ ∂T \ E.
Therefore, the Gauss divergence theorem leads toˆ

T

div g(x) dx =

ˆ
∂T

g(x) · ν(x) dsx

=

ˆ
E

f(x) (x− P ) · νE dsx = dist(P,H)

ˆ
E

f ds .

This and the product rule

div g(x) = 2f(x) +∇f(x) · (x− P )

prove the assertion. �

The classical Poincaré constant of Payne-Weinberger [PW60] has re-
cently been improved from 1/π (for all convex domains) to the optimal
value 1/j1,1 (for triangles), where j1,1 ≈ 3.8317059702 denotes the first
positive root of the Bessel function J1.

Theorem 2.1 (Poincaré Inequality on Triangles [LS10]). For all f ∈
H1(T ) on a triangle T it holds∥∥f − ffl

T
f(x)dx

∥∥
L2(T )

≤ hT/j1,1 |f |H1(T ).(2.1)
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Lemma 2.2 (Poincaré-Friedrichs Inequality). Let f ∈ H1(T ) satisfy´
E
f ds = 0 on the triangle T = conv({P}∪E) with an edge E opposite

to the vertex P . Then it holds

‖f‖L2(T ) ≤
√

max
x∈E
|P − x|2 /8 + h2

T/j
2
1,1 |f |H1(T ) .

Proof. The theorem of Pythagoras for a := f −
ffl
T
f(x)dx and b :=ffl

T
f(x)dx reads

‖f‖2
L2(T ) = ‖a+ b‖2

L2(T ) = ‖a‖2
L2(T ) + ‖b‖2

L2(T ) .

The Poincaré inequality (2.1) gives

‖a‖L2(T ) =
∥∥f − ffl

T
f(x)dx

∥∥
L2(T )

≤ hT/j1,1 |f |H1(T ).

The trace identity from Lemma 2.1 with
ffl
E
f ds = 0 leads to

|T ||b| =
∣∣∣ ˆ

T

f(x) dx
∣∣∣ =

1

2

∣∣∣ ˆ
T

(x−P )·∇f(x) dx
∣∣∣ ≤ 1

2
‖• − P‖L2(T ) |f |H1(T ).

With polar coordinates (r, ϕ) and the notation for |x − P | =: r and
α < ϕ < β with some distance 0 < δ(ϕ) ≤ maxx∈E |P − x| of P to E,
one deduces

‖x− P‖2
L2(T ) =

ˆ β

α

ˆ δ(ϕ)

0

r2r dr dϕ =

ˆ β

α

δ(ϕ)4/4 dϕ

≤ max
x∈E
|P − x|2 /2

ˆ β

0

ˆ δ(ϕ)

0

r dr dϕ = |T |max
x∈E
|P − x|2 /2 .

This results in the bound

|b| =
∣∣∣  

T

f(x) dx
∣∣∣ ≤ 2−3/2|T |−1/2 max

x∈E
|P − x| |f |H1(T ).

The preceding two estimates control the two terms a and b of the
above Pythagoras identity and so prove

||f ||2L2(T ) ≤ h2
T/j

2
1,1 |f |2H1(T ) + max

x∈E
|P − x|2 /8 |f |2H1(T )

=

(
max
x∈E
|P − x|2 /8 + h2

T/j
2
1,1

)
|f |2H1(T ). �

The following inequality compares the Euclidean length |a| of a vec-

tor a in the plane with a second metric
√

(a · ν)2 + (a · µ)2 given by
the two projections a · ν and a · µ.

Lemma 2.3 (Transformation Stability). For linearly independent unit
vectors ν and µ in R2, it holds

min
a∈R2\{0}

(a · ν)2 + (a · µ)2

|a|2
= 1− |ν · µ|
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Proof. Let a = αν+βµ for real α and β with α2 +β2 = 1. Set γ := ν ·µ
and |ν| = 1 = |µ|. Then −1 ≤ 2αβ ≤ 1 and so

0 ≤ (1 + |γ|)(|γ|+ 2αβγ).

This is equivalent to

−(1 + |γ|) 2αβγ ≤ γ2 + |γ|.
Add 1− |γ|+ 4αβγ on both sides to prove

LHS := (1− |γ|)(1 + 2αβγ) = 1 + 2αβγ − |γ|2αβγ − |γ|
≤ 1 + γ2 + 4αβγ =: RHS.

Direct calculations show

|a|2 = α2 + β2 + 2αβγ = 1 + 2αβγ = LHS/(1− |γ|)
as well as a · ν = α + βγ and a · µ = β + αγ. Therefore,

(a · ν)2 + (a · µ)2 = (α + βγ)2 + (β + αγ)2

= 1 + γ2 + 4αβγ = RHS.

Altogether this proves

(1− |γ|)|a|2 ≤ (a · ν)2 + (a · µ)2 for all a ∈ R2 .

This shows that the left-hand side in the assertion is in fact larger than
or equal to 1 − |γ|. Equality and attainment of the minimum follows
with the choice

(α, β) =
1√
2

(±1, 1) for ± γ ≤ 0

plus direct calculations. This concludes the proof. �

3. Nodal Interpolation Error Estimate

This section presents the nodal interpolation error estimates in an
abstract form on a triangle with focus on explicit constants and then
compares with the estimate from [KL07]. Recall the expression C(α)
from (1.1) for any angle 0 < α < π of a triangle T which is preferably
chosen as C(max]T ).

Theorem 3.1 (Interpolation Error Estimate). Let v ∈ H2(T ) with
v(A) = v(B) = v(C) = 0 on the triangle T = conv{A,B,C}, with
vertices A,B,C, diameter hT , and some interior angle 0 < α < π.
Then it holds

‖∇v‖L2(T ) ≤ C(α) hT
∥∥D2v

∥∥
L2(T )

.

Proof. Figure 3.1 displays two unit vectors τ1 = ν and τ2 = µ along
the two sides of the angle α with |γ| := |τ1 · τ2| = | cosα|. Lemma 2.3
for a := ∇v(x) and fj := τj · ∇v(x) plus integration over T show

(1− |γ|)
ˆ
T

|∇v(x)|2 dx ≤
ˆ
T

(
f1(x)2 + f2(x)2

)
dx .
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τ1

τ 2

T

A

α

B

C

Figure 3.1. Geometry in Theorem 3.1.

Lemma 2.2 proves

ˆ
T

(
f1(x)2 + f2(x)2

)
dx

≤ max{|A−B|2, |A− C|2}/8 + h2
T/j

2
1,1

(
|f1|2H1(T ) + |f2|2H1(T )

)
.

Since |τj| = 1 it holds for all x ∈ T and j, k = 1, 2 that

∂fj
∂xk

(x) =
∂

∂xk
∇v(x) · τj ≤

√√√√ 2∑
`=1

∣∣∣∣ ∂2v(x)

∂xk∂x`

∣∣∣∣2 .
This and

|fj|2H1(T ) = ‖∂fj/∂x1‖2
L2(T ) + ‖∂fj/∂x2‖2

L2(T )

for j = 1, 2 (which eventually results in the factor 2) lead to

|v|2H1(T ) ≤
1/4 + 2/j2

1,1

1− | cosα|
h2
T

ˆ
T

(∣∣∣∣∂2v

∂x2
1

∣∣∣∣2 + 2

∣∣∣∣ ∂2v

∂x1x2

∣∣∣∣2 +

∣∣∣∣∂2v

∂x2
2

∣∣∣∣2
)
dx

=
1/4 + 2/j2

1,1

1− | cosα|
h2
T |v|2H2(T ) = C(α)2h2

T |v|2H2(T ). �

The following example illustrates how the estimate has to deteriorate
as α↗ π and why it stays bounded under the maximal angle condition.

Example 3.1 (Maximal Angle Condition). Given any 0 < δ ≤ 1,
consider the triangles T1 and T2 defined in Figure 3.2 with vertices
N (T1) and N (T2). The point is that T2 has some largest angle α =
π/2 while that of T1 is α = 2 arctan(1/δ) and this tends to π as δ
tends to zero. The smooth function v(x1, x2) = 1 − x2

1 has the nodal
interpolation Iv(x1, x2) = x2/δ on T1 and one calculates

‖∂(v − Iv)/∂x2‖2
L2(T1) = 1/δ ≤ ‖∇(v − Iv)‖2

L2(T1) for
∥∥D2v

∥∥2

L2(T1)
= 4δ .
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(−1, 0) (1, 0)

(0, δ)

T1

(0, 0) (1, 0)

(0, δ)

T2

Figure 3.2. The triangles T1 and T2 from Example 3.1.

Theorem 3.1 applies to the interpolation error v − Iv as it vanishes at
the vertices of T1. This shows

Q(v) :=
‖∇(v − Iv)‖L2(T1)

hT1 ‖D2v‖L2(T1)

≤ C(α) .

Elementary trigonometric considerations show

(1− |cosα|)−1 = (1 + δ2)/(2δ2) ≤ δ−2.

Hence, the lower and upper bounds show the same asymptotic be-
haviour

(4δ)−1 ≤ Q(v) ≤ δ−1
√

1/4 + 2/j2
1,1 as δ ↘ 0.

In other words, the degeneracy of C(α)→∞ is sharp in the sense that

sup
v∈H2(T1)\{0}
v=0 at N (T1)

Q(v) ∝ (1− | cosα|)−1/2 as α↗ π .

To illustrate the difference to the triangle T2 with right angle α = π/2,
note that

C(π/2) =
√

1/4 + 2/j2
1,1 ≈ 0.6215

is bounded independently of δ ↘ 0. �

The search of an optimal bound the error estimate of Theorem 3.1
can also be posed as an eigenvalue problem with the Rayleigh quotient

RQ(v) := ‖∇v‖2
L2(T ) /

∥∥D2v
∥∥2

L2(T )
for v ∈ H2(T ) with v = 0 on N (T ).

Theorem 3.1 leads to an upper bound of the first eigenvalue of this
eigenvalue problem with an elementary proof. The value C3 = 0.489 is
known for a right isosceles triangle T from [Arb82, Leh86, Sig88].

Remark 3.1 (Comparison with [KL07]). The reference [KL07] dis-
cusses a valid upper bound for the constant

C3(T )2 := sup
v∈H2(T )\{0}
v=0 at N (T )

RQ(v) ≤ C(α)2h2
T ,

for a triangle T with maximal angle α and diameter hT = diam(T ).
Based on some transformation arguments, this constant has been com-
puted and empirically studied in [KL07] and formerly in [Arb82, Leh86,
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Figure 3.3. Comparison of the constant C(α) and the
upper bound (3.1) for C3(T ).

Sig88] with the numerical value C3(Tref) = 0.489 on the reference trian-
gle Tref = conv{(0, 0), (0, 1), (1, 0)}. Justified by computer-simulations,
the bound of [KL07] leads to

(3.1) C3(T ) ≤ 1 + | cosα|√
2
√

1− | cosα|
C3(Tref)√
1− cosα

hT .

(The reader is warned that the notation in [KL07] is different and
does not involve the maximum length hT but the second largest one
and there is another parameter which is maximized here in (3.1) for
simplicity.) Figure 3.3 compares the upper bound in (3.1) for C3(T ) and
the bound C(α) as a function of the angle α in the range π/3 ≤ α < π.
Notice that an equilateral triangle T with α = π/3 shows

C(α) = 0.8789 < C3(T ) = 1.0373

and the bound of Theorem 3.1 is even sharper than that of [KL07].
This is not a contradiction because the transformation in [KL07] leads
to some upper bound. The overall conclusion from Figure 3.3 is that
the two bounds are comparable; one is with an elementary proof, while
the other is justified by numerical calculations. �

4. Courant FEM

This section is devoted to the simplest model problem for second-
order elliptic PDEs and its most elementary first-order conforming dis-
cretisation.

4.1. Poisson Model Problem. Given a right-hand side f ∈ L2(Ω)
on a bounded Lipschitz domain Ω ⊂ R2 with polygonal boundary ∂Ω,
the strong form of the Poisson model problem reads: seek u ∈ C(Ω̄) ∩
H2
loc(Ω) such that

(4.1) −∆u = f in Ω and u = 0 along ∂Ω.
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The formally equivalent weak formulation utilizes the scalar product
and the linear and bounded functional

a(u, v) :=

ˆ
Ω

∇u · ∇v dx and F (v) :=

ˆ
Ω

fv dx for u, v ∈ V := H1
0 (Ω)

in the Hilbert space H1
0 (Ω) of Lebesgue measurable functions in L2(Ω)

with a weak gradient in L2(Ω;R2). The weak form seeks the Riesz
representative u of F within the Hilbert space V, namely u ∈ V with

(4.2) a(u, v) = F (v) for all v ∈ V.
Elliptic regularity leads to u ∈ H2

loc(Ω)∩H1+s(Ω) for some 1/2 < s ≤ 1
with s = 1 for convex domains [Eva10, GT01].

4.2. Regular Triangulation. A regular triangulation T of Ω (in the
sense of Ciarlet) into triangles is a finite set of closed triangles T of
positive area |T | such that⋃

T :=
⋃
T∈T

T = Ω

and any two distinct triangles T1 and T2 in T with T1 ∩ T2 6= ∅ share
exactly one vertex z or have one edge E in common. The set of all
edges of a triangle T is denoted by E(T ), the set of vertices of T is
denoted by N (T ). The set of all edges resp. nodes is written as

E :=
⋃
T∈T

E(T ) and N :=
⋃
T∈T

N (T ).

Let mid(E) := {mid(E) |E ∈ E} be the set of midpoints of the edges.
The piecewise constant weight hT ∈ P0(T ) is the local mesh-size,

hT |T := hT := diam(T ) for all T ∈ T .

4.3. Courant FEM. For a regular triangulation T of Ω and k ∈ N0

define the finite element spaces

Pk(T ) := {polynomial on T with degree ≤ k} ,
Pk(T ) := {v ∈ L2(Ω) | ∀T ∈ T , v|T ∈ Pk(T )} ,
VC(T ) := C0(Ω) ∩ Pk(T ) .

The nodal basis function ϕz ∈ C(Ω) ∩ P1(T ) is defined by ϕz(z) = 1
and ϕz(y) = 0 for z ∈ N and all other nodes y ∈ N \ {z}. The nodal
interpolant is the operator

I : C(Ω)→ VC(T ), v 7→
∑
z∈N

v(x)ϕz(x).

The Galerkin discretisation replaces H1
0 (Ω) by the finite element space

VC(T ): seek uC ∈ VC with

(4.3) a(uC , vC) = F (vC) for all vC ∈ VC .
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The following immediate consequence of Theorem 3.1 and the well-
known optimality of uC implies (1.2).

Corollary 4.1. The Courant FEM solution uC on Ω of the Poisson
model problem (4.1) satisfies

|||u− uC ||| ≤ |||u− Iu||| ≤ C(T )
∥∥hTD2u

∥∥
L2(Ω)

.

Proof. The first inequality follows from Galerkin orthogonality and the
second from Theorem 3.1 because u− Iu vanishes at all nodes. �

4.4. Numerical Example. Consider the Poisson model problem (4.1)
with

f(x, y) = 4− 2x2 − 2y2 for (x, y) ∈ Ω := (−1, 1)2

and exact solution u(x, y) = (1− x2)(1− y2). The sequence of uniform
criss triangulations (T`)` of the unit square Ω is generated by uniform
refinements of Ω into squares divided along the diagonal parallel to
the main diagonal. Table 4.1 shows the errors computed with Matlab
[ACF99] for different levels ` with mesh-sizes hT` =

√
2/2` and efficiency

indices
EI := (C(T`)

∥∥hT`D2u
∥∥
L2(T`)

)/|||u− uC |||.

` 1 2 3 4 5

|||u− uC ||| 1.70981192 0.94119129 0.48268572 0.24290612 0.12165024
|||u− Iu||| 1.73845397 0.94721815 0.48353983 0.24301633 0.12166412
EI 2.87527872 2.61168258 2.54626645 2.52987950 2.52577899

Table 4.1. Numerical results for Courant FEM.

5. Raviart-Thomas MFEM

This section is devoted to the error analysis of the Raviart-Thomas
mixed finite element method. The first subsection presents the key
argument.

5.1. Fortin Interpolation Error Estimate. This subsection is de-
voted to the error analysis in simplified notation. The Fortin interpo-
lation will be defined in Subsection 5.2 below.

Theorem 5.1 (Fortin Interpolation Error Estimate). Let q ∈ H1(T ;R2)
on the triangle T = conv{P1, P2, P3} with maximal angle α withˆ

E

q · νE ds = 0 for all E ∈ E(T ).

Then it holds

‖q‖L2(T ) ≤ C(α) ‖hT Dq‖L2(T ) .
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Proof. Let E1, E2, E3 be the edges of T and ν1, ν2, ν3 corresponding
exterior unit normal vectors. Then

fj := q · νj ∈ H1(T ) satisfies

ˆ
Ej

fj ds = 0

for any j = 1, 2, 3. Lemma 2.2 implies

‖fj‖L2(T ) ≤ hT

√
1/8 + 1/j2

1,1 |fj|H1(T ) .

Suppose that the maximum angle α of T is at P3 with neighbouring
edges E1 and E2. Lemma 2.3 implies for ν = ν1 and µ = ν2 with
|ν1 · ν2| = |cosα| that

(1− |cosα|) ‖q‖2
L2(T ) ≤ ‖f1‖2

L2(T ) + ‖f2‖2
L2(T )

≤ h2
T (1/8 + 1/j2

1,1)(|f1|2H1(T ) + |f2|2H1(T )).

Since νj is a unit vector,

|fj|H1(T ) = ‖Dq · νj‖L2(T ) ≤ ‖Dq‖L2(T ) .(5.1)

Hence,

|f1|2H1(T ) + |f2|2H1(T ) ≤ 2 |q|2H1(T ) .

The combination with the aforementioned estimate of ‖q‖L2(T ) proves
the assertion. �

5.2. Raviart-Thomas Finite Element Space. Given a regular tri-
angulation T from Subsection 4.2, define the Raviart-Thomas finite
element space

RT0(T ) := {qRT ∈ P1(T ;R2) ∩H(div,Ω) : ∀T ∈ T ∃aT , bT , cT ∈ R
∀x ∈ T, qRT (x) = (aT , bT ) + cT (x1, x2)}.

It is well known that some piecewise polynomial function qRT belongs
to

H(div,Ω) = {q ∈ L2(Ω;R2) : div q ∈ L2(Ω)}
if and only if all the jumps [qRT ]E := (qRT |T+ − qRT |T−)|E, for E =
T+ ∩ T− with T± ∈ T , across an interior edge E disappear in their
normal component [qRT ]E · νE = 0 along E. Given an interior edge
E ∈ E(T ) shared by its neighbouring triangles T+ and T− and the
vertices P± opposite to E of T±, set

ΨE(x) :=

{
± |E|

2|T±|(x− P±) for x ∈ T±,
0 elsewhere.

A corresponding formula without T− applies to some boundary edge
E ∈ E(T ) with one neighbouring triangle T+. Then ΨE ∈ RT0(T ) with
supp ΨE = wE := T+ ∪ T− defines an edge-basis function of RT0(T ).
Indeed,

RT0(T ) = span{ΨE : E ∈ E}.
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The Fortin interpolation operator IF q is defined for all q ∈ H1(Ω;R2)
by

IF q =
∑
E∈E

( 
E

q · νE ds
)

ΨE

(with signs ± in the definition of T± and νE = νT+) such that

(5.2) (q − IF q) · νE = 0 along any E ∈ E .

Theorem 5.2. Let q ∈ H1(Ω;R2) with Fortin interpolation IF q. Then
it holds

‖q − IF q‖L2(Ω) ≤ C(T ) ‖hTDq‖L2(Ω) .

Proof. The condition (5.2) leads to the assumption of Theorem 5.1 with
q substituted by q − IF q on any triangle T ∈ T . Theorem 5.1 shows

‖q − IF q‖L2(T ) ≤ C(max]T )hT ‖D(q − IF q)‖L2(T ) .

Any 2× 2 matrix A with trace tr(A) = A11 + A22 and deviatoric part

devA = A− tr(A)/2 I

allows for the orthogonality of the 2× 2 unit matrix I and devA with
respect to the scalar product A : B :=

∑
j,k=1,2AjkBjk of the two ma-

trices A,B ∈ R2×2. The Pythagoras theorem shows for the associated
Frobenius norm |·| (i.e. |A| =

√
A : A)

|A|2 = |devA|2 + tr(A)2/2.

This identity for A = D(q − IF q)(x) followed by an integration of x
over T leads to

‖D(q − IF q)‖2
L2(T ) = ‖devD(q − IF q)‖2

L2(T ) + ‖div(q − IF q)‖2
L2(T ) /2.

Notice that DIF q|T = cT I for some cT ∈ R is constant on T . Hence,
devDIF q = 0. Moreover, the Gauss divergence theorem and (5.2) showˆ
T

div q dx =

ˆ
∂T

q · ν dx =

ˆ
∂T

(IF q) · ν ds =

ˆ
T

div(IF q) dx = 2cT |T |.

Therefore, div(q − IF q) has integral mean zero and so

‖div(q − IF q)‖L2(T ) ≤ ‖div q‖L2(T ) .

Altogether, and with another application of the Pythagoras theorem,
it follows

‖D(q − IF q)‖2
L2(T ) ≤ ‖devDq‖2

L2(T ) + ‖div q‖2
L2(T ) /2 = ‖Dq‖2

L2(T ) .

The summation of the resulting estimate on ‖q − IF q‖2
L2(T ) over all

T ∈ T concludes the proof. �
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5.3. Raviart-Thomas MFEM. The mixed finite element method for
the Poisson model problem of Subsection 4.1 with the Raviart-Thomas
finite element space RT0(T ) and the piecewise constant P0(T ) seeks
(pRT , uRT ) ∈ RT0(T )× P0(T ) withˆ

Ω

pRT · qRT dx+

ˆ
Ω

uRT div qRT dx = 0 for all qRT ∈ RT0(T );

ˆ
Ω

vRT div pRT dx+

ˆ
Ω

fvRT dx = 0 for all vRT ∈ P0(T ).

(5.3)

Let fT denote the piecewise L2 projection of f onto P0(T ) with

fT |T := fT :=

 
T

f(x) dx for all T ∈ T .(5.4)

Theorem 5.3. There exists a unique solution (pRT , uRT ) of the Raviart-
Thomas MFEM. The discrete flux pRT is the unique minimiser of
‖p− qRT‖L2(Ω) for all

qRT ∈ Q(f, T ) := {qRT ∈ RT0(T ) : fT + div qRT = 0}.

Proof. The existence of a unique solution follows from standard results
in the theory of mixed FEM [BS08, Bra01, BF91]. The optimality is
well known and follows from (5.3) for the test function qRT := pRT −
rRT ∈ Q(0, T ) for any rRT ∈ Q(f, T ). Indeed, (5.3) shows pRT ⊥
(pRT − rRT ). Since p = ∇u is a gradient, (p− pRT ) ⊥ (pRT − rRT ) and
so

‖p− rRT‖2
L2(Ω) = ‖p− pRT‖2

L2(Ω) + ‖pRT − rRT‖2
L2(Ω) . �

The following immediate consequence of Theorem 5.2 and 5.3 is an-
nounced as the a priori error estimate (1.3).

Corollary 5.1. The Raviart-Thomas MFEM solution pRT on Ω of the
Poisson model problem (4.1) satisfies

‖p− pRT‖L2(Ω) ≤ ‖p− IFp‖L2(Ω) ≤ C(T ) ‖hTDp‖L2(Ω) .

Proof. The first inequality follows from the minimising property of The-
orem 5.3 and the second from Theorem 5.2. �

Remark 5.1 (Comparison with [MS09]). Corollary 5.1 is a significant
improvement over [MS09]; the estimate [MS09, Equation (3.31)] is sig-
nificantly greater than C(α).

5.4. Numerical Example. Table 5.1 displays the errors ‖p− pRT‖L2(Ω),

‖p− IFp‖L2(Ω), and the efficiency index

EI := (C(T`) ‖hT`Dp‖L2(T`))/‖p− pRT‖L2(Ω)

for different levels ` in the benchmark problem from Subsection 4.4
based on the Matlab implementation [BC05].
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` 1 2 3 4 5

‖p− pRT ‖L2(Ω) 0.98381972 0.56556947 0.29406962 0.14855355 0.07447061

‖p− IF p‖L2(Ω) 0.99628941 0.57150710 0.29503879 0.14868306 0.07448708

EI 4.99703932 4.34622629 4.17944042 4.13671187 4.12594455

Table 5.1. Numerical results for Raviart-Thomas MFEM.

6. Crouzeix-Raviart NCFEM

This section is devoted to the nonconforming finite element method
(NCFEM) after Crouzeix and Raviart and its relation to the Raviart-
Thomas MFEM usually associated with Marini [Mar85]. The implica-
tions lead to some equivalence of error estimates for the two methods.

6.1. Crouzeix-Raviart NCFEM. The NCFEM after Crouzeix and
Raviart concerns the nonconforming finite element space

VNC(T ) := {v ∈ P1(T ) | v continuous at mid(E),

with v = 0 for mid(∂Ω ∩ E)} .

The piecewise gradient ∇NC : H1(T )→ L2(Ω;R2) is defined by

(∇NCv)|T := ∇v|T for all T ∈ T

and defines the scalar product

aNC(u, v) :=
∑
T∈T

ˆ
T

∇u · ∇v dx for all u, v ∈ H1(T )

and the induced discrete energy norm |||·|||NC :=
√
aNC(·, ·). For every

E ∈ E , the edge-oriented basis function ψE is defined by

ψE(mid(E)) = 1 and ψE(mid(F )) = 0 for all F ∈ E \ {E}

and VNC(T ) = span{ψE |E ∈ E(Ω)}. The discrete Friedrichs inequal-
ity [BS08] reads

‖v‖L2(Ω) ≤ CdF |||v|||NC for all v ∈ VNC(T ).

The constant CdF does not depend on the mesh-size or cardinality
of the shape-regular triangulation. The discrete Friedrichs inequality
implies that |||·|||NC is a norm on VNC(T ) and the Riesz representation
theorem guarantees a unique solution uCR ∈ VNC of

aNC(uCR, vCR) =

ˆ
Ω

fvCR dx for all vCR ∈ VNC(T ).(6.1)

6.2. Equivalence of CR-FEM and RT-MFEM. The following equiv-
alence theorem is well known [Mar85, BC05] and is given here to stress
that the right-hand side f in the Poisson model problem has to be
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modified to its piecewise integral mean fT ∈ P0(T ) as in (5.4). For any
T ∈ T set

s2(T ) :=
∑

E∈E(T )

|E|2 = 36 ‖· −mid(T )‖L2(T ) / |T | .

The following theorem states a representation of the unique solution
(5.3).

Theorem 6.1 (Marini [Mar85]). Suppose ũCR ∈ VNC(T ) solves the
discrete problem for the Crouzeix-Raviart FEM with modified right-
hand side fT ∈ P0(T ), i.e., ũCR ∈ VNC(T ) satisfies

aNC(ũCR, vCR) =

ˆ
Ω

fT vCR dx for all vCR ∈ VNC(T ).(6.2)

Then the solution (pRT , uRT ) of (5.3) reads

pRT (x) = ∇NC ũCR − fT/2 (x−mid(T )) for x ∈ T ∈ T ,

uRT =

 
T

ũCR dx+ s2(T )fT/144 on T ∈ T . �

6.3. CR-FEM Error Estimate. This section establishes the error
estimate (1.4) for the Crouzeix-Raviart nonconforming finite element
method. The oscillations of a function f ∈ L2(Ω) are defined as

osc(f, T )2 :=
∑
T∈T

h2
T ‖f − fT‖

2
L2(T ) .

Theorem 6.2. The Crouzeix-Raviart NCFEM solution uCR ∈ VNC(T )
on Ω of the Poisson model problem (4.1) satisfies

|||u− uCR|||NC ≤
1

j1,1

osc(f, T ) +

√
1

j2
1,1

+ C(T )2
∥∥hTD2u

∥∥
L2(Ω)

.

Proof. Let ũCR ∈ VNC(T ) solve (6.2) and set p̃CR := ∇NC ũCR ∈
P0(T ;R2). The orthogonality of the L2 projection Π0 onto P0(T ) plus
the Poincaré inequality show

|||ũCR − uCR|||2NC = aNC(ũCR, ũCR − uCR)− aNC(uCR, ũCR − uCR)

=

ˆ
Ω

(f − fT )(ũCR − uCR)dx

=

ˆ
Ω

(f − fT )
(
(ũCR − uCR)− Π0(ũCR − uCR)

)
dx

≤ 1

j1,1

osc(f, T )|||ũCR − uCR|||NC .

Hence, |||ũCR − uCR|||NC ≤ osc(f, T )/j1,1. The Pythagoras theorem
leads to

‖p− p̃CR‖2
L2(Ω) = ‖p− Π0p‖2

L2(Ω) + ‖Π0p− p̃CR‖2
L2(Ω) .
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For the first term on the right-hand side, the Poincaré inequality yields

‖p− Π0p‖2
L2(Ω) ≤

1

j2
1,1

‖hTDp‖2
L2(Ω) .

For the second term, Theorem 6.1 leads to Π0pRT = p̃CR and therefore

‖Π0p− p̃CR‖2
L2(Ω) = ‖Π0(p− pRT )‖2

L2(Ω) ≤ ‖p− pRT‖
2
L2(Ω) .

Thus, Corollary 5.1 and the triangle inequality conclude the proof. �

Remark 6.1. The estimate in [MS09, Theorem 4.1] is wrong in the
sense that the difference of uCR and ũCR has been neglected. Even
the corrected version of that estimate is less sharp than Theorem 6.2
because of Remark 5.1.

6.4. Numerical Example. Table 6.1 displays the error |||u−uCR|||NC ,
the oscillations osc(f, T ), and the efficiency index

EI :=

(
1

j1,1

osc(f, T ) +

√
1

j2
1,1

+ C(T )2
∥∥hTD2u

∥∥
L2(Ω)

)
/|||u− uCR|||NC

in the benchmark problem from Subsection 4.4.

` 1 2 3 4 5

|||u− uCR|||NC 1.34051563 0.73261164 0.37526998 0.18881556 0.09455757
osc(f, T ) 1.97765293 0.53229065 0.13533651 0.03397415 0.00850227
EI 4.36265775 3.82871143 3.64628361 3.57691331 3.54782899

Table 6.1. Numerical results of Crouzeix-Raviart FEM.
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convex domains, Arch. Rational Mech. Anal. 5 (1960), 286–292.

[Sig88] G. L. Siganevich, The best error estimate for linear interpolation on a
triangle of functions in W 2

2 (T ), Dokl. Akad. Nauk SSSR 300 (1988), no. 4,
811–814.

Carsten Carstensen, Institut für Mathematik, Humboldt-Universität
zu Berlin, Unter den Linden 6, 10099 Berlin, Germany, and Depart-
ment of Computational Science and Engineering, Yonsei University,
120-749 Seoul, Korea

E-mail address: cc@math.hu-berlin.de

Joscha Gedicke, Institut für Mathematik, Humboldt-Universität zu
Berlin, Unter den Linden 6, 10099 Berlin, Germany

E-mail address: gedicke@math.hu-berlin.de

Donsub Rim, Yonsei School of Business and Department of Compu-
tational Science and Engineering, Yonsei University, 120-749 Seoul,
Korea

E-mail address: rim@yonsei.ac.kr


	1. Introduction
	2. Elementary Preliminaries
	3. Nodal Interpolation Error Estimate
	4. Courant FEM
	4.1. Poisson Model Problem
	4.2. Regular Triangulation
	4.3. Courant FEM
	4.4. Numerical Example

	5. Raviart-Thomas MFEM
	5.1. Fortin Interpolation Error Estimate
	5.2. Raviart-Thomas Finite Element Space
	5.3. Raviart-Thomas MFEM
	5.4. Numerical Example

	6. Crouzeix-Raviart NCFEM
	6.1. Crouzeix-Raviart NCFEM
	6.2. Equivalence of CR-FEM and RT-MFEM
	6.3. CR-FEM Error Estimate
	6.4. Numerical Example

	Acknowledgements
	References

