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Summary. Image registration is the process of the alignment of two or more data
sets recorded with the same or different imaging machineries. Especially nonlinear
image registration techniques allow the alignment of data sets that are mismatched
in a nonuniform manner. Mathematically, this yields a nonlinear ill–conditioned
inverse problem. In this presentation, we introduce several computational meth-
ods based on variational PDE approaches to obtain an approximate solution of
the nonlinear registration problem. In each approach we have to solve a sequence
of subproblems. Each subproblem has to be well-posed and should be efficiently
solvable.

1 Introduction

The following contribution gives an overview on variational techniques which
are used to solve the so called image matching or template matching prob-
lem. The origin of this problem is in medical applications, especially image
assisted diagnostics and surgery planning. Here, physicians often need robust
and valid segmentation and classification results as well as an analysis of the
temporal change of anatomic structures. To this aim they want to correlate
images recorded with different imaging machinery or at different times in a
suitable way. There is a rich theory and also a large number of algorithms to
to solve this registration problem. They all ask for an “optimal” deformation
which deforms one image such that there is an “optimal” correlation to an-
other image with respect to a suitable coherence or difference measure. The
pure minimization of such difference measures typically leads to an ill-posed
problem (see section 3). Therefore regularization approaches must be taken
into account.
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Mainly two different regularization techniques have been discussed in the
literature [5, 6, 10, 15, 23, 25, 32]. On the one hand, so called elastic regis-
tration techniques deal with a regularization of the energy, typically adding
a convex energy functional based on gradients to the actual matching en-
ergy. The regularization energy is regarded as a penalty for “elastic stresses”
resulting from the deformation of the images. This approach is related to
the well known classical Tikhonov regularization of the originally ill-posed
problem. On the other hand, viscous flow techniques are taken into account.
They compute smooth paths from some initial deformation towards the set
of minimizers of the matching energy. Thereby, a suitable regularization of
the velocity, e.g., adding an artificial viscosity, ensures a certain problem
dependent smoothness modulus. This class of methods can be interpreted
as a gradient flow approach with respect to a metric which penalizes non–
regular descent directions. Taking into account a time-step discretization this
methodology is closely related to iterative Tikhonov regularization methods
[16, 31, 18].

A mixture of these approaches is used in [12], where on the one hand
an elastic energy is added to the difference measure, on the other hand a
regularized gradient flow is taken into account.

The aim of this contribution is to give a systematic overview on all these
techniques, i.e., dealing with a similarity measure leading to an ill-posed
problem and the corresponding regularization aspects.

In section 2 we discuss the general nature of image matching in more de-
tail. Especially, we will show that variational approaches are a natural way
to solve those matching problems section 2.2. In section 3 we will explain
why using only the difference measures leads to illposed problems. The cor-
responding regularization aspects are discussed in section 4. An overview of
possible combinations of matching energies and regularizations is given in
section 5. Note that the non–convexity of the minimization problem in im-
age registration makes it difficult to find the absolute minimum of a chosen
matching energy in case of larger deformations. missing:formulation with
multiscales and annealing Alternatively, one can consider a convolution of
the images with a large corresponding filter width which destroys much of
the detailed structure, match those images, and then successively reduce the
filter-width and iterate the process [2, 28, 35]. This kind of preconditioning
is explained in section 5.5.

2 A variational formulation

Given two images T, R : Ω → R, where Ω ⊂ Rd and d = 2, 3, we would like
to determine a deformation φ : Ω → Rd which maps the first image T via a
deformation φ to the second image R such that corresponding structures are
mapped onto each other. In the following we call the image T the template
and R the reference.
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Many image analysis methodologies have been developed to tackle this
problem. Image registration strategies are normally classified in two general
categories. On the one hand, there exist feature-based methods, i.e., the de-
formation is calculated based on a number of “anatomical” correspondences
established manually, or automatically on a number of distinguish “anatomi-
cal” features, such as distinct landmark-point [29] or a combination of curves
and surfaces, e.g. see [33]. On the other hand methods based on volumetric
transformations are considered. This methods seek to maximize the similarity
between the template and the reference via a deformation.

In many practical applications only a noisy version Rδ of the exact data
R is given with

||R−Rδ|| ≤ δ

with unknown noise level δ. We furthermore expect φ(Ω) = Ω. For the ease
of presentation we assume Ω = [0, 1]d throughout this paper. We consider u
as the displacement corresponding to φ: 1I + u = φ.

In this section we want to collect examples of similarity measures. Here,
a lot of choices are possible depending on the application one has in mind.
At this point one may distinguish two fundamental cases:

2.1 Mono-modal matching energies

Let us start with the easier case of monomodal matching. Given are two (or
more) images, where similar structures are represented by similar grey-values.
In this case one usually aims for the deformation φ that

T ◦ φ ≈ R .

The most basic energy D depending on the displacement u (resp. the
deformation φ) is the L2-distance:

DLSQ[u] =
1
2

∫

Ω

|T ◦ (1I + u)−R|2 . (D)

In what follows we use either φ or u as the argument of the energy D. If u
is an ideal deformation the above energy vanishes. Thus we ask for solutions
of the problem to minimize DLSQ[ · ] for u in some Banach space X .

A minimizer u of (6) is characterized by the necessary condition (DLSQ)′[u] =
0, where (DLSQ)′[u] ∈ X ′ for the dual space X ′ of X . Indeed, we require

〈(DLSQ)′[u], ϕ〉 = 0 ∀ϕ ∈ X .

Suppose [L2(Ω)]d is embedded in the space X ′. Under certain regularity
assumptions on T , R and ∇T we obtain the L2-representation of (DLSQ)′

gradL2DLSQ[u] = (T ◦ (1I + u)−R)∇T ◦ (1I + u) . (1)

In the following sections we will especially focus on this special choice of
distance measure.
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2.2 Multi-modal matching energies

In general, if the images are recorded with different imaging machinery, the
so-called multi-modal registration, the DLSQ functional is not an appropri-
ate measure. The main reason is that the same structures may have quite
different gray values in the multi-modal case. In this case the use of (D) does
not make any sense.

Mutual information energy One frequently used approach to this prob-
lem is the so called mutual information strategy [14, 24, 34, 36]. There, one
searches for an affine-linear transformation so that the mutual information
(or transinformation) is maximized. Nonlinear approaches are presented, e.g
in [9, 19, 21, 20]. Mutual information is borrowed from information theory,
see e.g. [4]. The mutual information between two discrete random variables
X and Y is defined to be

I(X,Y ) = H(X) + H(Y )−H(X, Y ),

where H(X) is the entropy of the random variable X and H(X, Y ) is the
joint entropy of these variables.
This intensity based matching energy was introduced in the context of multi-
modal image-registration in [34]. Using our notation, the mutual-information
based matching energy is defined by

DMI [u] = I(T ◦ (1I + u), R).

The mutual information based matching energy is maximal if the images
are matched. Therefore the mutual information based matching energy is
a measure of alignment between the images. This signifies that we have to
maximize DMI [u] or equivalently minimize D−MI [u] := −DMI [u].

Morphological matching energy A disadvantage of the Mutual Infor-
mation approach is its global charactered. Indeed our energy integral is an
integral in the space of grey values where the corresponding energy density
is nonlocal and consists of the probability distributions. We might ask for a
local energy density reflecting solely the morphology. Thus, let us define the
morphology M [I] of an image I as the set of level sets of I:

M [I] := {MI
c | c ∈ R},

where MI
c := {x ∈ Ω | I(x) = c} is a single level set for the grey value c. I.e.

M [γ ◦ I] = M [I] for any reparametrization γ : R→ R of the grey values. Up
to the orientation the morphology M [I] can be identified with the normal
map (Gauss map)

NI : Ω → Rd ; x 7→ ∇I

‖∇I‖ .
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(a) CT-reference image (b) MR-template image

Fig. 1. Example for a multi-modal image registration problem: computer tomog-
raphy (CT)–magnetic resonance imaging (MRI). Both images are presented with
superimposed reference contour.

Morphological methods in image processing are characterized by an invari-
ance with respect to the morphology [30]. Now, aiming for a morphological
multi-modal registration method, we will ask for a deformation φ : Ω → Ω
such that

M [T ◦ φ] = M [R] .

Thus, we set up a matching functional which locally measures the twist of
the tangent spaces of the template image at the deformed position and the
deformed reference image or the defect of the corresponding normal fields.
We aim to minimize a suitable matching energy, which measures the morpho-
logical defect of the reference image R and the deformed template image T ,
i. e., we ask for a deformation φ such that NT ◦φ | |Nφ

R, where Nφ
R is the trans-

formed normal of the reference image R on Tφ(x)φ(MR
R(x)) at position φ(x).

Here, TyM denotes the tangent space of a surfaceM at a position y. From the
transformation rule for the exterior vector product Dφ u∧Dφ v =cofDφ(u∧v)
for all vectors v, w which are tangential to the level set MR

R(x) one derives

Nφ
R =

cofDφ NR

‖cofDφ NR‖
where cofA = det A · A−T for invertible A ∈ Rd,d is the cofactor matrix of A
- a matrix consisting of all (n− 1)-minors of A. Thus, we have for Dφ :

n = 2 : cofDφ =
[

∂2φ2 −∂2φ1

−∂1φ2 ∂1φ1

]

n = 3 : (cofDφ)ij = ∂i+1φi+1∂i+2φi+2

−∂i+1φi+2∂i+2φi+1.
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with cyclic indices. Now, one might be tempted to define the matching energy∫
Ω
‖NT ◦φ−Nφ

R‖2dµ. But, to for a better treatment of the singularities [12], we
avoid the normalization appearing in Nφ

R and choose the following matching
energy

Dmorph[φ] :=
∫

Ω

g0(∇T ◦ φ,∇R, cofDφ)dµ.

where g0 is a 0-homogenous extension of a function g : Sd−1×Sd−1×Rd,d →
R+, i. e., g0(v, w, A) := 0 if v = 0 or w = 0 and g0(v, w,A) := g(v, w, A)
otherwise. If we want to achieve an invariance of the energy under non-
monotone grey-value transformation, the symmetry condition g(v, w, A) =
g(−v, w, A) = g(v,−w,A) has to be fulfilled.

Figure 2 shows results obtained for the registration of image morphologies.
Here, we have considered an elastic regularization approach (cf. Section 4),
to overcome the illposedness of the resulting matching problem.

3 Illposedness of the problem

In general the image registration problem is not well-posed in the sense of
Hadamard, i.e. for all admissible images one of the following properties does
not hold

(H1)a deformation exists,
(H2)the deformation is unique and
(H3)the deformation depends continuously on the images.

In practice the violation of the existence of a deformation does not play an
important role. For instance, in the case of mono-modal matching almost all
practical problems do not have an exact solution. To overcome this issue our
aim is weakened by:

T ◦ φ ≈ R .

The most often used strategy to solve the above “equation” is the defi-
nition of an energy, which leads for global minimizers (or maximizers) to an
almost perfect matching result. Furthermore one designs these energies such
that certain additional assumptions are fulfilled, as e.g. invariance w.r.t. rigid
body motions and/or higher regularity [13].

The violation of the uniqueness of a deformation is a much more serious
problem for the user as well as for the mathematician. In order to demonstrate
this for the mono-modal matching problem, we consider the setting with the
L2-distance DLSQ.

For a deformation φ and for c ∈ R the level sets
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Fig. 2. An artificial test example for multi-modal morphological matching. The top
row shows the given template resp. reference images which differ by a translation
and a non-monotone contrast change. The bottom row depicts the initial misfit (left)
and the final registration result by multi-scale minimization of the morphological
registration energy.

MT
c = {x ∈ Ω |T (x) = c}

any displacement Λ which keeps MT
c fixed for all c, does not change the

energy, i.e.,

D[φ] = D[Λ ◦ φ].

This especially holds true for a possible minimizer φ. Hence, a minimizer –
if it exists – is non-unique and the set of minimizers is expected to be non-
regular and not closed in a usual set of admissible displacements. Note that
the above example holds for all energies which are based on the matching of
level-sets.
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The problem is turning even worse in case of multi-modal registration
problems. Indeed, for any deformation φ which maps level sets onto level set
(T (x) = T (y) ⇒ T ◦ φ(x) = T ◦ φ(y)) - not necessary corresponding onces -
we then still have that D[φ] = D[Λ ◦ φ].

Since the image registration problem has obviously multiple solutions and
the solution set is typically very large and irregular one has to decide which
solution is of interest (for a given application) and which is not. From the
mathematical point of view, the problem behaves just like a singular sys-
tem. Generically, there is not enough information to determine a deforma-
tion uniquely. The problem is underdetermined. Additional information will
be inserted most commonly requiring “smoothness” of a solution.

4 Regularization of the problem

The aim of this section is to introduce different minimization approaches to
the problem

D[·] −→ min. (2)

Most common approaches to minimize nonlinear functionals are steepest de-
cent and Newton type methods. Unfortunately, even when (H2) is fulfilled,
the use of this methods leads to serious numerical problems, since a solu-
tion of the image registration problem does not depend continuously on the
image-data.

Unfortunately, recalling our observation above irregular in particular dis-
continuous solutions with arbitrary large strain are possible. To rule out these
unrequested solutions it is necessary to penalize them.

4.1 Energy relaxation

One way of doing so consists in changing the energy functional and adding a
so called regularization energy. Typical examples of such energies are

– a Dirichlet functional

SDir[φ] =
∫

Ω

|∇φ|2 dx , (3)

which indeed leads to better smoothness properties of the results. Nagel
and Enkelmann proposed an anisotropic quadratic form for the gradient of
the deformation which regularizes edges of the image only in the tangential
direction [11, 26]. Alvarez, Weickert and Sanchez [2] used these ideas for
deriving a consistent model, centering deformation and anisotropy in the
same image.
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– functionals from elasticity, which relates to the assumption that the de-
formation is caused by some kind of elastic forces. The structure of those
energies for n = 3 is as follows:

Selast[φ] =
∫

Ω

W (Dφ,cofDφ, det Dφ) dx . (4)

In the above integrand we use the cofactor matrix cofDφ of the derivative
Dφ and the corresponding determinant.

– higher order functionals. Here a well known example is used in [13]

Shigher[φ] =
d∑

l=1

∫

Ω

|∆φl|2 dx , (5)

Note that the addition of those energies leads to minimizers which no
longer yield perfect matching results. In this sense we weakened our aim and
try to find almost perfect matches φ with

T ◦ φ ≈ R .

Let us collect what we have found so far. We want to solve the image match-
ing problem by minimizing an energy whose ingredients are the similarity
measure and a regularization energy:

E[φ] = D[φ] + αS[φ] (6)

This approach is in the inverse problem community widely known as Tikhonov
regularization.

4.2 Iterative relaxation

Henn and Witsch [18] introduced the so called iterative Tikhonov regular-
ization for minimizing D[u]. The solution of the minimization problem is
denoted by uα for α fixed. Now, we consider a solution curve uα for decreas-
ing α. One starts with α0 À 0 which is helpful for the solution method. Then
minimal solutions of the Tikhonov functional

uk+1 = arg min
u
{D[u] + αkS(u− u(k))}

with a monotone decreasing sequence αk → 0 for k → ∞ and initial guess
u(k) are computed. Each subproblem, for regular chosen S and αk sufficiently
large, is well posed. The iteration is stopped whenever the functional D in-
creases.

At the end of this section we want to consider a different related regular-
ization method, based on gradient flow ideas. Gradient flows are well known
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tools in minimization of functionals. Classical examples are the heat flow as
gradient flow for the Dirichlet integral or mean curvature evolution of surfaces
as a gradient flow for the area-functional (see e.g. [22]).

Here, we want to describe a gradient flow approach to the minimization
problem (2), i.e., we would like to determine a path within a suitable space
of deformations, that tends towards the set of minima of D.

On account of the discussed ill-posedness of this problem, gradient flows
have to integrate regularizations to avoid nonsmooth paths on the energy
landscape.

At this point, we see a principal difference between ”classical” gradient
flow methods [27] for PDEs and our approach to ill-posed optimization prob-
lems. We do not interprete a given PDE as a gradient flow but we use metrics
for modeling and regularization purposes.

The idea is to introduce a regularizing metric g : X × X → R measuring
the derivative of D in a regular space X . If we consider the duality in X ′ we
have a representation A : X → X ′ of g :

g(u, v) = 〈Au, v〉 .

Obviously, this mapping is bijective on account of the metric properties. If
we measure the derivative w.r.t. g then the formal gradient flow with respect
to the metric g(·, ·)

∂tu(t) = −gradgD[u(t)]

reads as
g(∂tu, ϕ) = −〈D′[u], ϕ〉 ,

for all ϕ ∈ X . This can be re-formulated using the mapping A (A∂tu =
−D′[u]) or equivalently:

∂tu = −A−1D′[u] .

The mapping A−1 transfers the derivative of D to the more regular space X .
For more details and relations to the above regularization methods we refer
to [8].

5 Computational approaches to minimize the matching
energy

In the previous section we have discussed the image registration problem. It
turns out, that the problem is ill-posed and consequently traditional numer-
ical methods must be fail. The aim of this section is to present some basic
computational approaches to solve the image registration problem, i.e., to
minimize a similarity functional D, or to find roots of

f(u) := gradD[u] .
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Furthermore, we define an energy norm || · ||E defined by

||v||E =
√
〈v, v〉E

with inner product
〈v, w〉E = 〈Av, w〉Ld

2(Ω) (7)

and a symmetric positive definite operator A. Let us hint at the fact, that
this energy norm can be regarded as regularizing metric as discussed above.

5.1 Direct time dependent methods

One of the most basic ideas for the solution of the minimization of the sim-
ilarity measure D consists in applying a steepest descent method. Thus we
look for a path in the energy landscape of the deformations heading always
in the direction −gradD[u]. This direction interpreted in the metric sense is
given by −A−1f(u). Continuously we consider the evolution problem

ut + A−1f(u) = 0, 0 ≤ t ≤ T, u(0) = u0 .

The easiest time-discretization is the following one:

1.)Explicit time discretization
Here, the next iterate is given by simply going one timestep τ in the direc-
tion of the steepest descent (gradient direction):

uk+1 − uk

τ
+ A−1f(uk) = 0 .

This is equivalent to the scheme

uk+1 = uk − τA−1f(uk) .

An additional line-search leads to a more efficient and stable method:

τk = arg min
τ∈R

D
[
uk − τA−1f(uk)

]
. (8)

Algorithmically, this reads as in Algorithm 1. Higher stability of the steep-
est descent method may be obtained by an

2.)Implicit time discretization
In this case, the descent direction is taken at time τ instead of the “old”
time 0. Principally we have to solve a nonlinear problem.

uk+1 − uk

τ
+ A−1f(uk+1) = 0

Formally, the determination of the next time-step is similar to the explicit
case:

uk+1 = uk − τA−1f(uk+1), .

Nevertheless, such a fully implicit discretization is rarely applied because
it is not really practical.
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Algorithm 1 Steepest descent with explicit time discretization
1: k = 0; u(0) = 0;
2: repeat
3: calculate fk = f(uk(x));
4: compute dk = A−1fk with A given by (7);
5: compute τk by solving problem ( 8);
6: set uk+1 = uk + τk · dk;
7: set k = k + 1;
8: until ||f(uk)||2 ≤ eps

5.2 Regularized time dependent methods

In the above solution methods we introduced a regularization via regularizing
the descent direction using the representation A of the energy E. Another
possibility consists in adding a regularization energy and minimizing the re-
sulting energy:

Jα(u) = D[u] + α||u||2E → min!

In this case, a descent direction of Jα(u) is given by αAu+f(u). In the same
way as above, a continuous model leading to at least local minimizers is:

ut + αAu + f(u) = 0, 0 ≤ t ≤ T, u(0) = u0 .

3.)Explicit time discretization. Conceptually, there is no difference com-
pared to the above explicit time discretization. The search direction is now
given by αAuk + f(uk):

uk+1 − uk

τ
+ αAuk + f(uk) = 0

The update displacement computes as:

uk+1 = uk − τ (αAuk + f(uk))︸ ︷︷ ︸
=J′α

.

Once again a line-search algorithm as in (8) should be used for efficiency
reasons.

4.)Semi-implicit discretization. One frequently used technique consists in
treating the linear term Au implicitly and the nonlinear derivative of the
difference measure explicitly:

uk+1 − uk

τ
+ αAuk+1 + f(uk) = 0 .

As corresponding system which is to solve we obtain:

(I + ατA)uk+1 = uk − τf(uk)
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The displacement update is given by

uk+1 = uk − τ(I + ατA)−1(αAuk + f(uk)) .

Thus, (I + ατA)−1(αAuk + f(uk)) is a descend direction of Jα (cf. Algo-
rithm 2)
As usual for non-explicit methods, a line-search algorithm is at least diffi-
cult to implement.

Algorithm 2 Steepest descent with semi-implicit time discretization
k = 0; u(0) = 0;
repeat

calculate fk = f(u(k)(x))
compute l(k) = uk − τfk

solve (I + ατA)uk+1 = l(k)

set k = k + 1
until ||f(u(k)(x))||2 ≤ eps

5.)Implicit discretization
The fully implicit highly nonlinear problem

uk+1 − uk

τ
+ αAuk+1 + f(uk+1) = 0

arising from a regularization of the energy is not used in practice.

5.3 Gradient descent methods

We start the discussion of minimization methods by considering the uncon-
straint minimization problem

min
u

D.

Mathematically, dk is a descend direction from uk if
〈
grad

(
D[uk]

)
, dk

〉
< 0

and it is guaranteed that for sufficient small τ > 0

D[uk + τdk] < D[uk].

If dk is a descend direction and τ > 0 sufficient small, then

uk+1 = uk + τdk.

reduces the value of the matching energy D. This motivates the following
iterative method for the image registration problem
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uk+1 = uk + τkdk

with a parameter τk chosen by a line-search method. Since the image regis-
tration problem is ill-conditioned, methods based on these descend directions
do not even converge locally. Hence, to ensure robustness and fast local con-
vergence it is necessary to incorporate additional information.

6.)Steepest descent method in terms of an energy
The direction of most rapid descend of D at uk is the solution of

min
d

〈
grad

(
D[uk]

)
, dk

〉
,

and is called the steepest descent direction

dk = −grad
(
D[uk]

)
= −fk.

Consider the quadratic approximation of D[uk + dk]

Qk[dk] = D[uk] +
〈
grad

(
D[uk]

)
, dk

〉

+
1
2

〈
HD

(
uk

)
dk, dk

〉

with the Hessian HD(uk) of D at uk. Since the Hessian is in general for
the image registration problem not positive definite, the minimization of
Qk has not a unique minimizer. Therefore the Hessian is replaced by a well
known positive definite operator A and we get the following perturbed
steepest descent direction

dk = −gradA(D) = −A−1fk. (9)

The next iterate is given by

uk+1 = uk − τA−1fk, k = 0, 1, · · ·
with

τk = arg min
τ∈R

D
[
uk − τA−1fk

]
. (10)

We get the following algorithm.

7.)Steepest descent method for Jα

Consider the regularized functional

Jα[u] = D[u] + α 〈Au, u〉Ld
2(Ω)

the steepest descent direction of Jα at uk is given by

dk = −gradJα(D[uk]) = −(αAuk + fk). (11)
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Algorithm 3 Perturbed steepest descent method for D

k = 0; u(0) = 0;
repeat

calculate fk = f(uk(x))
compute dk from (9)
set sk = dk/||dk||∞
compute τk by solving problem (10)
set uk+1 = uk + τk · sk

set k = k + 1
until ||f(uk(x))||2 ≤ eps

For a given initial guess u(0) we get the following iteration

uk+1 = uk − τk(αAuk + fk), k = 0, 1, · · ·
where the parameter τk is the solution of the following line-search problem

τk = arg min
τ∈R

Jα [uk − τ(αAuk + fk)] . (12)

Algorithm 4 Steepest descent method for the regularized functional Jα[u]
k = 0; u(0) = 0;
repeat

calculate fk = f(uk(x))
compute dk from (11)
compute τk by solving problem (12)
set uk+1 = uk − τk(αAuk + fk)
set k = k + 1

until ||αAuk + fk||2 ≤ eps

8.)Steepest descent method for Jα in terms of an energy
Consider the regularized functional

Jα[u] = D[u] + α 〈Au, u〉Ld
2(Ω)

a quadratic approximation of Jα[uk + dk] is given by

Qk[dk] = Jα[uk] +
〈
grad

(
Jα[uk]

)
, dk

〉

+
1
2

〈
HJ

[
uk

]
dk, dk

〉

with the Hessian HJ (uk) = HD(uk) + αA of J at uk. Since HD(uk) is
ill-conditioned, we replace HJ(uk) by A and get the following quadratic
approximation
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Qk[dk] = J [uk] +
〈
grad

(
J [uk]

)
, dk

〉

+
1
2

〈
A

(
uk

)
dk, dk

〉

with unique minimizer

dk = −A−1(αAuk + fk) = −αuk −A−1fk (13)

for a given initial guess u(0) we get the following iteration

uk+1 = uk − τ(αuk + A−1fk)
= (1− ατ)uk − τA−1fk, k = 0, 1, · · ·

with τk solution of

τk = arg min
τ∈R

Jα

[
uk − τ(αuk + A−1fk)

]
. (14)

Algorithm 5 Perturbed steepest descent method for Jα[u]
k = 0; u(0) = 0;
repeat

calculate fk = f(uk(x))
compute dk from (13)
compute τk by solving problem (14)
set uk+1 = uk − τk(αuk + A−1fk)
set k = k + 1

until ||αAuk + fk||2 ≤ eps

A different approach uses the regularized functional. The reason is that higher
values of α can be used without increasing the regularization. This yields
derivatives with better condition.The first approach is given by:

10.) Consider the regularized functional

Jk
α[u] = D[u] + α 〈A(u− uk), u− uk〉Ld

2(Ω)

with steepest descent direction

gradJk
α
(D[u]) = f(u) + αA(u− uk)

of Jα[u]. The evaluation at uk leads to

dk = −grad
(
Jk

α[uk]
)

= −fk.

This approach lead to the steepest descend iteration for D
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uk+1 = uk − τfk

with a line-search
τk = arg min

τ∈R
Jα [(uk − τfk] .

over the regularized functional Jα.
11.) Consider the regularized functional

Jk
α[u] = D[u] + α 〈A(u− uk), u− uk〉Ld

2(Ω)

by replacing the Hessian of Jk
α by A we get the unique descend direction

at uk

dk = −A−1fk

for a given initial guess u(0) we get the following iteration

uk+1 = uk − τA−1fk, k = 0, 1, · · ·

with
τk = arg min

τ∈R
Jk

α

[
uk − τA−1fk

]
.

5.4 Higher order methods

In the case that the similarity functional is given by a least-squares functional,
such as

DLSQ[u(x)] =
1
2

∫

Ω

(
T (x + u(x))−R(x)

)2

dx

higher order minimization methods can be considered.

Newton-type methods An affine model of d(u) = T (x − u(x)) − R(x)
around a vector uk is given by

d(u)− d(uk) ≈ Jd(uk) (u− uk)︸ ︷︷ ︸
=dk

, (15)

where Jd is the Jacobian of d given by

Jd(u) =
(∂d(u)

∂u1
, · · · ,

∂d(u)
∂ud

)
.

The Jacobian matrix and the Hessian of DLSQ at uk are given by

g(uk) = J t
d(uk)d(uk)

and
H(uk) = J t

d(uk)Jd(uk) + S(uk).

Here,
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S(u) =
∫

Ω

d(u)d′′(u)dx =
∫

Ω

d(u)∇2T (x− u(x))dx

constitutes the nonlinear part of H(u).
Newton-type methods applied on the image registration problem are iterative
methods which can be written as:

uk+1 = uk + dk,

at each step, where u(0) is an initial given vector and dk is the solution of the
normal equation:

dk = −A−1
k g(uk) = −A−1

k J t
d(uk)d(uk).

In the case this is just the Ak = I steepest descend method. Higher order
methods are given by:

– Ak = H(uk) Newton’s method
– Ak = J t

d(uk) · Jd(uk) Gauss-Newton method.

For the most real applications these methods are not suitable to solve the
registration problem. The matrix Ak has a large condition number cond2(Ak)
so that these methods do not even converge locally and due to noise sensitivity
of the ill-posed problem, regularization techniques have to be applied in order
to compute meaningful solutions. The modified Newton step

dk = −(J t
d(uk) · Jd(uk) + αkA)−1J t

d(uk)d(uk) (16)

becomes well posed for some αk > 0 with unknown size. A trust-region
approach to determine the parameter αk in each iteration step is presented
in [17].

Nonlinear approaches Here the idea is to minimize the nonlinear regular-
ized functional

Jα[u] = D[u] + α||u||2E
by a nonlinear iterative method. Amit [3] uses Fourier and Wavelet tech-
niques. In [18] an approach is presented, where the multigrid-idea and the
minimization of the nonlinear functional is combined by a modified multigrid
full approximation scheme.

5.5 Multi-scale approaches

At the end of this section we want to hint at a well-established global min-
imizing approaches for image matching problems, based on a multi-scale of
matching problems.

For typical image intensity functions T , R, as discussed above the en-
ergy D[·] is non-convex and we expect an energy landscape with many local
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(a) template image (b) reference image

(c) resulting deformation (d) resulting deformed template

Fig. 3. Example for a multiscale uni-modal image registration problem with large
deformation: The reference (b) is an artificial rotational distortion of the template
(a). The computation of the result involved gradient descents on the complete
hierarchy of grids.

minima. Especially for gradient flow methods this implies that descent paths
mostly tend to asymptotic states which only locally minimize the energy.
Following Alvarez et al. [1] we consider a continuous annealing method based
on a whole scale of image pairs Tε, Rε, where ε ≥ 0 is the scale parameter.
Here we consider scale spaces of images generated by a scale space operator
S(·) which maps an initial image I onto some coarser image, i.e.,

Iε = S(ε)I .

The scale parameter ε allows to select fine grain representations corresponding
to small values of ε and coarse grain representations with most of the image



20 U. Clarenz, M. Droske, S. Henn, M. Rumpf, and K. Witsch

details skipped for larger values of ε. For the choice of S we refer to [7, section
4, 6]. For given ε ≥ 0 we then consider the difference measure

Dε[u] =
1
2

∫

Ω

|Tε ◦ (1I + u)−Rε|2 .

We are left to choose the initial mapping φ0 = 1I + u0,ε for the evolution on
scale ε. Here we expect the minimizer or a sufficiently good approximation of
the same problem on a coarse scale to be a suitable starting point to approach
the global minimum on the finer scale. Thus, in an iteration, starting from a
coarse scale with large value of ε, on successively refines the small and reduces
ε correspondingly. Details of the implementation are given in [7, section 4, 6].
An example with a large non-linear deformation, where computations took
place from coarse to fine scales resolved on suitably resolved grids is given
in Figure 3, where the template and reference images differ by a rotational
twist by up to π

4 .
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