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Abstract. This paper presents a combined adaptive finite ele-
ment method with an iterative algebraic eigenvalue solver for a
symmetric eigenvalue problem of asymptotic quasi-optimal compu-
tational complexity. The analysis is based on a direct approach for
eigenvalue problems and allows the use of higher-order conforming
finite element spaces with fixed polynomial degree. The asymptotic
quasi-optimal adaptive finite element eigenvalue solver (AFEMES)
involves a proper termination criterion for the algebraic eigenvalue
solver and does not need any coarsening. Numerical evidence il-
lustrates the asymptotic quasi-optimal computational complexity
in 2 and 3 dimensions.

1. Introduction

The eigenvalue problems for symmetric second-order elliptic bound-
ary value problems can be discretised with some adaptive finite el-
ement method (AFEM). In practice, the resulting finite-dimensional
generalised eigenvalue problems are solved iteratively. Thus, the com-
putation involves the discretisation error of some AFEM as well as the
error left from the termination of some iterative algebraic eigenvalue
solver. This paper presents the first adaptive finite element eigenvalue
solver (AFEMES) of overall asymptotic quasi-optimal complexity, i.e.,
for su�ciently small mesh-sizes the error is optimal up to a generic
multiplicative constant. AFEMES is shown in the pseudocode below.

The algorithm computes one fixed simple eigenvalue. The adaptive
mesh refinement via subroutines Mark and Refine is well established in
the finite element community [BDD04, CKNS08, Dör96, Ste07] while
LAES represents any state-of-the-art iterative eigenvalue solver well est-

2000 Mathematics Subject Classification. 65N15, 65N25, 65N30.
Key words and phrases. eigenvalue, adaptive finite element method, conver-

gence rates, complexity .
? Supported by the DFG Research Center MATHEON “Mathematics for key

technologies”, the World Class University (WCU) program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology R31-2008-000-10049-0, and the graduate school “Berlin Mathemat-
ical School” (BMS).

Final version published in SIAM J. Numer. Anal. 50 (2012), no. 3, 1029–1057,
http://dx.doi.org/10.1137/090769430.

http://dx.doi.org/10.1137/090769430


2 C. CARSTENSEN AND J. GEDICKE

AFEMES
Input: Coarse triangulation T

0

, initial guess (�̃
0

, ũ
0

),
parameters 0 < ✓  1, 0 < !.

�
0

:= 2
p
!⌘

0

(�̃
0

, ũ
0

);
for ` = 0, 1, . . . (until termination)

while ( �` >
p
!⌘`(�̃`, ũ`) )

�` := �`/2; [�̃`, ũ`] := LAES(T`, �̃`, ũ`, �`); end

T`+1

:= Refine(T`,Mark(T`, ✓, ⌘`(�̃`, ũ`)));
�`+1

:= 2
p
!⌘`(�̃`, ũ`); �̃`+1

:= �̃`; ũ`+1

:= P `+1

` ũ`; end

Output: Sequence of triangulations T` and

approximations (�̃`, ũ`).

ablished in the numerical linear algebra community that satisfies the
convergence and complexity assumptions of Section 2. The parame-
ters ✓ and ! depend on the regularity of the solution and ⌘` denotes
the error estimator from Section 4. The prolongation operator from
triangulation T` onto T`+1

is denoted by P `+1

` . The pseudocode gives
one possible error balance of the two error sources of asymptotic quasi-
optimal complexity.

The works on asymptotic convergence [CG11, GMZ09, GG09, Sau10]
as well as on asymptotic quasi-optimal convergence [DXZ08, GM11]
of adaptive mesh refinement for the eigenvalue problem do assume
unrealistically the exact knowledge of algebraic eigenpairs. Another
optimality result for linear symmetric operator eigenvalue problems
[DRSZ08] is based on coarsening. Assuming a saturation assumption,
[MM11, Ney02] present combined adaptive finite element and linear
algebra algorithms.

As a simple model problem for a symmetric, elliptic eigenvalue prob-
lem consider the following eigenvalue problem of the Laplace operator:
Seek a nontrivial eigenpair (�, u) 2 R⇥H1

0

(⌦;R)\H2

loc(⌦;R) such that

��u = �u in ⌦ and u = 0 on @⌦(1.1)

in a bounded Lipschitz domain ⌦ ⇢ Rn, n = 2, 3. It is well known,
that problem (1.1) has countable infinite many solutions with positive
eigenvalues that can be ordered increasingly. For simplicity, this paper
is restricted to the case that the eigenvalue of interest � is a simple
eigenvalue; hence its algebraic and geometric multiplicity equals one.
Throughout this paper, standard notations on Sobolev and Lebesgue
spaces are used.

The weak problem seeks for a nontrivial eigenpair (�, u) 2 R⇥V :=
R⇥H1

0

(⌦;R) with b(u, u) = 1 and

a(u, v) = �b(u, v) for all v 2 V.
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The bilinear forms a(·, ·) and b(·, ·) are defined by

a(u, v) :=

Z

⌦

ru ·rv dx and b(u, v) :=

Z

⌦

uv dx

and induce the norms |||.||| := |.|H1
(⌦)

on V and k.k := k.kL2
(⌦)

on L2(⌦).
The conforming finite element space of order k 2 N for the triangu-

lation T` is defined by

Pk(T`) :=
�
v 2 H1(⌦) : 8T 2 T`, v|T is polynomial of degree  k

 
.

Let V` := Pk(T`) \ V denote the finite-dimensional subspace of fixed
order k > 0 and N` := dim(V`). The corresponding discrete eigen-
value problem reads: Seek a nontrivial eigenpair (�`, u`) 2 R⇥ V` with
b(u`, u`) = 1 and

a(u`, v`) = �`b(u`, v`) for all v` 2 V`.

This paper proves asymptotic quasi-optimal computational complex-
ity of the proposed AFEMES: Suppose that (�`, u`) is a discrete eigen-
pair to the continuous eigenpair (�, u). Let (T`)` be a sequence of
nested regular triangulations. Suppose that the continuous eigenpair
(�, u) belongs to some approximation class As, i.e., there exists some
s > 0 and some |u|As < 1 such that, for any number N there is an
(unknown) optimal mesh TN with |TN |  |T

0

| + N element domains
and discrete eigenpair (�N , uN) with

sup
N2N

N2s
�|||u� uN |||2 + |�� �N |

�
=: |u|2As

< 1.

Then the computational complexity of the AFEMES is quasi-optimal
in the sense that

|||u� ũ`|||2 + |�� �̃`|  O(t�2s
` ),

where t` denotes the computational costs, i.e., the CPU time. The
point is that this quasi-optimal complexity holds for any u 2 As and
all s > 0 despite the fact that AFEMES does not require any param-
eter s. The analysis consists of three steps and does not need any
inner node property, coarsening or saturation assumption. Since in the
present analysis no oscillations occur, it is not necessary to add addi-
tional inner points to reduce some oscillations [GG09]. In [DRSZ08]
a coarsening of the mesh is needed in some steps to maintain opti-
mality. The present analysis relies only on refinement of some mesh
and does not need any coarsening. For hierarchical error estimators
[MM11, Ney02] reliability is equivalent to the saturation assumption,
namely a strict error reduction for uniform refined meshes. For the
residual estimator used here the reliability is proven directly in Sec-
tion 4. First the asymptotic quasi-optimal convergence for the model
problem (1.1) is shown for discrete eigenpairs without using the in-
ner node property: Suppose that (�`, u`) is a discrete eigenpair to the
continuous eigenpair (�, u) in some approximation class As for some
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s > 0. Then (�`, u`) converges quasi-optimal, i.e., optimal up to a
positive generic multiplicative constant C with

|||u� u`|||2 + |�� �`|  C|u|2As
N�2s

` .

In contrast to [DXZ08] the proofs are based on the eigenvalue formula-
tion and not on a relation to its corresponding source problem. Hence,
no additional oscillations arising from the corresponding source prob-
lem have to be treated. In a second step this result is extended to
the case of inexact algebraic eigenvalue solutions: Suppose (�, u) with
u 2 As is an eigenpair and (�`, u`) and (�`+1

, u`+1

) corresponding dis-
crete eigenpairs on levels ` and `+1. Let the iterative approximations
(�̃`, ũ`) on T` and (�̃`+1

, ũ`+1

) on T`+1

satisfy

|||u`+1

� ũ`+1

|||2 + |�`+1

� �̃`+1

|  !⌘2` (�̃`, ũ`),

|||u` � ũ`|||2 + |�` � �̃`|  !⌘2` (�̃`, ũ`),

for su�ciently small ! > 0. Then, the iterative solutions �̃` and ũ`

converge quasi-optimal,

|||u� ũ`|||2 + |�� �̃`| . N�2s
` .

The notation x . y abbreviates the inequality x  Cy and x ⇡ y the
inequalities Dy  x  Cy with constants C > 0 and D > 0 which do
not depend on the mesh-size. Finally, it is shown that the AFEMES is
of linear runtime t` ⇡ N` provided the linear algebra eigenvalue solver
satisfies some convergence and complexity assumptions of Section 2.

The outline of this paper is as follows. Section 2 concerns the basic
structure of the standard AFEM for eigenvalue problems. Section 3
presents some algebraic and analytic properties for the model prob-
lem (1.1). The discrete reliability of a residual type error estimator is
shown in Section 4 together with the standard reliability and e�ciency.
In Section 5 a contraction property for the quasi-error up to higher-
order terms leads to quasi-optimal convergence of the AFEM under the
usual assumption that the mesh-size is su�ciently small and that the
algebraic subproblems are solved exactly. Relaxing this last assump-
tion in Section 6, the results for quasi-optimal convergence are extended
to the case of approximated discrete eigenpairs. These relaxed results
are in Section 7 combined with some iterative eigenvalue solver and
thus lead to the combined AFEM and iterative algebraic eigenvalue
solver AFEMES with asymptotic quasi-optimal computational com-
plexity. The numerical experiments of Section 8 show empirical quasi-
optimal computational complexity of the AFEMES for some iterative
algebraic eigenvalue solvers and higher-order finite element methods in
2 and 3 dimensions.
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2. Adaptive Finite Element Eigenvalue Solver

The AFEM computes a sequence of discrete subspaces

V
0

( V
1

( V
2

( . . . ( V` ⇢ V

using local refinement of the underlying mesh of the domain ⌦. The
corresponding sequence of meshes T

0

, T
1

, T
2

, . . . consists of nested reg-
ular triangulations. The AFEM consists of the following loop:

Solve ! Estimate ! Mark ! Refine.

Solve. Given a mesh T` on level ` the step Solve computes the sti↵ness
matrix A` and the mass matrix B` and solves the finite-dimensional
generalised algebraic eigenvalue problem

A`x` = �`B`x`

with N` := dim(V`) and

u` =
NX̀

k=1

xk'k, V` = span{'
1

, . . . ,'N`
}.

Practically, these discrete eigenvalue problems are solved inexact using
iterative algebraic eigenvalue solvers. In this paper the linear alge-
braic eigenvalue solver (LAES), used as a “black box” iterative solver
in the quasi-optimal algorithm AFEMES, is assumed to be any itera-
tive eigenvalue solver of quasi-optimal computational complexity in the
sense that for any given tolerance " > 0, the LAES computes some ap-
proximation (�̃`,m, ũ`,m) of the generalised algebraic eigenvalue problem
from a close enough initial guess (�̃`,0, ũ`,0) such that

|||u` � ũ`,m|||2 + |�` � �̃`,m|  "2

in at most, up to a generic multiplicative constant,

max
�
1, log("�1|||u` � ũ`,0|||)

 ⇥N`

arithmetic operations. That is, each iteration of the solver requires at
most O(N`) operations and the convergence depends only on ũ`,0 and
not on N`.

The eigenvalue error of the preconditioned inverse iteration converges
independently of h` for preconditioners that are spectrally equivalent to
A` [KN03b, Theorem 5]. The complexity depends on the sparsity of the
preconditioner. The geometric multigrid V-cycle is known to converge
independently of h` and the number of levels ` for a fixed number of
smoothing steps for Richardson [Bre02a] or Jacobi smoothers [Bre02b].
The preconditioned inverse iteration (PINVIT) and the locally optimal
block preconditioned conjugate gradient (LOBPCG) algorithms with
the V-cycle geometric multigrid preconditioner have been shown nu-
merically to be of quasi-optimal computational complexity for uniform
meshes [KN03a]. Since in this paper the mesh is refined adaptively,
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global smoothing might be ine�cient and local smoothing needs to be
applied. However, the numerical examples of Section 8 show that em-
pirically global smoothing is e�cient for those examples. The numerical
examples of Subsection 8 compare the V-cycle geometric multigrid pre-
conditioned PINVIT and LOBPCG algorithms with a standard solve
of the Arnoldi method as implemented in ARPACK [LSY98] where
the linear systems are solved using a LU factorisation. The stopping
criteria for PINVIT [Ney02] and LOBPCG [KN03a] are based on the
scalar product of the algebraic residual and the preconditioned alge-
braic residual.

Estimate. The error in the eigenfunction or eigenvalue of interest is
estimated based on the solution (�`, u`) of the underlying algebraic
eigenvalue problem

⌘2` (�`, u`) :=
X

T2T`

⌘`(�`, u`;T )
2 +

X

E2E`

⌘`(�`, u`;E)2.

Mark. Based on the refinement indicators, edges and elements are
marked for refinement in a bulk criterion [Dör96] such thatM` ✓ T`[E`
is an (almost) minimal set of marked edges with

✓⌘2` (�`, u`)  ⌘2` (�`, u`;M`),

⌘2` (�`, u`;M`) :=
X

T2M`\T`

⌘2` (�`, u`;T ) +
X

E2M`\E`

⌘2` (�`, u`;E)

for a bulk parameter 0 < ✓  1. This is done in a greedy algorithm
which marks edges and elements with larger contributions. In [Ste07] a
quasi-optimal algorithm of complexity O(|T` [ E`|) is proposed, where
|T`[E`| denotes the cardinality of all edges in E` and all elements in T`.
Since sorting the refinement indicators in O(|T` [ E`| log|T` [ E`|) does
not dominate the overall computational costs in practise, this simple
approach is used in the numerical examples of Section 8.

Refine. In this step of the AFEM loop, the mesh is refined locally
corresponding to the set M` of marked edges and elements. Once
an element is selected for refinement, all of its edges will be refined.
In order to preserve the quality of the mesh, i.e., the maximal angle
condition or its equivalents, additionally edges have to be marked by
the closure algorithm before refinement. For each triangle let one edge
be the uniquely defined reference edge E(T ). The closure algorithm
computes a superset M` � M` such that
�
E(T ) : T 2 T` with E`(T ) \M` 6= ; or T \M` 6= ; ✓ M`.

In other words, once a edge of a triangle or itself is marked for refine-
ment, its reference edge E(T ) is among them. A similar refinement
algorithm for n = 3 based on bisection and the concept of reference
edges can be found in [AMP00].
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Figure 2.1. Refinement rules: Sub-triangles with cor-
responding reference edges depicted with a second edge.

Proposition 2.1 (boundedness of closure, [BDD04, Ste08]). Let T`+1

be a refinement of T`, obtained using the refinement algorithm and clo-

sure. Suppose T
0

is the initial coarse triangulation, then it holds that

|TL|� |T
0

| .
L�1X

`=0

|M`|,

where |T`| denotes the cardinality of all triangles in T`. ⇤
After the closure algorithm is applied one of the following refinement

rules is applicable, namely no refinement, green refinement, blue left
or blue right refinement and bisec3 refinement depicted in Figure 2.1.

Proposition 2.2 (overlay, [Ste07, CKNS08]). For the smallest com-

mon refinement T" � T` of T" and T` it holds that

|T" � T`|� |T`|  |T"|� |T
0

|. ⇤

3. Algebraic Properties

This section summarises some known and some new algebraic prop-
erties of the model problem (1.1), such as the relation between the
eigenvalue error and the error with respect to the norms |||.||| and k.k
[SF73]

|||u� u`|||2 = �ku� u`k2 + �` � �.(3.1)

Throughout this section suppose that (�`, u`) 2 R⇥V` and (�`+m, u`+m) 2
R ⇥ V`+m are discrete eigenpairs to the continuous eigenpair (�, u) 2
R⇥ V on the levels ` and `+m.

Lemma 3.1 (quasi-orthogonality). Let T`+m be a refinement of the

triangulation T` for some level ` such that V` ⇢ V`+m. Then, for e` :=
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u� u` and e`+m := u� u`+m, the quasi-orthogonality holds,

|||u`+m � u`|||2 = |||e`|||2 � |||e`+m|||2 � �ke`k2 + �ke`+mk2
+ �`+mku`+m � u`k2.

Proof. Since T`+m is a refinement of T`, (3.1) implies

|||u`+m � u`|||2 = �`+mku`+m � u`k2 + �` � �`+m.

Hence,

|||u`+m � u`|||2 = �`+mku`+m � u`k2 + �` � �� (�`+m � �)

= |||e`|||2 � |||e`+m|||2 � �ke`k2 + �ke`+mk2 + �`+mku`+m� u`k2.
⇤

Let the residual Res` 2 V ⇤ be defined by

Res`(v) := �`b(u`, v)� a(u`, v) for all v 2 V.

Notice that V` ⇢ ker(Res`).

Lemma 3.2. Let T`+m be a refinement of T` such that V` ⇢ V`+m ✓ V ,

then it holds that

|||u`+m � u`|||  |||Res`|||V ⇤
`+m

+
(�`+m + �`)

2

ku`+m � u`k2
|||u`+m � u`||| .

Proof. Elementary algebraic manipulations, together with the assump-
tion that V` ⇢ V`+m, show

|||u`+m � u`|||2 = �`b(u`, u`+m � u`)� a(u`, u`+m � u`)

+ a(u`+m, u`+m � u`)� �`b(u`, u`+m � u`)

= Res`(u`+m � u`) + (�`+m + �`)(1� b(u`+m, u`))

 |||Res`|||V ⇤
`+m

|||u`+m � u`|||+ (�`+m + �`)

2
ku`+m � u`k2.

⇤
The remaining part of this section is devoted to showing that the

second term on the right hand side in Lemma 3.2 is of higher-order,
namely

ku`+m � u`k . kh`krL1
(⌦)

|||u`+m � u`|||.
Here and throughout this paper, h` 2 P

0

(T`) is the piecewise constant
mesh-size function with h`|T := diam(T ) for T 2 T` and 0 < r  1 de-
pends on the regularity of the solution of the corresponding boundary
value problem. The first part follows the argumentation as in [SF73]
for the case u`+m ⌘ u. The second part exploits regularity of the cor-
responding boundary value problem together with the Aubin–Nitsche
technique. Let G` : V ! V` denote the Galerkin projection onto V`

such that for any v 2 V it holds that

a(v �G`v, v`) = 0 for all v` 2 V`.
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Suppose the ith eigenvalue � = �1,i is simple. Let the initial mesh-
size kh

0

kL1
(⌦)

be su�ciently small such that there exist two separation
bounds M and M`+m, independent of h`, which satisfy for the index
set I` := {1, . . . , i� 1, i+ 1, . . . , dim(V`)}

0 < M := sup
`2N0

max
j2I`

�1,i

|�`,j � �1,i| < 1;

0 < M`+m := max
j2I`

�`+m,i

|�`,j � �`+m,i| < 1.

Lemma 3.3. Let T`+m be a refinement of T` such that V` ⇢ V`+m ✓ V ,

then for the Galerkin projection G` : V ! V` it holds that

ku`+m � u`k  2(1 +M`+m)ku`+m �G`u`+mk,
ku� u`k  2(1 +M)ku�G`uk.

Proof. Note that for the Galerkin projection it holds that

(�`,j � �`+m,i)b(G`u`+m,i, u`,j)=�`+m,ib(u`+m,i �G`u`+m,i, u`,j).

Since u`,1, . . . , u`,N`
, for N` = dim(V`), forms an orthogonal basis for

V`, the Galerkin projection of u`+m,i can be written as

G`u`+m,i =
NX̀

j=1

b(G`u`+m,i, u`,j)u`,j.

Let � := b(G`u`+m,i, u`,i) be the coe�cient for j = i in the previous
formula. Because of the orthogonality of the discrete eigenfunctions
u`,1, . . . , u`,N`

, it holds that

kG`u`+m,i � �u`,ik2 =
NX̀

j=1

j 6=i

b(G`u`+m,i, u`,j)
2

=
NX̀

j=1

j 6=i

✓
�`+m,i

|�`,j � �`+m,i|
◆

2

b(u`+m,i �G`u`+m,i, u`,j)
2

 M2

`+m

NX̀

j=1

j 6=i

b(u`+m,i �G`u`+m,i, u`,j)
2

 M2

`+mku`+m,i �G`u`+m,ik2.
The triangle inequality shows that

ku`+m,ik � ku`+m,i � �u`,ik  k�u`,ik  ku`+m,ik+ ku`+m,i � �u`,ik.
Since the eigenfunctions are normalised to one this implies

|� � 1|  ku`+m,i � �u`,ik.
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Hence,

ku`+m,i � u`,ik  ku`+m,i � �u`,ik+ k(� � 1)u`,ik  2ku`+m,i � �u`,ik.
Thus,

ku`+m,i � u`,ik  2ku`+m,i �G`u`+m,ik+ 2kG`u`+m,i � �u`,ik
 2(1 +M`+m)ku`+m,i �G`u`+m,ik.

The second inequality follows analogously since V` ⇢ V . ⇤
Lemma 3.4. Let T`+m be a refinement of T` such that V` ⇢ V`+m ✓ V .

Suppose the corresponding boundary value problem to (1.1), seek z 2 V
such that

a(z, v) =

Z

⌦

fv dx for all v 2 V,

is H1+r
-regular for all f 2 L2(⌦) and some 0 < r  1, i.e., z 2

H1+r(⌦) \ V and kzkH1+r
(⌦)

 CregkfkL2
(⌦)

. Then it holds that

ku`+m �G`u`+mk  C
approx

C
reg

kh`krL1
(⌦)

|||u`+m � u`|||,
ku�G`uk  C

approx

C
reg

kh`krL1
(⌦)

|||u� u`|||.
Proof. The following convergence estimate holds for the Galerkin pro-
jection G`z 2 V` of z 2 V

kz �G`zkH1
(⌦)

 C
approx

kh`krL1
(⌦)

kzkH1+r
(⌦)

for some 0 < r  1 [BS08, Theorem 14.3.3]. The Aubin-Nitzsche
duality technique for the dual boundary value problem, seek z 2 V
such that

a(z, v) = b(u`+m �G`u`+m, v) for all v 2 V,

and the regularity assumption z 2 H1+r(⌦) \ V ,

kzkH1+r
(⌦)

 Cregku`+m �G`u`+mk,
lead to

ku`+m �G`u`+mk  C
approx

C
reg

kh`krL1
(⌦)

|||u`+m �G`u`+m|||
 C

approx

C
reg

kh`krL1
(⌦)

|||u`+m � u`|||.
The second inequality follows from formally m ! 1. ⇤
Lemma 3.5. Let T`+m be a refinement of T` such that V` ⇢ V`+m ✓ V .

For su�ciently small initial mesh-size kh
0

kL1
(⌦)

there exists a constant

C
0

> 0 depending only on T
0

such that 1  (h`) < C
0

with

|||u`+m � u`|||  (h`)|||Res`|||V ⇤
`+m

, |||u� u`|||  (h`)|||Res`|||V ⇤

and limkh`kL1(⌦)!0

(h`) = 1.
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Proof. Suppose that kh`kL1
(⌦)

is su�ciently small such that

�` := 2C2

approx

C2

reg

(�`+m + �`)(1 + max{M,M`+m})2kh`k2rL1
(⌦)

⌧ 1.

Then Lemmas 3.2 and 3.3 together with Lemma 3.4 lead to

|||u`+m � u`|||  (1� �`)
�1|||Res`|||V ⇤

`+m
;

|||u� u`|||  (1� �`)
�1|||Res`|||V ⇤ .

Notice that (h`) := (1� �`)�1 ! 1 as the maximal mesh-size tends to
zero and C

0

:= (1� �
0

)�1. ⇤

4. A Posteriori Error Estimator

This section establishes the discrete reliability and recalls the re-
liability and e�ciency of the standard residual-based error estimator
[DXZ08, DPR03, GMZ09, GG09]. Let p` := ru` denote the discrete
gradient and E` the set of inner edges (n = 2) or inner faces (n = 3) of
T`. For E 2 E` let T+

, T� 2 T` be the two neighbouring triangles such
that E = T

+

\T�. The jump of the discrete gradient p` along an inner
edge E 2 E` in normal direction ⌫E, pointing from T

+

to T�, is defined
by [p`]·⌫E :=

�
p`|T+ � p`|T�

� · ⌫E. Then the residual error estimator is
defined by

⌘2` (�`, u`) :=
X

T2T`

⌘`(�`, u`;T )
2 +

X

E2E`

⌘`(�`, u`;E)2

with n = 2, 3 and

⌘`(�`, u`;T )
2 := |T |2/nk�`u` + div(p`)k2L2

(T )

,

⌘`(�`, u`;E)2 := |E|1/(n�1)k[p`]·⌫Ek2L2
(E)

.

Note that the Scott-Zhang quasi-interpolation operator J : V ! V`

is a projection J(v`) = v` for all v` 2 V`. In addition, it is locally
a L2-projection onto (n � 1)-dimensional edges or faces. Therefore,
each node is assigned any edge or face which contains it. Edge-basis
functions are interpolated on their edge and element-basis functions
are interpolated over the interior of their element. The element and
edge patches ⌦T and ⌦E are displayed in Figure 4.1. In the following,
the Scott-Zhang quasi-interpolation operator is restricted to V`+m for
a refined triangulation T`+m of T`. If it is possible, each nodal-basis
function is assigned an edge of the boundary or an edge which is not
refined. Thus, the homogeneous boundary values are preserved. Let v`
denote the Scott-Zhang interpolant of v`+m in V`. Then for all elements
T 2 T` and all edges E 2 E` that are not refined it holds that v`+m|T=
v`|T and v`+m|E= v`|E. The finite overlap of all the patches ⌦T and ⌦E

implies the approximation property [SZ90]
X

T2T`

|T |�1/nkv`+m � v`kL2
(T )

+
X

E2E`

|E|�1/(2n�2)kv`+m � v`kL2
(E)

. |||v`+m|||.
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⌦T

Ts
s

s
⌦E

Es s

Figure 4.1. Patches for the Scott-Zhang interpolation operator.

Lemma 4.1 (discrete reliability). For su�ciently small kh
0

kL1
(⌦)

let

(�`, u`) be a discrete eigenpair on level ` and M` ✓ T` [ E` be any set

of edges and elements. Suppose the refinement algorithm of Section 2

computes the refined mesh T`+m, then it holds that

|||Res`|||V ⇤
`+m

. ⌘`(�`, u`;M`).

Proof. Let v` denote the Scott–Zhang interpolant of v`+m 2 V`+m in
V`. For all common elements T 2 T` \ T`+m and all common edges
E 2 E` \ E`+m it holds that v`|T = v`+m|T and v`|E = v`+m|E. Hence,
Res`(v`+m) = Res`(v`+m � v`) = �`b(u`, v`+m � v`)� a(u`, v`+m � v`)

.
X

T2T`\T`+m

|T |1/nk�`u` + div(p`)kL2
(T )

k|T |�1/n(v`+m � v`)kL2
(T )

+
X

E2E`\E`+m

|E|1/(2n�2)k[p`]·⌫EkL2
(E)

k|E|�1/(2n�2)(v`+m � v`)kL2
(E)

. ⌘`(�`, u`;M`)|||v`+m|||. ⇤
Lemma 4.2. For su�ciently small kh

0

kL1
(⌦)

it holds

|||Res`|||V ⇤ . ⌘`(�`, u`) . |||e`|||.
Proof. The first inequality can be proven as Lemma 4.1. For the sec-
ond inequality, Durán et al. [DPR03] showed the local lower bound
for piecewise linear finite element functions using the bubble-function
technique. In the case of higher-order finite elements the arguments of
the proof remain the same as in the linear case except that div(p`) can
be nonzero. Thus the local discrete inverse inequality

|!E|1/nkdiv(p`)kL2
(!E)

. kre`kL2
(!E)

has to be applied additionally. Therefore, it holds the local lower bound

|!E|1/nk�`u` + div(p`)kL2
(!E)

+ |E|1/(2n�2)k[p`]·⌫EkL2
(E)

. kre`kL2
(!E)

+ |!E|1/nk�u� �`u`kL2
(!E)

for the edge patch !E := T
+

[ T�, for T± 2 T` with E = T
+

\ T�. The
global version reads

⌘2` (�`, u`) . |||e`|||2 + kh`k2L1
(⌦)

k�u� �`u`k2.
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As shown in [CG11], some elementary algebra in the spirit of Lemma 3.1
shows

k�u� �`u`k2 = (�` � �)2 + ��`ke`k2.
Equation (3.1) yields (�` � �)2  |||e`|||4 and ��`ke`k2  �`|||e`|||2. Since
�` is bounded by �

0

it holds

⌘`(�`, u`) . |||e`|||
even for larger mesh-sizes kh`kL1

(⌦)

. 1. ⇤

Remark 4.3. Lemma 3.5, Lemma 4.1 and Lemma 4.2 show that for
su�ciently small kh`kL1

(⌦)

there exist two constants 0 < C
rel

and
0 < C

e↵

such that

⌘`(�`, u`)/Ce↵

 |||e`|||  C
rel

⌘`(�`, u`);

|||u`+m � u`|||  C
rel

⌘`(�`, u`;M`).

Similar results as in Lemma 4.1 and 4.2 for general bilinear forms
a(·, ·) with jumping coe�cients include additional terms that represent
data oscillations, cf. [AO00, GMZ09, Ver96].

5. Quasi-Optimal Convergence

This section is devoted to the asymptotic quasi-optimal convergence
analysis of the adaptive eigenvalue computation based on exact solu-
tions of the algebraic eigenvalue problems. At first the approximation
class As is defined and its properties are described. Lemma 5.2 shows
an estimator reduction which is used in the proof of the contraction
property in Lemma 5.3. The contraction property and the bulk crite-
rion are key arguments in the proof of the quasi-optimality in Theo-
rem 5.4.

Definition 5.1 (approximation class). For an initial triangulation T
0

and for s > 0 let the approximation class be defined by

As :=

⇢
v 2 V : |v|As := sup

">0

" inf
T":|||v�v"|||"

(|T"|� |T
0

|)s < 1
�
.

The infimum is taken over all refinements T" of T
0

computed by the

refinement algorithm of Section 2 with |||v � v"|||  " and v" 2 V".

Notice that As contains all functions that can be approximated
within pre-described tolerance " > 0 in a finite element space V",
|||v � v"|||  " for some v" 2 V", based on the triangulation T" with

|T"| � |T
0

|  "�1/s|v|1/sAs
. For uniform refinement classical a priori es-

timates show that for 0 < r  1, H1+r(⌦) \ V ⇢ Ar/n, but the class
contains many more functions which motivates the use of adaptivity.
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Due to [Ste07] an equivalent formulation, similar to that of [CKNS08],
reads

As :=

⇢
v 2 V : sup

N2N
N s inf

T":|T"|�|T0|N
|||v � v"||| < 1

�
.

In the following the marking strategy of Section 2 is a key argument
in the proofs.

Lemma 5.2. Let (�`, u`) and (�`+1

, u`+1

) be discrete eigenpairs on the

levels ` and ` + 1 to the continuous eigenpair (�, u), then there exists

some ⇤ > 0, such that, for all levels ` � 0 and 0 < ✓  1, it holds that

⌘`+1

(�`+1

, u`+1

) 
q

(1� ✓(1� 2�2/n))⌘`(�`, u`) + ⇤|||u`+1

� u`|||.
Proof. As in the proof of [CG11, Lemma 5.1], Young’s inequality, some
discrete inverse inequalities and the bulk criterion of Section 2 lead to

⌘2`+1

(�`+1

, u`+1

)  (1 + �)(1� ✓(1� 2�2/n))⌘2` (�`, u`)

+ ⇤2(1 + 1/�)|||u`+1

� u`|||2
for any 0 < � from Young’s inequality, 0 < ✓  1 bulk parameter, and
0 < ⇤ from application of various discrete inverse inequalities. Thereby
the factor 2�2/n results from at least one bisection of refined elements
or edges. The choice

� =
⇤|||u`+1

� u`|||p
(1� ✓(1� 2�2/n))⌘`(�`, u`)

proves the assertion. ⇤
Lemma 5.3 (contraction property). Let (�`, u`) and (�`+1

, u`+1

) be

discrete eigenpairs on the levels ` and ` + 1 to the same continuous

eigenpair (�, u) and let the mesh-size kh`kL1
(⌦)

be su�ciently small,

then there exist constants 0 < % < 1 and � > 0, such that, for all

` = 0, 1, 2, . . ., it holds that

�⌘2`+1

(�`+1

, u`+1

) + |||u� u`+1

|||2  %
�
�⌘2` (�`, u`) + |||u� u`|||2

�
.(5.1)

Proof. Theorem 5.3 of [CG11] shows for 0 < ⇢ < 1 that

�⌘2`+1

(�`+1

, u`+1

) + |||e`+1

|||2  ⇢
�
�⌘2` (�`, u`) + |||e`|||2

�

+ 3�`+1

ke`+1

k2 + 3�`ke`k2.
Lemmas 3.3 and 3.4 show

ku� u`k2  �(h`)
2|||u� u`|||2,(5.2)

where �(h`) := 2(1 +M)CapproxCregkh`krL1
(⌦)

.
Hence, for su�ciently small mesh-size kh

0

kL1
(⌦)

, it follows (5.1) with
the constant

0 < % :=
⇢+ 3�

0

�(h`)2

1� 3�
0

�(h`)2
< 1. ⇤
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Theorem 5.4. Suppose that (�`, u`) is a discrete eigenpair to the con-

tinuous eigenpair (�, u) with u 2 As and that the initial mesh-size

kh
0

kL1
(⌦)

is su�ciently small. Then �` and u` from the AFEM con-

verge quasi-optimal in the sense that

|||e`|||2 + |�� �`| . (|T`|� |T
0

|)�2s . N�2s
` .

Proof. First it is shown that for a set M` of marked edges and elements
from the marking strategy of Section 2, based on the bulk criterion,
⌘`(�`, u`) and a bulk parameter ✓ > 0, it holds that

|M`| . |||e`|||�1/s|u|1/sAs
.

Suppose T`+" is any refinement of T` such that

|||e`+"|||  ⇢|||e`|||
for some 0 < ⇢ < 1. Suppose that kh`kL1

(⌦)

and ✓ are su�ciently
small, such that

0 < ✓  (1� ⇢2)

C2

rel

C2

e↵

� ��(h`)
2,

where �(h`) from Lemma 5.3 tends to zero as kh`kL1
(⌦)

! 0. Us-
ing the e�ciency estimates of Remark 4.3 together with the quasi-
orthogonality of Lemma 3.1 yields

(1� ⇢2)⌘2` (�`, u`)/C
2

e↵

 (1� ⇢2)|||e`|||2  |||e`|||2 � |||e`+"|||2
= |||u`+"� u`|||2 + �ke`k2 � �ke`+"k2 � �`+"ku`+"� u`k2.

Let M" := (T`\T`+")[(E`\E`+"), then the reliability of Remark 4.3 and
(5.2) yield

(1� ⇢2)⌘2` (�`, u`)/C
2

e↵

 C2

rel

⌘2` (�`, u`;M") + �ke`k2
 C2

rel

⌘2` (�`, u`;M") + ��(h`)
2C2

rel

⌘2` (�`, u`).

Therefore, M" satisfies the bulk criterion. Since M` is the set with
almost minimal cardinality that fulfils the bulk criterion, it holds that

|M`| . |M"| . |T`+"|� |T`|.
Let T" be an optimal mesh with smallest cardinality such that

|||e"|||  ⇢|||e`|||.
The definition of the approximation space As shows that

|T"|� |T
0

|  ⇢�1/s|||e`|||�1/s|u|1/sAs
.

Let T`+" be the smallest common refinement of T" and T`. Then the
overlay estimate yields

|M`| . |T`+"|� |T`| = |T" � T`|� |T`|  |T"|� |T
0

| . |||e`|||�1/s|u|1/sAs
.
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This and the boundedness of closure in Lemma 2.1 yield

|TL|� |T
0

| .
L�1X

`=0

|M`| . |u|1/sAs

L�1X

`=0

|||e`|||�1/s.

The e�ciency estimate of Remark 4.3 yields

�⌘2` (�`, u`) + |||u� u`|||2 
�
1 + �C2

e↵

� |||u� u`|||2.
Thus,

|||u� u`|||�1/s  �
1 + �C2

e↵

�
1/(2s) �

�⌘2` (�`, u`) + |||u� u`|||2
��1/(2s)

.

Lemma 5.3 leads to
�
�⌘2` (�`, u`) + |||u� u`|||2

��1/(2s)

 %1/(2s)
�
�⌘2`+1

(�`+1

, u`+1

) + |||u� u`+1

|||2��1/(2s)
.

Exploiting the reliability of the estimator and a geometric series argu-
ment yields that |TL|� |T

0

| is, up to a generic multiplicative constant,
bounded by

|u|1/sAs

�
1 + �C2

e↵

�
1/(2s) �

�⌘2L(�L, uL) + |||u� uL|||2
��1/(2s)

LX

`=1

%`/(2s)

. |u|1/sAs

✓
1 + �C2

e↵

1 + �/C2

rel

◆
1/(2s)

(1� %1/(2s))�1|||u� uL|||�1/s.

Note that Euler’s formula shows (|T`| � |T
0

|) ⇡ N`. Finally equa-
tion (3.1) proves |�� �`| . (|T`|� |T

0

|)�2s. ⇤

6. Quasi-Optimal Convergence for Inexact Algebraic
Solutions

This section contributes to the fact that in practise the underlying
algebraic eigenvalue problems are solved inexact using iterative alge-
braic eigenvalue solvers. A relationship between the error estimator
in the discrete solution and any approximation to it is established in
Lemma 6.1. As in the case of discrete solutions, the contraction prop-
erty in Lemma 6.2 and the local quasi-optimality in Lemma 6.3 lead
to the global asymptotic quasi-optimality in Theorem 6.4.

Lemma 6.1. Let v`, ṽ` 2 V` be arbitrary, not necessary eigenfunctions,

but normalised with kv`k = kṽ`k = 1 and µ, µ̃ 2 R+

arbitrary positive

real numbers bounded from above by �̃
0

, then it holds that

|⌘`(µ, v`)� ⌘`(µ̃, ṽ`)|2  C
�|||v` � ṽ`|||2 + |µ� µ̃|�

for a constant 0 < C independent of the mesh-size kh`kL1
(⌦)

.
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Proof. Using twice the triangle inequality first for vectors and then for
functions yields

|⌘`(µ, v`)� ⌘`(µ̃, ṽ`)|2 
X

T2T`

|T |2/nkµv` � µ̃ṽ` + div(rv` �rṽ`)k2L2
(T )

+
X

E2E`

|E|1/(n�1)k[rv` �rṽ`]·⌫Ek2L2
(E)

.

The local discrete inverse inequality

|T |2/nkdiv(rv`)k2L2
(T )

. krv`k2L2
(T )

,

together with the trace inequality

kvk2L2
(E)

. |E|�1/(n�1)kvk2L2
(!E)

+ |E|1/(n�1)krvk2L2
(!E)

,

the Poincaré inequality and the finite overlay of the patches, leads to

|⌘`(µ, v`)� ⌘`(µ̃, ṽ`)|2

.
X

T2T`

|T |2/nkµv` � µ̃ṽ`k2L2
(T )

+
X

T2T`

krv` �rṽ`k2L2
(T )

+
X

E2E`

krv` �rṽ`k2L2
(!E)

. kh`k2L1
(⌦)

kµv` � µ̃ṽ`k2 + |||v` � ṽ`|||2
. (1 + �̃2

0

kh
0

k2L1
(⌦)

)|||v` � ṽ`|||2 + 2�̃
0

kh
0

k2L1
(⌦)

|µ� µ̃|. ⇤

Lemma 6.2 (contraction property for inexact algebraic solutions).
Suppose that (�`, u`) and (�`+1

, u`+1

) are discrete eigenpairs to the con-

tinuous eigenpair (�, u) with u 2 As on levels ` and `+ 1. Let (�̃`, ũ`)
and (�̃`+1

, ũ`+1

) be the corresponding approximations to the discrete

eigenpairs, which satisfy

|||u`+1

� ũ`+1

|||2 + |�`+1

� �̃`+1

|  !⌘2` (�̃`, ũ`),

|||u` � ũ`|||2 + |�` � �̃`|  !⌘2` (�̃`, ũ`)

for su�ciently small ! > 0. Then, for su�ciently small mesh-size

kh`kL1
(⌦)

, there exists some 0 < ⌫ < 1, such that the contraction

property

�⌘2` (�̃`+1

, ũ`+1

) + |||u� ũ`+1

|||2  ⌫
⇣
�⌘2` (�̃`, ũ`) + |||u� ũ`|||2

⌘

holds.
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Proof. The assumptions, Lemma 6.1 and Young’s inequality show for
any � > 0

�⌘2` (�̃`+1

, ũ`+1

) + |||u� ũ`+1

|||2
 (1 + �)

�
�⌘2` (�`+1

, u`+1

) + |||u� u`+1

|||2�

+ (1 + 1/�)
⇣
�|⌘`(�̃`+1

, ũ`+1

)� ⌘`(�`+1

, u`+1

)|2 + |||u`+1

� ũ`+1

|||2
⌘

 (1 + �)
�
�⌘2` (�`+1

, u`+1

) + |||u� u`+1

|||2�

+ (1 + 1/�)
⇣
�C|�`+1

� �̃`+1

|+ (1 + �C)|||u`+1

� ũ`+1

|||2
⌘

 (1 + �)
�
�⌘2` (�`+1

, u`+1

) + |||u� u`+1

|||2�

+ (1 + 1/�)(1 + �C)!⌘2` (�̃`, ũ`).

The contraction property Lemma 5.3 and another Young’s inequality
yield

�⌘2` (�̃`+1

, ũ`+1

) + |||u� ũ`+1

|||2
 (1 + �)%

�
�⌘2` (�`, u`) + |||u� u`|||2

�
+ (1 + 1/�)(1 + �C)!⌘2` (�̃`, ũ`)

 (1 + �)2%
⇣
�⌘2` (�̃`, ũ`) + |||u� ũ`|||2

⌘

+ (1 + (1 + �)%)(1 + 1/�)(1 + �C)!⌘2` (�̃`, ũ`).

Any choice of 0 < � < %�1/2 � 1 results in

0 < ! <
� � (1 + �)2%�

(1 + (1 + �)%)(1 + 1/�)(1 + �C)
.

The choice

0 < ⌫ := (1 + �)2%+ (1 + (1 + �)%)(1 + 1/�)(1 + �C)!/� < 1

concludes the proof. ⇤
Lemma 6.3. Let (�, u) with u 2 As be an eigenpair and let (�`, u`) be
the corresponding discrete eigenpair with approximation (�̃`, ũ`) which
satisfies

|||u` � ũ`|||2 + |�` � �̃`|  !⌘2` (�̃`, ũ`)

for a su�cient small ! > 0. Suppose that M
˜�`,ũ`

is the set of marked

edges and elements using the marking strategy of Section 2 based on

the bulk criterion and ⌘`(�̃`, ũ`), then for su�ciently small kh`kL1
(⌦)

and bulk parameter ✓ > 0 it holds that

|M
˜�`,ũ`

| . |||u� ũ`|||�1/s|u|1/sAs
.

Proof. Let T" be the smallest partition of T
0

such that

|||u� u"|||  ⇢|||u� ũ`|||
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for 0 < ⇢ < 1/2. Thus, the definition of |u|As yields

|T"|� |T
0

|  ⇢�1/s|||u� ũ`|||�1/s|u|1/sAs
.

Let T`+" := T` � T" be the smallest common refinement of T` and T",
then it holds that

|||u� u`+"|||  ⇢|||u� ũ`|||  ⇢|||u� u`|||+ ⇢|||u` � ũ`|||
 ⇢|||u� u`|||+ ⇢

p
!⌘`(�̃`, ũ`)


⇣
2⇢2|||u� u`|||2 + 2⇢2!⌘2` (�̃`, ũ`)

⌘
1/2

.

This estimate proofs the following

(1� 2⇢2)C�2

e↵

⌘2` (�`, u`)� 2⇢2!⌘2` (�̃`, ũ`)

 (1� 2⇢2)|||u� u`|||2 � 2⇢2!⌘2` (�̃`, ũ`)

 |||u� u`|||2 � |||u� u`+"|||2.
Let M" := (T`\T`+") [ (E`\E`+"), then the quasi-orthogonality from
Lemma 3.1 and the discrete reliability of Lemma 4.1 yield

(1� 2⇢2)C�2

e↵

⌘2` (�`, u`)� 2⇢2!⌘2` (�̃`, ũ`)  |||u`+" � u`|||2 + �ke`k2
 C2

rel

⌘2` (�`, u`;M") + ��(h`)
2C2

rel

⌘2` (�`, u`),

where �(h`) from Lemma 5.3 tends to zero as kh`kL1
(⌦)

! 0. Thus,

((1� 2⇢2)C�2

e↵

� ��(h`)
2C2

rel

)⌘2` (�`, u`)

 C2

rel⌘
2

` (�`, u`;M") + 2⇢2!⌘2` (�̃`, ũ`).

Lemma 6.1 together with the assumption yields

|⌘`(�`, u`)� ⌘`(�̃`, ũ`)|2  C
⇣
|||u` � ũ`|||2 + |�` � �̃`|

⌘
 C!⌘2` (�̃`, ũ`).

Therefore,

((1� 2⇢2)C�2

e↵

� ��(h`)
2C2

rel

)2�1⌘2` (�̃`, ũ`)

 ((1� 2⇢2)C�2

e↵

� ��(h`)
2C2

rel

)⌘2` (�`, u`)

+ ((1� 2⇢2)C�2

e↵

� ��(h`)
2C2

rel

)C!⌘2` (�̃`, ũ`)

 C2

rel

⌘2` (�`, u`;M") + 2⇢2!⌘2` (�̃`, ũ`)

+ ((1� 2⇢2)C�2

e↵

� ��(h`)
2C2

rel

)C!⌘2` (�̃`, ũ`)

 2C2

rel

⌘2` (�̃`, ũ`;M") + 2⇢2!⌘2` (�̃`, ũ`)

+ (2C2

rel

+ (1� 2⇢2)C�2

e↵

� ��(h`)
2C2

rel

)C!⌘2` (�̃`, ũ`).

The choice �(h`) ⌧ 1 and 0 < ! ⌧ 1 shows 0 < ✓  ⇥  1 with

⇥ :=
((1� 2⇢2)C�2

e↵

� ��(h`)2C2

rel

)(2�1 � C!)� 2(C2

rel

C + ⇢2)!

2C2

rel
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and hence the bulk criterion for the set M" based on ⌘`(�̃`, ũ`) is sat-
isfied. Since the set M

˜�`,ũ`
has been chosen with almost minimal car-

dinality, the overlay estimate leads to

|M
˜�`,ũ`

| . |M"| . |T`+"|� |T`|  |T"|� |T
0

| . |||u� ũ`|||�1/s|u|1/sAs
.⇤

Theorem 6.4. Suppose that (�, u) with u 2 As is an eigenpair and

let (�`, u`) and (�`+1

, u`+1

) be the corresponding discrete eigenpairs on

levels ` and ` + 1. Let the iterative approximations (�̃`, ũ`) on T` and

(�̃`+1

, ũ`+1

) on T`+1

satisfy

|||u`+1

� ũ`+1

|||2 + |�`+1

� �̃`+1

|  !⌘2` (�̃`, ũ`),

|||u` � ũ`|||2 + |�` � �̃`|  !⌘2` (�̃`, ũ`)

for su�ciently small ! > 0. Then, for su�ciently small initial mesh-

size kh
0

kL1
(⌦)

, the iterative solutions �̃` and ũ` converge quasi-optimal

|||u� ũ`|||2 + |�� �̃`| . (|T`|� |T
0

|)�2s . N�2s
` .

Proof. Lemma 6.3 and Proposition 2.1 yield

|TL|� |T
0

| .
L�1X

`=0

|M
˜�`,ũ`

| . |u|1/sAs

L�1X

`=0

|||u� ũ`|||�1/s.

The e�ciency estimate of Remark 4.3 and Lemma 6.1 show

⌘2` (�̃`, ũ`)  2⌘2` (�`, u`) + 2C
⇣
|||u` � ũ`|||2 + |�` � �̃`|

⌘

 4C2

e↵

|||u� ũ`|||2 + (2C + 4C2

e↵

)
⇣
|||u` � ũ`|||2 + |�` � �̃`|

⌘

 4C2

e↵

|||u� ũ`|||2 + (2C + 4C2

e↵

)!⌘2` (�̃`, ũ`).

Hence, for 0 < ! < (2C + 4C2

e↵

)�1, it holds that

⌘`(�̃`, ũ`) . |||u� ũ`|||.
For the other direction, notice that

|||u� ũ`|||  |||u� u`|||+ |||u` � ũ`|||  C
rel

⌘`(�`, u`) +
p
!⌘`(�̃`, ũ`),

implies

|||u� ũ`|||2  2C2

rel

⌘2` (�`, u`) + 2!⌘2` (�̃`, ũ`)

 �
4C2

rel

+ 4C2

rel

C! + 2!
�
⌘2` (�̃`, ũ`).

Thus,

|||u� ũ`|||�1/s .
⇣
�⌘2` (�̃`, ũ`) + |||u� ũ`|||2

⌘�1/(2s)

.

Lemma 6.2 leads to
⇣
�⌘2` (�̃`, ũ`) + |||u� ũ`|||2

⌘�1/(2s)

 ⌫1/(2s)
⇣
�⌘2`+1

(�̃`+1

, ũ`+1

) + |||u� ũ`+1

|||2
⌘�1/(2s)

.
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A geometric series argument yields

|TL|� |T
0

| . |u|1/sAs

⇣
�⌘2L(�̃L, ũL) + |||u� ũL|||2

⌘�1/(2s)
LX

`=1

⌫`/(2s)

. |u|1/sAs
(1� ⌫1/(2s))�1|||u� ũL|||�1/s.

Since

|�� �̃`|  |�� �`|+ |�` � �̃`|  |�� �`|+ !⌘2` (�̃`, ũ`)

 |�� �`|+ 2!C2

e↵

|||u� u`|||2 + 2!C
⇣
|||u` � ũ`|||2 + |�` � �̃`|

⌘
,

it holds that

|�� �̃`| . |�� �`|+ |||u� u`|||2 + |||u� ũ`|||2

for su�ciently small ! > 0. Thus, Theorem 5.4 proves |� � �̃`| .
(|T`|� |T

0

|)�2s and Euler’s formula shows (|T`|� |T
0

|) ⇡ N`. ⇤

The choice of the bulk parameter ✓ is asymptotically independent
of � and depends on the reliability and e�ciency constants as well
as on !. The choice of the parameter ! in particular depends on the
constant of Lemma 6.1 and therefore on the initial mesh-size kh

0

kL1
(⌦)

and the initial guess �̃
0

. Empirical choices of these parameters for some
numerical examples are discussed in Section 8.

7. Quasi-Optimal Complexity

In this section the proof of the quasi-optimal computational com-
plexity of the AFEMES is presented. The proposed algorithm combines
the AFEM with some iterative algebraic eigenvalue solver. In order to
prove overall asymptotic quasi-optimal complexity, the iterative solver
needs to have a constant contraction factor independent of the size of
the discrete problem and to be of linear complexity. In other words for
any " > 0 the algorithm LAES has to compute an iterative solution
of the algebraic eigenvalue problem (�̃`,m, ũ`,m) from an initial guess
(�̃`,0, ũ`,0) such that

|||u` � ũ`,m|||2 + |�` � �̃`,m|  "2

in at most, up to a generic multiplicative constant,

max
�
1, log("�1|||u` � ũ`,0|||)

 ⇥N`

arithmetic operations.

Theorem 7.1. Let (�, u) with u 2 As be an eigenpair. Then for

su�ciently small kh
0

kL1
(⌦)

, 0 < ✓ ⌧ 1 and 0 < ! ⌧ 1, the algorithm

AFEMES computes from a coarse triangulation T
0

and an initial guess



22 C. CARSTENSEN AND J. GEDICKE

(�̃
0

, ũ
0

) su�ciently close to (�, u) a sequence of triangulations (T`)` and
corresponding approximated eigenpairs (�̃`, ũ`) such that

|||u� ũ`|||2 + |�� �̃`| . ⌘2` (�̃`, ũ`) . t�2s
`

where t` denotes the computational costs, i.e., the CPU-time.

Proof. First it is shown that the while-loop is terminating after a finite
number of iterations on each level. Remark that the while-loop is
executed at least once and that in further runs it holds that

|||u` � ũ`|||2 + |�` � �̃`|  �2`

because of the previous calls of LAES. Using Lemma 6.1 yields
p
!⌘`(�̃`, ũ`) �

p
!⌘`(�`, u`)�

p
!|⌘`(�̃`, ũ`)� ⌘`(�`, u`)|

� p
!⌘`(�`, u`)�

p
!C

⇣
|||u` � ũ`|||2 + |�` � �̃`|

⌘
1/2

� p
!⌘`(�`, u`)� �`

p
!C.

Therefore, the while-loop is at least terminated on the level ` if

�` 
p
!⌘`(�`, u`)

1 +
p
!C

.

Due to the geometric decrease of �` this is achieved in a bounded con-
stant number of steps for all levels `. The choice of the initial value
for �` on each level ` and the fact that after the while-loop terminates
�` 

p
!⌘`(�̃`, ũ`) shows that the conditions of Theorem 6.4 are satis-

fied. Thus, the convergence of

|||u� ũ`||| . N�s
`

is quasi-optimal. Moreover the proof of Theorem 6.4 shows

|||u� ũ`||| . ⌘`(�̃`, ũ`) . |||u� ũ`|||(7.1)

for su�ciently small ! > 0. For the eigenvalue error it holds that

|�� �̃`|  |�� �`|+ |�` � �̃`|  C2

rel

⌘2` (�`, u`) + �2`

 2C2

rel

⌘2` (�̃`, ũ`) + (2C2

rel

C + 1)�2`

 (2C2

rel

+ (2C2

rel

C + 1)!)⌘2` (�̃`, ũ`).

Hence,

|||u� ũ`|||2 + |�� �̃`| . ⌘2` (�̃`, ũ`) . N�2s
` .

Because of the quasi-optimal convergence and the finitely many number
of iterations of the while-loop, it remains to show that Mark, Refine
and LAES are of linear computational complexity. An quasi-optimal
algorithm for Mark and Refine can be found in [Ste07]. In the first
execution of the while-loop, except for the first level for which the costs



AN AFEMES OF ASYMPTOTIC QUASI-OPTIMAL COMPLEXITY 23

can be bounded by a constant separately, before LAES is executed, it
holds that

|||u` � ũ`||| = |||u` � ũ`�1

|||  |||u� u`|||+ |||u� ũ`�1

|||.
Lemma 5.3 reads

|||u� u`|||2  2%
�
�C2

e↵

+ 1
� �|||u� ũ`�1

|||2 + |||u`�1

� ũ`�1

|||2�.
Thus, (7.1), the termination of the while-loop on the previous level `�1
and the initialisation of �`, yield

|||u` � ũ`||| . ⌘`�1

(�̃`�1

, ũ`�1

) + �`�1

. ⌘`�1

(�̃`�1

, ũ`�1

) . �`.

If it is not the first evaluation of the while-loop, then |||u` � ũ`|||  2�`
because of the previous call of LAES. Thus, before any call of LAES
for ` > 0 it holds that |||u` � ũ`||| . �` which shows that LAES can be
executed in linear time t` ⇡ N`. ⇤

8. Numerical Experiments

The numerical experiments for n = 2, 3 show asymptotic quasi-
optimal computational complexity of the AFEMES for linear P

1

up
to fourth order P

4

finite elements. The AFEMES is implemented in
MATLAB for n = 2, 3. The aim of the implementation is not to be
the fastest one but to verify the asymptotic quasi-optimal complex-
ity of the AFEMES in numerical experiments. The implementation
of the AFEM follows the ideas of [ACF99] and in an enhanced way
of [FPW11]. The mesh refinement for n = 3 is based on a bisection
type strategy [AMP00]. The quasi-optimal complexity is measured by
plotting the number of seconds a computation needs to finish on a
single CPU-core of a AMD-Opteron processor 8378 at 2.4 GHz and
with 128GB ram versus the eigenvalue error or the a posteriori er-
ror estimator. The numerical experiments compare the computational
performance of di↵erent algebraic eigenvalue solvers in combination
with the asymptotic quasi-optimal AFEMES. These are the ARPACK
solver as implemented in the MATLAB function “eigs”, the PINVIT
with one multigrid V-cycle as preconditioner, and the LOBPCG im-
plementation in MATLAB [Kny10] using also one multigrid V-cycle as
preconditioner. The reference algorithm to solve the eigenvalue prob-
lem only once on an arbitrary uniform refined mesh with ARPACK
(eigs) will be denoted by “ARPACK uniform” and the measured time
involves the assembly of the matrices, the time to solve the algebraic
eigenvalue problem, and the calculation of the a posteriori error es-
timator. The standard AFEM algorithm with the ARPACK solver
for default tolerance in the range of the machine precision is denoted
by “ARPACK AFEM”. For the V-cycle geometric multigrid precondi-
tioner global Richardson smoothing (n=2) and Jacobi smoothing (n=3)
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Figure 8.1. Eigenvalue errors and estimated errors on
the slit domain for uniform meshes for ✓ = 1 and ! =
10�3.
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Figure 8.2. Eigenvalue errors and estimated errors on
the slit domain for adaptive meshes for ✓ = 0.5 and ! =
10�3.

with empirical optimal scaling factors independently of h` are used. All
eigensolvers start from the same initial guess x

0

= (1, . . . , 1)t on T
0

.

Example 8.1. Consider the two-dimensional model eigenvalue prob-
lem (1.1) on the slit domain ⌦ = ((�1, 1)⇥ (�1, 1))\([0, 1]⇥ {0}) with
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Figure 8.3. Eigenvalue errors for di↵erent values of ✓ =
0.1, . . . , 1 on the slit domain for P

1

and ! = 10�1.
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Figure 8.4. Eigenvalue errors for di↵erent orders of
magnitude of ! on the slit domain for P

1

and ✓ = 0.5.

tip at the origin. An approximation of the smallest eigenvalue with
high accuracy is computed with higher-order finite elements on fine
meshes

� = 8.3713297112,
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Figure 8.5. Eigenvalue errors for di↵erent algebraic
solvers on the slit domain for P

1

, ✓ = 0.5 and ! = 10�3.
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Figure 8.6. Adaptive refined meshes for Pk, k =
1, 2, 3, 4 (top left to bottom right), with about 500 nodes.
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where the authors believe that all digits except the last one are exact.
Note that for uniform meshes and n = 2 it holds that N

�1/2
` ⇡ h`.

Thus, for Pk, k = 1, . . . , 4, convergence rates of O(t�k
` ) are optimal for

the eigenvalue error of the AFEMES. For the following experiments
the PINVIT algebraic eigenvalue solver is used and the parameters
are ✓ = 0.5 and ! = 10�3. The algorithm stops when a tolerance
of 10�9 in the eigenvalue error is reached due to the accuracy of the
reference eigenvalue or the number of degrees of freedom exceeds 106.
In Figure 8.1 it is shown that the error estimator is numerically reliable
and e�cient for uniform meshes but these meshes result in suboptimal
convergence rates of about O(t�1/2

` ) due to the singularity at the origin.
Note that the same rates are obtained for N` instead of t`. Thus the
computational costs are quasi-optimal for uniform meshes. In contrast
using adaptive refinement results in experimental optimal convergence
rates of O(t�k

` ), k = 1, . . . , 4, as shown in Figure 8.2 and the error
estimator shows to be numerically reliable and e�cient.

The asymptotic quasi-optimal AFEMES involves two parameters
! > 0 and 0 < ✓  1 which have to be su�ciently small. Figure 8.3
shows a numerical strong dependency of the size of the eigenvalue error
on ✓ for ! = 0.1. For ✓ = 1 uniform refinement results in suboptimal
convergence rates. Smaller values lead to optimal convergence rates
and down to ✓ = 0.4 the error decreases. Then for even smaller values
for ✓, the convergence rates are numerically optimal, but ✓ ⌧ 1 leads to
more iterations of the algebraic eigenvalue solver and thus to more com-
putational work. Note that for values ✓  0.2 the algorithm marks too
few elements such that the algorithm accepts the value of the previous
level as approximation for the next one from time to time. This results
in the e↵ect that those convergence plots look like a stair. Di↵erent
values for ! lead almost all (asymptotically) to optimal convergence
rates as depicted in Figure 8.4. Only the value ! = 1 is not small
enough. The computational costs for smaller values only moderately
increases.

The asymptotic quasi-optimal complexity of AFEMES depends on
the choice of the algebraic eigenvalue solver. Figure 8.5 shows that
the AFEMES is in the long term faster than one solve of ARPACK on
an uniform mesh for linear P

1

finite elements (“ARPACK uniform”).
The results obtained with the multigrid preconditioned PINVIT and
LOBPCG solver show asymptotic quasi-optimal computational com-
plexity. The AFEMES shows larger computational time for ARPACK
than for PINVIT and LOBPCG due to the use of matrix factorisations
instead of multigrid and the convergence rate deteriorates for larger
number of unknowns because the time for the matrix factorisations
dominates the computational costs. PINVIT and LOBPCG with ma-
trix factorisations would lead to similar large computational costs.



28 C. CARSTENSEN AND J. GEDICKE

100 101 102 103
10−10

10−8

10−6

10−4

10−2

100

102

104

CPU time (sec)

�
l2 , |

�−
� l|

 

 

1

8/3

1
2/3

1

2 1

4/3

P1 |�−�l| uniform

P1 �l
2 uniform

P2 |�−�l| uniform

P2 �l
2 uniform

P3 |�−�l| uniform

P3 �l
2 uniform

P4 |�−�l| uniform

P4 �l
2 uniform

Figure 8.7. Eigenvalue errors and estimated errors for
the 11th eigenvalue on the cube for uniform meshes with
✓ = 1 and ! = 10�4.

Di↵erent adaptive refined meshes for Pk, k = 1, 2, 3, 4, with about
500 nodes are displayed in Figure 8.6. Note that the meshes are
strongly refined towards the corner singularity at the origin.

Example 8.2. Consider the three-dimensional model eigenvalue prob-
lem (1.1) on the cube ⌦ = (0, 1)⇥ (0, 1)⇥ (0, 1) for the 11th eigenvalue
�
11

= 12⇡2 which is simple. Note that for uniform meshes and n = 3
it holds that N

�1/3
` ⇡ h`. Thus, for Pk, k = 1, . . . , 4, convergence

rates of O(t�2k/3
` ) for the eigenvalue error are optimal. The asymp-

totic quasi-optimal AFEMES is stopped when 106 degrees of freedom
are reached because of hardware limitations. Figure 8.7 shows opti-
mal convergence rates for uniform meshes of O(t�2k/3

` ), k = 1, . . . , 4,
computing the 11th eigenvalue with the AFEMES using the LOBPCG
solver. The 11th eigenvalue is computed without any shift but from a
subspace iteration.

Example 8.3. Consider the three-dimensional model eigenvalue prob-
lem (1.1) on the L-shaped domain ⌦ = ((�1, 1)3)\([0, 1]2⇥[�1, 1]). The
first eigenvalue is the sum of ⇡2 and the first eigenvalue of the two-
dimensional L-shaped domain with approximation 9.6397238440219
[BT05],

� = 19.509328245111

(all displayed digits are correct). The asymptotic quasi-optimal AFEMES
is stopped when 106 degrees of freedom are reached. In this non-convex
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Figure 8.8. Eigenvalue errors and estimated errors
on the three-dimensional L-shaped domain for uniform
meshes with ✓ = 1 and ! = 10�3.
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Figure 8.9. Eigenvalue errors and estimated errors
on the three-dimensional L-shaped domain for adaptive
meshes with ✓ = 0.5 and ! = 10�3.

three-dimensional example uniform refinement results in suboptimal
convergence rates O(t�4/9

` ) as shown in Figure 8.8. Note that the same
rates are obtained for N`. Note that the AFEMES is based on isotropic
refinement and therefore cannot create anisotropic meshes. Thus, we
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Figure 8.10. Eigenvalue errors for the first eigenvalue
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Figure 8.11. Adaptive refined meshes for Pk, k =
1, 2, 3, 4 (top left to bottom right), with about 3000
nodes.
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do not expect similar optimal rates for adaptively refined meshes as for
the two-dimensional case due to the edge singularity. This is no contra-
diction to the theory because the definition of the approximation spaces
involves only all possible isotropic and no anisotropic refinements. For
isotropic refinement for domains with edges [Ape99, Section 4.2] states
the optimal relation N` ⇡ h�3

` for linear P
1

and the suboptimal re-

lations N` ⇡ h�3

` |lnh`| for P
2

, N` ⇡ h
�2/9
` for P

3

and N` ⇡ h
�1/6
`

for P
4

finite elements. Therefore, isotropic meshes are not optimal for
Pk, k � 2 and convergence rates of O(t�2/3

` ) for P
1

, rates slightly less

that than O(t�4/3
` ) for P

2

and rates of O(t�4/3
` ) for P

3

and P
4

are the
best possible for isotropic refinements. Figure 8.9 shows that the as-
ymptotic quasi-optimal algorithm AFEMES with the PINVIT solver,
✓ = 0.5 and ! = 10�3 leads to these rates and that the error estimator
is reliable and e�cient for Pk, k = 1, . . . , 4.

The computational time for the complete AFEMES with linear fi-
nite elements is faster compared to one uniform solve with ARPACK
as shown in Figure 8.10 for larger degrees of freedom. For smaller
numbers of unknowns the computational costs for the assembly of the
matrices and the calculation of the error estimator dominates and the
convergence rate of ARPACK uniform is the best possible for uniform
meshes but deteriorates for larger systems because of the computa-
tion of the matrix factorisations. Since the computational costs for
the matrix factorisations get more severe for n = 3 and larger number
of degrees of freedom, this example shows that ARPACK with ma-
trix factorisations leads to suboptimal computational complexity even
for adaptively refined meshes. The PINVIT and the LOBPCG solver
with multigrid preconditioner lead to almost the same quasi-optimal
complexity. Note that both graphs almost cover each other.

Di↵erent adaptive refined meshes for Pk, k = 1, 2, 3, 4, with about
3000 nodes are displayed in Figure 8.11. The meshes are strongly
refined towards the edge singularity for the higher-order methods.
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