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Abstract

In the following paper we study parametric functionals. First we in-
troduce a generalized mean curvature (so called F -mean curvature). This
enables us to describe extremals of parametric funcionals as surfaces of
prescribed F -mean curvature. Furthermore we give a differential equation
for arbitrary immersions generalizing ∆X = HN and apply this equation
to surfaces of vanishing and prescribed F -mean curvature. Especially we
prove non-existence results for such surfaces generalizing Theorems by
Hildebrandt and Dierkes [3], [6].

Introduction

Consider an n-dimensional minimal immersion X in Rn+1. If the boundary of
X has parts in the two disjoint connected components of a cone K congruent
to

Kn = {(y1, . . . , yn+1) ∈ Rn+1 | y2
1 + . . .+ y2

n − (n− 1) y2
n+1 < 0}

and if the boundary is fully contained in K, then X cannot be connected. This
is a result of Dierkes [3]. The idea of the proof is due to Hildebrandt (see [6],
where he obtains this result in the case n = 2) and is based on the maximum
principle for subharmonic functions.
Indeed, using the (minimal surface-) equation ∆X = 0, where ∆ is the Laplace-
Beltrami operator, one shows for the polynomial t(y) = y2

1+. . .+y2
n−(n−1) y2

n+1

the inequality

∆ [t(X)] ≥ 0 .
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The aim of this paper is to generalize the results of Dierkes to extremals of
parametric functionals. Consider a C2-immersion X : M → R

n+1 of an n-
dimensional oriented manifold M into Rn+1 with normal N and the induced
area element dA. Then a parametric functional F is defined by

F(X) :=
∫
M

F (X,N) dA , (1)

where F : Rn+1 × Rn+1 → R is smooth and satisfies a homogeneity condition
in the second entry, i.e.

F (y, tz) = t F (y, z)

for all (y, z) ∈ Rn+1 × (Rn+1 − {0}) and t > 0. This includes, for example,
minimal surfaces and surfaces of prescribed mean curvature.
At first, we give an appropriate form of the Euler equation of (1). B. White
considered in [9] parametric functionals (also for surfaces of higher codimen-
sion), expressing the Euler equation in terms of the non-parametric integrand
associated with F . In this paper we only deal with the parametric integrand F
itself. In fact, we prove

Theorem 1 Let X : M → R
n+1 be an immersion of codimension 1 and F be

an integrand of class C2(Rn+1 × Sn)1. If X is an extremal of F , we have for
the F -mean curvature HF of X:

HF =
n+1∑
i=1

Fyizi(X,N) .

The F -mean curvature is a linear combination (depending on F ) of the eigen-
values of the shape operator S (see Definition 1.3). For the area integrand
F (y, z) = |z| one regains the classical mean curvature H = −trS.
In the special case of integrands with Fy = 0, this is a result of K. Räwer [7].
The next step consists of a generalization of the equation ∆X = HN , where X
is assumed to be an immersion. The following theorem shows that it is possible
to give a similar equation adapted to the integrand F :

Theorem 2 Let F ∈ C3(Rn+1 × Sn) be a parametric integrand and X ∈
C2(M,Rn+1) be a C2-immersion. Then there is a second order differential
operator ΘF such that the F -mean curvature is expressed by

ΘFX = HFN . (2)

Furthermore we have the identity ΘF = ∆ in the special case of the area inte-
grand F (y, z) = |z|.

1We will use the convention that a parametric integrand F is of class Ck(Rn+1 × Sn) if
F ∈ C0(Rn+1 × Rn+1) ∩ Ck(Rn+1 × (Rn+1 − {0})).
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It turns out that the operator ΘF is elliptic if the integrand F itself is elliptic
(see Definition 2.2).
Therefore equation (2) enables us in the elliptic case to prove a-priori estimates
as for example the convex-hull property for surfaces of vanishing F -mean cur-
vature (see Theorem 2.3 and Theorem 2.4).
Furthermore it is possible to apply the methods of Hildebrandt and Dierkes
to prove the main result Theorem 2.5. In this Theorem we give a sufficient
condition for immersed surfaces X for the validity of

ΘF [t(X)] ≥ 0 ,

where t is given by t(y) = y2
1 + . . .+ y2

n − (n− 1) b y2
n+1 and b is an appropriate

positive number. As a consequence of Theorem 2.5 we obtain a nonexistence
result for F-extremals (Corollary 2.7).
Corollary 2.8 treats surfaces of vanishing F -mean curvature. In the proof of
this Corollary one encounters the problem that the F -mean curvature is not
invariant under a rotation of the surface. Therefore, we modify the integrand
by kind of a “translation” and “rotation”, i.e. for p ∈ Rn+1 and Q ∈ O(n) we
consider

F̃ (ỹ, z̃) := F (QT ỹ + p,QT z̃) .

The translated and rotated surface then has vanishing F̃ -mean curvature. Thus,
we can assume a normed geometrical situation. Now we only need to apply the
maximum principle. Our results contain Theorems 2 and 3 of [3] as special
cases.
For further remarks on the literature we refer to [6] and [3].

1 First variation and a differential equation for
immersions

Let Mn = M be an orientable manifold of dimension n and X : M → R
n+1 be

an immersion of class C2. We obtain the induced metric

g(V,W ) := 〈DX(V ), DX(W )〉 for V,W ∈ TpM

and the normal mapping
N : M → Sn .

Consider now the parametric variational integral

F(X) =
∫
M

F (X,N) dA , (3)

where dA is the volume form. The integrand F is assumed to satisfy the homo-
geneity condition

F (y, tz) = t F (y, z), (4)

3



for all (y, z) ∈ Rn+1 × Rn+1 and t > 0. In the following we say that F is a
parametric integrand if (4) is valid. Furthermore, it will always be assumed that
F ∈ C2(Rn+1 × Sn).
At first we compute the first variation of X in the direction Ξ, i.e. consider
Xε = X + Z(ε, · ), where Z : (−ε0, ε0) × M → R

n+1, ε0 > 0, has compact
support and

∂

∂ε
Z(0, · ) = Ξ .

By the area formula (see [8, p.47]) the first variation is given by

δF(X,Ξ) =
d

dε |ε=0

∫
M

F (Xε, Nε) JΦε dA , (5)

where JΦε = 1 + εdiv Ξ + o(ε) .

Lemma 1.1 The normal mapping Nε of Xε satisfies

∂

∂ε |ε=0
Nε = −DX(gradϕ) +DN(V ) ,

where V ∈ TpM and ϕ are defined by the decomposition of Ξ in tangential and
normal part:

Ξ = Ξtan + ΞN =: DX(V ) + ϕN . (6)

Proof. Starting with the observation that ∂εNε is a tangent vector of Xε, we
obtain

∂εNε = −gkjε 〈Nε, ∂j∂εXε〉 ∂kXε ,

leading to
∂

∂ε |ε=0
Nε = −gkj 〈N, ∂jΞ〉 ∂kX .

Here and in the following, the usual summation convention is used. We derive
from (6)

∂

∂ε |ε=0
Nε = −gkj∂jϕ∂kX − gkj 〈N, ∂jDX(V )〉 ∂kX

= −DX(gradϕ) + gkj g

(
S
∂

∂xj
, V

)
∂kX

= −DX(gradϕ) +DX(SV ) ,

with the shape-operator S : TpM → TpM defined by DN =: DX ◦ S.

2

The following formula of integration by parts for non-tangential vector fields is
proved in [2].
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Lemma 1.2 Let ϕ ∈ C∞0 (M), Z ∈ C1(M,Rn+1), then∫
M

〈Z,DX(gradϕ)〉 dA = −
∫
M

ϕ [divZ + 〈Z,N〉H] dA ,

where H := −trS denotes the mean curvature of X.

Using Lemma 1.1 and (5) we may derive a formula for the first variation:

δF(X,Ξ) =
∫
M

〈Fy(X,N),Ξ〉+ 〈Fz(X,N), DX(SV − gradϕ)〉

+F (X,N) div Ξ dA

=
∫
M

〈Fy,Ξ〉+ 〈Fz, DX(SV − gradϕ)〉+ F div V − ϕF H dA ,

taking into consideration the fact that divN = −H. Partial integration (see
Lemma 1.2) leads to

δF(X,Ξ) =
∫
M

〈Fy,Ξ〉+ 〈Fz, DX(SV )〉+ ϕdivFz

+ϕ 〈Fz, N〉 H − g(gradF, V )− ϕF H dA

=
∫
M

〈Fy,Ξ〉+ 〈Fz, DX(SV )〉

+ϕ divFz − g(gradF, V ) dA .

The last equation is valid because of the homogeneity of F , which implies
Fz(y, z) z = F (y, z). The term g(gradF, V ) can be expressed as follows:

g(gradF, V ) = 〈DX(gradF ), DX(V )〉
=

〈
gij 〈Fy, ∂iX〉 ∂jX,DX(V )

〉
+
〈
gij 〈Fz, ∂iN〉 ∂jX,DX(V )

〉
= 〈Fy, DX(V )〉+ 〈Fz, DX(SV )〉 ,

and therefore:

δF(X,Ξ) =
∫
M

〈Fy,Ξ−DX(V )〉+ ϕ divFz dA

=
∫
M

ϕ [ 〈Fy, N〉+ divFz ] dA .

Here we see that the first variation of F is independent of tangential variations.
One obtains as Euler equation

divFz + 〈Fy, N〉 = 0 . (7)

Choosing an orthonormal basis {e1, . . . , en} of TpM , one has

divFz = 〈ei Fz, DX(ei)〉
= 〈FzyDX(ei), DX(ei)〉+ 〈FzzDX(Sei), DX(ei)〉 .
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Because of the homogeneity of F the equality Fzz(y, z) z = 0 is valid, i.e.

Fzz(y, z) : z⊥ → z⊥ for each z ∈ Rn+1 − {0} .

Therefore, the linear symmetric mapping

AF : TpM −→ TpM

V −→ DX−1 Fzz(X,N)DX(V )

is well defined. In this notation, the Euler equation (7) looks like:

tr (AF ◦ S) + 〈FyzDX(ei), DX(ei)〉+ 〈Fy, N〉 = 0 .

Definition 1.3 For a parametric integrand F ∈ C2(Rn+1×Sn) and an immer-
sion X : M → R

n+1 of class C2(M,Rn+1)

HF := −tr (AF ◦ S)

is the F -mean curvature of X.

Taking into consideration the relation Fyz(X,N)N = Fy(X,N) that is valid on
account of the homogeneity of F we arrive at:

HF =
n+1∑
i=1

Fyizi(X,N) ,

because {DX(e1), . . . , DX(en), N} is an orthonormal basis of Rn+1.
Thus, Theorem 1 is proved and we see that extremals of (3) are in a sense
surfaces of prescribed F -mean cuvature.
Now we want to derive an equation for an immersion X generalizing the equation

∆X = HN ,

where ∆ = div grad is the Laplace-Beltrami operator of X. To this aim, let
U, V ∈ TpM and consider the identity:

g(∇U (AF gradϕ), V )
= U(g(AF gradϕ, V ))− g(AF gradϕ,∇UV )
= U(dϕ(AF V ))− dϕ(AF ∇UV ) , (8)

where ∇ denotes the Levi-Civita connection. With X = (xi)n+1
i=1 and DX =

(dxi)n+1
i=1 , equation (8) leads to

g(∇U (AF gradX), V )
= U(DX(AF V ))−DX(AF ∇UV )
= DX(∇U (AF V )) + 〈U(DX(AF V )), N〉N −DX(AF ∇UV ) , (9)
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on account of the characterization of ∇ by: DX(∇UV ) = [U(DX(V ))]tan.
Finally we arrive at:

g(∇U (AF gradϕ), V )
= DX(∇UAF V ) +DX(AF ∇UV )
− 〈DX(AF V ), DN(U)〉N −DX(AF ∇UV )

= DX(∇UAF V )− g(AF V, S U)N . (10)

Choosing an orthonormal basis {e1, . . . , en} ⊂ TpM , equation (10) leads to

div (AF gradX) = g(∇ei(AF gradX), ei)
= DX(∇eiAF ei)− g(AF ei, S ei)N
= DX(divAF )− tr (AF S)N , (11)

because of the symmetry of AF or S. This motivates the following

Definition 1.4 Let F ∈ C3(Rn+1 × Sn) be a parametric integrand and X :
M → R

n+1 be a twice differentiable immersion. The operator

∆F := div (AF grad · )

is the F -Laplace-Beltrami operator of X. Furthermore we define

ΘF := ∆F − divAF .

Using this operator, we can rewrite (11) in a shorter form. An immersed surface
X : M → R

n+1 satisfies the equation

ΘFX = HFN , (12)

and so Theorem 2 is proved.

2 Enclosure properties of F-extremals

Lemma 2.1 Using the notation

aij = g

(
AF

∂

∂xi
,
∂

∂xj

)
the F -Laplace-Beltrami operator is expressed in local coordinates as

∆F =
1
√
g
∂i(
√
ggijajkg

kl∂l ) .
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The proof of the above lemma is a direct consequence of the equation

AF gradϕ = gij∂iϕ

(
AF

∂

∂xj

)
= gijajkg

kl∂iϕ
∂

∂xl

and the representation of div in coordinates (see e.g. [1, Ch.1]).

Definition 2.2 A Lagrangian F = F (y, z) is called elliptic, if

Fzz(y, z) : z⊥ → z⊥

is a positive definite linear mapping for all y ∈ Rn+1 and all z ∈ Rn+1 − {0}.

From Lemma 2.1 we obtain the ellipticity of ∆F and ΘF if F is a parametric,
elliptic integrand.
Now we consider M as a manifold with boundary, i.e. M = M ∪ ∂M . Further-
more let M = X(M) be the image of M under X and ∂M = X(∂M). From
Lemma 2.1 we obtain

Theorem 2.3 (Convex-hull property)
Let F ∈ C3(Rn+1 ∩Sn) be an elliptic, parametric Lagrangian. If the immersion
X ∈ C0(M,Rn+1) ∩ C2(M,Rn+1) has vanishing F -mean curvature then

M⊂ conv(∂M) ,

where conv Σ denotes the convex hull of a set Σ.

Proof. The operator ΘF is elliptic by assumption. For a ∈ Rn+1 and b ∈ R let
t be the linear function

t(y) := 〈a, y〉+ b , y ∈ Rn+1 .

Then we have
ΘF [t(X)] = 0 .

Because of the strong maximum principle (see [5, p.32]) the following implication
is true:

t(X)|∂M ≤ 0 =⇒ t(X) ≤ 0 on M .

2

In the following we use the abreviation |V |2F := g(AF V, V ) for V ∈ TpM .
Furthermore let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of AF respectively
Fzz(X,N). The parametric integrand is again assumed to be elliptic, i.e. λ1 > 0.
The following remark is due to Dierkes [3]: Let P : Rn+1 → N(q)⊥ be the
orthogonal projection on DX(TqM) and pij be the matrix representation of
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P with respect to the canonical basis of Rn+1. Then we have pii = |gradxi|2
leading to

n+1∑
i=1

|gradxi|2 = n . (13)

To derive further enclosure theorems, we consider instead of a linear function
quadratic polynomials. Our first result belonging to quadratic polynomials is:

Theorem 2.4 Let X : M → R
n+1 be an F-extremal of class X ∈ C0(M,Rn+1)∩

C2(M,Rn+1). If

sup
(y,z)∈Rn+1×Sn

|y|

∣∣∣∣∣
n+1∑
i=1

Fyizi(y, z)

∣∣∣∣∣ ≤ n inf
(y,z)∈Rn+1×Sn

λ1 (14)

then ∂M ⊂ Br(0) implies M ⊂ Br(0), where Br(0) is the closed ball of radius
r with center 0.

Proof. We consider for y = (y1, . . . , yn+1) the polynomial t(y) = y2
1 + . . . y2

n+1

and find for ΘF [t(X)] using (13):

ΘF [t(X)] = 2
n+1∑
i=1

|gradxi|2F + 2 〈X,ΘFX〉

≥ 2λ1

n+1∑
i=1

|gradxi|2 − 2|HF ||X|

= 2nλ1 − 2

∣∣∣∣∣
n+1∑
i=1

Fyizi(X,N)

∣∣∣∣∣ |X| .
Now, condition (14) implies ΘF [t(X)] ≥ 0. The maximum principle gives the
desired result.

2

For a proof of an enclosure theorem implying a nonexistence result we set

t(y) = y2
1 + . . .+ y2

n − cy2
n+1 ; c > 0 .

Then any immersion X ∈ C2(M,Rn+1) of F -mean curvature HF satisfies:

1
2

ΘF [t(X)] = |gradx1|2F + . . .+ |gradxn|2F − c|gradxn+1|2F
+HF x1N1 + . . .+HF xnNn − cHF xn+1Nn+1

≥ λ1 [|gradx1|2 + . . .+ |gradxn|2]− c λn|gradxn+1|2

− |HF |
√
x2

1 + . . .+ x2
n + c2x2

n+1 .

Using equation (13) we obtain
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1
2

ΘF [t(X)] ≥ λ1(p11 + . . .+ pnn)− c λn pn+1n+1

− |HF |
√
x2

1 + . . .+ x2
n + c2x2

n+1

= λ1 (p11 + . . .+ pnn + pn+1n+1)− (λ1 + cλn)pn+1n+1

− |HF |
√
x2

1 + . . .+ x2
n + c2x2

n+1

≥ (n− 1)λ1 − cλn − |HF |
√
x2

1 + . . .+ x2
n + c2x2

n+1 . (15)

Setting c =: (n− 1) b, b ∈ (0, 1], one can rewrite (15):

1
2

ΘF [t(X)] ≥ (n− 1)

[
λ1 − bλn − |HF |

√
x2

1 + . . .+ x2
n

(n− 1)2
+ b2x2

n+1

]
.

Thus we arrive at

Theorem 2.5 Let X : M → R
n+1 be a C2-immersion of F -mean curvature

HF and F be an elliptic, parametric integrand. Then we have for the quadratic
polynomial t(y) = y2

1 + . . .+ y2
n − (n− 1)b y2

n+1 the relation

ΘF [t(X)] ≥ 0 ,

if

bλn + |HF |

√
x2

1 + . . .+ x2
n

(n− 1)2
+ b2x2

n+1 ≤ λ1.

We obtain the following corollaries. The suppositions of Theorem 2.5 are always
assumed to be valid; moreover let

Kb := {(y1, . . . , yn+1) ∈ Rn+1 | y2
1 + . . .+ y2

n ≤ (n− 1)b y2
n+1}

and K±b denote the two connected components of Kb − {0}.

Corollary 2.6 Assume that for the surface X the inequalities

q := sup
M
|X| |HF | < inf

M
λ1 and

b := inf
M

[ (λ1 − q)/λn ] > 0

are true. Then for t(y) := y2
1 + . . .+ y2

n− (n− 1)b y2
n+1 we have ΘF [t(X)] ≥ 0 .

If ∂M ⊂ Kb, ∂M ∩ K+
b and ∂M ∩ K−b are nonempty, then M cannot be a

connected manifold.
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Corollary 2.7 Suppose that the elliptic, parametric integrand F fulfills

q := sup
(y,z)∈Rn+1×Sn

|y|

∣∣∣∣∣
n+1∑
i=1

Fyizi(y, z)

∣∣∣∣∣ < inf
(y,z)∈Rn+1×Sn

λ1 ,

where λ1 is the smallest eigenvalue of Fzz(y, z). Then for any F-extremal X
we have the relation ΘF [t(X)] ≥ 0 if

b := inf
(y,z)∈Rn+1×Sn

λ1 − q
λn

is positive ( t(y) = y2
1 + . . .+ y2

n − (n− 1)b y2
n+1 ).

Furthermore we can state: If ∂M is contained in Kb and ∂M has parts in the
two connected components K±b , then M is not connected.

In the following corollary, we focus on surfaces of vanishing F -mean curvature.

Corollary 2.8 Let X : M → R
n+1 be a connected immersion of vanishing F -

mean curvature and S1, S2 ⊂ Rn+1 be compact sets. Assume ∂M ⊂ S1 ∪ S2,
∂M∩ S1 and ∂M∩ S2 are both nonempty. Under the condition

b := inf
(y,z)∈Rn+1×Sn

λ1

λn
> 0 , (16)

we have:

(i) If S1, S2 are closed balls, i.e. S1 := Br1(X1), S2 := Br2(X2) and R :=
|X1 −X2| then R can be estimated as follows

R ≤

√
(n− 1)b + 1

(n− 1)b
(r1 + r2) .

(ii) Let S1, S2 be arbitrary with diameter d1, d2 and assume that they are
seperated by a slab of positive width r; this implies

r ≤

√
2 (1 + (n− 1)b) (n+ 1)

(n− 1) (n+ 2) b
(d1 + d2) .

(iii) If S1, S2 are two n-dimensional discs with centers X1, X2 and radii r1, r2

respectively that are contained in parallel hyperplanes of distance r, then
the sum of the radii is estimated by

r1 + r2 ≥

√
(n− 1) b

(
r2 +

d2

1 + (n− 1)b

)
,

where R := |X1 −X2| and d :=
√
R2 − r2.
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Proof. We want to examine translations and rotations of X. To this aim,
consider Q ∈ SO(n + 1), p ∈ Rn+1 and set X̃ := Q (X − p). In general it is
not true that the F -mean curvature of X̃ vanishes. Therefore we look at the
following integrand:

F̃ (ỹ, z̃) := F (QT ỹ + p,QT z̃) .

For F̃ we easily see:

F̃z̃z̃(ỹ, z̃) = QFzz(QT ỹ + p,QT z̃)QT .

We obtain for the F̃ -mean curvature of X̃:

HF̃ (X̃) = g̃ij
〈
F̃z̃z̃(X̃, Ñ) ∂iÑ , ∂jX̃

〉
= gij

〈
QFzz(QT Q(X − p) + p,QT QN)QT ∂i(QN), ∂j(Q(X − p))

〉
= gij 〈Fzz(X,N) ∂iN, ∂jX〉 = HF (X) = 0 .

Note that the real number b in (16) is the same for F and F̃ respectively.
From the above considerations we infer that in case (i) we can assume Br1(X1)
to be contained in the upper connected component of Kb−{0} and Br2(X2) to
be contained in the lower one, if

R >

√
(n− 1)b + 1

(n− 1)b
(r1 + r2) .

Thus Corollary 2.6 shows that (i) is true. Using the theorem of Jung [4, p.200]
we see that (ii) is nothing else than a special case of (i).
For a proof of (iii) we only have to apply the “disc-separating Theorem” cited
in [3, p.211].

2

Remark: Note, that the eigenvalues λ1, . . . , λn of Fzz coincide in the case of
the area functional. That means b = (1 − q) for Corollary 2.6 and b = 1 for
Corollary 2.8; thus we regain the results of Dierkes [3].
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