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Abstract. We consider the evolution of martensitic fine structures in shape memory alloys
which undergo an isothermal phase-transformation. This process is modelled on a microscop-
ical, continuum-mechanical level by partial differential equations. Here a homogeneous degree-1
dissipation potential is involved which can reflect specific energies needed for rate-independent
phase transformations. An interface energy is incorporated by a nonlocal term, and hard-device
loading is considered. After setting up the model and specifying its energy balance properties,
three-dimensional numerical experiments for the cubic-to-tetragonal transformation in an InTl
single crystal are presented which demonstrate geometrical/material interactions under tensile
and shear loading.
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1 Introduction

Martensitic transformation in alloys, observed first around 1890 by the German microscopist Adolf Martens, has
been intensively studied during the past decades. In physics and engineering there is increasing interest because
of the ever-growing amount of applications, and in mathematics there has been an intensive research on this
subject both theoretically and computationally. Several models of different kinds (single crystals/polycrystals,
phenomenological/rigorously-based, atomic/continuum, microscopical/mesoscopical/macroscopical) have been
proposed, analyzed and tested. Let us mention, without any ambitions for completeness, the models of Falk [23],
Frémond [25,26], Idesman, Levitas and Stein [41], James [42], Lexcellent et al. [47,67], Mielke, Theil, and
Levitas [52], Rajagopal and Srinivasa [66], or also [71]. Nevertheless, it seems that none of these models is fully
capable to simulate the results of laboratory experiments on single-crystal specimens. Such experiments can
be designed to observe the three-dimensional geometrical interactions of the loading device with the multiwell
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structure of the specifically oriented single crystal and can exhibit both quite homogeneous deformations and
resulting microstructure.

The starting point for a rigorous single-crystal model is the specific stored energy density ϕ : R
n×n → R.

At any current location x we can write ϕ(∇u(x)), where u(x) = x + w(x) denotes the deformation while
w : Ω → R

n is the displacement considered on a reference body configurationΩ ⊂ R
n. Hence, the deformation

gradient is ∇u(x) = I + ∇w, where I ∈ R
n×n denotes the identity matrix. In the context of shape memory

alloys (SMA), this issue was thoroughly investigated by crystallographers and later also by mathematicians, in
particular Ball and James [7,8], Bhattacharya, Firoozye, James, Kohn [9], Ericksen [21,22], Müller [57] and
others. Falk [23] proposed a non-isothermal model which is based on Landau’s theory. It involves the specific
free energy density ϕ = ϕ(F, ϑ), which depends on the temperature ϑ ∈ R

+. A three-dimensional variant can
be found in [24]. This model, augmented by capillarity- and viscosity-like terms, has been further studied e.g.
by Garcke [28], Niezgódka and Sprekels [58], Hoffmann and Zochowski [38] and Pawĺow [61], see also [12,
Chap. 5] and the references therein.

In this paper, we confine ourselves to the isothermal situation ϑ = constant which would correspond to a
very slow experiment with a specimen kept on constant temperature by outer cooling. In this isothermal case,
the class of models which consider only the stored energy density ϕ(F ) = ϕ(F, ϑ) (up to a constant) was
investigated e.g. by Abeyaratne and Knowles [1], Andrews [5], Ball et al. [6], Dafermos [18], Friesecke and
Dolzmann [27], Pego [62], Rybka [72], Rybka and Hoffmann [73], Swart and Holmes [78] or Truskinovsky
[80]. However, it has been argued in [65] that such models cannot describe the rate-independent character of the
activated phase-transformation process observed in experiments, which dissipates mechanical energy to some
extent independently from the stored energy landscape ϕ. The complicated plastic-type dissipation mechanism
is presumably activated by dislocation movement, thermal fluctuations, an interfacial energy at a “mesoscopic”
phase-mixture level, by other phenomena or by their combination; cf. Miyazaki [26] or Müller et al. [39,40,
53–55]. Thus it seems inevitable that, at least on the level of continuum mechanics, this dissipation mechanism
ought to be handled phenomenologically. The probably simplest approach to that relies on the prescription of
the energy needed for the phase transformation. This is the approach used in our paper.
We consider the system of n semilinear equations

�
∂2u

∂t2
− div

(
σplast + σ(∇u)

)
+ µ1A1

∂u

∂t
+ µ0A0u = f , (1.1)

where � is a mass density,σ = ϕ′ is the elastic stress depending on the deformation gradient ∇u,µ1 is a viscosity-
like coefficient,µ0 a capillarity-like coefficient,f is a body force, andσplast is a suitable additional stress reflecting
the plastic, rate-independent character of the activated phase-transformation process like in classical plasticity,
cf. eg. [43]. This σplast will be defined later in more detail, namely we will consider σplast =

∑
�∈L σ� with σ�

from (2.21b). The linear operators A1 and A0 reflect viscosity-like and capillarity-like behavior, respectively,
and must be given for concrete materials. They also serve as regularization terms to allow a rigorous analysis
of the problem, to guarantee the energy balance (2.28) to be satisfied, and possibly to stabilize the calculations
of the discrete scheme. Of course, the system (1.1) must be accompanied by suitable initial and boundary
conditions. This model was basically proposed in [71, Formula (33)] and was further developed in [64] and [65]
for A1 = A0 = ∆2 and A1 = 0, A0 = ∆3 respectively. It augments the conventional viscosity/capillarity-type
models mentioned above which omit σplast and consider A1 = −∆ and A0 = ∆2. It also admits either A1 = 0
or A0 = 0.

In this paper we develop the above outlined model. Furthermore we present three-dimensional calculations
with realistic data, which describe the martensitic transformation in an InTl shape memory alloy. Here we
consider complex geometrical/material interactions for various loading experiments such as standard tensile or
shear loading. To this end, σplast in the model (1.1) is designed to handle more complex dissipation mechanisms
which describe transformations between many phases in one specimen. Moreover, contrary to [64], loading is
achieved by time-dependent Dirichlet boundary conditions, so-called hard device loading, which are simpler
to use in computational experiments and which are more realistic in connection with laboratory experiments.
However, they require some care when specifying the energy balance, see (2.28) below. In contrast to (1.1), we
neglect inertial forces, i.e. � = 0, which is mathematically justified [64] and seems to be acceptable from the
experimental point of view except for very fast loading regimes. Let us remark that the probably first attempt for
stationary three-dimensional simulations for SMAs was accomplished by Collins and Luskin [17]. Evolutionary
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three-dimensional simulations have been performed by Klouček and Luskin [44,45]. They however used a
conventional model which, as explained in [65], cannot capture all desired phenomena.

The remainder of this paper is organized as follows: In Sect. 2 we set up the model and derive its energetics.
Section 3 deals with the discretization and implementation of the model and discusses existence and convergence.
In Sect. 4 we describe our computational experiments, and in Sect. 5 we give some concluding remarks.

2 The model

We will use the notation Γ for the boundary of the undeformed reference configuration Ω ⊂ R
n and Γ0 and Γ1

for the parts where Dirichlet and Neumann boundary conditions will be prescribed, respectively; Γ = Γ0 ∪ Γ1,
Γ0∩Γ1 = ∅. For a fixed, finite time horizonT > 0, we denoteQ = Ω×(0, T ),Σ = Γ×(0, T ),Σi = Γi×(0, T ),
i = 0, 1.

2.1 Stored energy: contribution from the deformation gradient

The stored energy density ϕ must be frame indifferent, i.e. ϕ(F ) = ϕ(RF ) for all R ∈ SO(n), where SO(n)
denotes the special orthogonal group of all orientation-preserving rotations. Besides,ϕ has a multi-well structure
where each well (i.e. each local minimum of ϕ) is an orbit of the form SO(n)Uα, α = 1, ..., N . Here N denotes
the number of phases. Thus, each well corresponds to one so-called phase (in accordance with the convention
in mathematical literature) or rather to a variant of a phase (as understood in physics). For example, the cubic
phase (called austenite) has only one well, namely SO(n). Tetragonal martensite has three variants, i.e. three
wells, c.f. Sect. 4.1 below, while orthorhombic or monoclinic martensites have 6 or 12 wells, respectively.

It is usually a difficult task to determine the stored energy in a particular case with reasonable degree of reality.
In general, it is difficult to describe the wells by means of atomic grid parameters, their energy in comparison
with the other wells, and (at least approximately) their elastic properties. The InTl alloy modelled in Sect. 4.1 is
an example where all these data are known.

2.2 Rate-independent dissipation

A crucial point is to adequately design the plastic-type dissipation mechanism. There exist a lot of phase trans-
formation processes where each dissipates a different energy or, in other words, where each is activated by a
different energy. To capture this in a general manner, we introduce indices � ∈ L, where

L ⊂ {� ⊂ {1, 2, . . . , N} : � �= ∅, � �= {1, 2, . . . , N}}. (2.1)

Each � ∈ L identifies a nontrivial splitting of {1, 2, . . . , N}. For the reason of symmetry we can assume that for
each � ∈ L we have {1, 2, . . . , N} \ � �∈ L.

For each � ∈ L we introduce a continuous bounded function

λ� : R
n×n → R , (2.2)

which takes a constant value in a neighbourhood of the wells SO(n)Uα, α ∈ �, and another constant value in
a neighbourhood of the wells SO(n)Uα, α �∈ �. Therefore we call λ� a phase-transformation indicator. Since
1 ≤ |L| ≤ 2N−1 − 1, we might deal with up to three phase-transformation indicators for the transformations
between three tetragonal martensitic phases. Even seven indicators may be considered for the transformations
between one cubic austenite and three tetragonal martensite phases which occur at higher temperatures.

The energy needed for the transformation between two particular phases, α and β, is therefore

Eαβ =
∑
�∈L

|λ�(Uα) − λ�(Uβ)|. (2.3)

By choosing appropriate functions λ�, this construction allows us to set up Eαβ with great freedom.
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The absolute value | · | as a convex, non-negative, positively homogeneous function used in the formula (2.3)
is known in plasticity-theory as a dissipation function. It determines the stress which activates the particular
plastic process. Its subdifferential, see (2.22) below, has the important property to be a maximal responsive
set-valued map (c.f. Eve, Reddy and Rockafellar [20] for details), which is intimately related to the principle of
maximum plastic work (2.25) of Hill [37] (see also [50] or [51,76]). The consequence of (2.3) is symmetry: the
transformation from phase α to phase β dissipates the same energy as the converse transformation.

2.3 Viscous-like damping and higher-order contributions to the stored energy

There is a high freedom to set up the operators A1 and A0 in (1.1). For simplicity we will consider A1 = A0 =: A.
This reflects the observation that every real mechanism which leads to the stored energy cannot be 100% efficient
and necessarily dissipates (here in a viscous-like manner through the coefficient µ1) a certain part of the energy.
Though this is not necessary for the mere existence of a weak solution, it guarantees the energy balance (2.28).
This would otherwise require a certain regularity of the solution which is not obvious because the plastic
dissipative mechanism in (2.21a,2.21b) involves a nonsmooth nonlinearity in a high mixed derivative. Besides,
A1 = A0 guarantees also the convergence of the numerical scheme. Let us remark that this does not cover the
viscosity-capillarity model (see [1,5,18,27,62,72,73,78]) which uses A1 = −∆u different from A0 = ∆2u.

We derive the concrete form of A from a nonnegative quadratic functional

a : L2(Ω; Rn×n) → R ∪ {+∞} , (2.4)

which is in general finite only on a linear subspace of L2(Ω; Rn×n). We denote

L2
a(Ω; Rn×n) :=

{
z∈L2(Ω; Rn×n) : a(z) < +∞

}
,

W 1,2
a (Ω; Rn) :=

{
u∈W 1,2(Ω; Rn) : a(∇u) < +∞

} (2.5)

and equip these linear spaces with the natural norms

||z||L2
a(Ω;Rn×n) :=

(
||z||2L2(Ω;Rn×n) + a(z)

)1/2
,

||u||W 1,2
a (Ω;Rn) :=

(
||u||2W 1,2(Ω;Rn) + a(∇u)

)1/2
,

(2.6)

which makes them Hilbert spaces. A fundamental assumption on a is that it is coercive in such a compactifying
manner that the following embedding holds:

L2
a(Ω; Rn×n) ⊂ L2(Ω; Rn×n) compactly. (2.7)

Now we define

σa := a′ : L2
a(Ω; Rn×n) → L2

a(Ω; Rn×n)∗,

A := (a ◦ ∇)′ : W 1,2
a (Ω; Rn) → W 1,2

a (Ω; Rn)∗ (2.8)

to be the Gâteaux differentials of a and a ◦ ∇ respectively. We have

A = ∇∗ ◦ σa ◦ ∇, (2.9)

where ∇∗ denotes the adjoint operator of ∇. Obviously σa and A are linear operators. Furthermore we always
have

a(∇u) =
1
2
〈A(u), u〉 =

1
2
〈σa(∇u),∇u〉 , (2.10)

where the first duality 〈·, ·〉 is between W 1,2
a (Ω; Rn)∗ and W 1,2

a (Ω; Rn), while the second one is between
L2

a(Ω; Rn×n)∗ and L2
a(Ω; Rn×n).
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Example 1. One possibility for the operator A stems from the choice

a(z) :=
1
2

∫
Ω

|∇z|2 dx, (2.11)

so we have W 1,2
a (Ω; Rn) ∼= W 2,2(Ω; Rn). Because 〈σa(z), z̃〉 =

∫
Ω

∇ z · ∇ z̃ dx, we can symbolically write
σa(∇u) = −∆∇u and A = div div ∇2u.

Example 2. Another example deals with a nonlocal energy in the form

a(z) :=
1
4

∫
Ω

∫
Ω

K(x, ξ)‖z(x) − z(ξ)‖2
F dxdξ (2.12)

with a symmetric, non-negative kernelK : Ω×Ω → R. Here ‖z‖F =
(∑

ij z
2
ij

)1/2
denotes the Frobenius norm

of a matrix. Models of this type have been proposed in the case n = 1 by Ren, Rogers, and Truskinovsky [68,69]
with either positive or also, for different purposes, non-positive kernels. The advantage of (2.12) in comparison
with (2.11) is the following: Depending on the choice of K(x, ξ), (2.12) can still have a compactifying effect
on the deformation gradient, but it additionally might allow for sharp interfaces. This is in good agreement with
experiments, where interfaces observed in SMAs are often atomically sharp [68]. Furthermore, this has also an
advantage in the numerical treatment of the corresponding model: the diffuse interfaces arising from (2.11) are
no longer present and we therefore need not resolve them on an unnecessarily fine grid.

Since we have

1
2

∫
Ω

∫
Ω

K(x, ξ)(z(x) − z(ξ)) : (z̃(x) − z̃(ξ)) dxdξ =
∫

Ω

∫
Ω

K(x, ξ)(z(x) − z(ξ)) : z̃(x) dxdξ (2.13)

by symmetry of the kernel, the choice (2.12) results in the formula

[σa(z)](x) =
∫

Ω

K(x, ξ)(z(x) − z(ξ)) dξ (2.14)

for the stress σa, see also [68, Formula (3.2)]. In particular we have∫
Ω

σa(z) : z dx =
1
2

∫
Ω

∫
Ω

K(x, ξ)‖z(x) − z(ξ)‖2
F dxdξ = 2a(z), (2.15)

compare (2.10).
An example for the kernel K is

K(x, ξ) =
1

|x− ξ|n+2γ
(2.16)

for a fixed parameter 0 < γ < 1. Then W 1,2
a (Ω; Rn) ∼= W 1+γ,2(Ω; Rn), which enables us to employ the

standard theory of Sobolev-Slobodeckiı̆ spaces W 1+γ,2(Ω). Later, we will use γ < 1/2 to allow for sharp
interfaces in the solution. Furthermore we will replace (2.16) by a wavelet-based kernel which leads to an
equivalent norm but allows an efficient local implementation.

We require that

a(v) = 0 and v|Γ0 = 0 implies v = 0. (2.17)

This is fulfilled in both examples (2.11) and (2.12) if the interior of the convex hull of Γ0 is nonempty, since
a(v) = 0 implies that v is affine and affine functions are completely determined on Γ0 with such shape. We use
this to derive the following Poincaré-like inequality.

Lemma 2.1 Let (2.7) and (2.17) hold. Then there is a constant C such that for all u ∈ W 1,2
a (Ω; Rn):

‖u‖2
W 1,2

a (Ω;Rn) ≤ C(‖u‖2
L2(Γ0;Rn) + a(∇u)). (2.18)
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Proof. Assume that for each k ∈ N there exists uk ∈ W 1,2
a (Ω; Rn) such that

1 = ‖uk‖2
W 1,2

a (Ω;Rn) > k(‖uk‖2
L2(Γ0;Rn) + a(∇uk)). (2.19)

Then {uk}k∈N is bounded in W 1,2
a (Ω; Rn). Since bounded subsets of W 1,2

a (Ω; Rn) are weakly sequentially
compact, there exists a subsequence (also denoted by {uk}k∈N) which converges weakly to a function ū ∈
W 1,2

a (Ω; Rn). The embedding W 1,2
a (Ω; Rn) ↪→ W 1,2(Ω; Rn) is compact, so the subsequence also converges

strongly to ū in W 1,2(Ω; Rn). Because a ◦ ∇ is weakly lower semicontinuous and a(∇uk) → 0, we have
a(∇ū) = 0. Since uk|Γ0 → ū|Γ0 strongly in L2(Γ0; Rn) and ‖uk‖2

L2(Γ0;Rn) → 0, we conclude ū|Γ0 = 0.
Because of (2.17) we have ū = 0. But

0 = ‖ū‖2
W 1,2(Ω;Rn) = lim

k→∞
‖uk‖2

W 1,2(Ω;Rn) = 1 − lim
k→∞

a(∇uk) = 1 (2.20)

is a contradiction. ��

2.4 The governing equations and inclusions

We now set up the governing initial-boundary-value problem. Starting from (1.1), we neglect the inertial term
(i.e. � = 0) and take the desired plastic-type dissipated energy (2.3) and the regularizing contribution from the
quadratic form a as discussed in Sect. 2.3 into account. Then, provided all functions are smooth enough and σa

is pointwise defined, our problem reads in the classical formulation as follows:

− div

(∑
�∈L

σ� + σ(∇u) + σa

(
µ1
∂∇u
∂t

+ µ0∇u
))

= f on Q, (2.21a)

σ� ∈ sign
(
∂

∂t
λ�(∇u)

)
λ′

�(∇u), � ∈ L on Q, (2.21b)

u = uD(x, t) on Σ0, (2.21c)(∑
�∈L

σ� + σ(∇u) + σa

(
µ1
∂∇u
∂t

+ µ0∇u
))

ν = g on Σ1, (2.21d)

natural boundary conditions arising from a, e.g. (2.21e){
(∇2u) · ν = 0 on Σ in case of (2.11)
none in case of (2.12),

u(·, 0) = u0 on Ω. (2.21f)

Here the set-valued mapping sign : R ⇒ [−1, 1] is defined as usual by

sign(ξ) :=




1 for ξ > 0,
[−1, 1] for ξ = 0,
−1 for ξ < 0.

(2.22)

and ν denotes the unit outward normal to Γ , uD denotes the prescribed displacement on the boundary Γ1, u0
the initial displacement, and λ′

� : R
n×n → R

n×n denotes the differential of λ�.
We now introduce new variables ω� ∈ sign( ∂

∂tλ�(∇u)) so that σ� = ω�λ
′
�(∇u). They correspond to the

direction of the transformation process which is associated with the index �. We multiply (2.21a) by a smooth
test function v, integrate overQ and use Green’s theorem. We then obtain the following weak formulation of the
initial-boundary-value problem (2.21):

∫ T

0

∫
Ω

(∑
�∈L

ω�λ
′
�(∇u) + σ(∇u)

)
:∇v − f · v dx ,
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−
∫

Γ1

g · v dS +
〈
σa(µ1

∂

∂t
∇u+ µ0∇u),∇v(·, t)

〉
dt = 0 (2.23a)

∀v∈L2(0, T ;W 1,2
a (Ω; Rn)), v|Σ0 = 0,∫

Q

(ω� − z)
(
λ′

�(∇u) :
∂

∂t
∇u− v

)
dxdt ≥ 0 (2.23b)

∀� ∈ L, v ∈ L2(Q), z ∈ L∞(Q), z ∈ sign(v),
u|Σ0 = uD, (2.23c)

u(·, 0) = u0. (2.23d)

Here A : B =
∑n

i=1
∑m

j=1AijBij and u · v =
∑m

j=1 ujvj , while 〈·, ·〉 in (2.23a) means the duality pairing
between W 1,2

a (Ω; Rn)∗ and W 1,2
a (Ω; Rn).

Consequently, we call a (1 + |L|)-touple (u, (ω�)�∈L) with u ∈ W 1,2(0, T ; W 1,2
a (Ω; Rn)) and ω ∈

L∞(Ω; RL) which fulfills (2.23) a weak solution of (2.21).
We ensure the integrability of all terms in (2.23) by the following data prerequisites:

ϕ ∈ C1(Rn×n), ϕ = ϕ1 + ϕ0 with ϕ1 ≥ 0 convex, (2.24a)

σ1 := ϕ′
1, |σ1(A)| ≤ C(1 + |A|), σ0 := ϕ′

0 bounded,

λ� ∈ W 2,∞(Rn×n), � ∈ L, (2.24b)

uD ∈ W 1,2(0, T ;W 1,2
a (Ω; Rn)|Γ0), (2.24c)

u0 ∈ W 1,2
a (Ω; Rn), u0|Γ0 = uD|t=0, (2.24d)

f ∈ L2(0, T ;L2(Ω; Rn)), g ∈ L2(0, T ;L2(Γ1; Rn)), (2.24e)

µ1 > 0, µ0 ≥ 0. (2.24f)

2.5 Energetics

From (2.23b) with v = 0 we obtain

dλ�(∇u)
dt

ω� = max
ξ∈sign(0)

dλ�(∇u)
dt

ξ a.e. on Q (2.25)

for all transformation processes � ∈ L. This states that the dissipation of the transformation process � is maximal
provided that the rate d

dtλ�(∇u) is kept fixed while the direction ω� varies freely for all admissible directions
with sign(0) = [−1, 1]. This just resembles Hill’s maximum-dissipation principle, see [37,50,51] or [76]. In
plasticity theory, this principle can alternatively be expressed as a normality in the sense that the rate of plastic
deformation belongs to the cone of outward normals to the elasticity domain. Here, this would result in the
observation that the rate d

dtλ�(∇u) belongs to the normal cone of the interval [−1, 1] at the point ω�, i.e. to
N[−1,1](ω�) := ∂δ[−1,1](ω�). As usual, δ[−1,1] denotes the indicator function of the interval [−1, 1] and ∂ stands
for the subdifferential.

However, the main justification of the model (2.21) is the following energy balance. Let

σtot ≡ σtot(u, (ω�)�∈L) :=
∑
�∈L

σ� + σ(∇u) + σa

(
µ1

∂

∂t
∇u+ µ0∇u

)
(2.26)

denote the total stress, where σ� = ω�λ
′
�(∇u). Note that σ� ∈ L∞(Ω; Rn×n), σ(∇u) ∈ L2(Ω; Rn×n) and

σa(µ1
∂
∂t∇u+µ0∇u) ∈ L2

a(Ω)∗. Because L∞(Ω; Rn×n)⊂L2(Ω; Rn×n) ∼= L2(Ω; Rn×n)∗ ⊂L2
a(Ω; Rn×n)∗

holds, we always have σtot ∈ L2
a(Ω; Rn×n)∗. Since in our general context σa may not be pointwise defined, we

cannot simply restrict it to the boundary to define the normal stress. Instead we define σν ∈ (W 1,2
a (Ω; Rn)|Γ0)

∗

by means of

〈σν , v|Γ0〉 = 〈σtot,∇v〉 −
∫

Ω

f · v dx−
∫

Γ1

g · v dS ∀v ∈ W 1,2
a (Ω; Rn). (2.27)
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Let us remark that the definition of the normal stress holds only for a solution of (2.23) and not an arbitrary
function (u, (ω�)�∈L). Due to (2.23a) the normal stress is independent of the actual extension v of v|Γ0 and is
therefore well-defined.

Proposition 2.2 If (2.24) holds, then any weak solution (u, (ω�)�∈L) of (2.21) satisfies the following energy
balance:

Φ(u(·, T )) +
∫

Ω

∑
�∈L

Var
t∈[0,T ]

λ�(∇u(x, t)) dx+ 2µ1

∫ T

0
a

(
∂∇u
∂t

)
dt

= Φ(u0) +
∫ T

0

(〈
σν ,

∂uD

∂t

〉
+
∫

Ω

f · ∂u
∂t

dx+
∫

Γ1

g · ∂u
∂t

dS
)

dt. (2.28)

Here Var denotes the total variation of a real-valued function over the indicated time interval and

Φ(u) =
∫

Ω

ϕ(∇u) dx+ µ0a(∇u) (2.29)

gives the total stored energy. The particular terms in (2.28) denote successively:

– the total stored energy at time t = T ,
– the total energy dissipated due to the phase transformation,
– the energy dissipated by viscous-like damping,
– the total stored energy at time t = 0,
– the work due to the displacement uD over the time interval [0, T ],
– the work due to the body force f over the time interval [0, T ], and
– the work due to the surface force g over the time interval [0, T ].

Proof. As ω� ∈ sign( ∂
∂tλ�(∇u)) a.e., we have the following identity for the dissipation rate related to all phase

transformations:

r(u) :=
∑
�∈L

σ� :
∂∇u
∂t

=
∑
�∈L

ω�λ
′
�(∇u) :

∂∇u
∂t

=
∑
�∈L

ω�
∂

∂t
λ�(∇u) =

∑
�∈L

∣∣∣∣ ∂∂tλ�(∇u)
∣∣∣∣ . (2.30)

Asu ∈ W 1,2(0, T ;W 1,2
a (Ω; Rn)), we can put v = ∂

∂t (u−ūD) ∈ L2(0, T ;W 1,2
a (Ω; Rn)) into (2.23a), where we

denote by ūD ∈ W 1,2(0, T ;W 1,2
a (Ω; Rn)) an extension of uD onto Q, i.e. ūD|Σ0 = uD. In this way we ensure

v|Σ0 = 0, hence v is indeed a legal test function for (2.23a). Then, using (2.27), 〈σa( ∂
∂t∇u),

∂
∂t∇u〉 = 2a( ∂

∂t∇u)
(cf. (2.10)) and 〈σa(∇u), ∂

∂t∇u〉 = ∂
∂ta(∇u), we obtain

∫ T

0

(∫
Ω

(r(u)+
∂

∂t
ϕ(∇u) − f · ∂u

∂t

)
dx−

∫
Γ1

g · ∂u
∂t

dS + 2µ1a

(
∂∇u
∂t

)
+ µ0

∂

∂t
a(∇u)

)
dt

=
∫ T

0

(∫
Ω

(∑
�∈L

σ� + σ(∇u)
)

:
∂∇ūD

∂t
− f · ∂ūD

∂t
dx

−
∫

Γ1

g · ∂ūD

∂t
dS +

〈
σa(µ1

∂

∂t
∇u+ µ0∇u),

∂∇ūD

∂t

〉)
dt

=
∫ T

0

(〈
σtot,

∂∇ūD

∂t

〉
−
∫

Ω

f · ∂ūD

∂t
dx−

∫
Γ1

g · ∂ūD

∂t
dS

)
dt

=
∫ T

0

〈
σν ,

∂uD

∂t

〉
dt. (2.31)

This implies equality (2.28). ��
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3 The discretization and implementation of the model

In this section we describe the discretization of the model based on conformal finite-elements in space and
an implicit Euler formula in time. The convergence proof is outlined in Sect. 3.4. Furthermore we discuss
the recursive minimization problem created by the implicit time discretization. Finally, we present an efficient
treatment of energies with a nonlocal term like (2.16) in (2.12).

We emphasize that a numerical simulation based on the model from Sect. 2 is quite demanding because of its
complexity and nonlinearity. A successful treatment requires to handle the model with full rigor not to destroy
its energetics as given in Sect. 2.5. Note that due to possible shock waves, the energy balance (2.28) may hold
only as an inequality “<” if the quadratic form a does not have the compactifying character of (2.7), c.f. [80].

3.1 The space and time discretization

For the space discretization we use finite elements. Then, a conformal discretization of the higher order term a
for the conventional capillarity (2.11) requires higher-order finite elements. This approach is followed in [63]
for d = 1 and partly in [45] for d = 3. In the latter article the authors use the Adini-Clough-Melosh element.
Note however that they cannot fully guarantee the embedding of the finite-element space into the energy space
W 1,2

a (Ω; Rn) = W 2,2(Ω; Rn). Also, rate-independent terms were not considered there.
The fourth order term (2.11) has the following disadvantage: It requires an extremely fine mesh to resolve the

diffuse interfaces. Otherwise the microstructure pattern would be smeared out completely. But remember that it
was merely introduced to regularize the model by its compactifying character. Therefore we will use the term
(2.12), i.e.

a(z) :=
1
4

∫
Ω

∫
Ω

K(x, ξ)‖z(x) − z(ξ)‖2
F dxdξ

in the following. With a kernel K of the type (2.16), we obtain the fractional order seminorm a(∇u) =
|u|2W 1+γ,2(Ω,Rn), which is compactifying iff γ > 0. We will furthermore choose γ < 1/2. This allows us
to use piecewise linear and globally continuous finite elements, since they are then contained in the energy space
W 1,2

a (Ω; Rn) = W 1+γ,2(Ω; Rn).
The discretization is done separately in space and time. For the spatial discretization, let us assume that Ω

is polyhedral. For each mesh parameter h > 0, consider a finite decomposition Th of Ω into tetrahedra whose
diameters do not exceed h. Let

Vh = {vh ∈ W 1,∞
a (Ω; Rn) : vh|T affine ∀T ∈ Th} (3.1)

denote the finite-dimensional space of elementwise affine functions from W 1,2
a (Ω; Rn), and let

Lh = {ωh ∈ L∞(Ω; RL) : ωh|T constant ∀T ∈ Th} (3.2)

denote the finite-dimensional space of elementwise constant functions from L∞(Ω; RL). We assume that⋃
h>0 Vh is dense in W 1,2

a (Ω; Rn) and that the meshes are nested, i.e. Vh1 ⊂ Vh2 for h1 ≥ h2 > 0. We
also assume that all meshes are consistent with the splitting Γ = Γ0 ∪ Γ1.

By means of the time discretization, we want to obtain a time-recursive sequence of problems which will
later be solved by an implicit Euler method. To this end, let τ > 0 denote the discrete time step and assume
that T/τ is an integer. Now we consider the discrete solution at the time steps τ, 2τ, . . . , T . Thus we deal with
a finite sequence

((uk
hτ , ω

k
hτ ))T/τ

k=1 with (uk
hτ , ω

k
hτ ) ∈ Vh × Lh. (3.3)

To satisfy the boundary conditions we additionally require

uk
hτ |Γ0 = uD(·, kτ) (3.4)

to hold.
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For fixed h > 0 and τ > 0, this discretization of (2.23) leads straightforwardly to the recursive scheme:
For k = 0 set

u0
hτ = u0. (3.5)

For k = 1, 2, . . . , T/τ find (uk
hτ , ω

k
hτ ) such that

∫
Ω

(∑
�∈L

ωk
hτ,�λ

′
�(∇uk

hτ ) + σ(∇uk
hτ )

)
:∇vh − fk

τ · vh dx

−
∫

Γ1

gk
τ · vh dS +

〈
σa

(
µ1

∇uk
hτ − ∇uk−1

hτ

τ
+ µ0∇uk

hτ

)
,∇vh

〉
= 0 (3.6)

for all vh ∈Vh with vh|Γ0 = 0 and

∫
Ω

(ωk
hτ,� − z)

(
λ�(∇uk

hτ ) − λ�(∇uk−1
hτ )

τ
− v

)
dx ≥ 0 (3.7)

for all � = 1, ..., L, v∈L2(Ω) and z∈L∞(Ω) with z∈sign(v).
Here we used the abbreviations

fk
τ :=

1
τ

∫ kτ

(k−1)τ
f(·, t) dt and gk

τ :=
1
τ

∫ kτ

(k−1)τ
g(·, t) dt. (3.8)

Later in the convergence proof (see Sect. 3.4) we will consider the piecewise affine interpolation of {uk
hτ}k

in time and the piecewise constant interpolation of {ωk
hτ}k in time to imbed the discrete solutions into the space

of the continuous solutions.

3.2 Solution of the implicit scheme

Now, the recursive system of the nonlinear equation (3.6) coupled with the variational inequality (3.7) must be
solved numerically for k = 1, 2, . . . , T/τ . To this end we proceed as follows: Note that both σ and σa have
potentials. Therefore we can rewrite problem (3.6) as a nonconvex minimization problem at each time level k:

Minimize Ek
hτ (u) =

∫
Ω

ϕ(∇u) + τ
∑
�∈L

∣∣∣∣∣λ�(∇u) − λ�(∇uk−1
hτ )

τ

∣∣∣∣∣ − fk
τ · u dx

+τµ1a

(
∇u− ∇uk−1

hτ

τ

)
+ µ0a(∇u) −

∫
Γ1

gk
τ · u dS

subject to u ∈ Vh , u|Γ0 = uD(·, kτ)



. (3.9)

We believe that this approach imitates the behaviour of nature where also minimization at least on a local scale
is relevant.

A compactness and coercivity argument shows that the discrete minimization problem (3.9) has at least one
solution. Without going further into technical details, let us mention that the functionalEk

hτ is locally Lipschitz-
continuous. Consequently, any local minimizer must satisfy the necessary first-order optimality condition that
Clarke’s generalized gradient contains an element perpendicular to {v ∈ Vh; v|Γ0 = 0}, see also [15]. The
reader not familiar with the concept of generalized gradients can equally imagine the following: Smooth the
absolute value in (3.9), derive standard smooth optimality conditions, and then pass to the nonsmooth limit case,
cf. also [63]. In any case, this results precisely in (3.6) and (3.7).

The choice of a minimization algorithm to solve (3.9) is a delicate point because of non-convexity, non-
smoothness and high dimensionality. Here we tested two methods: the simple steepest descent approach (see
e.g. [48]) and the conjugate gradient method by Fletcher/Reeves (see [29]). Both algorithms are implemented in
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such a way that they choose one element from the generalized gradient and then act like in the smooth case. It
turned out that this strategy works reliably in all our numerical experiments.

The steepest descent method can briefly be described by

dj := [Ek
hτ ]′(uj) ,

uj+1 := uj − αjdj
(3.10)

for j = 0, 1, 2, ..., where [·]′ denotes one element of the generalized gradient. The Fletcher/Reeves variant of the
conjugate gradient algorithm is given by

dj := [Ek
hτ ]′(uj) +

‖[Ek
hτ ]′(uj)‖2

2

‖[Ek
hτ ]′(uj−1)‖2

2
dj−1 ,

uj+1 := uj − αjdj

(3.11)

for j = 0, 1, 2, ... with the initial definition d−1 := 0. The step size αj is determined in both cases similarly to
the Armijo method:

α−1 := 1 ,

αj := αj−1 max{2i : i ∈ Z and ∀j ∈ [min(0, i), i] ∩ Z :

Ek
hτ (uj − 2jαj−1dj) ≤ Ek

hτ (uj) − β2jαj−1dj · [Ek
hτ ]′(uj)},

(3.12)

where β ∈ (0, 1) is a fixed parameter. For deriving the inequality in (3.12), we start with the first-order Taylor
expansion of Ek

hτ (at least in the smooth case):

Ek
hτ (uj − 2jαj−1dj) = Ek

hτ (uj) − 2jαj−1dj · [Ek
hτ ]′(uj) + h.o.t. (3.13)

Neglecting the higher order terms, we cannot expect that this equality holds for any step size. But for sufficiently
small step sizes and smooth Ek

hτ we always have

Ek
hτ (uj − 2jαj−1dj) ≤ Ek

hτ (uj) − β2jαj−1dj · [Ek
hτ ]′(uj). (3.14)

Therefore (3.12) means that the new step size αj is determined from the old step size αj−1 by doubling it as
long as the condition (3.14) holds or halving it until (3.14) holds. The whole process is repeated until αj gets
too small or j exceeds a predefined limit.

The steepest descent method turned out to perform much better than the conjugate gradient method. This is
in good agreement with the observations in [17] where basically our problem without viscosity and capillarity
was dealt with for the special smooth case λ� ≡ 0. This higher efficiency of the first, lower-order method might
be explained by the highly oscillating second (and even first) derivative of the energy functional, which makes
the orthogonalization of the search directions with respect to the second derivative questionable.

3.3 Implementation of nonlocal terms

As mentioned above, we chose (2.12) with the kernel (2.16) for the operator A. After discretizing the function
space V to Vh as described in Sect. 3.1 and passing to the minimization problem as described in Sect. 3.2 we end
up with a double integral. Since the integral kernel is nonlocal, a straightforward implementation would have a
complexity of the order O(h−6) for the three-dimensional case. This is computationally too expensive, and we
have to resort to a less expensive approach.

There are many different fields in which similar problems occur. One is the computation of long range forces
inN -body problems from astrophysics and molecular dynamics. Here the Barnes-Hut algorithm (see [36]) or the
fast multipole method by Greengard and Rokhlin (see [30–32]) reduce theO(N2) complexity of the naive direct
computation substantially. Another way is to utilize the panel clustering technique of Hackbusch and Nowak
(see [35,74]), which stems from the area of boundary element methods. It is closely related to the so-called
H-matrices of Hackbusch, see [34]. Furthermore, the skeleton method of Tyrtyshnikov (see [81]) provides a way
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to deal with matrices which come from asymptotically smooth functions like our kernel. Finally one might follow
Brandt and split the kernel into a local and a smooth long range part and then perform a multilevel summation,
see [10,11]. All these approaches can be adapted to our setting. They result in an algorithm with a complexity
of the order O(h−3(log h−1)α) on the expense of an approximation to the exact result with prescribed error.
Hereby α depends on the respective approach.

In the following we chose another way to reduce the complexity which utilizes wavelets (see [75]). In
principle it works as follows: Consider the wavelet representation of the function uh ∈ Vh. It is well known
that a weighted �2-norm of the wavelet coefficients is equivalent up to constants to the norm ‖uh‖W 1+γ,2 . By
means of a Poincaré-like inequality we obtain equivalency to a(∇uh). The idea is now to approximate a(∇uh)
by the weighted �2-norm of the associated wavelet coefficients. This is clearly not an equality, but the qualitative
behaviour of the a-term is retained, such as the compactifying character which it was introduced for. The wavelet
transformation can be performed with complexity O(h−3), so that this approach finally leads to an O(h−3)
algorithm.

Let us go into details. The multivariate wavelet transformation on a simplicial grid is possible but difficult,
see [19]. Therefore we use a tensor product ansatz to further simplify things. First, consider the univariate case
n = 1. The wavelet representation of a function uh ∈ Vh(I) defined on an interval I is given as

uh(x) =
L∑

l=0

∑
k

ul,k
h ψl,k(x). (3.15)

Here ul,k
h ∈ R denote the wavelet coefficients, the subscript l indicates the dilatation and k the translation of

a mother wavelet ψ.1 The maximal level l is denoted by L and depends on h. We chose the following mother
wavelet which comes from the lifting scheme, cf. [79]:

ψ(x) =




− 1
8x− 3

8 if x ∈ [−3,−1] ,
x+ 3

4 if x ∈ [−1, 0] ,
−x+ 3

4 if x ∈ [0, 1] ,
1
8x− 3

8 if x ∈ [1, 3] ,
0 otherwise.

(3.16)

−1 1 2 3−2−3

−1/4

3/4

It is well known (see [46, p. 16] or [60]) that the norm equivalence

‖uh‖2
W 1,2(I) + a(∇uh) = ‖uh‖2

W 1+γ,2(I)
∼=

L∑
l=0

4(1+γ)l
∑

k

|ul,k
h |2‖ψl,k‖2

L2(I) (3.17)

holds within a certain range of γ, which depends on the special choice of the wavelets, here γ ∈ (−1.171, 0.5),
cf. [46, p. 24]. The involved constants are independent of h. Since we are interested in a(∇uh) and not in
‖uh‖2

W 1+γ,2(I), we have to get rid of the term ‖uh‖2
W 1,2(I). A small modification of Lemma 2.1 shows that

‖ · ‖2
W 1+γ,2(I)

∼= a ◦ ∇ if we restrict us to a closed subspace of W 1+γ,2(I) which does not contain the affine
functions (except the zero function of course). Hence we project out the affine functions and pass over to a ◦ ∇.

It turns out to be handy to use the L2-orthogonal projection P to remove the affine functions. The wavelets
we use have two vanishing moments. Thus all ψl,k with l ≥ 1 are L2-orthogonal to the affine functions. The
space of affine functions is exactly span{ψ0,k}. Consequently the wavelet representation of Puh is the wavelet
representation of uh with the coefficients u0,k

h set to zero, and we have

a(∇uh) = a(∇Puh) ∼=
L∑

l=1

4(1+γ)l
∑

k

|ul,k
h |2‖ψl,k‖2

L2(I) . (3.18)

1 Further modifications are necessary near the boundary, see [79].
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To extend this to the multivariate case, we perform a tensor product type splitting

W 1+γ,2(In) = W 1+γ,2(I) ⊗ L2(I) ⊗ L2(I) ⊗ . . .⊗ L2(I)

∩ L2(I) ⊗W 1+γ,2(I) ⊗ L2(I) ⊗ . . .⊗ L2(I)
∩ . . .

∩ L2(I) ⊗ . . .⊗ L2(I) ⊗W 1+γ,2(I)

(3.19)

with the corresponding norm equivalence

‖uh‖2
W 1+γ,2(In)

∼=
∑

l∈{0,1,2,...,L}n

22(1+γ)|l|∞
∑

k

|ul,k
h |2‖ψj,k‖2

L2(In). (3.20)

We filter the affine functions and replace a(uh) by the resulting expression similar to the right hand side of
(3.18) for the numerical calculations.

Of course, the tensor product ansatz poses a restriction on the domain and on the grid. Since our simulations
are based on a cubic domain anyway, this causes no disadvantage.2 Furthermore the tensor product leads to a new
finite element space, namely piecewise multilinear functions on cubes instead of piecewise linear functions on
simplices. But note that the nodewise interpolation between theses FE spaces is a bijective mapping. Furthermore
the resulting seminorms are equivalent with constants independent on h. Hence our simple tensor product
approach only introduces a further constant to our approximation like the one in the first norm equivalence and
is therefore acceptable.

Both the wavelet transformation and the inverse wavelet transformation (which is needed to compute the
gradient of the functional for the minimization routine) can be computed with O(h−3) operations. Thus we
finally get an algorithm with the overall complexity O(h−3) for the computation of an approximation of the
term a(∇u) and its derivative.

3.4 The convergence analysis

Now, after the discussion of the solution procedure and implementational details, we sketch the convergence
analysis of the recursive scheme. To this end, we assume that the extension ūD of uD (cf. the proof of Propo-
sition 2.2) is piecewise affine in time for all considered times steps τ > 0. Furthermore, ūD should belong to
C(0, T ;Vh), which is not a restrictive assumption from the viewpoint of Sect. 4.2.

It was already mentioned in Sect. 3.2 that each arising discrete problem always possesses a solution. Now
we study the convergence of the solutions of the discrete problems. In particular we obtain the existence of a
solution of the continuous problem. Recall that the solution of (3.6) and (3.7) (which may not be unique) was
denoted by {(uk

hτ , ω
k
hτ )}k=0...T/τ . By uhτ we denote its piecewise affine and by ūhτ its piecewise constant

interpolation in time, i.e. uk
hτ = uhτ (kτ) = ūhτ |((k−1)τ,kτ ]. The term ω̄hτ is defined analogously.

Proposition 3.1 Let (2.7), (2.17) and (2.24) hold and let τ be small enough. Then there exists a constant C
which is independent of h and τ so that we have for all approximate solutions uhτ of (3.6) the a priori estimate

‖uhτ‖W 1,2(0,T ;W 1,2
a (Ω;Rn)) ≤ C. (3.21)

Proof. We test (3.6) with vh = uk
hτ − uk−1

hτ − τ ∂
∂t ūD. Using the convexity of ϕ1, the growth conditions (2.24a)

on σ0 and σ1 and Poincaré-like inequalities we obtain the estimate

∫
Ω

ϕ1(∇uk
hτ ) − ϕ1(∇uk−1

hτ ) dx+ 2τµ1a

(
∇uk

hτ − ∇uk−1
hτ

τ

)
+ µ0a(∇uk

hτ ) − µ0a(∇uk−1
hτ )

≤
∫

Ω

σ1(∇uk
hτ ) : (∇uk

hτ − ∇uk−1
hτ ) dx+

〈
σa

(
µ1

∇uk
hτ − ∇uk−1

hτ

τ
+ µ0∇uk

hτ

)
,∇uk

hτ − ∇uk−1
hτ

〉

2 Note that for the case of a more general shape of the domain we could follow [19].



476 M. Arndt et al.

≤ τ

∫
Ω

σ1(∇uk
hτ )) :

∂

∂t
∇ūD −

[
σ0(∇uk

hτ ) +
∑
�∈L

ωk
hτ�λ

′
�(∇uk

hτ )

]
:
[
∇uk

hτ − ∇uk−1
hτ − τ

∂

∂t
∇ūD

]

+ fk
hτ · [uk

hτ − uk−1
hτ − τ ūD] dx

+
∫

Γ1

gk
hτ · [uk

hτ − uk−1
hτ − τ ūD] dS +

〈
σa

(
µ1

∇uk
hτ − ∇uk−1

hτ

τ
+ µ0∇uk

hτ

)
, τ
∂

∂t
∇ūD

〉

≤ Cτ

(
1 +

1
δ

)
+ τ2δ

k∑
i=1

a

(
∇ui

hτ − ∇ui−1
hτ

τ

)
+ τCδa

(
∇uk

hτ − ∇uk−1
hτ

τ

)
+ τµ0a(∇uk

hτ ), (3.22)

where C denotes a generic constant which only depends on the problem data, but not on h and τ . We sum this
inequality over k = 1 . . . N for each N ≤ T/τ and choose δ > 0 so small that the second and the third term
from the last line cancel with terms from the first line. Thus we get

∫
Ω

ϕ1(uN
hτ ) + τµ1

N∑
k=1

a

(
∇uk

hτ − ∇uk−1
hτ

τ

)
+ µ0a(∇uN

hτ ) ≤ C + τµ0

N∑
k=1

a(∇uk
hτ ). (3.23)

For sufficiently small τ the discrete Gronwall inequality shows that
∑N

k=1 a(∇uk
hτ ) ≤ C. So by (3.23) with

N = T/τ we have ∫
Q

a

(
∂

∂t
∇uhτ

)
dxdt ≤ C, (3.24)

and a Poincaré-like inequality gives the desired a priori estimate. ��

Proposition 3.2 Each sequence {(uhn,τn
, ωhn,τn

)}n∈N with hn → 0 and τn → 0 has a weakly × weakly∗

convergent subsequence in W 1,2(0, T ;W 1,2
a (Ω; Rn)) × L∞(Q; RL). The limit of each such subsequence is a

weak solution of (2.21). In particular (2.21) has a weak solution.

Proof. We closely follow the proof of [64, Lemma 2], which is inspired by ideas from [16]. By Proposition 3.1
the sequence {(uhn,τn , ωhn,τn)}n∈N is bounded in W 1,2(0, T ;W 1,2

a (Ω; Rn)) × L∞(Q; RL). From Banach’s
theorem we know that bounded sets in Banach spaces with separable predual are relatively sequentially weakly∗
compact, which implies the existence of the subsequence.

In passing to the subsequence, we assume from now on that the sequence converges to a pair (u, ω) ∈
W 1,2(0, T ;W 1,2

a (Ω; Rn)) × L∞(Q; RL). Because the imbedding

W 1,2(0, T ;W 1,2
a (Ω; Rn)) ↪→ L2(0, T ;W 1,2(Ω; Rn))

is compact, uhn,τn converges strongly to u inL2(0, T ;W 1,2(Ω; Rn)). Since ‖∇ūhnτn −∇uhnτn‖L2(Q;Rn×n) =
O(τ) due to the a priori estimate (3.21) we also have ūhn,τn

→ u strongly in L2(0, T ;W 1,2(Ω; Rn)). From
(3.6) we infer that the discrete solution satisfies

∫ T

0

∫
Ω

(∑
�∈L

ω̄hnτn,�λ
′
�(∇ūhnτn

) + σ(∇ūhnτn
)
)

:∇vhn
− f̄hnτn

· vhn
dx

−
∫

Γ1

ḡhnτn · vhn dS +
〈
σa(µ1

∂

∂t
∇uhnτn + µ0∇ūhnτn),∇vhn

〉
dt = 0 (3.26)

for all vhn ∈ Vhn . We have weak convergence for the linear terms and strong convergence for the nonlinear
terms and thus we directly obtain (2.23a) for all v ∈

⋃
n Vhn and therefore for all v ∈ V by density.

From (3.7) it follows that

∫ T

0

∫
Ω

(ω̄hnτn,� − zhn)
(
∂

∂t
[λ�(∇uhnτn)]τ − vhn

)
≥ 0 (3.27)
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for all vhn
∈ Vhn

and all zhn
∈ Lhn

with zhn
∈ sign vhn

. Here, for a piecewise constant function v̄, the term
[v̄]τ denotes the piecewise affine interpolation such that [v̄]τ (kτ) = v̄|((k−1)τ,kτ). We use (3.26) and (2.23a) to
circumvent the limit process of the product of two weakly or weakly∗, respectively, convergent functions:

lim sup
n→∞

∫
Q

∑
�∈L

ω̄hnτn,�
∂

∂t
[λ�(∇uhnτn)]τ

≤ lim sup
n→∞

∫
Q

∑
�∈L

ω̄hnτn,�λ
′
�(∇ūhnτn) :

∂

∂t
∇uhnτn + Cτn

= lim sup
n→∞

−
∫

Q

σ(∇ūhnτn
) :

∂

∂t
∇uhnτn

+
∫

Q

f̄τn
· ∂
∂t
uhnτn

+
∫

Γ1

ḡτn
· ∂
∂t
uhnτn

−
∫ T

0

〈
σa

(
µ1

∂

∂t
∇uhnτn + µ0∇ūhnτn

)
,
∂

∂t
∇uhnτn

〉

≤ lim sup
n→∞

−
∫

Q

σ(∇ūhnτn
) :

∂

∂t
∇uhnτn

+
∫

Q

f̄τn
· ∂
∂t
uhnτn

+
∫

Γ1

ḡτn
· ∂
∂t
uhnτn

− 2µ1

∫ T

0
a

(
∂

∂t
∇uhnτn

)
dt− µ0a(∇uhnτn(·, T )) + µ0a(∇u0)

≤ −
∫

Q

σ(∇u) :
∂

∂t
∇u+

∫
Q

f · ∂
∂t
u+

∫
Γ1

g · ∂
∂t
u− 2µ1

∫ T

0
a

(
∂

∂t
∇u

)
dt

− µ0a(∇u(·, T )) + µ0a(∇u0)

=
∫

Q

∑
�∈L

ω�λ
′
�(∇u) :

∂

∂t
∇u. (3.28)

Here we used the weak upper semicontinuity of the quadratic form −a. By an appropriate choice of the test
functions we pass from the sum over all � to the single inequalities for each � and finally obtain (2.23b). ��

4 Computational experiments

In the following we apply our model to the cubic to tetragonal transformation in an Indium-Thallium alloy and
present computational experiments for various loading regimes. In Sect. 4.1 and 4.2 we give the material data and
the geometric description of the considered problems. Then, in Sect. 4.3 we discuss the results of our numerical
experiments.

4.1 Material data

The material properties of shape memory alloys are described by the associated stored energy densityϕ : R
3×3 →

R. However, even though up to now already a lot of different materials have been examined both theoretically
and experimentally, the detailed form of the associated ϕ can in general not be found in the literature. A certain
exception is the cubic to tetragonal transformation of In-20.7 at% Tl alloy. Here, Ericksen and James [21,22]
(see also [17,45,49]) used the potential ϕ (dependent on temperature ϑ) in the form

ϕϑ(F ) =
a(ϑ)

6

[(
3C11

trC
− 1

)2

+
(

3C22

trC
− 1

)2

+
(

3C33

trC
− 1

)2
]

+
b

2

(
3C11

trC
− 1

)(
3C22

trC
− 1

)(
3C33

trC
− 1

)

+
c

36

[(
3C11

trC
− 1

)2

+
(

3C22

trC
− 1

)2

+
(

3C33

trC
− 1

)2
]2

+
d

2
(
C2

12 + C2
13 + C2

23 + C2
21 + C2

31 + C2
32
)

+ e(trC − 3)2 (4.1)
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withC = FTF and trC = C11 +C22 +C33. The material constants are a(ϑ) = 0.38+(1.22×10−3)(ϑ−ϑT ),
b = −29.23, c = 562.13, d = 3.26, e = 5.25, (all in GPa) and ϑT = 70◦C. This potential is obviously frame
indifferent in the sense that ϕϑ(RF ) = ϕϑ(F ) holds for allR ∈ SO(3). Its growth as polynomial of degree four
does not fit our data qualification (2.24a). But in our calculations the deformation gradients were always small
and bounded, and the energy density was mostly designed to reflect the material properties for small deformation
gradients. Hence ϕϑ(F ) can be modified for large F such that it grows quadratically as |F | → +∞, and (2.24a)
is fulfilled.

The local minima of ϕϑ are attained at four wells SO(3)Uα:

U1 = diag(η2, η1, η1), (martensite - tetragonal, variant 1) ,
U2 = diag(η1, η2, η1), (martensite - tetragonal, variant 2) ,
U3 = diag(η1, η1, η2), (martensite - tetragonal, variant 3) ,
U4 = I = diag(1, 1, 1) (austenite - cubic) ,

(4.2)

where η1 < 1 and η2 > 1. Both parameters depend on the temperature. They are given in [21] as

η1(ϑ) =
√

1 − ε(ϑ), η2(ϑ) =
√

1 + 2ε(ϑ), ε(ϑ) =
−3b+

√
9b2 − 32a(ϑ)c
8c

. (4.3)

The energies of the wells are mutually equal at the temperature ϑ = 108.92◦C, i.e. austenite is in equilibrium
with martensite. If ϑ < 108.92◦C, martensite dominates, i.e. it has a lower energy than austenite, and vice
versa for ϑ > 108.92◦C. In the following experiments we fix the temperature to ϑ = 20◦C. Consequently the
martensite phase is dominant and ε(ϑ)=̇0.0293.

Next, we design the plastic dissipative mechanism in accordance with Sect. 2. To match the simulation results
to the results of real experiments it would be necessary to identify the transformation energies Eαβ for each
pair (α, β). Unfortunately we do not have them at our disposal, so we assume that they are all equal. For this
it suffices to consider L = {{1}, {2}, {3}, {4}} only. Each λ� is zero in a neighbourhood of the well Uα with
� = {α} and takes the value Λ ≥ 0 in a neighbourhood of the other wells. The decisive criterion for the distance

is the Frobenius norm ‖C‖F =
(∑

i,j c
2
ij

)1/2
of the Cauchy-Green strain tensor C = FTF . Away from the

wells we interpolate with a polynomial to achieve a smooth function. Altogether we use

λ�(F ) = Λ ·




0 if d�(FTF ) ≤ −ε�,

1 if d�(FTF ) ≥ ε�,

1
2

+
3
4
d�(FTF )

ε�
− 1

4

(
d�(FTF )

ε�

)3

otherwise

(4.4)

with

d�(C) = ||C − UT
� U�||2F − min

α�=�
||C − UT

α Uα||2F. (4.5)

Here, the parameter

ε� =
1
2

min
α�=�

||UT
� U� − UT

α Uα||2F (4.6)

describes a suitable tolerance.3 The decision function d�(C) is negative if and only if the Cauchy-Green strain
C is closer to the well � than to any other well. In view of (2.3), the mechanism (4.4)–(4.5) for α �= β results in

Eαβ =
4∑

�=1

|λ�(Uα) − λ�(Uβ)| = Λ+ Λ+ 0 + 0 = 2Λ, (4.7)

3 The non-differentiable function “min” may be smoothed by replacing it with minε(a1, a2, a3) = εln(e−a1/ε + e−a2/ε +
e−a3/ε), where ε > 0. Nevertheless this turned out to be unnecessary for our numerical experiments.



Modelling and numerical simulation of martensitic transformation 479

independent of α and β. Values of Λ of about 1 MJm−3 turned out to be reasonable.
The coefficient µ0 reflects the interfacial stored energy. It is indeed observed that finely twinned martensites

have higher energies than single-phase regions. In such a manner, µ0 could be fitted to the result of an experiment
if available. Here, however, we use µ0 = 0.

For the definition of γ and µ1 we do not have any hint from experiments. We choose γ = 0.25 and µ1 =
10 GPa m2γs for the tensile experiment and µ1 = 100 GPa m2γs for the shear experiment. By this choice the
influence of the viscous term under the given loading regimes does not destroy the stored energy and the rate-
independent dissipation mechanisms which are essential for the hysteretic response we want to simulate. On the
other hand, µ1 is large enough that the regularizing effect of the viscous term appears. In comparison to the case
µ1 = 0 (for which the theoretical justification of the calculations is unclear), we observed a smaller error in the
a posteriori energy balance.

4.2 Geometric data and loading regimes

Let us first remark that the capillarity and viscosity terms determine the length scale of the occuring microstructure
but, beyond that, the length scale of the specimen is not determined by the model. Therefore it makes no sense
to describe the dimensions of the specimen in our numerical experiments in concrete physical units. Instead we
work with dimensionless numbers for the lengths. In the following, let the domainΩ be the unit cube (− 1

2 ,
1
2 )3. In

consistence with common laboratory experiments, we neglect the body forces and the surface pressure, i.e. f = 0
and g = 0. The hard-device loading4 is achieved by controlling the deformation uD on two opposite faces of the
cube Ω, namely Γ0 = {(− 1

2 , x2, x3) ∈ ∂Ω} ∪ {( 1
2 , x2, x3) ∈ ∂Ω}. This corresponds to a (1, 0, 0)-orientation

of the crystal. Two different regimes were tested: tensile and shear loading, cf. Fig. 4.1.
To be more specific, we use

uD(t,−1
2
, x2, x3) =

(
−1

2
+ s(t), x2, x3

)
, uD(t,

1
2
, x2, x3) =

(
1
2

− s(t), x2, x3

)
(4.8)

for the tensile loading experiments (starting with compression) and

uD(t,−1
2
, x2, x3) =

(
−1

2
, x2 + s(t), x3

)
, uD(t,

1
2
, x2, x3) =

(
1
2
, x2 − s(t), x3

)
(4.9)

for the shear loading experiments. The periodic cycling was implemented by a function s(t) with sawtooth form
and amplitude A as shown in Fig. 4.2. Note that this load uD satisfies the smoothness condition (2.24c).

In all experiments the crystal lattice is oriented parallel to the coordinate axes. The starting value u0 is the
randomly disturbed identity mapping.

Fig. 4.1. Schematic illustration of hard-device loading conditions uD:
tensile and shear loading

t

0.25 0.5 0.75 1 1.25 1.5 1.75 2

−A

A
s(t)

Fig. 4.2. The periodically cycling s = s(t)

4 Let us remark that in laboratory experiments hard loading device boundary conditions are just as difficult to achieve as purely
load controlled experiments due to the relatively low stiffness of every loading device.
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Fig. 4.3. Stress/deformation diagram for the tensile loading experiment. Σ in GPa, Λ in MJm−3, µ1 in GPa m2γs

Fig. 4.4. Deformed specimen for tensile loading experiment at times t = 0, t = 0.0375, t = 0.25 and t = 0.75 for Λ = 0

4.3 Responses on various loading regimes

The results of our computational experiments are, like the results from laboratory experiments, quite complex
and it is not easy to select and display the most representative features. In the following we display averaged
stress/deformation diagrams for different values ofΛ, the time evolution of volume fractions of certain phases, the
relative error in the energy balance and some snapshots of the InTl specimen under loading. For all experiments
we fix the mesh size h in the space discretization to h = 1/16 and the time step size to τ = 1/800, i.e. 800 steps
per loading cycle.

Tensile Loading Experiment: First, we present the results for the tensile loading case. The experimentally
most wanted output are the stress/deformation diagrams. To demonstrate the influence of the parameter Λ (see
(4.5)–(4.7)) we consider two values Λ = 3 MJm−3 and Λ = 1 MJm−3. For comparison we performed the
calculations also for Λ = 0 MJm−3, i.e. without plastic-like dissipation. There are nine possible diagrams, each
displays one component of the 3 × 3-tensor Σ :=

∫
Ω
σ(∇u) dx. In Fig. 4.3 we present the x1-component of

the stress in x1-direction for different values of Λ. We see that the size of Λ clearly influences the hysteresis
behaviour of the process. While forΛ = 0 there is naturally no hysteresis effect to be expected, we clearly obtain
for Λ = 1 MJm−3 a hysteresis loop. For unphysically large values of Λ such as Λ = 3 MJm−3 the hysteresis
loop of course increases, but shows unnatural effects. The Σ22-component is also displayed. The results for the
Σ33-component were analogous to that for theΣ22-component. The remaining six stress components are nearly
zero. Note that the area of the hysteresis loop in the Σ11 diagram corresponds to the amount of the dissipated
energy spent for all phase transformations and for viscous damping, see the energy balance (2.28).

To get an impression of the evolution in time, we present the deformed specimen at four different time steps.
The austenite phase is indicated in white, the martensite phases are indicated in different gray shades.
An interesting information, usually not available in laboratory experiments, is the time evolution of the volume
fractions of the particular phases. We present it in Fig. 4.5 for Λ = 3 MJm−3. The phase fraction diagrams
give a good hint about qualitative properties of the specimen. For the tensile loading experiment, we see from
Fig. 4.5 that the austenite phase is dominant around t = 1, 2, 3, . . . (not t = 0 because of the random starting
value), compare with the first cube in Fig. 4.4. Then around t = 0.1 . . . 0.4, t = 1.1 . . . 1.4, . . . the phase fraction
diagram indicates mainly an approximately equal mixture of two martensite phases, which appears in form of
different microstructures, compare the second and third cube. Finally around t = 0.6 . . . 0.9, t = 1.6 . . . 1.9, . . .
the phase fractions indicate a mostly pure third austenite phase, see the fourth cube. We can illustrate this by the



Modelling and numerical simulation of martensitic transformation 481

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
0%

25%
50%
75%

100%
0%

25%
50%
75%

100%
0%

25%
50%
75%

100%
0%

25%
50%
75%

100%

cycles

m
ar

t. 
1

m
ar

t. 
2

m
ar

t. 
3

au
st

.

Fig. 4.5. Phase fractions for tensile loading experiment for Λ = 3 MJm−3, µ0 = 0 GPa m2γ , µ1 = 10 GPa m2γs

diagram

A
↗
↖

M2+M3

M1

↘
↙ A. (4.10)

A direct martensite–martensite transformation almost never occurs, instead we observe martensite–austenite
transformations only.

Note that in the numerical simulation the energy balance (2.28) only needs to be satisfied approximately.
To check it we relate its numerical error to the total amount of energy exchanged in the system. This gives an
interesting a posteriori information about the discretization error and the quality of the minimization procedure
solving (3.9). To be precise, the relative error at time k is defined by

Ek
rel =

∣∣∣∣ Ek − E0 +Dk + V k −W k

Ek − E0 +Dk + V k +W k
abs

∣∣∣∣ (4.11)

with

Ek =
∫

Ω

ϕ(∇uk
hτ ) dx+ µ0a(∇uk

hτ ), (stored energy) ,

Dk =
k∑

t=1

∑
�∈L

∫
Ω

|λ�(∇ut
hτ ) − λ�(∇ut−1

hτ )| dx, (dissipation) ,

V k = 2µ1

k∑
t=1

a

(
∇ut

hτ − ∇ut−1
hτ

τ

)
, (viscosity) , (4.12)

W k =
k∑

t=1

〈
σν(∇uk

hτ ), ut
hτ − ut−1

hτ

〉
, (external work) ,

W k
abs =

k∑
t=1

∣∣〈σν(∇uk
hτ ), ut

hτ − ut−1
hτ

〉∣∣ , (absolute external work) .

The relative error in the energy balance is displayed in Fig. 4.6. As expected, a higher contribution of the
dissipative mechanism introduces an additional error in the balance. Nevertheless, even for Λ = 3 MJm−3 the
relative error is only about 1% which is quite acceptable.
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Fig. 4.7. Stress/deformation diagram for Σ12, energy balance for shear experiment, Λ = 3 MJm−3, µ0 = 0 GPa m2γ , µ1 =
100 GPa m2γs
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Fig. 4.8. Phase fractions for shear experiment, Λ = 1 MJm−3, µ0 = 0 GPa m2γ , µ1 = 100 GPa m2γs

Shear Loading Experiment: We now briefly present the results for the shear loading case. In Fig. 4.7 (left) we
give the stress/deformation diagram ofΣ12 for Λ = 3 MJm−3. Again we observe a substantial hysteresis effect.
The corresponding relative error in the energy balance is given in Fig. 4.7 (right). It stays well below 0.4%.

The phase fraction diagram for this experiment with Λ = 1 MJm−3 is shown in Fig. 4.8. Note that the cycles
of phases are not aligned with these of the boundary values, but are a little bit delayed. This effect is introduced
by the dissipative mechanism, which remembers to some extent the previous configuration. The phase fraction
diagram reveals that the martensitic phases M2 and M3 are mostly not present. The corresponding transformation
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process can be described by the diagram

A
↗
↖

M1

M1

↘
↙ A. (4.13)

Note that we again observe only martensite–austenite transformations and no direct martensite–martensite
transformations.

5 Concluding remarks

Based on [64,65,71], we developed a continuum-mechanical model for isothermal laboratory experiments of
single-crystal shape-memory alloys. Beside capillarity- and viscosity-like terms it involves a phenomenological
rate-independent dissipation mechanism which incorporates the energy dissipation of phase transformations. We
discretized the model with finite elements and applied wavelet techniques for the higher order terms. Supported
by a convergence analysis, we performed three-dimensional numerical experiments for an InTl single-crystal
under hard-device loading.

The numerical experiments indicate that the model is capable to simulate the behaviour of martensitic trans-
formations in shape-memory alloys. This sort of calculations can complement laboratory experiments by data
which is otherwise hardly or not at all accessible, like for example the volume fractions or stresses inside the
specimen. To some extent, it seems possible to run simulations for experiments which cannot be performed in
real laboratories and to predict the behaviour of new materials.
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