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Abstract. This paper presents a residual-based a posteriori error
estimator for the Arnold–Winther mixed finite element that utilises
a post-processing for the skew-symmetric part of the strain. Nu-
merical experiments verify the proven reliability and efficiency for
suitable approximation of the skew-symmetric deformation gradi-
ent. Numerical evidence supports that the L2-stress error estima-
tor is robust in the Poisson ratio and allows stable error control
even in the incompressible limit.

1. Introduction

The problem in linear elasticity considers the connected reference
configuration of the elastic body Ω ⊂ R2 with polygonal boundary
∂Ω = ΓD∪ΓN with closed and connected ΓD of positive surface measure
and ΓN = ∂Ω\ΓD for applied tractions. Given a volume force f : Ω→
R2, a displacement uD : ΓD → R2, and a traction g : ΓN → R2, find a
displacement u : Ω→ R2 and a stress tensor σ : Ω→ S := {τ ∈ R2×2 :
τ = τT} such that

− div σ = f, σ = Cε(u) in Ω,

u = uD on ΓD, σν = g on ΓN .
(1.1)

Throughout this paper, C denotes the bounded and positive definite
fourth-order elasticity tensor for isotropic linear elasticity. The sym-
metric mixed finite element method is a very popular choice for a ro-
bust stress approximation; cf. [AW02, BBF13, Bra01, BS94, CEG11,
CGS15] for details and related references.
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The a posteriori error analysis for the Arnold–Winther finite element
method may follow the ideas of [CD98, Car05, CH07] to derive a stress
error control

||σ − σAW ||2C−1 ≤ min
v∈V
||C−1σAW − ε(uD + v)||2C

+ C1osc2(f, T ) + C2osc2(g, E(ΓN))

for the stress error σ− σAW even with a rather explicit estimate of the
constant in front of the oscillations and the (unwritten) multiplicative
constant 1 in front of the first term that measures the quality of the
approximation C−1σAW of symmetric gradients ε(v) := (Dv +DTv)/2
for v ∈ V . The space V consists of all square-integrable displacements
with homogeneous boundary conditions along ΓD and with a square-
integrable functional matrix Dv.

A severe additional difficulty of this approximation is that only the
symmetric part is approximated and not the full gradient Dv so that
[CH07] cannot be applied for a residual-based a posteriori error esti-
mation of the aforementioned first term. Other mixed finite element
schemes like PEERS in [CD98] involve some additional variable to ap-
proximate the asymmetric part of the gradient. This paper presents an
explicit error estimate which involves an arbitrary asymmetric approx-
imation γh and provides an abstract a posteriori error control of the
residual type, which is useful for adaptive mesh-refining algorithms,

η2
` = osc2(f, T ) + osc2(g, E(ΓN))

+
∑
T∈T

h2
T‖curl(C−1σAW + γh)‖2

L2(T )

+
∑

E∈E(Ω)

hE‖[C−1σAW + γh]EτE‖2
L2(E)

+
∑

E∈E(ΓD)

hE‖(C−1σAW + γh −DuD)τ‖2
L2(E).

(The details on the standard notation can be found below for com-
putable volume contributions on a triangle T of diameter hT and vari-
ous jumps across an edge E of length hE.) For any (piecewise smooth)
choice of γh, this a posteriori error estimator is reliable in the sense
that

(1.2) ‖σ − σAW‖C−1 ≤ Crelη`

with some λ-independent constant Crel ≈ 1. One opportunity to ensure
efficiency is a global minimisation over all piecewise polynomial γh of
the error estimator η`. The bubble function technique shows that the
particular choice of γh enters the efficiency estimates with some λ-
independent constant Ceff ≈ 1,

(1.3) η` ≤ Ceff

(
‖σ − σAW‖C−1 + ‖skew(Du)− γh‖L2(Ω)

)
.
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Hence, one efficient choice for γh is to choose it as a sufficiently accurate
polynomial approximation of the asymmetric gradient skew(Du) :=
(Du−DTu)/2. Since a global approximation or even minimisation may
be too costly, this paper proposes to apply a post-processing step to
compute such a sufficiently accurate approximation γh = skew(Du∗AW )
for the post-processed displacement u∗AW in the spirit of Stenberg [Ste88].
The approximation γh = skew(Du∗AW ) is proven to be robust in the
Poisson ratio ν → 1/2 for sufficiently smooth functions. For domains
with re-entrant corners or incompatible boundary conditions, numer-
ical experiments confirm that the proposed computation of γh leads
empirically to reliable and efficient a posteriori error control indepen-
dent of the Poisson ratio ν → 1/2.

The remaining parts of this paper are organised as follows. In Sec-
tion 2 the notation, the weak formulation of (1.1) and the Arnold–
Winther finite element space [AW02] are defined. Section 3 derives
the a posteriori error analysis for the residual-based a posteriori er-
ror estimator and proves reliability and efficiency. Section 4 outlines
a post-processing of the displacement that leads to an approximation
γh of the asymmetric gradient. Section 5 presents numerical results
of four benchmark problems that verify reliability and efficiency of
the residual-based a posteriori error estimator in combination with the
post-processing and illustrates its robustness for Poisson ratio ν → 1/2.

The main parts of this research are restricted to 2D because the Ar-
gyris finite element method is employed to allow for a quasi-interpolation
in the Arnold–Winther finite element functions.

2. Preliminaries

For v = (v1, v2) ∈ R2 and τ = (τjk)j,k=1,2 ∈ R2×2, set

Curl(v) :=

(
∂v1/∂y −∂v1/∂x
∂v2/∂y −∂v2/∂x

)
,

curl τ :=

(
∂τ12/∂x− ∂τ11/∂y
∂τ22/∂x− ∂τ21/∂y

)
, div τ :=

(
∂τ11/∂x+ ∂τ12/∂y
∂τ21/∂x+ ∂τ22/∂y

)
.

Standard notation on Lebesgue and Sobolev spaces and norms is adopted
throughout this paper and, for brevity, ‖·‖ := ‖·‖L2(Ω) denotes the L2

norm. In addition to the spaces V := {v ∈ H1(Ω;R2)
∣∣ v|ΓD = 0} and

H(div,Ω) := {q ∈ L2(Ω;R2)
∣∣ div q ∈ L2(Ω)} set

H(div,Ω;S) := {τ ∈ L2(Ω;S)
∣∣ div τ ∈ L2(Ω;R2)},

Σ0 :=
{
σ ∈ H(div,Ω;S)

∣∣ ˆ
ΓN

ψ · (σν) ds = 0 for all ψ ∈ D(ΓN ;R2)
}
,
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Σg :=
{
σ ∈ H(div,Ω;S)

∣∣
ˆ

ΓN

ψ · (σν) ds =

ˆ
ΓN

ψ · g ds for all ψ ∈ D(ΓN ;R2)
}
,

where the last two spaces involve the traction boundary conditions
for g ∈ L2(ΓN ;R2) and D denotes the space of test functions. Let
M2×2

skew := {τ ∈ R2×2 : τ = −τT} and let S denote the symmetric 2× 2
matrices.

The dual weak formulation of (1.1) reads: Given data uD ∈ H1(Ω;R2),
f ∈ L2(Ω;R2), and g ∈ L2(ΓN ;R2), seek the solution (σ, u) ∈ Σg ×
L2(Ω;R2) withˆ

Ω

σ : C−1τ dx+

ˆ
Ω

u · div τ dx

=

ˆ
ΓD

uD · (τνΩ) ds for all τ ∈ Σ0,

ˆ
Ω

v · div σ dx = −
ˆ

Ω

f · v dx for all v ∈ L2(Ω;R2).

(2.1)

Let T be a shape-regular triangulation of Ω into triangles with the
set of interior edges E(Ω), the sets of Dirichlet and Neumann boundary
edges E(ΓD) and E(ΓN), and the set of nodes N . For any triangle
T ∈ T , let E(T ) be the set of its edges and hT denotes the diameter of
T . For any edge E ∈ E(T ), let τE = (−n2, n1)t be the unit tangential
vector along E for the unit outward normal νE = (n1, n2)t to E with
the diameter hE. The jump [w]E of w across E = T+ ∩ T− reads

[w]E := (w
∣∣
T+

)
∣∣
E
− (w

∣∣
T−

)
∣∣
E
.

This applies to an interior edge, written E ∈ E(Ω), with edge-patch ωE
as the interior of T+ ∪ T− = ωE. (The jump term along the boundary
will be specified when it arises.)

Throughout this paper, A . B abbreviates the inequality A ≤ CB
for some constant C that does neither depend on the mesh-sizes nor on
λ but only on some lower bound of the minimal interior angle in the
triangulation T and on µ.

The piecewise action of a differential operator is denoted with a
subindex h, e.g., ∇h denotes the piecewise gradient (∇h·)|T := ∇(·|T )
for all T ∈ T .

The finite element spaces associated with the regular triangulation T
of Ω into triangles involve the Arnold–Winther finite element AWk(T )
of index k ≥ 1 [AW02] and the set Pk(T ;Rn×m) and read

Pk(T ;Rn×m) :=
{
v ∈ L2(Ω;Rn×m)

∣∣ vj,k|T is polynomial of total degree

at most k for all T ∈ T , 1 ≤ j ≤ n, 1 ≤ k ≤ m
}
,

AWk(T ) :=
{
τ ∈ Pk+2(T ;S)

∣∣ div τ ∈ Pk(T ;R2)
}
,
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Σ0,h := Σ0 ∩ AWk(T ), Σg,h := Σg ∩ AWk(T ), Vh := Pk(T ;R2).

The space AWk(T ) consists of all symmetric polynomial matrix fields
of degree ≤ k + 1 together with the divergence-free matrix fields of
degree ≤ k + 2.

The mixed finite element method seeks σAW ∈ Σg,h and uAW ∈ Vh
such thatˆ

Ω

σAW : C−1τAW dx+

ˆ
Ω

uAW · div τAW dx

=

ˆ
ΓD

uD · (τAWν) ds for all τAW ∈ Σ0,h,

ˆ
Ω

vh · div σAW dx =

ˆ
Ω

f · vh dx for all vh ∈ Vh.

(2.2)

Theorem 2.1 ([AW02]). The exact solution (σ, u) ∈ (Σg∩Hk+2(Ω;S))×
Hk+2(Ω) of problem (1.1) and the approximate solution (σAW , uAW ) of
problem (2.2) satisfy

‖σ − σAW‖L2(Ω) . hm‖σ‖Hm(Ω) for 1 ≤ m ≤ k + 2,

‖div(σ − σAW )‖L2(Ω) . hm‖div σ‖Hm(Ω) for 0 ≤ m ≤ k + 1,

‖u− uAW‖L2(Ω) . hm‖u‖Hm+1(Ω) for 1 ≤ m ≤ k + 1. �

3. Residual-based a posteriori error analysis

3.1. Orthogonal error split. For v ∈ V := {v ∈ H1(Ω) | v = 0 on ΓD},
define the residual by

Res(v) :=

ˆ
Ω

f · v dx+

ˆ
ΓN

g · v ds−
ˆ

Ω

σAW : ε(v) dx

with its dual norm

|||Res|||∗ := sup
v∈V
|||v|||=1

Res(v)

with respect to the energy norm

|||v|||2 :=

ˆ
Ω

ε(v) : Cε(v) dx.

Let

‖τ‖2
C−1 :=

ˆ
Ω

τ : C−1τ dx

and

dist2
C(C−1τ, ε(uD + V ) := min

w∈uD+V
‖C−1τ − ε(w)‖2

C.

Theorem 3.1. The exact (resp. discrete) stress field σ (resp. σAW)
satisfies

‖σ − σAW‖2
C−1 = |||Res|||2∗ + dist2

C(C−1σAW, ε(uD + V )).
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Despite that Ω is a bounded domain in R2 with polygonal boundary,
the (relative) open part ΓN of the boundary Γ := ∂Ω is supposed to
have a finite number of connected components Γ0, . . . ,ΓJ , and ΓD of
positive surface measure is closed and connected.

Proposition 3.2 (Helmholtz decomposition [CD98, Lemma 3.2]). Given
any σ − σAW ∈ L2(Ω;S), there exists a ∈ {v ∈ H1(Ω;R2) : v =
0 on ΓD} and β ∈ {φ ∈ H2(Ω) :

´
Ω
φ dx = 0,Curlφ = cj ∈ R2 on Γj ⊆

ΓN , j = 0, . . . , J, c0 = 0} such that

σ − σAW = Cε(a) + Curl Curl β. �(3.1)

Proof of Theorem 3.1. The Helmholtz decomposition of Proposition 3.2
leads to some unique a ∈ V and β ∈ H2(Ω) ∩ L2

0(Ω) for which Curl β
equals a constant cj on Γj for any j = 0, . . . , J with c0 := 0. The de-
composition (3.1) is orthogonal with respect to the L2 scalar product
when weighted by C−1, i.e.,

‖σ − σAW‖2
C−1 = |||a|||2 + ‖Curl Curl β‖2

C−1 .

For any v ∈ V with |||v||| = 1, an integration by parts with the exact
stress field σ := Cε(u) shows

Res(v) =

ˆ
Ω

(σ − σAW) : ε(v) dx.

This implies

Res(v) =

ˆ
Ω

Cε(a) : ε(v) dx ≤ |||a|||,

and so

|||Res|||∗ ≤ |||a|||.

Conversely,

|||a|||2 = Res(a) ≤ |||Res|||∗|||a|||.

Altogether,

|||Res|||∗ = |||a|||.(3.2)

The Helmholtz decomposition (3.1) shows for any w ∈ uD + V that

ε(w)− C−1σAW = ε(w − u+ a) + C−1 Curl Curl β.

The aforementioned orthogonality reveals

‖C−1σAW − ε(w)‖2
C = |||w − u+ a|||2 + ‖Curl Curl β‖2

C−1 .

This is minimal for w = u− a ∈ uD + V and the minimum equals

dist2
C(C−1σAW, ε(uD + V )) = ‖Curl Curl β‖2

C−1 .(3.3)

The combination of (3.1)–(3.3) concludes the proof. �
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3.2. Reliability. The data oscillations for the right-hand side f , with
piecewise L2 projection fh onto Pk(T ;R2), and the Neumann boundary
condition g, with piecewise L2 projection gh onto Pk(ΓN ;R2) read

osc(f, T )2 :=
∑
T∈T

h2
T‖f − fh‖2

L2(T ),

osc(g, E(ΓN))2 :=
∑

E∈E(ΓN )

hE‖g − gh‖2
L2(E).

Let j1,1 ≤ 3.83170597 be the first positive root j1,1 of the Bessel function
of the first kind.

Lemma 3.3. There exist constants C1, C2, Ckorn > 0 such that

|||Res|||∗ ≤ Ckorn osc(f, T )/j1,1 + C1C2(1 + 1/j1,1)Ckorn osc(g, E(ΓN)).

Proof. An integration by parts shows for any v ∈ V that

Res(v) = −
ˆ

Ω

v · div(σ − σAW) dx+

ˆ
ΓN

v · (σ − σAW)ν dx.(3.4)

Let fh be the piecewise L2 projection onto Pk(T ;R2) and vT :=
ffl
T
v dx ∈

R2, then

−
ˆ

Ω

v · div(σ − σAW) dx =
∑
T∈T

ˆ
T

(v − vT ) · (f − fh) dx.

The Poincaré inequality [LS10], namely

‖v − vT‖L2(T ) ≤ hT/j1,1‖Dv‖L2(T ),

for each triangle T ∈ T , shows

−
ˆ

Ω

v · div(σ − σAW) dx ≤ ‖Dv‖ osc(f, T )/j1,1.

The trace inequality shows for the piecewise L2 projection gh = σAWν
onto Pk(ΓN ;R2), and vE :=

ffl
ωE
v dx with E ∈ E(T ) ∩ E(ΓN) and

T = ωE ∈ T ,ˆ
ΓN

v · (σ − σAW)ν dx =
∑

E∈E(ΓN )

ˆ
E

(v − vE) · (g − gh) dx

≤ C1

∑
E∈E(ΓN )

(
h−1/2
ωE
‖v − vE‖L2(ωE) + h1/2

ωE
‖Dv‖L2(ωE)

)
‖g − gh‖L2(E)

≤ C1C2(1 + 1/j1,1)‖Dv‖ osc(g, T ).

The Korn inequality ‖Dv‖ ≤ Ckorn|||v||| concludes the proof. �

Lemma 3.4. Given β ∈ H2(Ω) with Curl β|Γj = cj ∈ R2 for j =
0, . . . , J , ΓN = ∪Jj=0Γj, there exists βA ∈ P5(T ) ∩ H2(Ω) and some
constant C(T ) > 0 such that

‖h−1
T Curl(β−βA)‖+‖Curl Curl(β−βA)‖ ≤ C(T )‖Curl Curl β‖.(3.5)
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a b

Figure 3.1. Edge degrees of freedom for the Argyris FEM

Proof. Given β ∈ H2(Ω) with Curl β|Γj = cj ∈ R2 for j = 0, . . . , J ,
νE · cj = ∂β/∂s for any E ∈ E(Γj) and hence β (resp. Curl β) are
piecewise affine (resp. constant) and continuous on Γj. Therefore,
∂ Curl β/∂s = 0 along E ∈ E(Γj) may serve as values for the Argyris
quasi interpolation, βA = β in N (E) = {a, b}, DβA = Dβ in N (E)
and mid(E), Curl Curl(β − βA)νE = 0 in N (E), c.f. Figure 3.1. Only
the two degrees of freedom Curl Curl βA · τE are left unpredicted at the
endpoints a or b from the conditions on E but these may be determined
by the condition Curl Curl(β − βA)νE = 0 on the neighbouring edges
in Γj that may have different normal vectors. All remaining degrees of
freedom are values of a patchwise polynomial L2 approximation as in
[Clé75]. This leads to (3.5) with a constant C(T ) > 0 that does only
depend on the interior angles of the triangulation. �

The skew-symmetric functions γ in L2(Ω;M2×2
skew) with curlh γ be-

longs to L2(Ω;R2) form the vector space H(curl, T ;M2×2
skew). Those

functions have a trace in the tangential direction τ in the dual space
H−1/2(∂Ω;R2) of the trace spaceH1/2(∂Ω;R2) written γτ ∈ H−1/2(∂Ω;R2).
It is a technical extra smoothness assumption (which is met in all the
numerical examples below) that γτ ∈ L2(∂Ω;R2) is a measurable func-
tion.

Lemma 3.5. Any γ ∈ H(curl, T ;M2×2
skew) with γτ ∈ L2(ΓD;R2) satisfies

dist2
C(C−1σAW, ε(uD + V )) .

∑
T∈T

h2
T‖curl(C−1σAW + γ)‖2

L2(T )

+
∑

E∈E(Ω)

hE‖[C−1σAW + γ]EτE‖2
L2(E)

+
∑

E∈E(ΓD)

hE‖(C−1σAW + γ −DuD)τ‖2
L2(E).

Proof. The decomposition (3.1) and the identity (3.3) prove that

LHS := dist2
C(C−1σAW, ε(uD + V ))

=

ˆ
Ω

(Curl Curl β) : (ε(u− a)− C−1σAW) dx

=

ˆ
Ω

(Curl Curl β) : (ε(u)− C−1σAW) dx.

Given β from Proposition 3.2, let βA be defined as in Lemma 3.4. The
point is that τAW := Curl Curl βA ∈ Σ0,h is an admissible divergence-
free test function in the AW-MFEM because div Curl Curl βA = 0 a.e.
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in Ω and ∂ Curl βA/∂s = ∂ Curl β/∂s = 0 along any E ∈ E(ΓN). There-
fore (2.1)–(2.2) prove

ˆ
Ω

(σ − σAW) : C−1τAW dx = 0.

Recall C−1σ = ε(u) and reformulate this to prove

ˆ
Ω

Curl Curl(βA) : (ε(u)− C−1σAW ) dx = 0.(3.6)

The combination with the above identity of LHS plus the symmetry of
Curl Curl(β − βA) show that

LHS =

ˆ
Ω

Curl Curl(β − βA) : (D(u)− C−1σAW) dx.

An integration by parts provides the boundary term

ˆ
Ω

Curl Curl(β − βA) : D(u) dx = −
ˆ
∂Ω

Curl(β − βA) · ∂u
∂s

ds

Since Curl(β) = cj = Curl(βA) on Γj for any j = 0, . . . , J and since
u = uD on ΓD, it follows that

ˆ
Ω

Curl Curl(β − βA) : D(u) dx = −
ˆ

ΓD

Curl(β − βA) · ∂uD
∂s

ds.(3.7)

On the other hand, any γ ∈ H(curl, T ;M2×2
skew) with γτ ∈ L2(ΓD;R2)

satisfies ∑
T∈T

ˆ
T

Curl Curl(β − βA) : γ dx = 0.

Since Curl(β − βA) = 0 along ΓN , an elementwise integration by parts
shows

−
ˆ

Ω

Curl Curl(β − βA) : C−1σAW dx

= −
∑
T∈T

ˆ
T

Curl(β − βA) · curl(C−1σAW + γ) dx

+
∑

E∈E(Ω)

ˆ
E

Curl(β − βA) · ([C−1σAW + γ]EτE) ds

+
∑
E∈ΓD

ˆ
E

Curl(β − βA) · ((C−1σAW + γ)τ) ds.

(3.8)
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The combination of the previous identities (3.6)–(3.8) reads

LHS ≤
∑
T∈T

hT‖curl(C−1σAW + γ)‖L2(T )h
−1
T ‖Curl(β − βA)‖L2(T )

+
∑

E∈E(Ω)

h
1/2
E ‖[C

−1σAW + γ]EτE‖L2(E)h
−1/2
E ‖Curl(β − βA)‖L2(E)

+
∑

E∈E(ΓD)

h
1/2
E ‖(C

−1σAW + γ −DuD)τ‖L2(E)h
−1/2
E ‖Curl(β − βA)‖L2(E).

The Cauchy-Schwarz inequality, the error estimate (3.5), plus

LHS1/2 = distC(C−1σAW, ε(uD + V )) = ‖Curl Curl β‖C−1

conclude the proof. �

The subsequent theorem summarises all the terms as indicated in
(1.2) of the introduction.

Theorem 3.6. Any γ ∈ H(curl, T ;M2×2
skew) with γτ ∈ L2(ΓD;R2) sat-

isfies

‖σ − σAW‖2
C−1 . osc2(f, T ) + osc2(g, E(ΓN))

+
∑
T∈T

h2
T‖curl(C−1σAW + γ)‖2

L2(T )

+
∑

E∈E(Ω)

hE‖[C−1σAW + γ]EτE‖2
L2(E)

+
∑

E∈E(ΓD)

hE‖(C−1σAW + γ −DuD)τ‖2
L2(E).

Proof. The result follows from the combination of the previous Theo-
rem 3.1, Lemmas 3.3 and 3.5. �

The a posteriori estimate of Theorem 3.6 holds for any γ ∈ H1(T ;M2×2
skew).

The particular choice of the polynomial approximation γh of γ enters
the efficiency estimate in Lemmas 3.7–3.8 and therefore should be a
sufficiently accurate approximation of skew(Du). Hence, one might
solve the displacement formulation with high polynomial degree or even
minimise the a posteriori error estimator with respect to γh. Since this
does involve high computational costs, a cheap local post-processing is
introduced in the next section.

3.3. Efficiency. Any practical choice of γ in the a posteriori error
bounds of Theorem 3.6 involves some polynomial approximation γh ∈
Pk(T ; M2×2

skew) of γ. Then the inverse estimate technique from [Ver96]
guarantees local efficiency in the sense that all the volume and edge
contributions are bounded in terms of the local error plus the error
term ‖skew(Du)−γh‖ as shown in the three lemmas of this subsection,
which imply (1.3) of the introduction.
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The analysis involves an extension operator L : C0(E) → C0(T ),
E ∈ E(T ), T ∈ T , that extends polynomials of degree ≤ k on E to
polynomials of the same degree on T and satisfies (Lp)|E = p|E [Ver94,
(4.1)–(4.2)]. Let bT := 27λ1λ2λ3 denote the volume-bubble function
and bE := 4λaλb the edge-bubble function for the three barycentric
coordinates λ1, λ2, λ3 of the triangle T with an edge E of vertices a
and b. Any v ∈ Pk(T ) with v ∈ Pk(E) satisfies [Ver94, Lemma 4.1]

‖bTv‖L2(T ) . ‖v‖L2(T ) . ‖b1/2
T v‖L2(T ),

‖bEv‖L2(E) . ‖v‖L2(E) . ‖b1/2
E v‖L2(E),

h
1/2
E ‖v‖L2(E) . ‖b1/2

E Lv‖L2(T ) . h
1/2
E ‖v‖L2(E).

(3.9)

Lemma 3.7. Any T ∈ T satisfies

hT‖curl(C−1σAW + γh)‖L2(T ) . ‖C−1(σ − σAW)‖L2(T )

+ ‖skew(Du)− γh‖L2(T ).

Proof. An integration by parts together with (3.9) yields

‖curl(C−1σAW + γh)‖2
L2(T )

. ‖b1/2
T curl(C−1σAW + γh)‖2

L2(T )

= −
ˆ
T

bT
(
curl(Du− C−1σAW − γh) · curl(C−1σAW + γh)

)
dx

=

ˆ
T

(Du− C−1σAW − γh) : Curl(bT curl(C−1σAW + γh)) dx

≤ ‖Du− C−1σAW − γh‖L2(T )‖Curl(bT curl(C−1σAW + γh))‖L2(T ).

A discrete inverse inequality plus (3.9) leads to

‖Curl(bT curl(C−1σAW + γh))‖L2(T ) . h−1
T ‖bT curl(C−1σAW + γh)‖L2(T )

. h−1
T ‖curl(C−1σAW + γh)‖L2(T ).

The previous two estimates and the triangle inequality conclude the
proof. �

Lemma 3.8. Any E ∈ E(Ω) satisfies

h
1/2
E ‖[C

−1σAW + γh]τE‖L2(E) . ‖C−1(σ − σAW)‖L2(ωE)

+ ‖skew(Du)− γh‖L2(ωE).

Proof. Given vh = [C−1σAW + γh]τE, (3.9) reads

‖vh‖2
L2(E) . ‖b

1/2
E vh‖2

L2(E) =

ˆ
E

vhbELvh ds.(3.10)
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An integration by parts with Du = C−1σ+skew(Du) and the piecewise
curl operator curlh showsˆ

E

vh · bELvh ds =

ˆ
ωE

curlh(C−1σAW + γh) · (bELvh) dx

+

ˆ
ωE

(Du− C−1σAW − γh) : Curl(bELvh) dx.

(3.11)

Hence, (3.10)–(3.11) lead to

‖vh‖2
L2(E) . ‖curlh(C−1σAW + γh)‖L2(ωE)‖bELvh‖L2(ωE)

+ ‖Du− C−1σAW − γh‖L2(ωE)‖Curl(bELvh)‖L2(ωE).

The proof of Lemma 3.7 shows

‖curlh(C−1σAW + γh)‖L2(ωE) . h−1
E ‖Du− C−1σAW − γh‖L2(ωE).

Together with the discrete inverse estimate

‖Curl(bELvh)‖L2(ωE) . h−1
E ‖bELvh‖L2(ωE)

plus (3.9), this yields

h
1/2
E ‖vh‖L2(E) . ‖Du− C−1σAW − γh‖L2(ωE).

The triangle inequality concludes the proof. �

Lemma 3.9. Any E ∈ E(ΓD) satisfies

h
1/2
E ‖(C

−1σAW + γh −DuD)τ‖L2(E) . ‖C−1(σ − σAW)‖L2(ωE)

+ ‖skew(Du)− γh‖L2(ωE).

Proof. Set ωE = T ∈ T and vh := (C−1σAW + γh −DuD)τ . Then (3.9)
and an integration by parts lead to

‖vh‖2
L2(E) .

ˆ
E

vh · bELvh ds =

ˆ
ωE

curl(C−1σAW + γh) · (bELvh) dx

+

ˆ
ωE

(Du− C−1σAW − γh) : Curl(bELvh) dx.

The arguments of the proof of Lemma 3.8 conclude the proof. �

4. Post-processing

Since σh approximates Cε(u), an improved approximate solution of
the displacement u follows from local post-processing in the spirit of
Stenberg [Ste88]. Let

RM(T ) := {v ∈ L2(T ;R2) | v = c+ b(x2,−x1)t,

c ∈ R2, b ∈ R, for all T ∈ T }
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denote the space of rigid body motions. For m ≥ k + 2 define u∗h ∈
Pm(T ;R2) on each T ∈ T with the (local) L2 projection ΠT onto
RM(T ) under the side condition ΠTu

∗
h = ΠTuh as the solution toˆ

T

Cε(u∗h) : ε(v) dx =

ˆ
T

σh : ε(v) dx ∀v ∈ (id−ΠT )Pm(T ;R2).(4.1)

In other words, u∗h|T ∈ Pm(T ;R2) is the Riesz representation of the
linear functional

´
T
σh : ε(·) dx in the Hilbert space

(id− ΠT )Pm(T ;R2) ≡ {vm ∈ Pm(T ;R2) |
ˆ
T

vm · wkdx = 0

for all wk ∈ RM(T )}.
The post-processing on each triangle with Lagrange-multiplier λrm ∈
RM(T ) can be implemented as the linear system of equationsˆ
T

ε(u∗h) : ε(vm) dx+

ˆ
T

λrm · vm =

ˆ
T

C−1σh : ε(vm) dx

for all vm ∈ Pm(T ;R2),ˆ
T

u∗h · wrm dx =

ˆ
T

uh · wrm dx for all wrm ∈ RM(T ).

Since RM(T ) ⊂ Pm(T ;R2), the first Korn inequality [Bra01] shows for
any λrm ∈ RM(T ), with ε(λrm) = 0,

‖λrm‖L2(T ) =

´
T
λ2
rm dx

‖λrm‖L2(T ) + ‖ε(λrm)‖L2(T )

≤ sup
vm∈Pm(T ;R2)

vm 6≡0

´
T
λrmvm dx

‖vm‖L2(T ) + ‖ε(vm)‖L2(T )

≤ C−1
korn sup

vm∈Pm(T ;R2)
vm 6≡0

´
T
λrmvm dx

‖vm‖H1(T )

.

Thus, the Brezzi splitting theorem [Bre74] shows that there exists a
unique solution u∗h|T on each triangle T ∈ T that lead to the globally
discontinuous solution u∗h ∈ Pm(T ;R2).

The following theorem serves as a motivation for the choice of γh :=
skew(Du∗h) ∈ H1(T ;M2×2

skew) in the numerical examples. For sufficiently
smooth boundary and smooth data f , g = 0, and uD = 0, the following
regularity

‖u‖H2(Ω) + ‖σ‖H1(Ω) ≤ C‖f‖L2(Ω),(4.2)

is known with a constant C > 0 that is independent of the Poisson
ratio ν → 1/2 [Vog83, Theorem A.1]. It appears as a gap of the theory
to pose the regularity assumption (4.2) (having a smooth boundary
∂Ω in mind) and assume triangles (matching a polygonal boundary
∂Ω exactly). However, this is not the place to discuss curved triangles
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and the boundary approximation for practical examples face points on
the boundary, where the type of the boundary condition changes or
other inconsistent boundary conditions enforce singular solutions and
require adaptive mesh-refining. Nevertheless, the subsequent theorem
indicates that the post-processing leads to a better approximation in
a smooth situation at least. It will be the outcome of the numerical
experiments to justify indirectly this form of a post-processing.

Theorem 4.1. Suppose the regularity assumption (4.2) and that u ∈
Hm+1(Ω), σ ∈ Hk+2(Ω;S), and f = div σ ∈ Hk+1(Ω). Then the post-
processed displacement u∗h ∈ Pm(T ;R2) and the corresponding post-
processed stress σ∗h := Cεh(u∗h) ∈ Pm−1(T ;S) satisfy

‖u− u∗h‖L2(Ω) . hk+3(‖σ‖Hk+2(Ω) + ‖div σ‖Hk+1(Ω)) + hm+1‖u‖Hm+1(Ω),

‖σ − σ∗h‖L2(Ω) . Chk+2‖σ‖Hk+2(Ω) + hm‖u‖Hm+1(Ω).

Recall that the generic constant C hidden in the notation . only
depends on the Lamè parameter µ and neither on the critical Lamè
parameter λ nor the maximal mesh-size h in the shape-regular trian-
gulation T .

The proof is based on the following lemma where Ph is the L2 pro-
jection onto Vh with the well-known approximation property

‖Phv − v‖L2(Ω) . hk+1‖v‖Hk+1(Ω) for all v ∈ Hk+1(Ω).(4.3)

Lemma 4.2. With sufficiently smooth boundary ∂Ω, σ ∈ Hk+2(Ω;S)
and f = div σ ∈ Hk+1(Ω), it holds that

‖Phu− uh‖L2(Ω) . hk+3
(
‖σ‖Hk+2(Ω) + ‖div σ‖Hk+1(Ω)

)
.(4.4)

Proof. Let (η, z) ∈ Σ0 × L2(Ω;R2) be the dual solution toˆ
Ω

η : C−1τ dx+

ˆ
Ω

z · div τ dx = 0 for all τ ∈ Σ0,

ˆ
Ω

v · div η dx =

ˆ
Ω

(Phu− uh) · v dx for all v ∈ V.
(4.5)

Let ΠAW denote the projection onto AWk(T ) that satisfies div ΠAW =
Ph div [AW02], then (4.5) leads to

‖Phu− uh‖2
L2(Ω) =

ˆ
Ω

(Phu− uh) · div η dx(4.6)

=

ˆ
Ω

(Phu− uh) · Ph div η dx =

ˆ
Ω

(u− uh) · div ΠAWη dx.(4.7)

The difference of (2.1) and (2.2) readsˆ
Ω

(σ − σh) : C−1τh dx+

ˆ
Ω

(u− uh) div τh = 0 for all τh ∈ Σ0,h,

ˆ
Ω

vh · div(σ − σh) dx = 0 for all vh ∈ Vh.
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This, (4.5) and (4.6) lead to

‖Phu− uh‖2
L2(Ω)

= −
ˆ

Ω

(σ − σh) : C−1(ΠAWη − η) dx−
ˆ

Ω

(σ − σh) : C−1η dx

= −
ˆ

Ω

(σ − σh) : C−1(ΠAWη − η) dx+

ˆ
Ω

(z − Phz) · div(σ − σh) dx

. h‖σ − σh‖L2(Ω)‖η‖H1(Ω) + h2‖div(σ − σh)‖L2(Ω)‖z‖H2(Ω).

The a priori estimate (4.2) implies

‖z‖H2(Ω) . ‖Phu− uh‖L2(Ω) and ‖η‖H1(Ω) . ‖Phu− uh‖L2(Ω).

This together with Theorem 2.1 yields

‖Phu− uh‖L2(Ω) . hk+3
(
‖σ‖Hk+2(Ω) + ‖div σ‖Hk+1(Ω)

)
. �

Proof of Theorem 4.1. Let û be the L2 projection of u onto Pm(T ;R2)
and Πh denote the L2 projection onto RM. The triangle inequality
shows

‖u− u∗h‖L2(Ω) ≤ ‖u− û‖L2(Ω) + ‖Πh(û− u∗h)‖L2(Ω)

+ ‖(id− Πh)(û− u∗h)‖L2(Ω).
(4.8)

Since û is the L2-projection of u onto Pm(T ;R2), the a priori estimate
(4.3) shows for the first term on the right-hand side of (4.8) that

‖u− û‖L2(Ω) . hm+1‖u‖Hm+1(Ω) for all u ∈ Hm+1(Ω).(4.9)

For the second term of (4.8), notice that ΠTu
∗
h = ΠTuh on each T

implies ‖ΠT (û− u∗h)‖L2(T ) = ‖ΠT û−ΠTuh‖L2(T ). This and the bound-
edness of ΠT show

‖ΠT (û− u∗h)‖L2(T ) . ‖u− û‖L2(T ) + ‖ΠT (u− uh)‖L2(T ).

The first term is estimated in (4.9), since ΠTPh|T = ΠT , the second
term yields

‖ΠT (u− uh)‖L2(T ) = ‖ΠT (Phu− uh)‖L2(T ) . ‖Phu− uh‖L2(T ).

Lemma 4.2 shows

‖Phu− uh‖L2(Ω) . hk+3
(
‖σ‖Hk+2(Ω) + ‖div σ‖Hk+1(Ω)

)
.(4.10)

In order to bound the third term on the right-hand side of (4.8),
consider the perturbed saddle point problem to (4.1). With Cε =
2µε+ λ id tr(ε), it reads

2µ

ˆ
T

ε(u∗h) : ε(v) dx+

ˆ
T

p∗h div v dx =

ˆ
T

σh : ε(v) dx

for all v ∈ (id− ΠT )Pm(T ;R2),

−1

λ

ˆ
T

p∗hq dx+

ˆ
T

q divu∗h dx = 0 for all q ∈ Pm−1(T ;R).

(4.11)
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The solution of (4.1) satisfies (4.11) with p∗h = λ div u∗h. The stability
of the unperturbed saddle point problem (with λ =∞), namely

‖q‖L2(T ) . sup
0 6=v∈(id−ΠT )Pm(T ;R2)

´
T
q div v dx

‖ε(v)‖L2(T )

for all q ∈ Pm−1(T ;R),

implies uniform stability of the perturbed problem with respect to λ
[Bra01]. Hence, there exist v ∈ (id−ΠT )Pm(T ;R2) and q ∈ Pm−1(T ;R)
such that the L2 projections û ∈ (id − ΠT )Pm(T ;R2) of u and p̂ ∈
Pm−1(T ;R) of p satisfy

‖ε(u∗h − û)‖L2(T ) + ‖p∗h − p̂‖L2(T ) ≤ 2µ

ˆ
T

ε(u∗h − û) : ε(v) dx

+

ˆ
T

(p∗h − p̂) div v dx− 1

λ

ˆ
T

(p∗h − p̂)q dx+

ˆ
T

q div(u∗h − û) dx

and there exists a constant C > 0 independent on λ such that

‖ε(v)‖L2(T ) + ‖q‖L2(T ) ≤ C.(4.12)

Let p = λ div u, then (4.11) and div v ∈ Pm−1(T ;R) yield

‖ε(u∗h − û)‖L2(T ) + ‖p∗h − p̂‖L2(T )

≤ 2µ

ˆ
T

ε(u− û) : ε(v) dx+

ˆ
T

(p− p̂) div v dx− 1

λ

ˆ
T

(p− p̂)q dx

+

ˆ
T

q div(u− û) dx−
ˆ
T

(σ − σh) : ε(v) dx

≤ 2µ‖u− û‖H1(T )‖ε(v)‖L2(T ) + ‖u− û‖H1(T )‖q‖L2(T )

+ ‖σ − σh‖L2(T )‖ε(v)‖L2(T ).

This and (4.12) show for some C that does depend on µ but not on λ,

‖ε(u∗h − û)‖L2(T ) + ‖p∗h − p̂‖L2(T )

≤ C
(
‖u− û‖H1(T ) + ‖σ − σh‖L2(T )

)
.

(4.13)

Define v ∈ Pm(T ;R2) by v = (id−ΠT )(û− u∗h). Since v⊥RM(T ), the
second Korn inequality [Bra01] leads to

‖v‖L2(T ) . hT‖ε(v)‖L2(T ).

Since ε(ΠT (û− u∗h)) = 0, this and (4.13) show

‖(id− ΠT )(û− u∗h)‖L2(T ) . hT‖u− û‖H1(T ) + hT‖σ − σh‖L2(T ).

Let Ih denote the nodal interpolant Ih|T : Hm+1(T )→ Pm(T ;R2) with
the interpolation estimate [BS94]

|u− Ihu|Hµ(T ) . hm+1−µ
T |u|Hm+1(T ) ∀u ∈ Hm+1(T ), µ = 0, 1.(4.14)
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The triangle inequality and an inverse estimate show

|u− û|H1(T ) ≤ |u− Ihu|H1(T ) + |Ihu− û|H1(T )

. |u− Ihu|H1(T ) + h−1
T ‖Ihu− û‖L2(T )

≤ |u− Ihu|H1(T ) + h−1
T ‖u− Ihu‖L2(T ) + h−1

T ‖u− û‖L2(T ).

The interpolation estimates (4.14) and the approximation property
(4.3) yield

‖u− û‖H1(Ω) . hm‖u‖Hm+1(Ω).

This and Theorem 2.1 lead to the estimate for the third term of (4.8)

‖(id− ΠT )(û− u∗h)‖L2(Ω) . hm+1‖u‖Hm+1(Ω) + hk+3‖σ‖Hk+2(Ω).

For the second assertion a triangle inequality for the L2 projection
σ̂ ∈ Pm−1(T ;S) of σ shows

‖σ − σ∗h‖L2(Ω) ≤ ‖σ − σ̂‖L2(Ω) + ‖σ∗h − σ̂‖L2(Ω).

Since

‖σ∗h − σ̂‖L2(Ω) ≤ ‖ε(u∗h − û)‖L2(T ) + ‖p∗h − p̂‖L2(T ),

the estimates for (4.13) and the L2 projection estimate

‖σ − σ̂‖L2(Ω) . hk+2‖σ‖Hk+2(Ω),

show that

‖σ − σ∗h‖L2(Ω) . hk+2‖σ‖Hk+2(Ω) + hm‖u‖Hm+1(Ω). �

5. Numerical experiments

This section is devoted to four numerical benchmarks. The experi-
ments verify reliability and efficiency of the proposed residual-based a
posteriori error estimator for uniform and adaptive mesh-refinements.

5.1. The adaptive finite element method. The adaptive finite el-
ement method computes sequences of discrete subspaces (Σg,`)` and
(V`)` throughout successive local refinement of the domain Ω. The
corresponding sequence of meshes (T`)` consists of nested regular tri-
angulations. The AFEM consists of the following loop

Solve→ Estimate→ Mark→ Refine.

Solve. Given a mesh T` the step Solve calculates the solution of the
finite-dimensional saddle point problem(

A Bt

B

)(
x
y

)
=

(
bD
bf

)
.
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The system matrices A and B, and the right-hand sides bD and bg are
computed for the basis span{τj} = Σg,` and span{vj} = V` by

Ajk :=

ˆ
Ω

τj : C−1τk dx and Bjk :=

ˆ
Ω

vj · div σk dx;

bD,j :=

ˆ
ΓD

uD · (τjν) ds and bf,j :=

ˆ
Ω

f · vj dx.

The discrete solutions for the stress tensor σ` and the displacement u`
are given by

σ` =

dim(Σg,`)∑
k=1

xkτk and u` =

dim(V`)∑
k=1

ykvk.

For more details on the assembly of these matrices cf. [CGRT08,
CEG11]. In contrast to [CGRT08], for adaptive computations the basis
functions τk need to be scaled in order to improve the condition num-

ber. Nodal degrees of freedom are weighted with ω
−1/2
z , edge degrees

of freedom with ω
−1/2
E and element degrees of freedom with |T |−1/2,

where ωz and ωE denote the nodal and edge patches. This improve-
ment over [CGRT08] allows more stable calculations and appears to be
significant.

Estimate. The error ‖σ − σAW‖2
C−1 is estimated a posteriori by

η2
` = osc2(f, T ) + osc2(g, E(ΓN))

+
∑
T∈T

h2
T‖curl(C−1σ` + skew(Du∗`))‖2

L2(T )

+
∑

E∈E(Ω)

hE‖[C−1σ` + skew(Du∗`)]EτE‖2
L2(E)

+
∑

E∈E(ΓD)

hE‖(C−1σ` + skew(Du∗`)−DuD)τ‖2
L2(E),

where u∗` denotes the post-processed displacement of Section 4. Note
that the unknown reliability constant of Theorem 3.6 is set to one
and therefore η` possibly underestimates the error in the numerical
experiments.

Mark. Based on local values η`(T ) of η` and a bulk parameter 0 < θ ≤
1, some triangles are marked for refinement in a bulk criterion [Dör96]
such that M` ⊆ T` is an (almost) minimal set of elements with

θη2
` ≤

∑
T∈M`

η2
` (T ).

Refine. Once an element is selected for refinement, all of its edges
are marked for refinement. In a closure algorithm additional edges are
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Figure 5.1. Refinement rules: Sub-triangles with cor-
responding reference edges depicted with a second edge.

marked, such that once an edge of a triangle is marked for refinement,
its reference edge is marked as well. After the closure algorithm is
applied, one of the following refinement rules is applicable, namely
no refinement, red refinement, green refinement, blue-left or blue-right
refinement depicted in Figure 5.1.

Further details and references on related adaptive finite element
methods in elasticity can be found in [CFPP14] with an axiomatic
approach for optimal convergence rates.

5.2. Academic example. Consider the model problem (1.1) on the
unit square Ω = (0, 1) × (0, 1) with homogeneous Dirichlet boundary
conditions. The elasticity modulus is set to E = 105 and the Poisson
ratio is chosen either ν = 0.3 or ν = 0.4999. The right-hand side reads

f1(x, y) = −2µπ3 cos(πy) sin(πy)(2 cos(2πx)− 1),

f2(x, y) = 2µπ3 cos(πx) sin(πx)(2 cos(2πy)− 1),

and depends only on the Lamé parameter µ and not on the critical
Lamé parameter λ. The corresponding displacements read

u1(x, y) = π cos(πy) sin2(πx) sin(πy),

u2(x, y) = −π cos(πx) sin(πx) sin2(πy).

Uniform refinement leads to optimal convergence rates as shown in
Figure 5.2. Since the solution is smooth, the proposed post-processing
with third-order polynomials shows higher-order converge rates for the
L2, the energy and the error of the asymmetric part of the gradient.
The a posteriori error estimator η` is an upper bound of the energy error
and the oscillations of the right-hand side dominate the a posteriori
error estimator in this example. Note that all the errors of the post-
processed solution are independent of the Poisson ratio ν → 1/2 which
verifies the robustness of the post-processing.
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Figure 5.2. Convergence history with uniform and
adaptive mesh-refinements for the academic example
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Figure 5.3. The L-shaped domain.
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Figure 5.4. Convergence history with uniform and
adaptive mesh-refinements for the L-shaped benchmark

5.3. L-shaped benchmark. The second example considers the model
problem (1.1) on the rotated L-shaped domain Ω as depicted in Fig-
ure 5.3. The exact solution read in polar coordinates

ur(r, φ) =
rα

2µ
(−(α + 1) cos((α + 1)φ) + (C2 − α− 1)C1 cos((α− 1)φ)) ,

uφ(r, φ) =
rα

2µ
((α + 1) sin((α + 1)φ) + (C2 + α− 1)C1 sin((α− 1)φ)) .

The constants are C1 := − cos((α + 1)ω)/ cos((α − 1)ω) and C2 :=
2(λ + 2µ)/(λ + µ), where α = 0.544483736782 is the positive solution
of α sin(2ω) + sin(2ωα) = 0 for ω = 3π/4 and with Lamé parameter
λ and µ according to the elasticity modulus E = 105 and the Poisson
ratio ν = 0.4999. The volume force and the Neumann boundary data
vanish, and the Dirichlet boundary conditions are taken from the ex-
act solution. The exact solution exhibits a strong singularity at the
origin. Figure 5.4 shows that adaptive mesh-refinement leads to better
convergence rates than uniform refinement. The convergence rate of
uniform refinement is smaller than the expected rate 1/3. This loss of
convergence results from the Neumann boundary condition that leads
to the pre-described zero values for the nodal stress degrees of freedom
in the origin. This is a particular difficulty of the Arnold–Winther
finite element method. The experiments show that a bulk parameter
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Figure 5.5. Domain circular inclusion.

θ = 0.5 with third-order post-processing for u∗` leads to suboptimal con-
vergence rates, while the choice of θ = 0.1 leads to super-convergence
of the energy error of O(N−2

` ). Note that this super-convergence phe-
nomenon has also been observed in [CGP12, CGRT08]. In that case the
third-order post-processing is not efficient. Therefore, in the following
examples the polynomial degree of the post-processing is chosen to be
four which leads to efficient a posteriori error estimators. The com-
parison of the residual-based a posteriori error estimator with fourth-
order post-processing to the residual a posteriori error estimator with
a conforming fourth-order displacement-based FEM shows comparable
results and that the values of the estimator with post-processing are
even slightly smaller.

5.4. Circular inclusion. A rigid circular inclusion in an infinite plate
for the domain Ω is shown in Figure 5.5. The exact solution [KS95] to
the model problem (1.1) in polar coordinates (r, φ) reads

ur =
1

8µr

(
(κ− 1)r2 + 2γa2 +

(
2r2 − 2(κ+ 1)a2

κ
+

2a4

κr2

)
cos(2φ)

)
,

uφ = − 1

8µr

(
2r2 − 2(κ− 1)a2

κ
− 2a4

κr2

)
sin(2φ),

where κ = 3−4ν, γ = 2ν−1, a = 1/4 and µ is the Lamé parameter de-
termined by E = 105 and the Poisson ratio ν = 0.3 or ν = 0.4999. The
linear boundary approximation of the circular inclusions is critical for
the higher-order Arnold–Winther FEM. Theorem 3.1 and Lemma 3.3
show

‖σ − σAW‖2
C−1 . osc2(f, T ) + osc2(g, E(ΓN)) + dist2

C(C−1σAW, ε(uD + V )).
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Figure 5.6. Convergence history with uniform and
adaptive mesh-refinements for the circular inclusion do-
main

This gives rise to the a posteriori error estimator µ`

µ2
` = osc2(f, T ) + osc2(g, E(ΓN)) + |||C−1σ` − ε(ũ∗`)|||2

+
∑

E∈Eh,E⊆ΓD

hE‖∂(uD − ũ∗`)/∂s‖2
L2(E),

where the conforming approximation ũ∗` ∈ P4(T`,R2) is obtained from
the post-processed (possibly) discontinuous approximation u∗` ∈ P4(T`,R2)
by taking the arithmetic mean value

ũ∗`(z) :=
1

|{T ∈ Th : z ∈ T}|
∑

T∈Th:z∈T

u∗`(z)|T ,

for each vertex and edge degree of freedom in z ∈ R2. The boundary
degrees of freedom in points z ∈ R2 are interpolated ũ∗`(z) = uD(z).
Hence, the Dirichlet boundary conditions might not be fulfilled ex-
actly and the last a posteriori error term of µ` controls that difference
[CGP12, Remark 5.3]. Adaptive mesh-refinement leads to optimal con-
vergence rates while uniform mesh-refinement is suboptimal (See Fig-
ure 5.6). The a posteriori error estimator η` is robust in ν while the
other a posteriori error estimator µ` increases as ν → 1/2. The em-
pirical observation is that while the discontinuous approximation u∗` is
robust in ν, the averaged approximation ũ∗` is not. Hence, the new
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Figure 5.8. Convergence history with uniform and
adaptive mesh-refinements for Cook’s membrane

residual a posteriori error estimator η` is better for the linear elastic
problem (1.1) than the a posteriori error estimator µ`.

5.5. Cook’s membrane problem. This benchmark problem consid-
ers the model problem (1.1) with Ω depicted in Figure 5.7. The domain
describes a tapered panel which is clamped on the left side and subject
to a surface load in vertical direction on the right side. The interior



ROBUST A POSTERIORI MFEM ANALYSIS IN ELASTICITY 25

Figure 5.9. Adaptively refined meshes for θ = 0.1 with
150 and 764 nodes for Cook’s membrane

load is zero, f ≡ 0. For (x, y) ∈ ΓN , the surface load is given by
g(x, y) = (0, 1) if x = 48 and g(x, y) = 0 elsewhere. Since the plate
is clamped, uD ≡ 0 on ΓD. This benchmark problem is a standard
test for bending dominated response. In the numerical experiments,
the elasticity modulus is E = 105 and the Poisson ratio ν = 0.499.
This example is a particular difficult example for the Arnold–Winther
MFEM because of the incompatible Neumann boundary conditions on
the right corners. As described in [CGRT08] the nodal degrees of free-
dom in the two right corners are chosen to be a discrete least-squares
fitting of the neighbouring boundary conditions. Therefore at the be-
ginning, the Neumann boundary oscillations dominate the a posteriori
error estimator while the error of the solution is governed by the sin-
gularity at the top left corner. Due to the lack of an analytic solution,
the unknown energy error is approximated by a P5 solution on the red-
refinement of the last and sufficiently fine mesh. Figure 5.8 shows for
uniform refinement the huge pre-asymptotic range of the a posteriori er-
ror estimator which covers the whole range of computed values while for
adaptive refinement it ends around N` = 4000. Beyond that the energy
error converges and the a posteriori error estimator becomes a lower
bound of the error due to the chosen value one for the unknown generic
constant in the reliability estimate. The pre-asymptotic refinement in
the Neumann boundary corners is illustrated in Figure 5.9 where the
coarse mesh is in the pre-asymptotic regime while the fine mesh is in
the range of optimal convergence. Different choices of the bulk param-
eter lead to different convergence rates and the choice θ = 0.1 leads to
the super-convergence of O(N−2

` ). The energy error does not decrease
below 10−6 because the accuracy of the method or the accuracy of the
error approximation is reached.
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