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Abstract. A refined a posteriori error analysis for symmetric
eigenvalue problems and the convergence of the first-order adap-
tive finite element method (AFEM) is presented. The H1 stabil-
ity of the L2 projection provides reliability and efficiency of the
edge-contribution of standard residual-based error estimators for
P1 finite element methods. In fact, the volume contributions and
even oscillations can be omitted for Courant finite element meth-
ods. This allows for a refined averaging scheme and so improves
[D. Mao, L. Shen and A. Zhou, Adaptive finite element algorithms
for eigenvalue problems based on local averaging type a posteriori
error estimates, Advanced in Computational Mathematics, 2006].
The proposed AFEM monitors the edge-contributions in a bulk
criterion and so enables a contraction property up to higher-order
terms and global convergence. Numerical experiments exploit the
remaining L2 error contributions and confirm our theoretical find-
ings. The averaging schemes show a high accuracy and the AFEM
leads to optimal empirical convergence rates.

1. Introduction

While error estimates for adaptive methods for space and time de-
pendent PDEs have been studied in great detail in recent years, er-
ror estimates and adaptive algorithms for eigenvalue problems are still
under development. A priori error estimates for elliptic operators
[BO91, BO89, Cha83, Kny97, LT03, RT83, Sau10, SF73] assume that
the mesh-size is sufficiently small. Knyazev and Osborn [KO06] over-
came this difficulty and presented the first truly a priori error estimate
for symmetric eigenvalue problems.

The a posteriori error analysis for symmetric second order elliptic
eigenvalue problems started with Verfürth [Ver96] and Larson [Lar00]
for L2 and H1 error estimates based on duality. An energy-based tech-
nique due to Durán, Padra, and Rodŕıguez [DPR03] controlls the er-
ror by some edge and volume residual plus a higher-order term. This
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paper will provide a refinement without the volume contribution for
all eigenvalues which generalises and simplifies the proof in [DPR03].
Mao, Shen, and Zhou [MSZ06] suggested some local averaging tech-
nique which we improve by neglecting the volume contributions. The
first convergence of an adaptive algorithm with oscillation terms can be
found in [GG09], which we further develop here for a refined adaptive
scheme.

Nonsymmetric elliptic eigenvalue problems are analysed by Heuve-
line and Rannacher in [BR03, HR01] and lay beyond the scope of this
paper.

Throughout this paper, we study the following general formulation.
The weak form of the symmetric eigenvalue problem involves two real
Hilbert spaces (V, a) and (H, b) with V ⊂ H ⊂ V ∗. The scalar products
a and b induce norms in respective spaces, namely

|||·||| := a(·, ·)1/2 and ‖·‖ := b(·, ·)1/2,

and the embedding of V in H is continuous and compact,

V
c
↪→ H.

The continuous eigenvalue problem consists in finding a pair (λ, u) of
λ ∈ R (actually λ > 0) and u ∈ V with ‖u‖ = 1 and

(1.1) a(u, v) = λ b(u, v) for all v ∈ V.
Given any finite-dimensional subspace V` of V , the discrete eigenvalue
problem consists in finding (λ`, u`) ∈ R× V` with ‖u`‖ = 1 and

(1.2) a(u`, v`) = λ` b(u`, v`) for all v` ∈ V`.
Throughout this paper, the min-max principle [SF73] allows some

ordering of the discrete eigenvalues with 0 ≤ λ ≤ λ`.
Typical examples for eigenvalue problems include the Poisson prob-

lem

−∆u = λu in Ω and u = 0 on ∂Ω

(for the Laplace operator ∆) and the Lamé problem

−∆∗u = λρu in Ω and u = 0 on ∂Ω

from harmonic dynamic of linear elasticity (with the Lamé operator
∆∗ and the density ρ).

Given an initial coarse mesh T0, an adaptive finite element method
(AFEM) successively generates a sequence of meshes T1, T2, . . . and
associated discrete subspaces

V0 ( V1 ( . . . ( V` ( V`+1 ( . . . ( V

with discrete solutions consisting of discrete eigenpairs (λ`, u`). A typ-
ical loop from V` to V`+1 (at frozen level `) consists of the steps

(1.3) SOLVE→ ESTIMATE→ MARK→ REFINE.
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This paper contributes to the a posteriori error analysis [DPR03,
MSZ06, WRH07] of eigenvalue problems and to the design and con-
vergence of AFEM [GG09]. Here we give a shorter proof of the edge-
residual estimator in [DPR03] and improve the results from [MSZ06],
in the sense that in the estimator no additional volumetric part is
needed. Additionally, we show that the higher-order terms can really
be neglected and underline that by numerical experiments. In contrast
to [GG09] we proof the convergence of AFEM without the inner node
property. Our global convergence proof seems to be the first that does
not need the usual assumption that the mesh size is small enough.

The outline of the remainder of this paper is as follows. Section 2
describes an adaptive mesh-refinement algorithm that allows for the
H1 stability of the L2 projection. In Section 3, the algebraic aspects
of the a posteriori error analysis are provided. Section 4 presents the
edge residual and the refined averaging technique. Section 5 analyses
the convergence of the AFEM illustrated in Section 6 by numerical
experiments.

2. Adaptive Mesh Refinement Algorithm

This section describes the algorithm REFINE of one loop of AFEM
from (1.3) in order to state precisely conditions for the H1 stable L2

projection required below.

2.1. Input: assumptions on course triangulation T0. The initial
mesh T0 is a regular triangulation of Ω ⊂ Rn into closed triangles in
the sense that two distinct closed-element domains are either disjoint
or their intersection is one common vertex or one common edge. We
suppose that each element with domain in T0 has at least one vertex
in the interior of Ω.

Given any T ∈ T0, one chooses one of its edges E(T ) as a refer-
ence edge from the set of Edges E(T ) such that the following holds.
An element T ∈ T0 is called isolated if E(T ) either belongs to the
boundary ∂Ω or equals the side of another element K ∈ T0 with
E(T ) = ∂T ∩ ∂K 6= E(K). Given a regular triangulation T0, Algo-
rithm 2.1 of [Car04a] computes the reference edges (E(T ) : T ∈ T0)
such that two distinct isolated triangles do not share an edge. This is
important for the H1 stability of the L2 projection in Subsection 2.4.

2.2. Red-green-blue refinements. Given a triangulation T` on the
level `, let E` denote its set of interior edges and suppose that E(T )
(E(T ) : T ∈ T`) denotes the given reference edges. There is no need
to label the reference edges E(T ) by some level ` because E(T ) will be
the same edge of T in all triangulations Tm which include T . However,
once T in T` is refined, the reference edges will be specified for the
sub-triangles as indicated in Figure 1. The mesh-refinement strategy
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Figure 1. Red, green and blue refinement. The new
reference edge is marked through a second line in parallel
opposite the new vertices new1, new2 or new3.

consists of the following five different refinements. Elements with no
marked edge are not refined, elements with one marked edge are refined
green, elements with two marked edges are refined blue, and elements
with three marked edges are refined red.

2.3. Marking and closure. The set of refined edges M` ⊂ E` is
specified in the algorithm MARK. The closure algorithm computes

the smallest subset M̂` of E` which includes M` such that{
E(T ) : T ∈ T with E(T ) ∩ M̂` 6= ∅

}
⊆ M̂`.

In other words, once an edge E of an element T is marked for refine-

ment (written E ∈ M̂`), the reference edge E(T ) of T is marked as
well. Consequently, each element has either k = 0, 1, 2, or 3 of its
edges marked for refinement, if k ≥ 1, the reference edge belongs to
it. Therefore, exactly one of the five refinement rules of Figure 1 is
applied. This specifies sub-triangles and their reference edges in the
new triangulation T`+1.

2.4. Properties of the triangulations. This subsection lists a few
results on the triangulation T` obtained by REFINE under the assump-
tions on T0 of Subsection 2.1. The non-elementary proofs can be found
in [Car04a].

(i) T` is a regular triangulation of Ω into triangles; for each T ∈ T`
there exists one reference edge E(T ) which depends only on T but not
on the level `.

(ii) For each K ∈ T0, T`|K := {T ∈ T` |T ⊆ K} is the pic-
ture under an affine map Φ : K → Tref onto the reference triangle
Tref = conv{(0, 0), (0, 1), (1, 0)} by Φ(E(K)) = conv{(0, 0), (1, 0)} and

detDΦ > 0. The triangulation T̂K := {Φ(T ) : T ∈ T , T ⊆ K} of K
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consists of right isosceles triangles. (A right isosceles triangle results
from a square halved along a diagonal.)

(iii) The L2 projection Π onto V` := P1(T`) ∩ V is H1 stable. The
piecewise affine space is defined by

P1(T ;Rm) := {v ∈ C∞(T ;Rm) : v affine on T} ,
P1(T`;Rm) := {v ∈ L∞(Ω;Rm) : ∀T ∈ T`, v|T ∈ P1(T ;Rm)} .

For any v ∈ V := H1
0 (Ω) the L2 projection Πv on V` satisfies

‖∇Πv‖L2(Ω) ≤ Cstab‖∇v‖L2(Ω).

(iv) The approximation property of the L2 projection states∑
T∈T`

‖h−1
T (v − Πv)‖2

L2(T ) +
∑
E∈E`

‖h−1/2
E (v − Πv)‖2

L2(E) ≤ Capp‖∇v‖2
L2(Ω)

for all v ∈ V . The constants Cstab and Capp depend exclusively on T0.

3. Algebraic aspects of an A posteriori Error Analysis

Throughout this section, (λ, u) solves (1.1) and (λ`, u`) solves (1.2).
Suppose that the orientation of the unit vectors u and u` is normalised
to b(u, u`) ≥ 0. Set e` := u− u` and

Res` := λ`b(u`, ·)− a(u`, ·) ∈ V ∗

such that V` ⊂ ker(Res`).

Lemma 3.1. Let (λ, u) and (λ`, u`) be eigenpairs of (1.1) and (1.2).
Then it holds

|||e`|||2 = λ‖e`‖2 + λ` − λ = (λ+ λ`)‖e`‖2/2 + Res`(e`).

Proof. The first identity follows from

a(e`, e`) = λ` + λ− 2a(u, u`)

= λ` − λ+ 2λ(1− b(u, u`))
= λ` − λ+ λb(e`, e`)

and the second follows from

a(e`, e`) = a(u, e`) + a(u`, u`)− a(u`, u)

= λb(u, e`) + λ`b(u`, u`)− a(u`, u)

= b(λu− λ`u`, e`) + λ`b(u`, u)− a(u`, u)

= b(λu− λ`u`, e`) + Res`(u)

= (λ+ λ`) (1− b(u, u`)) + Res`(e`)

=
λ+ λ`

2
b(e`, e`) + Res`(e`). �
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For the discussion of ‖e`‖ � |||e`|||, suppose that the eigenvalues and
the N` = dim(V`) discrete eigenvalues are enumerated

0 < λ1 ≤ λ2 ≤ . . . and 0 < λ`,1 ≤ . . . ≤ λ`,N`
.

Let (u1, u2, u3, . . .) and (u`,1, . . . , u`,N`
) denote some b-orthonormal ba-

sis of V and V` of corresponding eigenfunctions. Suppose that there
exist a cluster of eigenvalues λn+1 ≤ . . . ≤ λn+m of multiplicity m ∈ N
with eigenspace W := span{un+1, . . . , un+m}. Define their index set
I := {n + 1, . . . , n + m} and the complement N`(I) := {1, . . . , N`}\I.
The minmax principle and known a priori error estimates [SF73] show
for some sufficiently small global mesh-size h0 that there exists some
separation bound

0 < M1(I) := sup
`∈N0

max
j∈N`(I)

max
k∈I

λk
|λ`,j − λk|

<∞.

Let W` := span{u`,n+1, . . . , u`,n+m} and set dist‖.‖(v,W`) := min{‖v −
w`‖ : w` ∈ W`}. In the following, the map P : V → W denotes the
b-orthogonal projection onto W , b(Pv − v, ·)|W = 0 for all v ∈ V , P` :
V → W` the b-orthogonal projection onto W`, b(P`v − v, ·)|W`

= 0 for
all v ∈ V , and G` : V → V` the Galerkin projection, a(G`v−v, ·)|V`

= 0
for all v ∈ V .

Proposition 3.1. Let uk ∈ W be some b-normalised eigenfunction to
the k-th eigenvalue λk with k ∈ I. Then it holds

dist‖.‖(G`uk,W`) ≤M1(I)‖uk −G`uk‖.

Proof. Set v := G`uk − P`(G`uk) for the b-orthogonal projection P`

onto W`. Then dist‖.‖(G`uk,W`) = ‖v‖ with v :=
∑

j∈N`(I) αju`,j and

W` ⊥ span{uj : j ∈ N`(I)} implies

b(P`(G`uk),
∑

j∈N`(I)

αju`,j) = 0.

The pairwise b-orthogonality of the basis functions u`,1, . . . , u`,N`
yields

‖
∑

j∈N`(I)

αj
λk

λ`,j − λk
u`,j‖2 =

∑
j∈N`(I)

(
λk

λ`,j − λk

)2

α2
j ≤M2

1 (I)‖v‖2.

The Galerkin orthogonality a(G`uk, u`,j) = a(uk, u`,j) for all j = 1, . . . , N`

shows

(λ`,j − λk)b(G`uk, u`,j) = λkb(uk −G`uk, u`,j),

because λkb(G`uk, u`,j) occurs on both sides [SF73, Lemma 6.4]. This,
some algebra, and elementary estimates show

‖v‖2 = b(G`uk,
∑

j∈N`(I)

αju`,j) = b(uk −G`uk,
∑

j∈N`(I)

αj
λk

λ`,j − λk
u`,j).



AFEM FOR SYMMETRIC EIGENVALUE PROBLEMS 7

Therefore,

‖v‖2 ≤ ‖uk −G`uk‖‖
∑

j∈N`(I)

αj
λk

λ`,j − λk
u`,j‖ ≤M1(I)‖uk −G`uk‖‖v‖.

�

Proposition 3.2. Let (λ`,k, u`,k) denote some discrete eigenpair num-
ber k ∈ I and let Pu`,k = ‖Pu`,k‖u∗k for some u∗k ∈ W with ‖u∗k‖ = 1.
Then it holds

‖u∗k − u`,k‖2

2
=

dist‖.‖(u`,k,W )2

1 + ‖Pu`,k‖
≤M2

2 (I) max
j∈I
‖uj −G`uj‖2

with M2(I) := m(2m+ 1)(1 +M1(I)).

Proof. Notice that for e∗` := u∗k − u`,k, ‖e∗`‖2 = ‖e∗` − Pe∗`‖2 + ‖Pe∗`‖2

and ‖e∗` − Pe∗`‖2 = ‖u`,k − Pu`,k‖2 = dist‖.‖(u`,k,W )2 as well as

‖Pe∗`‖2 = ‖u∗k − Pu`,k‖2 = (1− ‖Pu`,k‖)2.

Moreover, b(Pu`,k, u`,k) = ‖Pu`,k‖b(u∗k, u`,k) and

b(u∗k, u`,k) = b(u∗k, Pu`,k) = b(Pu`,k, Pu`,k)/‖Pu`,k‖ = ‖Pu`,k‖ ≥ 0.

Therefore, dist‖.‖(u`,k,W )2 = 1− ‖Pu`,k‖2 and it follows

‖e∗`‖2 = 1− ‖Pu`,k‖2 + (1− ‖Pu`,k‖)2 = 2(1− ‖Pu`,k‖)

= 2
1− ‖Pu`,k‖2

1 + ‖Pu`,k‖
= 2

dist‖.‖(u`,k,W )2

1 + ‖Pu`,k‖
.

This proves the first equality. For a proof of the second inequality notice
that (un+1, . . . , un+m) is some b-orthonormal basis of W and therefore
Pu`,k =

∑
j∈I b(Pu`,k, uj)uj. Suppose that the global mesh-size is small

enough in the sense that ε := max{‖uj − P`uj‖ : j ∈ I} � 1. With
Kronecker’s delta, δij = 0 for i 6= j and δij = 1 for i = j, it follows for
all i, j ∈ I
|b(P`ui, P`uj)− δij| = |b(ui, P`uj)− δij| = |b(ui, P`uj − uj)| ≤ ε.

Thus, (P`un+1, . . . , P`un+m) is a basis of W` and u`,k =
∑

j∈I αjP`uj for
some αj. Let i ∈ I, from

b(ui, u`,k) =
∑
j∈I

αjb(ui, P`uj) = αi +
∑
j∈I

αj(b(ui, P`uj)− δij)

it follows

|αi| ≤ |b(ui, u`,k)| +
∑
j∈I

|αj||b(ui, P`uj)− δij| ≤ 1 + ε
∑
j∈I

|αj|.

Suppose that 0 < ε ≤ 1/(2m), then summation over i yields∑
i∈I

|αi| ≤ m+ εm
∑
j∈I

|αj|
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and hence ∑
i∈I

|αi| ≤ m/(1− εm) ≤ 2m.

Thus, |αj − b(u`,k, uj)| ≤ 2mε and it holds

dist‖.‖(u`,k,W ) = ‖
∑
j∈I

(αjP`uj − b(Pu`,k, uj)uj)‖

= ‖
∑
j∈I

(αjP`uj − b(u`,k, uj)uj)‖

= ‖
∑
j∈I

(
(αj − b(u`,k, uj))P`uj + b(u`,k, uj)(P`uj − uj)

)
‖

≤ m(2m+ 1) max
j∈I
‖uj − P`uj‖.

The triangle inequality leads to

dist‖.‖(uj,W`) ≤ ‖uj −G`uj‖+ dist‖.‖(G`uj,W`).

The previous two inequalities plus Proposition 3.1 conclude the proof.
�

Theorem 3.1. For sufficiently small mesh-size

h` := max{hT : T ∈ T`} with hT := diam(T )

there exists 0 < δ` < 1 with∑
j∈I

||| Pu`,j
‖Pu`,j‖

− u`,j||| ≤
∑

j∈I |||Res`,j|||∗
1− δ`

and lim
h`→0

δ` = 0.

Proof. The eigenvalue problem (1.1) corresponds to the boundary value
problem to find z ∈ V such that

a(z, v) =

∫
Ω

fv dx for all v ∈ V.

Suppose this problem is H1+s-regular for all f ∈ L2(Ω), i.e., z ∈
H1+s(Ω) ∩ V with ‖z‖H1+s(Ω) ≤ Creg‖f‖L2(Ω). Then the following con-
vergence estimate holds for the Galerkin projektion G` : V → V`

‖z −G`z‖H1(Ω) ≤ Cconvh
s
`‖z‖H1+s(Ω)

for the maximal interior angle ω and 0 < s < π/ω [BS08, Theorem
14.3.3]. Under the above assumption, that the problem is H1+s-regular,
the Aubin-Nitzsche duality technique leads to

‖uj −G`uj‖ ≤ CregCconvh
s
`|||uj −G`uj|||.

Suppose that h` is sufficiently small such that ε := max{‖Pu`,j−u`,j‖ :
j ∈ I} ≤ 1/(2m). Then, with the same argumentation as in Proposi-
tion 3.2, (Pu`,n+1, . . . , Pu`,n+m) is a basis of W and uk =

∑
j∈I αjPu`,j

for some αj with |αj| ≤ 1 + 2εm ≤ 2 and k ∈ I. Since G` is
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Galerkin projection with best approximating property, it holds for
v` :=

∑
j∈I αj‖Pu`,j‖u`,j ∈ W`

|||uk −G`uk||| ≤ |||uk − v`||| ≤ 2
∑
j∈I

||| Pu`,j
‖Pu`,j‖

− u`,j|||.(3.1)

With the Friedrichs inequality ‖v‖ ≤ CF |||v||| for all v ∈ V , Lemma 3.1
yields∑
j∈I

||| Pu`,j
‖Pu`,j‖

− u`,j||| ≤
∑
j∈I

|||Res`,j|||∗ + CF
λ+ λ`,n+m

2

∑
j∈I

‖ Pu`,j
‖Pu`,j‖

− u`,j‖.

Suppose that h` is sufficiently small such that

δ` :=
√

2hs`mM2(I)CregCconvCF (λ+ λ`,n+m)� 1.

Then Proposition 3.2 together with (3.1) lead to∑
j∈I

||| Pu`,j
‖Pu`,j‖

− u`,j||| ≤
∑

j∈I |||Res`,j|||∗
1− δ`

. �

Notice that 1/(1− δ`)→ 1 as the maximal mesh-size h` → 0.

4. Two A Posteriori Error Estimators

The a posteriori error estimates of this section employ the abstract
framework of [Car05] by estimating the dual norm of the residual
|||Res`|||∗. The first a posteriori error estimator is explicit residual-based
and the second improves the averaging error estimator of [MSZ06].

4.1. Residual-based error estimator. The book of Verfürth [Ver96]
summarises a few equivalences of a posteriori error estimates. This and
the following estimate allow for reliable and efficient error estimators
via other estimators as well. Given any interior edge E, written E ∈ E`,
of length hE and with normal unit vector νE let [∇u`] := ∇u`|T+ −
∇u`|T− denote the jump of the piecewise constant gradient across E =
∂T+ ∩ ∂T− from the neighbouring element domains T± ∈ T`. The
notation x . y abbreviates the inequality x ≤ Cy with a constant
C > 0 which does not depend on the mesh-size.

Theorem 4.1. Let (λ, u) and (λ`, u`) be eigenpairs of (1.1) and (1.2).
Then it holds

|||Res`|||2∗ . η2
` :=

∑
E∈E`

hE‖[∇u`] · νE‖2
L2(E) . |||e`|||2.

Proof (reliability). Let v` be the L2 projection of v in V`. The approx-
imation property (iv) of Subsection 2.4 for the edges reads∑

E∈E`

‖h−1/2
E (v − v`)‖2

L2(E) . ‖∇v‖2
L2(Ω).
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The definition of the residual and some elementary algebra yields

Res`(v) = Res`(v − v`) = λ`b(u`, v − v`)− a(u`, v − v`)

= −a(u`, v − v`) = −
∑
E∈E`

∫
E

([∇u`] · νE)(v − v`) ds

≤
∑
E∈E`

h
1/2
E ‖[∇u`]·νE‖L2(E)‖h−1/2

E (v − v`)‖L2(E)

≤

(∑
E∈E`

hE‖[∇u`]·νE‖2
L2(E)

)1/2(∑
E∈E`

‖h−1/2
E (v − v`)‖2

L2(E)

)1/2

. η`‖∇v‖L2(Ω). �

Proof ((global) efficiency). Utilizing the bubble function technique of
Verfürth [Ver96, Lemma 1.3], Durán, Padra, and Rodŕıguez proved
local efficiency for the edge-residuals [DPR03, Lemma 3.4], namely

h
1/2
E ‖[∇u`] · νE‖L2(E) . ‖∇e`‖L2(ωE) + hωE

‖λu− λ`u`‖L2(ωE),

for the edge patch ωE := T+ ∪T− of E. With h` := max{hT : T ∈ T`},
the global version reads

η2
` . |||e`|||2 + h2

`‖λu− λ`u`‖2.

Some elementary algebra in the spirit of Lemma 3.1 shows

‖λu− λ`u`‖2 = (λ` − λ)2 + λλ`‖e`‖2.

Lemma 3.1 yields (λ` − λ)2 ≤ |||e`|||4 and λλ`‖e`‖2 ≤ λ`|||e`|||2. Since λ`
is bounded by λ0 it holds

η2
` . |||e`|||2

even for larger mesh-sizes h` . 1. �

4.2. Averaging technique for a posteriori error control. Let A` :
V d
` → S1(T`)d := V d

` ∩ C(Ω)d be some local averaging operator. For
example,

A`(∇u`) :=
∑
z∈N`

1

|ωz|

(∫
ωz

∇u` dx
)
ϕz,

with nodal hat functions ϕz. Alternative estimators from [Car04b]
could be employed as well.

Theorem 4.2. Let (λ, u) and (λ`, u`) be eigenpairs of (1.1) and (1.2).
Then it holds

|||Res`|||2∗ . µ2
` :=

∑
T∈T

‖A`(∇u`)−∇u`‖2
L2(T ) . |||e|||2.
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Proof. Let v` be the L2 projection of v in V`. Since A`(∇u`) is globally
continuous, the divergence theorem is globally applicable. Notice that
for the finite dimensional subspace V` there holds the local inverse
inequality

‖hT div(v`)‖L2(T ) ≤ Cinv‖v`‖L2(T ).

Together with the the approximation property (iv) of Subsection 2.4,∑
T∈T`

‖h−1
T (v − v`)‖2

L2(T ) . ‖∇v‖2
L2(Ω),

it follows

−
∫

Ω

A`(∇u`)∇(v − v`) dx =

∫
Ω

(v − v`) div(A`(∇u`)) dx

=
∑
T

∫
T

hT div(A`(∇u`))h−1
T (v − v`) dx

≤
∑
T

‖hT div(A`(∇u`)−∇u`)‖L2(T )‖h−1
T (v − v`)‖L2(T )

≤ Cinv

∑
T

‖A`(∇u`)−∇u`‖L2(T )‖h−1
T (v − v`)‖L2(T )

. ‖A`(∇u`)−∇u`‖L2(Ω)‖∇v‖L2(Ω).

This inequality and the stability (iii) of Sect. 2.4,

‖∇v`‖L2(Ω) . ‖∇v‖L2(Ω),

lead to

Res`(v) = λ`b(u`, v − v`)− a(u`, v − v`) = −a(u`, v − v`)

= −
∫

Ω

A`(∇u`)∇(v − v`) +

∫
Ω

(A`(∇u`)−∇u`)∇(v − v`)

. µ`‖∇v‖L2(Ω).

Hence we have proved reliability. The efficiency is proved by the known
fact that the averaging estimator is equivalent to the edge-residual
estimator [Ver96]. Since the edge-residual estimator is efficient, so is
µ`. A direct proof of efficiency for a class of averaging operators follows
as in [Car04b]. �

5. AFEM Convergence

The main results are discussed in the first subsection and proven in
the subsequent ones.
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5.1. Global strong convergence and contraction property. Let
k be some fixed positive integer and suppose dimV0 ≥ k. Let (V`)`=0,1,2,...

denote the nested sequence of discrete spaces computed by the adaptive
algorithm based on the residual

Res` := λ`b(u`, ·)− a(u`, ·)
for the k-th algebraic eigenvalue λ` of the discrete eigenvalue problem
on the level ` with some eigenvector u` ∈ V`. Suppose that V` ⊆
ker(Res`) and ‖u`‖ = 1 and notice that at least the orientation of u` is
arbitrary even if the discrete eigenspan of λ` is one-dimensional. The

procedure MARK employs the edge-contributions η
(`)
E := h

−1/2
E ‖[∇u`] ·

νE‖L2(E) and computes M` ⊆ E` (with minimal cardinality) such that

η2
` :=

∑
E∈E`

η
(`)2

E ≤ θ−1
∑

E∈M`

η
(`)2

E

with some global parameter 0 < θ < 1. The global convergence result
will be proved throughout the remaining part of this section.

Theorem 5.1 (global convergence). The sequence of discrete eigenval-
ues (λ`) converges towards some eigenvalue λ of the continuous prob-
lem. Each subsequence (u`j) of discrete eigenvectors has a further sub-
sequence which converges strongly towards some u in V and u is an
eigenvector of λ.

Theorem 5.1 shows that spurious eigenvalues do not occur: Every
accumulation point of discrete eigenvalues is an exact eigenvalue. More-
over, for a simple eigenvalue λ (i.e., the eigenspan is one-dimensional)
it shows that, up to a proper choice of the sign of ±u`, the complete
sequence converges strongly to the eigenvector ±u of λ.

Notice that there is monotone convergence of the discrete eigenvalues
to an exact eigenvalue λ. The Rayleigh-Ritz principle guarantees that
λ is amongst the exact eigenvalues number k or higher but it remains
open to conclude that λ equals the k-th one. Spurious eigenvalues can-
not appear as any limit is some exact eigenvalue, but, without further
assumptions we cannot guarantee that some exact eigenvalues are left
out. To avoid that, one requires some global assumption such as that
the mesh-size is globally fine enough.

In the restricted case of a simple eigenvalue λ the following contrac-
tion property holds.

Theorem 5.2 (contraction property). If the triangulation T0 is suffi-
ciently fine, i.e., h0 is sufficiently small, and λ is simple, then there
exists γ > 0 and 0 < ρ < 1 such that, for all ` = 0, 1, 2, . . .,

γη2
`+1 + |||u− u`+1|||2 ≤ ρ

(
γη2

` + |||u− u`|||2
)
.

An alternative name for the contraction property is Q-linear con-
vergence and this holds for the combination of error and estimator.
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An immediate consequence is R-linear convergence of the errors in the
sense that, for all ` = 0, 1, 2, . . ., it holds

|||u− u`|||2 . ρ`.

The proofs of the two theorems will be the content of the subsequent
subsections.

5.2. Strong convergence of subsequences. The Raleigh-Ritz prin-
ciple shows for the nested discrete spaces V0 ⊆ V1 ⊆ V2 ⊆ . . . that
(λ`) is monotone decreasing and hence convergent to some real number
λ∞ > 0 which is even bigger than or equal to the k-th exact eigenvalue.
In particular, (λ`) is a Cauchy sequence. Notice that λ` = |||u`|||2 and
hence (u`) is bounded in the Hilbert space V . Since each bounded
sequence in V has some subsequence which is weakly convergent in V
and strongly convergent in H towards some element in V , there exist
some subsequence (u`j) and some weak limit u∞ ∈ V such that

lim
j→∞
‖u∞ − u`j‖ = 0 while (u`j) ⇀ u∞ in V.

The arguments from the first part of Lemma 3.1 show for ` ≤ m that

|||um − u`|||2 = λ` − λm + λm‖um − u`‖2

and, for subsequences, the right-hand side tends to zero as `→∞ and
hence (u`j) is a Cauchy sequence in V . Consequently,

lim
j→∞
|||u∞ − u`j ||| = 0.

In particular, ‖u∞‖ = 1 and the residual Res∞ reads

Res∞ := λ∞b(u∞, ·)− a(u∞, ·) ∈ V ∗.

It remains to prove Res∞ = 0. The aforementioned convergence prop-
erties show the weak convergence

(Res`j) ⇀ Res∞ in V ∗.

So it remains to conclude

lim
j→∞
|||Res`j |||∗ = 0

which will follow from the reliability of Theorem 4.1 and the conver-
gence of the estimators in Lemma 5.2 below. The proof of that follows
from an estimator perturbation result similar to [CKNS08].

Lemma 5.1. There exist some C > 0 and 0 < ρ < 1 such that, for all
non-negative integers ` and m, it holds

η2
`+m ≤ ρη2

` + C|||u`+m − u`|||2.
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Proof. For all E ∈ E` we have either E ∈ E`+m or otherwise there exist
E1, . . . , EJ ∈ E`+m with E = E1 ∪ . . . ∪ EJ and J ≥ 2. In the second
case E ∈ E` \ E`+m, for any 0 < δ < θ/(2− θ),

J∑
j=1

η
(`+m)2
Ej

=
J∑

j=1

h2
Ej
|[∇u`+m]·νEj

|2

≤
J∑

j=1

h2
Ej

(
(1 + δ)|[∇u`]·νEj

|2 + (1 + 1/δ)|[∇u`+m −∇u`]·νEj
|2
)

≤ (1 + δ)/2 η
(`)2
E + (1 + 1/δ)

J∑
j=1

h2
Ej
|[∇u`+m −∇u`]·νEj

|2.

Notice that the factor 1/2 results from J > 1 refinements (at least one
bisection) of E ∈ E`\E`+m. Therefore,∑

E∈E`+m
E⊆∪E`

η
(`+m)2
E ≤ (1 + δ)/2

∑
E∈E`\E`+m

η
(`)2
E + (1 + δ)

∑
E∈E`∩E`+m

η
(`)2
E

+ (1 + 1/δ)
∑

E∈E`+m
E⊆∪E`

h2
E|[∇u`+m −∇u`] · νE|2.

For any E ∈ E`+m with E * ∪E`, [∇u`] · νE = 0 on E. Hence

η
(`+m)2
E = h2

E|[∇u`+m −∇u`] · νE|2.
Therefore,

η2
`+m ≤ (1 + δ)/2

∑
E∈E`\E`+m

η
(`)2
E + (1 + δ)

∑
E∈E`∩E`+m

η
(`)2
E

+ (1 + 1/δ)
∑

E∈E`+m

h2
E|[∇u`+m −∇u`] · νE|2.

Since ∇u`+m − ∇u` is piecewise constant with respect to the shape
regular triangulation T`+m,

h2
E|[∇u`+m −∇u`] · νE|2 . ‖∇u`+m −∇u`‖L2(ωE)

for the edge patch ωE of E in T`+m. Since there is only a finite overlap
of all edge patches,

η2
`+m ≤ (1 + δ)/2

∑
E∈M`

η
(`)2
E + (1 + δ)

∑
E∈E`\M`

η
(`)2
E + C|||u`+m − u`|||2.

The bulk criterion leads to

1/2
∑

E∈M`

η
(`)2
E +

∑
E∈E`\M`

η
(`)2
E = η2

` − 1/2
∑

E∈M`

η
(`)2
E ≤ (1− θ/2)η2

` .

Since δ < θ/(2− θ), the resulting estimate proves the assertion:

η2
`+m ≤ (1 + δ)(1− θ/2)η2

` + C|||u`+m − u`|||2. �
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Lemma 5.2. For the subsequence (u`j) it holds

lim
`j→∞

η2
`j

= 0.

Proof. Since (u`j) is a Cauchy sequence and Lemma 5.1 yields

η2
`j+1
≤ ρη2

`j
+ C|||u`j+1

− u`j |||2 for all j = 1, 2, . . .

one concludes the assertion with some elementary analysis and the
geometric series. �

This concludes the proof of Theorem 5.1 on the global convergence.
�

5.3. Contraction Property. Throughout this section, let (λ, u) de-
note some eigenpair of the continuous eigenvalue problem, (λ`, u`) de-
notes some discrete eigenpair with error estimator η`, and e` := u−u`.
Suppose that λ is a simple eigenvalue and that the global mesh-size
is sufficiently small such that λ` is well separated from the remaining
part of the spectrum.

Theorem 5.3. There exist constants 0 < % < 1 and γ > 0 such that,
for all ` = 0, 1, 2, . . .,

γη2
`+1 + |||e`+1|||2 ≤ %

(
γη2

` + |||e`|||2
)

+ 3λ`+1‖e`+1‖2 + 3λ`‖e`‖2.

Proof. Let ρ denote the constant in Lemma 5.1 which, for m = 1,
becomes

η2
`+1 ≤ ρη2

` + C|||u`+1 − u`|||2.
This and some algebra (since (λ, u) and (λ`, u`) are eigenpairs) lead to

|||u`+1 − u`|||2 =|||e`|||2 − |||e`+1|||2 − 2b(λu− λ`+1u`+1, u`+1 − u`).
Thus,

γη2
`+1 + |||e`+1|||2 ≤ ργη2

` + |||e`|||2 − 2b(λu− λ`+1u`+1, u`+1 − u`).
Set

ρ < % :=
ργ + Crel

γ + Crel

< 1.

Then

γη2
`+1 + |||e`+1|||2 ≤ %

(
γη2

` + |||e`|||2
)

+ (ρ− %)γη2
` + (1− %)|||e`|||2

− 2b(λu− λ`+1u`+1, u`+1 − u`).
(5.1)

Lemma 3.1 plus Young’s inequality yield

2|||e`|||2 ≤ (λ+λ`)‖e`‖2 +2|||Res`|||∗|||e`||| ≤ (λ+λ`)‖e`‖2 +|||Res`|||2∗+|||e`|||2.
This and the reliability estimate of Theorem 4.1

|||Res`|||2∗ ≤ Crelη
2
`

result in
|||e`|||2 ≤ (λ+ λ`)‖e`‖2 + Crelη

2
` .
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The last term in (5.1) reads

−2b(λu−λ`+1u`+1, u`+1 − u`)
= −2λb(u, u`+1 − u`) + 2λ`+1b(u`+1, u`+1 − u`)
= λ‖e`+1‖2 − λ‖e`‖2 + λ`+1‖u`+1 − u`‖2.

Young’s inequality for ‖u`+1 − u`‖2 yields

−2b(λu− λ`+1u`+1, u`+1 − u`) ≤ (2λ`+1 + λ)‖e`+1‖2 + (2λ`+1 − λ)‖e`‖2.

Since λ ≤ λ`+1 ≤ λ`, this and (5.1) lead to

γη2
`+1 + |||e`+1|||2 ≤ %

(
γη2

` + |||e`|||2
)

+ ((ρ− %)γ + Crel(1− %)) η2
`

+ 3λ`+1‖e`+1‖2 + 3λ`‖e`‖2.

By definition of %, (ρ−%)γ+Crel(1−%) ≤ 0. This completes the proof
of Theorem 5.3. �

Proof of Theorem 5.2. For sufficiently small mesh-sizes h` ≤ h0 � 1,
Proposition 3.2 and Theorem 3.1 show

‖e`‖2 ≤ 2M2
2 (λ)C2

regC
2
convh

2s
0 |||e`|||2;

‖e`+1‖2 ≤ 2M2
2 (λ)C2

regC
2
convh

2s
0 |||e`+1|||2.

Hence Theorem 5.3 yields the contraction property with a constant

0 <
%+ 6λ0M

2
2 (λ)C2

regC
2
convh

2s
0

1− 6λ0M2
2 (λ)C2

regC
2
convh

2s
0

< 1.

This concludes the proof of Theorem 5.2. �

6. Numerical Experiments

6.1. Numerical realisation. This section is devoted to four numer-
ical experiments on the square, the L-shape, and the slit domain for
the Laplace operator as well as tuning fork vibrations. The edge-based
residual estimator and the averaging estimator read

η` =

(∑
E∈E

hE‖[∇u`] · νE‖2
L2(E)

)1/2

and(6.1)

µ` =

(∑
T∈T

‖A`(∇u`)−∇u`‖2
L2(T )

)1/2

.(6.2)

The numerical examples show that the a posteriori error estimators are
reliable and efficient and that the remaining term is indeed of higher
order when compared to the estimators.

The MATLAB implementation follows the spirit of [ACF99, ACFK02]
and Figure 2 displays the kernel MATLAB function EWP.m of the com-
puter program utilised in this section.
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function [x,lambda] = EWP(coordinates,elements,dirichlet,k)

A = sparse(size(coordinates,1),size(coordinates,1));

B = sparse(size(coordinates,1),size(coordinates,1));

x = zeros(size(coordinates,1),1);

for j = 1:size(elements,1)

A(elements(j,:),elements(j,:)) = A(elements(j,:),elements(j,:))+...

stima(coordinates(elements(j,:),:));

B(elements(j,:),elements(j,:)) = B(elements(j,:),elements(j,:))+...

det([1,1,1;coordinates(elements(j,:),:)’])*(ones(3)+eye(3))/24;

end

freeNodes = setdiff(1:size(coordinates,1),unique(dirichlet));

[V,D] = eigs(A(freeNodes,freeNodes),B(freeNodes,freeNodes),k,’sm’);

x(freeNodes) = V(:,1);lambda = D(1,1);

function stima=stima(vertices)

P = [ones(1,size(vertices,2)+1);vertices’];

Q = P\[zeros(1,size(vertices,2));eye(size(vertices,2))];

stima = det(P)*Q*Q’/prod(1:size(vertices,2));

Figure 2. 17 lines of MATLAB.
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Figure 3. Convergence history for η` (left) and µ`

(right) with different choices of θ for the unit square.

6.2. Unit square. The first example consists of the eigenvalue prob-
lem of the Poisson problem on the unit square with Dirichlet boundary
condition, that means: seek for the first eigenpair

(λ, u) = (2π2, 2 sin(xπ) sin(yπ))

of the Laplace operator in Ω = (0, 1)× (0, 1) with

−∆u = λu in Ω and u = 0 along ∂Ω.

Figure 3 shows the convergence history for |||e`|||, η` (6.1) and µ` (6.2) for
different choices of θ. Notice that θ = 1 results in uniform refinement
while θ < 1 leads to adaptively refined meshes. One observes that µ`
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Figure 4. Comparison of the estimator and the h.o.t.
for η` and µ` for the unit square.
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Figure 5. Size of the constant C with ‖u − u`‖ ≤
C|||u−G`u||| and higher order convergence of the L2-norm
compared to the energy norm for the unit square.

is asymptotically exact. In Figure 4 it is numerically shown that

h.o.t. = λ`‖e`‖2/|||e`|||

is really of higher order compared to the estimator η` or µ`. Figure 5
shows that the constant C with ‖u − u`‖ ≤ C|||u − G`u||| which is
bounded in Proposition 3.2 is numerically less than 1 and the L2-error is
of higher order compared to the energy error of the Galerkin projection
as shown in Theorem 3.1.
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Figure 6. Convergence history for η` (left) and µ`

(right) with different choices of θ for the L-shaped do-
main.
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Figure 7. Comparison of the estimator and the h.o.t.
for η` and µ` for the L-shaped domain.

6.3. L-shaped domain. Seek for the first eigenpair (λ, u) of the Laplace
operator in Ω = (−1, 1)2\[0, 1]× [−1, 0].

−∆u = λu in Ω and u = 0 along ∂Ω.

Because the first eigenfunction of the L-shaped domain is singular,
the energy error |||e`||| is estimated by

|||e`|||2 = λ∗ + λ` − λb(u∗, u`),
for some known approximation λ∗ = 9.639723844 to λ with high ac-
curacy and an approximation u∗ to u with second order P2 FEM. Fig-
ure 6 shows the convergence history of η` and µ`. Notice that adaptive
refinement (for θ < 1) is much better than uniform refinement (for

θ = 1). Adaptive refinement results in optimal convergence O(N
−1/2
` )

where uniform refinement results in only O(N
−1/3
` ) convergence, with
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Figure 8. Size of the constant C with ‖u − u`‖ ≤
C|||u−G`u||| and higher order convergence of the L2-norm
compared to the energy norm for the L-shaped domain.
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Figure 9. Adaptive meshes generated with θ = 0.5 for
the a posteriori error estimator η` (top) and µ` (bottom)
for about 100 and 1000 nodes for the L-shaped domain.

N` = dim(V`) and N
−1/2
` ≈ h` for uniform refined meshes. Notice that

µ` is not asymptotically exact for uniform refinement because of the
singularity at the re-entrant corner, but only for the elements at the
corner and therefore there is only a small difference. Again in Figure 7
it is shown that the h.o.t. is of higher order. Figure 8 shows that the
constant C in ‖u−u`‖ ≤ C|||u−G`u||| is about 1 and that the L2-error
is again of higher order, although the solution is singular. Towards the
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Figure 10. Convergence history for η` (left) and µ`

(right) with different choices of θ for the slit domain.
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Figure 11. Comparison of the estimator and the h.o.t.
for η` and µ` for the slit domain.

corner singularity at the origin adaptive refined meshes are shown in
Fig. 9.

6.4. Slit domain. Although the slit domain Ω := (−1, 1)2 \ [0, 1] ×
{0} is not a Lipschitz (the domain is not on one side of the slit) the
benchmark serves as an extreme example, where one seeks the first
eigenpair (λ, u) of the Laplace. Similar to the L-shaped domain, the
first eigenfunction is singular and the energy error |||e`||| is estimated by

|||e`|||2 = λ∗ + λ` − λb(u∗, u`),
with λ∗ = 8.371329711 of sufficient accuracy and u∗ is an approxi-
mation to u with second order P2 FEM. As in the previous example
Figure 10 shows the convergence history of η` and µ`. Adaptive re-

finement results in optimal convergence O(N
−1/2
` ) while uniform re-

finement results in only O(N
−1/4
` ) convergence. Figure 11 shows that
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Figure 13. Adaptive meshes generated with θ = 0.5 for
the a posteriori error estimator η` (top) and µ` (bottom)
for about 100 and 1000 nodes for the slit domain.

the h.o.t. = λ`‖e‖2/|||e`||| is of higher order. Figure 12 shows that the
constant C in ‖u− u`‖ ≤ C|||u−G`u||| is about 1 and that even in this
extreme example with poor regularity the L2-error is of higher order.
Different adaptive meshes are shown in Fig. 13.

6.5. Elastic vibrations of a tuning fork. The harmonic dynamic of
linear elasticity (involves the Lamé operator ∆∗ := divCε for the linear
Green strain ε := sym∇ of the displacement u ∈ V := H1

0 (Ω;R2) and
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Figure 15. The first six eigenforms of the tuning
fork (from left to right, top to bottom) computed on
adaptively refined meshes for the corresponding discrete
eigenvalue on level ` = 7 with about 500 nodes, stretched
by a factor 20.

the density ρ) leads to the eigenvalue problem of the Lamé operator

−∆∗u = λρu in Ω and u = 0 on ∂ΓD.

The domain Ω is displayed with the initial triangulation T0 in Figure 14
where ΓD = ∂Ω∩([−1, 1]×{0}) and the traction vanishes along ∂Ω\ΓD.
The weak formulation involves the bilinear forms

a(u, v) =

∫
Ω

ε(u) : Cε(v) dx and b(u, v) =

∫
Ω

ρu · v dx for u, v ∈ V.

We refer to [ACFK02] for details on the model and the elasticity tensor
C with Poisson’s ratio 0.3, Young’s modulus E = 214GPa, density
ρ = 1, as well as to the MATLAB simulation tools for the numerical
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experiments. The first six eigenforms for the discrete eigenvalues on
level ` = 7

λ`,1, . . . , λ`,6 ≈ 0.0013049, 0.014685, 0.068861, 0.1748, 0.28598, 1.2361

of the tuning fork are shown in Figure 15. The convergence history
for the error in the first eigenvalue λ1 ≈ 0.00119135 is displayed in
Figure 16. The expected eigenforms give rise to completely different
adapted meshes and seem to correspond reasonably to the eigenmodes.
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pour la Mâıtrise., Masson, Paris, 1983.

[Sau10] S. Sauter, hp-finite elements for elliptic eigenvalue problems: error es-
timates which are explicit with respect to λ, h, and p, SIAM J. Numer.
Anal. 48 (2010), no. 1, 95–108.

[SF73] Gilbert Strang and George J. Fix, An analysis of the finite element
method, Prentice-Hall Inc., Englewood Cliffs, N. J., 1973.

[Ver96] R. Verfürth, A review of a posteriori error estimation and adaptive
mesh-refinement techniques, Wiley and Teubner, 1996.



26 C. CARSTENSEN AND J. GEDICKE

[WRH07] T. F. Walsh, G. M. Reese, and U. L. Hetmaniuk, Explicit a posteriori
error estimates for eigenvalue analysis of heterogeneous elastic struc-
tures, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40,
3614–3623.

Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin,
Germany

E-mail address: cc@mathematik.hu-berlin.de
E-mail address: gedicke@mathematik.hu-berlin.de


	1. Introduction
	2. Adaptive Mesh Refinement Algorithm
	2.1. Input: assumptions on course triangulation T0.
	2.2. Red-green-blue refinements
	2.3. Marking and closure
	2.4. Properties of the triangulations

	3. Algebraic aspects of an A posteriori Error Analysis
	4. Two A Posteriori Error Estimators
	4.1. Residual-based error estimator
	4.2. Averaging technique for a posteriori error control

	5. AFEM Convergence
	5.1. Global strong convergence and contraction property
	5.2. Strong convergence of subsequences
	5.3. Contraction Property

	6. Numerical Experiments
	6.1. Numerical realisation
	6.2. Unit square
	6.3. L-shaped domain
	6.4. Slit domain
	6.5. Elastic vibrations of a tuning fork

	Acknowledgements
	References

