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Abstract

In this paper we consider parametric integrals F with elliptic inte-
grands depending on the surface normal. The main result is a stability
criterion for F-extremal immersions, containing the result of Barbosa and
do Carmo [1] as a special case. Using similar techniques we are also able
to show a condition for instability. The last section contains a simple
proof of the fact that the surface normal of F-extremals is topologically
equivalent to a holomorphic function.

AMS Classification: 35J50, 49Q10, 53C42

1 Introduction

Since the last century, mathematicians have tried to find criteria for sta-
bility and instability of a given minimal surface. First important criteria
of stability and instability were proven by Schwarz (for a survey of his
results concerning stability of minimal surfaces see [9, pp. 90-116]).
He showed that a minimal surface is stable if its spherical image is fully
contained in a half-sphere [9, p. 99].
In 1976, Barbosa and do Carmo were able to generalize this criterion
considerably. They proved that if the spherical image of a given minimal
surface has area less than 2π, the surface is stable [1].
Barbosa and do Carmo generalized this result in several directions as e.g.
for different target manifolds and for general dimensions [2].
Ruchert proved a similar criterion for the case of surfaces of constant mean
curvature [11].
In [7], Fischer-Colbrie and Schoen were able to give a shorter proof of
the result of Barbosa and do Carmo [1]. Here we will follow the idea of
Fischer-Colbrie and Schoen to prove a more general theorem for critical
points of parametric functionals. In our context a parametric functional is
defined for an immersion X : M → IR3 with normal mapping N : M → S2

by

F(X) :=

∫
M

F (N) dA,

where M is a two dimensional, orientable manifold.
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The integrand F : IR3 → IR is a 1-homogeneous function, i.e. F (tz) =
tF (z) for all t > 0. Immersions satisfying the Euler equation of F are
called F-extremals or F-minimal surfaces.
Furthermore we call D ⊂ M a stable domain of an F-extremal X if for
all ϕ ∈ C∞0 (D) with ϕ 6≡ 0 the second variation

δ2F(X,ϕ) =
d2

dε2
F(Xε)|ε=0, Xε = X + εϕN,

is positive (Definition 4.1).
In this paper we only deal with elliptic integrands. Ellipticity means that

Fzz(z) : z⊥ → z⊥

is a positive definite endomorphism of z⊥ for all z ∈ IR3 − {0}.
Here we state our main result:

Theorem 1.1 Let X : M → IR3 be an F-extremal immersion of an
elliptic integrand F. If the area of the spherical image of a smooth domain
D ⊂ M is smaller than a positive number aF depending on F , then D is
a stable domain of X.
In the case of F (z) = |z|, the number aF is 2π. Furthermore, aF depends
continuously on Fzz w.r.t. C0(S2).

Using similar techniques as in the proof of Theorem 1.1 we can also prove
Theorem 4.1, a generalization for F-extremals of a Schwarz criterion for
instability (see [1, Theorem 2.7]).
The paper is organized as follows:
In section 2 we define the notion of a degenerate metric g̃ on a Rieman-
nian manifold (M, g) and give important properties of them. Degenerate
metrics g̃ are allowed to have isolated singularities and g and g̃ are related
by the equivalence given in Definition 2.1. One example of such a degene-
rate metric is gN (V,W ) := g(DN(V ), DN(W )) for a minimal immersion
X with canonical metric g and normal mapping N (in fact gN = −Kg,
where K is the Gauß-curvature).
In section 3 we will study similar basic properties of parametric func-
tionals. Especially we will see that for F-extremals, gN generally is not
conformal as in the minimal surface case but still degenerate in the sense
of Definition 2.1.
In section 4 we prove the main result Theorem 1.1. First we give an
estimate of the second variation δ2F , showing a connection between sta-
bility and eigenvalue problems for the Laplacian ∆S2 on the sphere S2

(Proposition 4.1):

δ2F(X,ϕ) ≥ CF
∫
M

|gradNϕ|2N − 2cFϕ
2 dAN . (1)

Here cF ≥ 1 and CF are constants depending on F . The subscript N
indicates a relation to gN . Now we use a Faber-Krahn argument to show
that the right-hand side of (1) is positive. To this aim we take a first
(positive) eigenfunction u of ∆S2 of the spherical image of a domain D,
i. e. :

∆S2u+ µ1u = 0.
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Lifting this equation onto M we obtain a positive function v on M (be-
cause N is an open mapping) satisfying outside the singularities of gN :

∆Nv + µ1v = 0. (2)

At this point it is crucial that gN is a degenerate metric. Using Proposition
2.1, a generalization of [7, Corollary 1], equation (2) implies

∫
|gradNϕ|2N−

µ1ϕ
2 dAN > 0 for all ϕ ∈ C∞0 (D) and ϕ 6≡ 0. Now we can choose aF

dependent on cF such that µ1 > 2cF .
In the above reasoning we have used that N is an open mapping. This
was proven by Sauvigny [12, p. 94]. As a by-product of our considerations
we can give a simple proof of the fact that for F-extremals N is a local
branched covering. This is the content of section 5.

The author would like to thank the Sonderforschungsbereich 256 at the
University of Bonn for its generous support and in particular S. Hilde-
brandt and M. Rumpf who made possible this publication.

2 Degenerate metrics

Let (M, g) be a two-dimensional Riemannian manifold. The key notion
for our considerations is given in the following

Definition 2.1 A symmetric bilinear form g̃ on (M, g) is a degenerate
metric if for all V ∈ TpM

Γh1 g(V, V ) ≤ g̃(V, V ) ≤ Γh2 g(V, V ) ,

where h1, h2 > 0, Γ ≥ 0 are smooth functions on M . Furthermore, the
set {Γ = 0} consists of isolated points only.

Lemma 2.1 Let g1, g2 be two metrics on a manifold M . If for all V ∈
TpM

g1(V, V ) ≤ g2(V, V ) (3)

then we have for all smooth functions ϕ:

|grad1 ϕ|1 ≥ |grad2 ϕ|2 ,

where the index indicates the corresponding metric.

Proof. We have the identity

g1(grad1 ϕ, V ) = g2(grad2 ϕ, V ) ,

for all V ∈ TpM . Using the Cauchy-Schwarz inequality, this leads to

|g2(grad2 ϕ, V )| ≤ |grad1 ϕ|1 |V |1
≤ |grad1 ϕ|1 |V |2 ,

because of inequality (3). Setting V = grad2 ϕ gives the assertion.

2

As a direct consequence of the above lemma we obtain
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Corollary 2.1 If g̃ is a degenerate metric on a Riemannian manifold
(M, g), the following inequality holds on {Γ 6= 0}:

Γh1 |gradg̃ ϕ|
2
g̃ ≤ |gradg ϕ|

2
g ≤ Γh2 |gradg̃ ϕ|

2
g̃ .

The following proposition is a generalization of [7, Corollary 1]:

Proposition 2.1 Let (M, g) be a Riemannian manifold with degenerate
metric g̃. Furthermore let q be a smooth function on M . Assume that
there is a smooth function v on M , v > 0 on D, with

∆g̃v − qv = 0 (4)

on {Γ > 0} ∩D. Then for all ϕ ∈ C∞0 (D) we have∫
D

|gradg̃ ϕ|
2
g̃ + qϕ2 dAg̃ ≥ 0 .

Note that one can estimate the form |gradg̃ϕ|g̃ dAg̃ by |gradg ϕ|2g h2/h1 dAg.

Therefore the integral
∫
D
|gradg̃ ϕ|2g̃ dAg̃ is well defined.

Proof of Proposition 2.1. The zeroes of Γ are isolated, i.e. D∩{Γ > 0} is a
finite set {p1, . . . , pk}. In the following reasoning we may assume pi /∈ ∂D.
Let Bε(pi) be a geodesic ball in M (measured in the g-metric) of radius
0 < ε << 1, such that

Vε :=

k⋃
i=1

Bε(pi)

is a disjoint union. Because of assumption (4) we have with w = log v

∆g̃w = q − |gradg̃ w|
2
g̃ .

Integration by parts leads to∫
D−Vε

ϕ2|gradg̃ w|
2
g̃ − qϕ2 dAg̃ = −

∫
D−Vε

ϕ2 ∆g̃w dAg̃

=

∫
D−Vε

2ϕ g̃(gradg̃ ϕ, gradg̃ w) dAg̃

+

k∑
i=1

∫
∂Bε(pi)

ϕ2 g̃(gradg̃ w, ν̃) dσg̃ ,

with ϕ ∈ C∞0 (D) and ν̃ being a suitable unit normal on ∂Bε(pi). Using
the fact that g̃ is a degenerate metric on (M, g), we obtain the following
estimate: ∣∣∣∣∣

∫
∂Bε(pi)

ϕ2 g̃(gradg̃ w, ν̃) dσg̃

∣∣∣∣∣ ≤
∫
∂Bε(pi)

ϕ2 |gradg̃ w|g̃ dσg̃

≤
∫
∂Bε(pi)

ϕ2|gradg w|g
√
h2/h1 dσg = O(ε) , with ε→ 0 .
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Thus we have∫
D−Vε

ϕ2|gradg̃ w|
2
g̃−qϕ2 dAg̃ =

∫
D−Vε

2ϕ g̃(gradg̃ w, gradg̃ ϕ) dAg̃+O(ε).

(5)
This implies

O(ε) ≤
∫
D−Vε

|gradg̃ ϕ|
2
g̃ + qϕ2 dAg̃ .

2

3 Parametric functionals

Now we consider immersed surfaces X : M → IR3, where M is a two-
dimensional and oriented manifold, equipped with the metric g(V,W ) =
〈DX(V ), DX(W )〉 for V , W ∈ TpM and a normal mapping

N : M → S2 .

A parametric functional F is given by a smooth 1-homogeneous integrand

F : IR3 → IR .

The corresponding functional F is defined by F(X) :=
∫
M
F (N) dA .

As a version of Fzz on TM we define

AF : TpM −→ TpM

V 7−→ DX−1 Fzz(N(p))DX(V ) .

Definition 3.1 An integrand F is called elliptic if the linear mapping

Fzz(z) : z⊥ → z⊥

is positive definite for all z ∈ IR3 − {0}.

Using the endomorphism AF the Euler equation of F is: −tr (AF ◦S) = 0,
where S is the shape operator DX ◦ S := DN (for the corresponding
computation see e.g. [4] or [5]). The trace HF = −tr (AF ◦ S) is called
the F -mean curvature HF generalizing the classical mean curvature H =
−trS.
Now we want to prove for extremals X of F that the bilinear form

gN (V,W ) := 〈DN(V ), DN(W )〉 , V,W ∈ TpM

is a degenerate metric on (M, g).
First, we apply the Cayley-Hamilton Theorem and get

(AFS)2 + KF idTpM = 0 , (6)

where KF := det (AF ◦S) = (det AF )K. The so called F -Gauß curvature
KF generalizes the classical Gauß curvature K = det S. Equation (6)
implies for all V ∈ TpM the identity

g(AFS V, S V ) = −KF g(A−1
F V, V ) . (7)

5



In the following, the eigenvalues of AF are denoted by λ1 ≤ λ2. Now we
estimate the left and right hand side of (7) for elliptic integrands.

λ1 gN (V, V ) ≤ g(AFS V, S V ) ≤ λ2 gN (V, V )

−KF
1

λ2
g(V, V ) ≤ −KF g(A−1

F V, V ) ≤ −KF
1

λ1
g(V, V ) .

Because of (7) we arrive at

−KF
1

λ2
2

g(V, V ) ≤ gN (V, V ) ≤ −KF
1

λ2
1

g(V, V )

and keeping in mind KF = λ1λ2 K we state

Proposition 3.1 Let F be an elliptic integrand. For an F-minimal sur-
face X : M → IR3 the bilinear form gN is a degenerate metric on (M, g).
More precisely we have

−K λ1

λ2
g(V, V ) ≤ gN (V, V ) ≤ −K λ2

λ1
g(V, V ) .

For the proof of the above proposition it remains to show that {K = 0}
is a set of isolated points but this is a result of Sauvigny [13, p. 53].

4 Stability

In this part we assume that F is an elliptic integrand. First we give a
definition of stability.

Definition 4.1 Let X : M → IR3 be an F-extremal immersion. The
surface X is called stable if for all ϕ ∈ C∞0 (M) with ϕ 6≡ 0 the relation∫

M

g(AF gradϕ, gradϕ) + trAFKϕ
2 dA > 0, (8)

is satisfied, where K is the Gauß-curvature of X. We say that D ⊂M is
a stable domain if (8) is fulfilled for all ϕ ∈ C∞0 (D) with ϕ 6≡ 0.

This definition generalizes the notion of stable minimal surfaces (see e.g.
[6, p. 84] or [9, p. 96]; note that in this case AF = idTpM and trAF = 2).
Its motivation is as follows:
If we consider ϕ ∈ C∞0 (M) and the related disturbed surface Xε = X +

εϕN , then the second variation δ2F(X,ϕ) = d2

dε2
F(Xε)|ε=0 in direction

ϕ is given by the quadratic form in (8). The corresponding computation
can be found in [10] or in [13].
In the following, all notions with subscript N are related to the degenerate
metric gN . For the proof of the main result, we start with

Proposition 4.1 Let X : M → IR3 be an F-critical immersion. Then
we can conclude that D ⊂M is a stable domain if for all ϕ ∈ C∞0 (D) and
ϕ 6≡ 0 ∫

M

|gradNϕ|
2
N − 2cFϕ

2 dAN > 0,

where cF := maxS2(λ1+λ2
2

)/minS2(
λ2

1
λ2

).
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Proof. Using the ellipticity of F and the fact that gN is a degenerate
metric we obtain because of Lemma 2.1 and Proposition 3.1

|gradϕ|2 ≥ −Kλ1

λ2
|gradNϕ|

2
N .

This leads to

δ2F(X,ϕ) =

∫
M

g(AF gradϕ, gradϕ) + (λ1 + λ2)Kϕ2 dA

≥
∫
M

λ1|gradϕ|2 + (λ1 + λ2)Kϕ2 dA

≥
∫
M

−Kλ2
1

λ2
|gradNϕ|

2
N + (λ1 + λ2)Kϕ2 dA

The equation tr(AFS) = 0 characterizing F-extremals implies the inequa-
lity det(AFS) ≤ 0 and the ellipticity of F gives K = detS ≤ 0. Therefore
we have dAN = −K dA. This completes the proof because of

δ2F(X,ϕ) ≥
∫
M

λ2
1

λ2
|gradNϕ|

2
N − (λ1 + λ2)ϕ2 dAN .

≥ min
S2

(
λ2

1

λ2
)

∫
M

|gradNϕ|
2
N − 2cFϕ

2 dAN .

2

The above proposition shows a connection between stability of F-extremals
and eigenvalue problems for the Laplacian on the sphere S2.
We will denote the first eigenvalue w.r.t. the Laplacian of a domain D ⊂
S2 by µ1(D). For a proof of the following proposition, we refer to [2, pp.
19,20] and [3, pp. 50].

Proposition 4.2 Assume that D ⊂ S2 is a domain of area A(D) = A.
Then we have:

(i) A ≤ 2π implies µ1(D) ≥ 4π

A
,

(ii) A ≥ 2π implies µ1(D) ≥ 2
4π −A
A

.

If in addition D is a geodesic disc on S2, then

(iii) µ1(D) ≤ 4π

A
for A ≥ 2π,

(iv) lim
A→4π

µ1(D) = 0.

We see that for all µ ≥ 2 there is a spherical cap in S2 whose first eigen-
value of the Laplacian is exactly µ. The area of such a spherical cap is
denoted by a(µ). For elliptic integrands we define

aF := a(2cF ).

This enables us to prove the main result Theorem 1.1 .

Proof of Theorem 1.1. Let ∆S2 be the Laplacian on S2. On {K 6= 0}
the normal N is a local isometry between S2 and (M, gN ). We assume

7



that µ1 is the first eigenvalue of N(D) on S2. Then there is a positive
function u in the interior of N(D) satisfying u|∂N(D) = 0 and

∆S2u+ µ1u = 0 .

In [13] it is proven that N is an open mapping (see also chapter 5). There-
fore we can conclude that v := u◦N is positive in D and satisfies on K 6= 0

∆Nv + µ1v = 0 .

Because of Proposition 2.1 we have for all ϕ ∈ C∞0 (D)∫
D

|gradNϕ|
2
N − µ1ϕ

2 dAN ≥ 0 .

It is a well known fact that the spherical caps on S2 are minimizers of the
first eigenvalue of ∆S2 among all domains in S2 of the same area [2, p.18]
and therefore µ1 > 2cF . Thus we can conclude:∫

D
|gradNϕ|2N − 2cFϕ

2 dAN

=
∫
D
|gradNϕ|2N − µ1ϕ

2 dAN + (µ1 − 2cF )
∫
D
ϕ2 dAN > 0 .

Using Proposition 4.1, stability is proven.
In case of the area-functional i.e. F (z) = |z|, the constant cF is exactly 1.
Therefore, for this functional we have aF = a(2) = 2π and Theorem 1.1
contains the main result of [1] as a special case.

2

The proof of the following proposition is very similar to the proof of Propo-
sition 4.1.

Proposition 4.3 Assume that X : M → IR3 is an F-extremal and that
there is a ϕ ∈ C∞(D) ∩ C0(D̄), D ⊂ S2, satisfying ϕ|∂D = 0 and∫

D

|gradNϕ|2N − 2dFϕ
2 dAN < 0,

where dF := minS2(λ1+λ2
2

)/maxS2(
λ2

2
λ1

). Then X cannot be stable in D.

This proposition leads to the following generalization of the Schwarz cri-
terion [1, Theorem 2.7] for instability of minimal surfaces:

Theorem 4.1 Let X : M → IR3 be an F-minimal surface. If N : D̄ →
S2 is a branched covering of N(D̄) and if the first eigenvalue of N(D) for
∆S2 is smaller than 2dF , then D cannot be a stable domain of X.

Proof. As in the proof of Theorem 1.1, we consider an eigenfunction u > 0
of N(D) for ∆S2 , i.e.:

∆S2u+ µ1u = 0 in N(D)

u = 0 on ∂N(D) .

Lifting u on D we obtain the equation∫
D

|gradNv|
2
N − 2dF v

2 dAN = (µ1 − 2dF )

∫
D

v2 dAN

for the function v := u ◦ N . By assumption we have µ1 < 2dF and
Proposition 4.3 completes the proof.

8



2

Let us conclude this section applying the main result Theorem 1.1 to a
certain class of integrands F β , where

F β(z) =
√
β|z1|2 + |z2|2 + |z3|2 ,

and β > 01.
The positive eigenvalues of F βzz(z) for z ∈ S2 are given by 1/F β(z) and
β/[F β(z)]3. For β ≥ 1 one has λ1 = 1/F β(z) and λ2 = β/[F β(z)]3. In
case β < 1 we get λ1 = β/[F β(z)]3 and λ2 = 1/F β(z). This leads to

max
S2

(
λ1 + λ2

2

)
=

{
(1 + β)/2 : β ≥ 1

1/
√
β : β < 1

min
S2

(
λ2

1

λ2

)
=

{
1/β : β ≥ 1
β2 : β < 1 .

The constant cFβ (see Proposition 4.1) is dependent on β in the following
way:

cFβ =

{
β (1 + β)/2 : β ≥ 1

1/(β2√β) : β < 1 .

Thus we see limβ→0 cFβ = limβ→∞ cFβ = ∞ and therefore the corre-
sponding area aFβ (see Theorem 1.1) tends to zero in both cases. Thus for
extreme anisotropic integrands the condition for stability is very strong.
This is also true for the instability criterion Theorem 4.1 because in this
case limβ→0 dFβ = limβ→∞ dFβ = 0.

5 A topological property of the normal
of F -minimal surfaces

In the proof of Theorem 1.1 we used the open-mapping property of the
normal N of an F-minimal surface. In fact, more is true

Theorem 5.1 The Gauß-map of an F-minimal surface X : M → IR3 is
a local branched covering for elliptic integrands F .

The above theorem follows from

Proposition 5.1 Let ω : B1 → IC, B1 the unit disc in IC, be a bounded
solution of

|∇ω|2 ≤ 2cJω, c ≥ 1, (9)

where Jω is the Jacobian of ω. The mapping ω is a local branched covering
if #{|∇ω| = 0} <∞.

For the proof of Theorem 5.1 we have to justify, that for all p ∈M there
is a chart x : U(p) → B1(0) such that {K = 0} ∩ U consists of only one
point and that the stereographic projection of N ◦x−1 is a solution of (9).
This fact is a result of Sauvigny [13]. Now we can apply Proposition 5.1
and for the completion of the proof of Theorem 5.1 it remains to show
Proposition 5.1.

1This example was added in proof
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Proof of Proposition 5.1. First we see that |ωz(z)|2 − |ωz̄(z)|2 > 0 a.e.,
where ∂

∂z
, ∂
∂z̄

are the Wirtinger-derivatives and z = x+ iy ∈ B1. This in-
equality is true because of assumption (9). Now, the differential inequality
shows that

µ :=
ωz̄
ωz

is an L∞-function with ||µ||∞ ≤ k < 1, where 1+k2

1−k2 := c. By a result of

Morrey [8, p. 204], there is a homeomorphism λ : B1 → B1 of class H1,2

satisfying

λ(0) = 0

λz̄ = µ λz a.e. on B1.

Now we want to show that ϕ := ω ◦ λ−1 is a holomorpic mapping.
To this aim, we chose a point z0 ∈ {|∇ω| 6= 0} and an open set U, z0 ∈ U ,
such that ω|U is a diffeomorphism. Then one can define

Φ := λ ◦ (ω|U )−1 : ω(U)→ λ(U).

Setting V := ω(U) we see that Φ ∈ H1,2(V, IC). With τ := (ω|U )−1 the
following equation holds a.e.:

Φζ̄ = λzτζ̄ + λz̄ τ̄ζ̄ = λz(τζ̄ + µτ̄ζ̄), ζ ∈ V.

By differentiation of the identity ζ = ω(τ(ζ)) we obtain:

1 = ωz(τζ + µτ̄ζ),

0 = ωz(τζ̄ + µτ̄ζ̄).

These equations show τζ̄ +µτ̄ζ̄ = 0 and therefore Φζ̄(ζ) = 0 for almost all
ζ ∈ V . Thus Φ is a holomorphic and injective mapping. For this reason,
Φ is a diffeomorphism and ϕ is holomorphic on λ({|∇ω| 6= 0}). The proof
is complete because the set λ({|∇ω| = 0}) consists only of one removable
singularity.

2
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