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Abstract

In surface restoration usually a damaged region of a surface has to be replaced
by a surface patch which restores the region in a suitable way. In particular one
aims for C

1-continuity at the patch boundary. The Willmore energy is consid-
ered to measure fairness and to allow appropriate boundary conditions to ensure
continuity of the normal field. The corresponding L

2-gradient flow as the actual
restoration process leads to a system of fourth order partial differential equations,
which can also be written as system of two coupled second order equations. As
it is well–known, fourth order problems require an implicit time discretization.
Here a semi–implicit approach is presented which allows large timesteps. For the
discretization of the boundary condition, two different numerical methods are in-
troduced. Finally, we show applications to different surface restoration problems.

AMS-Classification: 35K35, 65M60, 68U07, 68U10, 74K25

1 Introduction

In this paper we will discuss surface restoration and surface blending based on Will-
more flow with boundary conditions. This approach is in general not new. Several
methods based on the same or similar ideas can be found in the literature [24, 25, 29].
Our contribution is to give a proper weak formulation of the corresponding initial and
boundary value problem, to discretize this in space consistently using a finite element
scheme on triangular grids, and in time applying a semi–implicit backward Euler dis-
cretization. The resulting algorithm is easy to implement, it allows for large time steps,
and behaves robustly in the application. The method presented here is founded upon
the corresponding approach [23] for surfaces without boundary. Here, we will derive
from this approach appropriate discretization schemes for Willmore flow problems with
boundary conditions.

Let us consider the following problem. Suppose a two-dimensional surface M̃0

embedded in R
3 is given and a subset M0 ⊂ M̃0 is in bad shape. Either M0 is a

destroyed region on the surface M̃0, where the remaining surface Mext := M̃0 \
M0 is in good condition, or M0 is an initial blending surface closing a given surface
Mext := M̃0 \M0 (see figure 5). In both cases we ask for a C1-surface restoration
or blending. Indeed, we state the following problem:
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Find a surface patch M, such that M̃ := M∪Mext minimizes the Will-
more energy

E[M] :=
1

2

∫

M

h2 dx

over all C1-surfaces M̃ with fixed exterior surface Mext.

Here and in the following, h denotes the mean curvature of M. The required C1-
continuity can be expressed in terms of the parameterization of the surface x (which
we mostly assume to be the identity mapping) and the surface normal n. In particular
we require the boundary conditions

x = xext , (1)

n = next

on ∂M, where xext is the identity on ∂Mext = ∂M and next the corresponding
surface normal. We are aiming to solve this problem based on the gradient descent
with respect to the Willmore energyE[x] = E[M]

∂tx(t) = −grad L2E[x(t)] , (2)

which defines a one parameter family of surfaces M(t). As initial condition we con-
sider

M(0) = M0

and require the above boundary conditions (1) for all t > 0. We expect that M(t)
converges to a stable critical point of the above variational problem.

The main contribution of this paper is to derive a variational formulation for the
above initial boundary value problem which then can be discretized by a finite element
method in a straightforward way. In fact, our aim is to discretize both, the mean cur-
vature vector y := hn and the surface parameterization x, using piecewise affine finite
elements. The method is directly applicable to triangular meshes as they frequently
appear in geometric modeling applications. No recovery of higher order differential
quantities from the triangular surface meshes is required. The time discretization is
semi implicit, which is of superior importance for the efficiency of the presented ap-
proach, c.f. also [7]. The discrete elliptic operator of a fourth order problem is known
to be characterized by a condition numberO(h−4), where h indicates the grid size. To
ensure stability of an explicit discretization we would be lead to a severe restriction of
the type

τ ≤ Ch4

for the time step size τ (cf. results presented in [29, 4]). Our semi implicit scheme
allows much larger time steps. Numerical experiments show that time steps of the order
of the spatial grid size are still feasible with respect to the stability of the approach.

In the restoration of flat 2D images - known as the inpainting problem - variational
methods have proved to be successful tools. Methods which are related to the mini-
mization of the total variation allow a continuation of edges from outside the destroyed
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Figure 1: Different C1 solutions of the blending problem.

image region into its interior. These methods lead to nonlinear second order partial
differential equations with Dirichlet boundary conditions. For an overview we refer to
[5]. Furthermore, fourth order methods have been presented for image inpainting prob-
lems as well [3, 2]. They prescribe gradient directions and grey values at the boundary
of the inpainting domain and minimize an energy depending on directions and image
intensities under these boundary constraints. One obtains a coupled system of second
order partial differential equations, which is closely related to a fourth order partial
differential equation. Recently, curvature based inpainting methods [4, 1] have been
proposed which treat the level sets of a 2D images as Euler elastica and minimize their
bending energy.

For the restoration of surfaces, second order approaches will not lead to satisfying
results. In analogy to the BV minimizing approach for image inpainting we would
have to ask for surface patches, which are minimal surfaces [11]. Indeed we ask for a
restoration of the enclosed volume with minimal perimeter, i.e., the characteristic func-
tion minimizes the BV norm under suitable boundary conditions. This corresponds to
boundary conditions for the position vector only and not for the surface normal. Hence,
one cannot expect C1-smooth surfaces.

In [25] Kobbelt and Schneider use a fourth order method to obtain smoothness of
the surface at the boundary. Essentially they construct a surface of prescribed mean
curvature, where the mean curvature is obtained by elliptic interpolation of the mean
curvature at the boundary. Greiner [12, 13] presented a surface blending method, where
in a fix point iteration parameterized patches are constructed which minimize a lin-
earized total curvature. In the iteration one expects a successively better approximation
of the actual total curvature by this linearization. Recently a method for the restoration
of surfaces based on a gradient descend method for a discrete version of the Will-
more energy has been presented by Yoshizawa and Belyaev [29]. This scheme uses the
classical formulation of Willmore flow. Curvature quantities are computed based on
certain approximation schemes. In particular the mean curvature is evaluated applying
the so called umbrella operator [15]. The time discretization is explicit and hence large
numbers of time steps are reported already for moderately fine discretized surfaces.

Finally, let us make some principle remarks on the formulated problem. There are
geometric configurations where solutions of the above variational problem do not exist.
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Indeed, for d = 1 and a circular segment Mcirc with an opening angle α and radius r
one computes a Willmore energy E[Mcirc] = α

r
. Thus, for two given curve segments

which have to be blended we can continue these segments by straight line segments
and connect them by such a circular arc. As the length of the straight line segments
tends to infinity the Willmore energy of the whole blending construction tends to 0.
This example is due to U. Reif. A similar construction is possible for half planes of
codimension 1, whose boundaries are parallel.

In the present paper, for d = 2 we consider the energy density h2 = (κ1 + κ2)
2,

where κ1 and κ2 indicate the principle curvatures of the surface. Alternatively, one
might consider the integrand κ2

1 + κ2
2. For given topological type of the minimizing

surface these two approaches are equivalent due to the Gauß Bonnet theorem [28, pp.
146]. Indeed, for closed surfaces the integral over the Gauß curvature

∫

M κ1κ2 is a
topological invariant.

This consideration leads to the following view: The restoration problem can be
regarded as a generalization of cubical splines for one dimensional blending problems.
A cubical spline is known to minimize the L2-norm of the second derivatives of the
curve parameterization - which is a linearization of curvature - under C1-constraints at
the boundary [9].

Concerning physical modeling the minimization of the Willmore energy is closely
related to the minimization of the bending energy of an elastic shell [6, 14]. An analysis
concerning the structure of integrands appearing in elasticity is due to Nitsche [20]. The
Willmore functional is a special case of functionals with integrands depending on the
principal curvatures κ1 and κ2. Nitsche was able to show that integrands which are
symmetric, definite and of polynomial growth of order at most two are of the form:

α+ β(h− h0)
2 − γk ,

where α, β, γ and h0 are constants fulfilling certain structural inequalities. Further-
more, k is Gauß curvature. Nevertheless, the physical meaning of the pure Willmore
functional (α = γ = h0 = 0, β = 1) is limited. Any sphere is a minimizer and the
area of Willmore surfaces cannot be bounded (see also the discussion in 1D above).

Recently, the L2-gradient flow of the Willmore energy was considered analytically.
Simonett was able to prove long time existence for surfaces close to spheres in the
C2,α topology. Kuwert and Schätzle [17] show the existence of a lower bound on the
maximal time for which smooth solutions of the Willmore flow exist. In particular
they analyze the concentration of the curvature. In [16, 18] they are able to prove that
for surfaces of sphere type and initial energy less than or equal 8π, Willmore flow
converges to a round sphere. (Note that in the present paper notation spheres have
energy 8π in contrast to 4π which is the usual convention in geometry.)

The case of curves moving in space w.r.t. Willmore flow is considered by Dziuk,
Kuwert and Schätzle in [8] analytically and numerically. They generalize results of
Polden for planar curves [21, 22] and give a semi-implicit discretization scheme.

Notation

Let us summarize notations and conventions we use in the sequel. We consider an ori-
ented embedded surface M ⊂ R

3. Usually the parameterization x is the identity on
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the surface M. The metric on M is simply induced by the ambient space. The corre-
sponding area-element will be denoted by dx. Due to the fact that bounded surfaces
are considered, the induced area-element on the boundary ∂M is taken into account
and denoted by dH1.

We will use the concept of tangential gradients. The tangential gradient DMu for
a function u ∈ C1 defined in a neighborhood of an embedded surface M, is given by

DMu = ∇R3u− (n · ∇R3u)n ,

where n : M → S2 is the normal mapping. Here and in the following, the scalar
product of two vectors a, b ∈ R

m is denoted by a · b. The tangential gradient only
depends on the values of u on M. It is almost everywhere defined for surfaces M ∈
C0,1 and coincides with the classical geometric gradient ∇Mu for embedded surfaces.
The components of DMu are denoted by DM,iu. We also use just Du and Diu if
any misunderstanding is ruled out. In this notation, the Laplace operator on surfaces is
given by:

∆Mu =
∑

i

DiDiu.

For surfaces of codimension 1, curvature may be expressed by the shape operator S
which is – using tangential gradients – given by the 3× 3-matrix S = DMn = ∇Mn.
The classical mean curvature then is:

h = tr ∇Mn

and we have the well known identity

∆Mx = hn .

The norm of the shape-operator is defined as

|S|2 = tr (S2) = tr (∇Mn∇Mn) .

For more details on tangential gradients we refer to [10, Chapter 16].
The Frobenius norm on the space of matrices in R

m×m is denoted by |A| :=
√

tr (AT A), where the corresponding scalar product is

A : B = tr (AT B) ,

for A,B ∈ R
m×m. The tensor product of two vectors is defined as the matrix a ⊗ b

with components (a ⊗ b)ij = aibj . We shall use the Einstein summation convention
where it is convenient.

2 L
2 gradient of the Willmore functional

In this section we will consider time dependent embedded surfaces M(t) in R
3. We

usually identify the surface and its parameterization x(t) = x(·, t). The time depen-
dency will be such that the surface moves w.r.t. the L2-gradient flow of the Willmore
functional:

E[x] =
1

2

∫

M

h2 dx . (3)
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The first variation of curvature functionals is well known. For corresponding com-
putations and references to the literature see e.g. [28, 19, 27]. Usually, authors take into
account only variations w.r.t. normal direction. Due to the fact, thatE[x] is a geometric
functional, this is sufficient for geometric purposes. Taking into account a family of
surfaces xε = x+ ε ϕn leads to

∂εE[xε]|ε=0 =

∫

M

−h∆Mϕ− (|S|2 −
1

2
h2)hϕ dx .

From the geometric character of E one derives that the velocity of the correspond-
ing L2-gradient flow points in normal direction. By the above representation, the clas-
sical equation for Willmore flow (2) is given by:

∂tx = (∆Mh+ h (|S|2 −
1

2
h2))n .

Nevertheless, in numerical applications one has to consider general variations. This
is because in discrete weak formulations of the corresponding problems, test functions
are basis functions of a finite element space. In general, those are not pointing in
normal direction nor is this normal direction everywhere defined. Now we come to
a formulation of the Euler-equation which is valid for general variations. For a test
function ϑ ∈ C1(M,R3) we have

〈E′[x], ϑ〉 =
d

dε
E[xε]|ε=0 ,

where xε fulfills ∂εxε|ε=0 = ϑ. The following lemma is taken from [23].

Lemma 2.1 Let x : M → R
3 be an immersion. For the derivative of the Willmore

functional in direction ϑ we have

〈E′[x], ϑ〉 =

∫

M

∆Mx · [∆Mϑ+ 2n (∇Mn : ∇Mϑ)] dx

+
1

2

∫

M

|∆Mx|2 (∇Mx : ∇Mϑ) dx . (4)

The above weak form of the Euler equation for the Willmore functional does not use
integration by parts at all. Especially, expressions containing boundary integrals do not
appear thus far. The following section discusses a numerically well suited form of the
Euler equation and the corresponding boundary terms.

3 A boundary value problem for Willmore flow

Let us first recall the basic result on integration by parts on surfaces:

Lemma 3.1 (Green’s formula on surfaces) For functions u ∈ H2(M) andψ ∈ H1(M)
on a manifold M with boundary the following integration by parts formula holds:

∫

M

∇Mu · ∇Mψ dx = −

∫

M

∆Muψ dx+

∫

∂M

∂ncouψ dH1 .

Here nco denotes the co–normal on ∂M.
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Proof: Consider a cut off function ηε := 1
ε
min{dist(x, ∂M), ε}, where dist(·, ∂M)

denotes the geodesic distance from the boundary ∂M on M. Now we recall the defi-
nition of the divergence operator and the Laplace Beltrami operator on manifolds, and
obtain
∫

M

∇Mu · ∇Mψ ηε dx = −

∫

M

∇Mu · ∇Mηε ψ dx+

∫

M

∇Mu · ∇M(ψ ηε) dx

= −

∫

M

∇Mu · ∇Mηε ψ dx−

∫

M

div M∇Muψ ηε dx

ε→0
−→

∫

∂M

∇Mu · nco ψ dH1 −

∫

M

∆Muψ dx

Furthermore the left hand side converges to
∫

M

∇Mu · ∇Mψ dx. 2

Now we are able to generalize Lemma 2 in [23] to the situation of bounded surfaces.
The result is contained in the next

Proposition 3.2 Let x be as in Lemma 2.1. For y = ∆Mx, the derivative of the
Willmore functional in direction ϑ is given by:

〈E′[x], ϑ〉 =

∫

M

(Id − 2n⊗ n)∇My : ∇Mϑ dx

+
1

2

∫

M

|y|2∇Mx : ∇Mϑ dx+

∫

∂M

∂ncoϑ · y dH1 . (5)

Proof: Due to (4), it suffices to show the identity
∫

M

y · [∆Mϑ+ 2n (∇Mn : ∇Mϑ)] dx =

∫

M

∇My : ∇Mϑ − 2niDkyinlDkϑl dx +

∫

∂M

∂ncoϑi yi dH1

with y = ∆Mx. Let us start with considering the term

2

∫

M

(n · y)∇Mn : ∇Mϑ dx

= 2

∫

M

∇M(n · y n) : ∇Mϑ dx− 2

∫

M

∇M(nkyk)ns∇Mϑs dx

= 2

∫

M

∇My : ∇Mϑ dx− 2

∫

M

nkns∇Myk∇Mϑs dx

−2

∫

M

yk∇Mnk ns∇Mϑs dx (6)

The last term in the above equation vanishes due to the symmetry of ∇Mn and the
identity y = −hn. Applying Lemma 3.1 componentwise we obtain

∫

M

y · ∆Mϑ dx = −

∫

M

∇My : ∇Mϑ dx+

∫

∂M

∂ncoϑ · y dH1 . (7)

7



Adding (6) and (7) gives us the desired result.
2

Now we have to keep in mind that we are interested in solving a boundary value
problem with smoothness conditions at the boundary. Especially we seek for C1-
smooth solutions. Therefore, we cannot admit any test function. For smoothness
at the boundary, we have to restrict to ϑ and ∂ncoϑ vanishing at the boundary, thus
∇Mϑ = 0 on ∂M. Finally in the class of admissible test functions {ϑ ∈ C1(M) :
ϑ|∂M = 0, ∂ncoϑ|∂M = 0}, the first variation of E is:

〈E′[x], ϑ〉 =

∫

M

(Id − 2n⊗ n)∇My : ∇Mϑ dx

+
1

2

∫

M

|y|2∇Mx : ∇Mϑ dx . (8)

Based on the above formula for the variation of the Willmore functional under vari-
ations of the surface, we are now able to rewrite the Willmore flow as a system of
equations for the parameterization x and the mean curvature vector y.

In particular, we consider the L2 gradient flow for the Willmore energy with initial
condition and Dirichlet boundary conditions. Thus seek solutions of the evolution
problem

∂tx =
(

∆Mh+ h (|S|2 − 1
2h

2)
)

n on (0, T ] ×M ,

x = xext on (0, T ] × ∂M ,

n = next on (0, T ] × ∂M ,

M(0) = M0 .

(9)

Instead of the normal n on the boundary we can also prescribe the outer co–normal
field nco on ∂M. Then applying equation (8) and Lemma 3.1, the corresponding weak
formulation is given by:

Find a family of bounded surfaces {M(t)} with x(t) indicating the parameteriza-
tion of M(t) over itself and an accompanying vector field y(t) on M(t), such that

∫

M

∂txϑ dx +

∫

M

(Id − 2n⊗ n)∇My : ∇Mϑ dx

= −

∫

M

|y|2

2
∇Mx : ∇Mϑ dx (10)

−

∫

M

∇Mx : ∇Mψ dx +

∫

∂M

ncoψ dH1 =

∫

M

y ψ dx , (11)

for all ϑ ∈ H1
0 (M), ψ ∈ H1(M), and for almost every t ∈ (0, T ]. Furthermore we

assume x = x∂ on (0, T ]× ∂M and M(0) = M0.

Lemma 3.3 (strong solutions of the initial boundary value problem) SupposeM(t)
is a C2-surface for almost every t ∈ (0, T ]. Then a solution of the variational prob-
lem (10), (11) is a solution of the classical problem with the above Dirichlet boundary
conditions (9).
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Proof: In the second equation we apply Lemma 3.1 for u = x and get
∫

∂M

(∂ncox− nco)ψ dH1 =

∫

M

(y + ∆Mx) ψ dx (12)

for all ψ ∈ H1(M). If we restrict to test functions ψ ∈ H1
0 (M) we obtain by the

fundamental lemma that y = ∆Mx almost everywhere. Hence the right hand side of
(1) vanishes and again by the fundamental lemma - now with respect to the integration
over ∂M - we finally achieve the required boundary condition ∂ncox = nco in an
H1-dimensional sense on ∂M.

Now (9) follows immediately for test functions in the set of admissible test func-
tions {ϑ ∈ C1(M) : ϑ|∂M = 0, ∂ncoϑ|∂M = 0}.

2

Let us remark that the boundary condition ∂ncox = nco is coded solely in the
second equation of this mixed formulation and that the closure of {ϑ ∈ C1(M) :
ϑ|∂M = 0, ∂ncoϑ|∂M = 0} w.r.t. the H1(M) norm is H1

0 (M).

4 Finite element discretization

In this section we will discuss two different numerical schemes for Willmore flow with
boundary conditions. Thereby, already in the set up of the discrete problem we will
consider the application to surface restoration. As in the continuous setting the result-
ing discrete method is a generalization of the scheme presented in [23] to problems with
Dirichlet boundary conditions. Suppose M̃0

h is a given triangular surface. Here h indi-
cates the - in general spatially varying - grid size of the triangulation. Let us consider a
subset M0

h ⊂ M̃0
h consisting of a subset of triangles. We ask for a family of discrete

surfaces Mh = Mh(t) topologically identical to M0
h with Mh(0) = M0

h which obey
a discrete Willmore flow under prescribed discrete boundary conditions. Analogous to
the continuous setting Mext

h denotes the outer surfaces M̃0
h \M0

h, which is supposed
to be fixed in time. The two methods to be presented will differ with respect to the
actual handling of the boundary condition for the surface normals.

We have to take care of the continuous boundary condition∇Mϑ|∂M = 0. In a dis-
crete setting, we will achieve this either by prescribing the co-normal on the boundary
(variant I below) or by considering a whole boundary layer instead of the boundary
∂M0

h. This layer consists of all triangles T in M̃0
h \M0

h with T ∩ ∂M0
h 6= ∅. In this

sense, we take into account an inner boundary ∂M0
h and an outer boundary defined

by the layer. Fixing inner and outer boundary for the position vector means obviously
fixing the normal on triangles of the boundary layer (variant II below).

In both cases we have found a setting such that smoothness may be obtained also
in a discrete sense. Nevertheless, in our implementation, the outer boundary does not
appear explicitly as will become clear below.

Now, let us introduce some further notation. The set of the nodes of Mh is denoted
by Nh and splits into interior N int

h and boundary nodes N ∂
h , i.e., Nh = N int

h ∪ N ∂
h .

We denote the corresponding index sets by I and I int respectively. Furthermore, let
Ṽh indicate the space of continuous, piecewise affine functions on the timedependent
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surfaces M̃h(t) and Vh the subset which vanishes on all nodes except those in Nh.
Suppose Ψi ∈ Vh is the nodal basis function corresponding to the node Xi ∈ Nh.
Correspondingly V int

h is a further subset with support on Mh(t), hence in addition
vanishing on the boundary nodes N ∂

h .

Figure 2: Different timesteps of Willmore flow for an initial spherical surface M̃0 with
a flattened part M0 (marked in blue on the left).

To distinguish discrete quantities from their continuous counterparts wherever pos-
sible we will use uppercase letters for discrete and lowercase letters for continuous
quantities, respectively. Let us denote by RU the restriction of U ∈ Vh to a function
RU ∈ V int

h and byE U the extension of a functionU ∈ V int
h - on ∂Mh(t) by 0 - onto

Vh. By E, R we denote the matrices corresponding to the extension and the restric-
tion operators E and R, respectively. In particular E ∈ R

]Iint,]I and R ∈ R
]I,]Iint

.
Functions U in Vh or V int

h can be represented by nodal vectors Ū in R
]I or R

]Iint

re-
spectively, where Ū = (Ūj)j∈J is a vector with components Ūj for every j in an index
set J . In analogy we denote by A ∈ R

(]J)2 a quadratic matrix A = (Ajk)j,k∈J over
the index set J .

Hence, X(t) will be the parameterization of Mh(t), in particular X(t) is in each
component an affine linear function on the triangles of Mh(t). Hence, we get X(t) ∈
(Vh)3.

Let X̄ext+E X̄ be the corresponding nodal vector in R
3]I . Here X̄(t) = (X̄i(t))i∈Iint ∈

R
3]Iint

is the vector of node position for all interior nodes and X̄ext ∈ R
3]I is the po-

sition vector for the boundary nodes with 0 entries for all interior nodes. By X̄i(t) we
denote the position of the i th node from N int

h in R
3. The representation of RX(t) in

the basis {Ψi}i∈Iint is given by

RX(t) =
∑

i∈Iint

X̄i(t)Ψi .

We have the same representation for the discrete counterpart Ȳi(t) of y(t) = ∆M(t)x(t)
on Mh(t):

Y (t) =
∑

i∈I

Ȳi(t)Ψi .

In the nodal vectors, we use the following ordering: We build blocks for each of the
three coordinate components and in each block we list the corresponding components
of the nodal vectors for all nodes.
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Now, we are able to formulate the discrete Willmore flow following [23] for the
case with boundary. We will present two variants of the numerical scheme.

The first explicitly encodes the co-normal - where as the second is an alternative
which takes advantage of the fact that we have an outer surface Mext

h on which close
to ∂Mh(t) reliable normals are supposed to be given.

Variant I. Let T be any triangle with at least one edge on ∂Mh(t) and denote by
N co the co–normal on that edge lying in the plane of T and pointing outwards. We
can regard the set of all those co–normals Nco as a fixed function on ∂Mh(t) being
piecewise constant on the edges. The normal on each triangle is denoted by N(t) in
the following. Then we ask for a family of parametrizations X(t) ∈ Ṽh of triangular
surfaces M̃h(t) with M̃h(0) = M̃0

h and X(t) being fixed on Mext
h , and a family of

vector valued functions Y (t) ∈ (Vh)3 such that
∫

Mh(t)

∂tRX(t) Θ dx−

∫

Mh(t)

∇Mh(t)Y (t) : ∇Mh(t)Θ dx

= −2

∫

Mh(t)

(Id − N(t) ⊗N(t))∇Mh(t)Y (t) : ∇Mh(t)Θ dx

−

∫

Mh(t)

|Y (t)|2

2
∇Mh(t)X(t) : ∇Mh(t)Θ dx

for all Θ ∈ (V int
h )3 and t > 0. Simultaneously, the relation

∫

Mh(t)

Y (t) Ψ dx = −

∫

Mh(t)

∇Mh(t)X(t) : ∇Mh(t)Ψ dx+

∫

∂Mh

N co Ψ dH1 ,

holds for all Ψ ∈ (Vh)3 and all t > 0. In the above system,N(t) denotes the piecewise
constant normal vector on Mh(t).

We obtain a system of ordinary differential equations on the space R
m with m =

3 ]I int. The degrees of freedom are the position vectors X̄i ∈ R
3 for all nodes in N int

h

and coupled with them in addition the “discrete mean curvature” vectors Ȳ ∈ R
3]I for

all nodes in Nh. We can rewrite this problem in matrix formulation as follows:
Let us define a nonlinear ]I × ]I stiffness matrix

L[ω] :=





∫

Mh

ω∇Ψi · ∇Ψj dx





i,j∈I

on a given discrete surface Mh and the corresponding linear stiffness matrix L :=
L[1]. Furthermore, we denote by M the lumped mass matrix [26], i.e., Mij :=
∫

Mh

Ih(Ψi Ψj) for i, j ∈ I , where Ih is the affine, Lagrange interpolation opera-

tor on Mh. In addition, we define the mass matrix M0 ∈ R
]Iint,]Iint

via restriction
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M0 := RME. From these matrixes, we build block matrixes

M =





M

M

M



 , L[ω] =





L[ω11] L[ω12] L[ω13]
L[ω21] L[ω22] L[ω23]
L[ω31] L[ω32] L[ω33]



 ,

where ω = (ωij)i,j=1,2,3 is a matrix valued weight in R
3,3 and analogously we define

M0. The subscript indicates that this matrix is associated to the space V int
h . For a

scalar weight ω we denote L[ω] = L[ωId]. Furthermore we use the obvious notation
L = L[Id]. Finally, suppose

N̄ co :=





∫

∂Mh

N coΨi dH1





i∈I

is the vector in R
3]I representing the right hand side in the second equation. Thus, we

obtain

M0 ∂tX̄ −RL Ȳ = −2RL(Id −N ⊗N)Ȳ − RL[
|Y |2

2
](EX̄ + X̄ext)

Ȳ = −M
−1

(

L(EX̄ + X̄ext) − N̄ co
)

.

Now we introduce a semiimplicit time discretization. Hence, we replace the time
derivative by a difference quotient 1

τ
(X̄k+1−X̄k) where τ is the time step and (X̄k)k=0,··· ⊂

R
3]Iint

the sequence of nodal vectors for each time step. Any X̄k describes a surface
Mk

h, which we expect to approximate Mh(τk). Finally, we obtain the following fully
discrete problem:

Given X0 ∈ R
3]Iint

find a sequence (X̄k)k=1,··· ⊂ R
3]Iint

such that

(M0 + τRLM
−1

LE + τRL[
|Y k|2

2
]E)X̄k+1

= τF̄ k + M0X̄
k − τRLM

−1(LX̄ext − N̄ co)

where

F̄ k = 2RL(Id −Nk ⊗Nk)M−1(L(ĒXk + X̄ext) − N̄ co)

−RL[
|Y k|2

2
]X̄ext .

In the above relations, Nk is the piecewise constant normal mapping of the surface
Mk

h.
Let us emphasize that the mass and stiffness matrices depend on a discrete surface

Mh. Here, in each time step we always consider the matrices computed for the old
surface, in particular

M = M[Mk
h], L[ω] = L[Mk

h][ω] .
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The same holds true for the weights in the originally nonlinear stiffness matrix. Hence
we end up with a linear system of equations to be solved in each time step.

Let us remark, that in the above scheme we have implicitly introduced a sequence
of fully discrete mean curvature vectors (Ȳ k)k=0,··· ⊂ R

3]I , with

Ȳ k+1 = −M
−1

L(EX̄k+1 + X̄ext) + M
−1N̄ co ,

where M and L – as pointed out above – depend on the surface Mk
h.

Figure 3: Initial (top) and restored surface (bottom) of a venus head dataset from two
different views. The areas of the surface to be restored are color coded.

Variant II. Now we proceed with a second variant for the implementation of
boundary conditions. In particular, they are not encoded as Neumann data but ex-
plicitly incorporated in the discrete spaces. Basically we skip the integrals over the
boundary ∂Mh in the above equations and exchange the integration domain, replacing

13



Mh by M̃h. Hence, we obtain that
∫

M̃h(t)

Y (t) : Ψ dx =

∫

M̃h(t)

∇Mh(t)X(t) : ∇Mh(t)Ψ dx ,

holds for all Ψ ∈ (Vh)3 and all t > 0.

Figure 4: Comparison of variant I (bottom) and variant II (top) of the discretiza-
tion. We show the initial surfaces on the left (above with a color coded surface patch
M0), intermediate timesteps in the middle and the restored surfaces on the right. Both
variants obviously lead to very similar results.

This simple modification ensures that in the second equation the discrete surface
normals on the one ring of triangles around Mh are incorporated in the computation
of the discrete mean curvature vector instead of explicitly coding the co-normal on the
right hand side of the equation.

As in the first variant above, we can discretize this in time and end up with a se-
quence of linear problems to be solved in each step. We denote by M̃ and L̃ the mass
and stiffness matrices corresponding to the integration domain M̃h instead of Mh and
obtain

(M0 + τRLM̃
−1

L̃E + τRL[
|Y k|2

2
]E)X̄k+1

= τF̄ k + M0X̄
k − τRLM̃

−1
L̃X̄ext ,

F̄ k = 2RL(Id −Nk ⊗Nk)M̃−1(L̃(ĒXk + X̄ext) −RL[
|Y k|2

2
]X̄ext .
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Solving the system of linear equations:

The above equations are solved by a BiCG-method. Our experiments show that also a
simple CG-algorithm works well.

Figure 5: In this blending problem we consider a higher genus topology. The boundary
condition is determined by 6 cylinders. On the left the initial surface is shown. On the
right we see the result of the Willmore-flow with C1 boundary condition on circles
around the cylinders.

5 Applications in surface restoration

In the following section, we will discuss the application of Willmore flow to surface
restoration. Let us start with an artificial test problem. In figure 2, we consider a sphere,
which is flat in a geodesic circle. It is a well known fact, that spheres are (the only)
minimizers of the Willmore energy [28, Thm. 7.2.2]. Therefore we expect that the
application of our algorithm is able to reconstruct the sphere. We apply variant II (see
section 4) to the (inner) flat part of the surface with the boundary conditions given by
the outer sphere part. Indeed, we observe that the complete sphere is obtained within
the evolution process.

Now we come to a real world restoration problem. We reconstruct damaged regions
of a venus sculpture. The color coded domains of the surface in figure 3 are replaced
by the corresponding Willmore surfaces with boundary conditions given by the outer
surface. The boundary information of the surface X and the normal N taken from the
outer surface obviously ensure smoothness of the restored surfaces.

Let us compare the two variants given in section 4(see figure 4). The upper row
shows the evolution results for boundary conditions explicitly encoded in the consid-
ered spaces without Neumann conditions (variant II). The lower row shows the cor-
responding time steps using variant I to treat boundary values. From an application
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Figure 6: Initial surface and experimental limit surface of Willmore flow with pre-
scribed normal on the boundary. Singularities develop at the corner points on the
boundary of the evolving green surface M0.

oriented point of view, the quality of the results is identical. They differ slightly in
the corresponding parameterization. In general one will prefer variant II because it is
easier to implement. Nevertheless, especially w.r.t. surface modeling it is important to
have both methods at hand.

Figure 5 shows a typical blending problem. We want to connect the 6 cylinders
that are visible on the left hand side. The initial blend contains non-smooth parts with
edges and corners. The result of Willmore flow leads to smooth blending. Let us
point out that the smoothness of the boundary seems to be crucial for obtaining smooth
restoration or a smooth blending. In figure 6 we solve a blending problem with our
method. The resulting blending surface, which replaces the colored initial surface part
of the left hand side, contains singularities. They appear exactly at those points of the
boundary, where the outer surface is not smooth.
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