Towardsfast non-rigid registration
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ABSTRACT. A fast multiscale and multigrid method for the matching of images in 2D and
3D is presented. Especially in medical imaging this problem - denoted as the registration
problem - is of fundamental importance in the handling of images from multiple image
modalities or of image time series. The paper restricts to the simplest matching energy to
be minimized, i.e., E[¢] = %fn |f1 0 ¢ — f2|2, where f1, f2 are the intensity maps of
the two images to be matched and ¢ is a deformation. The focus is on a robust and efficient
solution strategy.

Matching of images, i.e., finding an optimal deformation ¢ which minimizes E is
known to be an ill-posed problem. Hence, to regularize this problem a regularization of
the descent path is considered in a gradient flow method. Thus the initial value problem
O = —gradgE[¢] with some regular initial deformation ¢(0) = ¢¢ is solved on a
suitable space of deformations @ — . The gradient grad, is measured w.r.t. a suitable
regularizing metric g. Existence and uniqueness of solutions is demonstrated for different
types of regularizations. For the implementation a metric based on multigrid cycles on
hierarchical grids is proposed, using their superior smoothing properties. This is combined
with an effective time-step control in the descent algorithm. Furthermore, to avoid conver-
gence to local minima, multiple scales of the images to be matched are considered. Again,
these image scales can be generated applying multigrid operators and we propose to re-
solve the pyramid of scales on a properly chosen pyramid of hierarchical grids. Examples
on 2D and large 3D image matching problems prove the robustness and efficiency of the
proposed approach.

1. Introduction

Image assisted diagnostics and surgery planning requires robust and valid segmenta-
tion and classification results and an analysis of the temporal change of anatomic structures.
This can only be achieved properly if images recorded with different imaging machinery
or at different times can suitably be correlated to each other. Various techniques have been
proposed to solve this registration problem. They all ask for an “optimal” deformation
which deforms one image such that there is an “optimal” correlation to another image with
respect to a suitable coherence measure.

Mainly two different approaches have been discussed in the literature [5, 6, 7, 9, 15,
17, 21]. On the one hand, so called elastic registration techniques deal with a regularization
of the energy, typically adding a convex energy functional based on gradients to the actual
matching energy. The regularization energy is regarded as a penalty for “elastic stresses”
resulting from the deformation of the images. This approach is related to the well known
classical Tikhonov regularization of the originally ill-posed problem. On the other hand,
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viscous flow techniques are taken into account. They compute smooth paths from some ini-
tial deformation towards the set of minimizers of the matching energy. Thereby, a suitable
regularization of the velocity, e.g., adding an artificial viscosity, ensures a certain problem
dependent smoothness modulus. This class of methods can be interpreted as a gradient
flow approach with respect to a metric which penalizes non-regular descent directions.
Taking into account a time-step discretization this methodology is closely related to itera-
tive Tikhonov regularization methods [12, 20]. Preparing this paper we got aware of recent
results by Henn and Witsch [13]. They proposed to use multigrid smoothers in iterative
Tikhonov regularization and proved its applicability for non-rigid registration in medical
imaging. Concerning the impact of multigrid smoothing, this approach is closely related to
our approach. In fact using the gradient flow perspective we enlighten the problem from a
different point of view. In addition we embed the approach in a scale of matching problems
which enable the computation of more global deformations.

Furthermore let us recall the optical flow method in image processing. The task is
to extract motion fields from image time sequences. We ask for the time discrete motion
velocity between two images of a time sequence, i.e., a short time deformation which is
again a matching problem. If the motion is only piecewise smooth a simple regularization
adding a Dirichlet-integral would not be able to retain the often discontinuous deformations
on image edges. Thus Nagel and Enkelmann proposed an anisotropic quadratic form for
the gradient of the deformation which regularizes edges of the image only in the tangential
direction [8, 18].

Due to the non—convexity of the minimization problem in image registration it might
be difficult to find the absolute minimum in case of larger deformations. Alternatively,
one can consider a convolution of the images with a large corresponding filter width which
destroys much of the detailed structure, match those images, and then successively reduce
the filter-width and iterate the process [3, 19, 24]. This procedure is comparable to an
annealing algorithm, where the filter width plays the role of the temperature.

In this paper we will consider one of the simplest image intensity based matching
energies and apply a gradient descent approach for its minimization. The focus is on the
robustness and efficiency of the proposed method and not on the generality of the approach
with respect to its range of applications. In Section 8 we will give an outline on further
research directions. The building blocks of the presented method are:

e a suitable choice of the regularizing metric (especially based on multigrid cy-
cles),

o standard effective time-step control methods in the gradient descent method but
now taking into account the selected new metric,

e a multiscale approach considering a series of successively smoothed images

e scale dependent grid resolution, i.e., solving coarse scale problems for suffi-
ciently smooth images on coarse grids,

o and finally, scale dependent stopping criteria, which prevents us from resolving
fine deformation details already on much too coarse scales.

Altogether these ingredients ensure a superior performance of the resulting algorithm. It
allows the efficient computation of large scale matching problems with large solution de-
formations. Specifically, medical images of a resolution 129 can be matched based on
deformations in the space of piecewise trilinear, continuous functions in a few minutes on
a LINUX PC with a Pentium 1V, 1.7 GHz processor and the resulting deformations are
reasonably smooth. In what follows we will introduce the continuous model in Section 2,
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show existence and uniqueness of solutions in Section 3. Section 4 contains the descrip-
tion of the chosen scale space method. We explain the spatial and temporal discretization
in Section 5. In Sections 6 and 7 we collect the algorithmic ingredients and applications
respectively and in Section 8 further extensions towards nonlinear metrics and different
matching energies are sketched and we draw conclusions.

2. Problem and approach

Given two images fi, fo : @ — R, where Q C R? and d = 2, 3, we would like to
determine a deformation ¢ : © — R¢ which maps Q onto 2 and maps grey values in the
first image f; via a deformation ¢ to grey values at the deformed position in the second
image f> such that

fioo= fa.
For the ease of presentation we assume 2 = [0,1]? throughout this paper. We consider
u as the perturbation of ¢ from the identity 1l which means 1l + v = ¢. To optimize the
deformation with respect to a proper match of the two images we define the most basic
energy E depending on the displacement u (resp. the deformation ¢):

® Bl =5 [ 1o+ = pf.

In what follows we use either ¢ or u as the argument of the energy E. If u is an ideal defor-
mation the above energy vanishes. Thus we ask for minimizers of the problem E[u] — min
in some Banach space V. Obviously, this problem is ill-posed. Consider a deformation ¢
and for ¢ € R the level sets M! = {z € Q| fi(z) = ¢}. Then for any displacement A
which keeps M. fixed for all ¢, the energy does not change, i.e.,

E[¢] = E[A o ]
This especially holds true for a possible minimizer. Hence, a minimizer — if it exists —
is non-unique and the set of minimizers is expected to be non-regular and not closed in a
usual set of admissible displacements.

A minimizer u of (E) is characterized by the necessary condition E'[u] = 0, where
E'[u] € V' for the dual space V' of V. This condition can be expressed in weak form:

/<flo(1|+u)—f2)wlo<u+u)-o=o,
Q

forall & € [C§°(2)]?. Suppose [L2(02)]¢ is embedded in the space V'. Under obvious
integrability conditions we obtain the L2-representation of E’
(2.1) grad; - E[u] = (fio (U +u) — fo)Vfio (Ul +u).
We investigate a gradient flow approach to solve this matching problem. A gradient of a
functional £ : V — R is defined as the representation of the Fréchet derivative E' € V' in
ametric g(-,-) onV, i.e.,

g(grad, E[ul,0) = (E'[u], ) .

One frequently identifies E'[u] with the gradient of E with respect to the L2-product. Here
we introduce a different length measurement on the space of deformations and consider a
general gradient flow
O = —grad, Elu],
u(0) = wg.
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for a suitable metric g(-, -) on V. Thus we ask for a solution u : Rf — V, such that
(2.2) g(0¢u, 0) + / (fic(l4+u)— fo)Vfio(ll+u)-0=0,

Q

forall 8 € [C5°(Q2)]¢. The choice of 1 and the metric g on V is related to a regularization
of the matching problem (cf. Section 3). At least for finite time we ensure V-regularity of
the deformation. The representation of the metric g in the duality pairing (V',V) will be
denotedby A: V — V', ie,,

9(p, ) = (A, 1)
for all ¢» € V. Hence, if the inverse of A is regular in a suitable sense (cf. Section 3) the
gradient flow can be rewritten as an ODE in the Banach space V:

Ou=—A1E"[u].

In the following section we give examples for A and corresponding metrics g and show
existence and uniqueness of solutions.

3. Existence and uniqueness

In what follows let us assume V to be a Banach space. Furthermore suppose that there
is a second Banach space W D V which is embedded in the dual space V' of V. Hence,
we can state the following

THEOREM 3.1. Let A be a linear isomorphism A : ¥V — W. If E'[V] C W and
E'[)] : V — W is Lipschitz continuous, then there exists a unique solution of the problem:
For given initial data ug € V, find a solution u : R — V, such that
ou = —A'E'[d],
u(0) = wug.

Remark: Theorem 3.1 especially ensures that solutions of the gradient flow are V-
regular for finite times. Let us emphasize that in general we can neither expect the V-norm
to be uniformly bounded in time nor that there exists a steady state.

The proof is a straightforward application of the Picard-Lindel6f Theorem in Banach
spaces. We have shown that there is a L2-representation grad; . E of E’ (cf. Section 2.1),
if f1 and f are of suitable regularity. Therefore in case W = [L%(Q)]¢ the inclusion
E'(V) c Wis valid. Let us prove Lipschitz continuity of grad,,, E = grad,» E.

LEMMA 3.2. LetV = V' = W = [L%(Q)]%; then the derivative of the energy F w.r.t.

W is Lipschitz continuous, i.e.,
llgrad» Efus] — grady Bluz)l 22 < C|llur — ual|»

if f1 € CH'(RY) and f, € L=(Q).

Proof: Letuy, us € V. Then we have
grad;» Efui] — grad; 2 Eus]
(fio(M+w)—f2)VfioU+u)—
(fio (W +wu2) = f2)Vfio (U + u)
[(fro(W+wu1) = f2) = (fro (W4 wuz) = f2)[Vfio (U +u) -
(fio(M+u) = f2)[Vfro(M+u) = Vfio(ll+u)].
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FIGURE 1. The images show the 2D—-matching result of an artificially
deformed MRI-slice with 1292 pixels. From top left to bottom right:
original image, distorted image by rotational twist, application of the
deformation to a uniform grid , matching result.

On account of our regularity assumptions we can finish our proof of Lipschitz continuity:

|grad;» E[u1] — grad;,» Eus]|
< AAller Ifilloon fur = uz| + (| filloo + [f2DI[fillcr[ur — ug]

which leads to
|lgrad 2 Efu1] — grady2 Efus]||£2(o)
< lfller [1filleor [Jur = uallz20) +
[[filleol[fillerr [lur — u2|lr2(e) +
[[fillorallfallLee [lur — uzl|L2(q) -

Let us now consider several examples:
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(i) In case A = 1l existence and uniqueness are shown by the above Lemma and
Theorem 3.1.

(i) The proof of Lemma 3.2 clearly extends to V = [H*2(Q)]¢, where s > 0 and

V' = [H*%(Q)"]? because in this case [H*2(Q)]¢ < [L2(Q)]¢ — [H>2(Q)"]%.

For our purpose of image matching the regularity induced by the L2-metric will not be

sufficient to obtain proper approximations of energy minimizers for our ill-posed problem

w.r.t. actual applications. Thus we cannot expect to obtain smooth deformations in case

A=1andV =V =W = [L*()]¢, even if we start with smooth initial deformations.

Therefore we deal with spaces V of higher regularity and suitable operators A representing

a metric:

(iii) We might choose the Helmholtz operator A = 1l — ";A for o € Rt. The metric
representing A is
0_2
g(v7w) = (U7w)L2 + E(V'U; Vw)L2 .

This choice corresponds to an implicit time discretization of the heat equation

with time-step 7 = "; and is thus related to Gaussian filtering with a filter

width . As corresponding spaces we take into account V = [H12(Q)]¢, V' =

[H2(Q)']¢ and W = [L2(0)]¢. The isomorphism property of A and thereby

the Lipschitz continuity of A—! is well known in this case. Thus we have an ex-

istence and uniqueness result at hand but now with improved solution regularity.
(iv) We can further improve the regularity of the deformations. Choosing V =

[H22(D)])4, W = [L2(Q)]? and V' = [H?2(2)']¢ together with the operator

A=(1- %QA)? The corresponding metric is given by

0'2 0'4
g(v, U)) = (U,’UJ)L2 + 2?(VU7 Vw) + Z(Ava AUJ) )

and A~ is again well defined and Lipschitz continuous.

So far we have shown that using suitable metrics g one can improve the regularity of
resulting deformations. Finally let us add a remark on the use of a true Gaussian filtering
instead of A = 11 — ";A (cf. (iii)). Consider the ODE

0w = —Bgrad 2 E[u],

where B = HESG ("2—2) and H ESG indicates the heat equation semi-group. We look

atV = C§*(Q) for m > 0. In this case we don’t have an interpretation of this ODE as
a gradient flow with respect to a norm induced by a metric. Nevertheless, we obtain C™
regular deformations for any m > 0 and finite time.

4. A scale space approach

As already stated in the introduction for typical image intensity functions f;, f2 the
energy E[-] is non-convex and we expect an energy landscape with many local minima.
This implies that gradient descent paths mostly tend to asymptotic states which only locally
minimize the energy. Following Alvarez et al. [2] we consider a continuous annealing
method based on a scale of image pairs fi ., f2,c, where e > 0 is the scale parameter. Here
we consider scale spaces of images generated by a scale space operator S(-) which maps
an initial image f onto some coarser image, i.e.,

fe= S(é)f
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The scale parameter € allows to select fine grain representations corresponding to small
values of e and coarse grain representations with most of the image details skipped for
larger values of €. A frequently used scale space is the linear one based on Gaussian
filtering. In fact we can take into account the heat equation semi group {HESG(%)}6
on the bounded domain Q with imposed Neumann boundary conditions, where ¢ is the
filter width parameter, i.e., S(e) = HESG(%). Here, we confine with this basic filter.
Alternatively, other scale space operators such as morphological ones may be incorporated.
Let us emphasize, that with respect to the final implementation we actually consider an
efficient and effective approximation of this operator. Finally, we formulate the arising
scale of problems: For given € > 0 we consider an energy

1
Elu] = / freo (U+u) = fof?.

Q

and the corresponding gradient flow
g(atue ’ 0) = _<Eé[u€]7 0)

uc(0) = woe.
We are left to choose the initial data ug . for the evolution on scale €. Here we expect the
minimizer or a sufficiently good approximation of the same problem on a coarse scale to

be a suitable starting point to approach the global minimum on the finer scale. Algorithmi-
cally, we select a sequence of scales

(41) €k = /Bl 2_'62k ) Bl; /82 > 0)

where k < kpqe and eg,, .. = 0. Thus we compute discrete counterparts of the continuous
solutions u, (T},) for end times T, sufficiently large and set

uék(o) = uék—l(Tk—l)'

For fixed 35 the parameter 3; is chosen such that e,
Section 6.

_1 = h . For details we refer to

maz

5. Discretization

Concerning the time discretization our approach can be interpreted as a gradient flow
in a Banach space. The energy functional E is Fréchet differentiable if we assume cer-
tain regularity of f; and f, (see Section 3). Therefore taking into account the energy,
its Gateaux derivative and the metric g on L2, we are able to recall time-step controlled
descent algorithms well-known in continuous optimization problems [16].

We will consider a time discretization as well as a spatial discretization in the follow-
ing section. The spatial discretization is a standard finite element method. In addition we
make use of multigrid techniques.

Time discretization. Aiming at an efficient implementation of a discrete gradient
flow we apply a suitable time-step control. Thus, it pays off to consider the gradient flow
perspective not only as a conceptually intuitive setting but also in the application of clas-
sical numerical tools. A time-step control strategy for the minimization of energy func-
tionals on R™ turns into a time-step control for our discrete generalized gradient descent
algorithm. We only have to replace the Euclidian distance in R™ by the norm induced by
g(+,-) on'V. We consider the explicit scheme:

n+l _ ,n
L TY AR,

Tn
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FIGURE 2. Here the 2D-matching result of a mirrored MRI-slice with
1292 pixels is shown. From top left to bottom right: original image, mir-
rored image, application of the deformation to a uniform grid, matching
result.

Thus we construct a sequence (u")n=o,..., such that »™ approximates u(t,) with ¢, =
%, 7. The actual focus is not on the quality of the approximation but on a fast and
robust descent. In our implementation we determine 7, using Armijo’s rule. As will
become clear in our considerations, various other time-step control strategies can also be
considered.

Armijo’s rule determines each time-step 7,, by choosing 7, such that for o € (0, %)

3 E[u™*!] — Eu™] -
To{E'[u™], A~1E'[u™]) —

Using the metric g this inequality can be expressed as

E[u™] — E[u™] .

&L T B A B
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We provide in each time-step a solution 7,, of the above inequality computing k,, € Z
as the smallest integer such that for some fixed 5 € (0,1)
(5.2) Blu"] - E[u" — ' A7 E'[u"]] > of* | A7 E'[u]]]].
Here || - ||, denotes the norm induced by the metric g. It is always possible to find 7,, by
that algorithm as long as »™ is not a local minimum of E. Indeed the function
_ E[u"] — E[u™ — tA'E'[u"]
t| A= E Tum][|3
clearly converges to 1 if ¢ — 0 and tends (on account of the boundedness of E) to 0 if
t — 0.

h(t) :

Spatial discretization. Now we describe the spatial discretization of equation (2.2).
The set = [0,1]? is given as the union of squares or cubes E; for 4 in an index set Jj,.
The set of elements { E; };¢ s, forms the mesh M ,. Here the subscript A indicates the grid
size. We confine to grids which are generated by iterated subdivision into 4 squares or 8
cubes respectively.

Thus the resulting grids form a pyramid with grid sizes h; = 2t forl =0, - , Imax.
The set of vertices of the mesh M, is denoted by N},. Interpreting pixel or voxel values
of a 2D or 3D image as nodal values we consider discrete images (Fy, F) as piecewise
multilinear continuous functions on M. The corresponding multilinear finite element
space is denoted by V.

We suppose {¥¢};c;, to be the canonical nodal basis of V*, where I, is the index
set corresponding to .. Hence we obtain F; = 3=,/ FJ @, as the representation of the

image F; in this basis, where Fj = Fj(x;) forthe node z; € N}, corresponding to the basis
function ¥;. Analogously, we take into account [V]¢ as the set of discrete deformations.
Hence the fully discrete algorithm reads as follows:

For given initial displacement U° find a sequence of displacements (U™),, in [V"]¢
which solve

Un+1 —_yn
(U0

Tn

0) = ~(E["}.0),

for all test functions © € [V"]¢. Here the metric gy, is supposed to be a suitable approxi-
mation of the original metric g. The computation of E’ induces the evaluation of f; o ¢.
The spatial discretization of ¢ is defined on all nodes z; and we define f; o ¢ as the bi- or
trilinear interpolation of (f; o ¢)(z) forall z € AVp,.

Let us throughout this presentation denote the nodal vector or nodal vector dependent
functional by a bar on top of the corresponding function or functional respectively. Then
we can rewrite our scheme and obtain

Ap (U™ — ") = —r, B[],
or alternatively
(5.3) Ut = 0" — 1, A E'[U].

Here A, = MGy, where M}, is a mass matrix — in our case the lumped mass matrix
[22] — and G}, the matrix representation of the discrete metric with respect to the product
induced by M, i.e.,

gn(X,Y) = MpGrX -Y .
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This defines G}, uniquely. In the nodal basis {®%};c 7, we have
(Gh)ij = (Mp)3;" gn (3%, ¥9),

where ((Mp,)ii)ier, is the diagonal lumped mass matrix.

Furthermore, E'[U] is the vector of partial derivatives of E[U] with respect to the
nodal values U of U on the grid nodes.

Hence, starting with U° we compute a sequence of discrete displacement functions
(U™)n=o,... approximating u(t,) for t,, = -1 | ;. Let us once more emphasize that our
main intention is not a proper consistency with the time continuous problem. Indeed we
intend a rapid energy descent along the piecewise linear path in the space V. Simultane-
ously, we expect the timestep control to have a significant impact on the V-norm of the
solution. Hence an a priori upper bound of the time step seems feasible. An analysis of the
problem has to be investigated in the future.

6. Improving the method’s efficiency

In this section we will outline how the registration algorithm can be further improved
concerning efficiency. The ingredients are a multigrid approximation of the smoothing
operator A,:l, the numerical treatment of problems corresponding to coarse image scales
on coarse grids and effective stopping criteria for the minimization procedure on coarse
scales. In what follows these efficiency aspects are discussed in detail.

Multigrid. In Section 3 we showed existence as well as uniqueness for the flow d;u =
—A~YE'[u] on the space V = [H}2(Q)]¢ and for A = 1 — "2—2A. The approach known
to be the most efficient to solve such a linear system of equations is a multigrid method. It
leads to an already optimal complexity of O(ny,) if ny is the cardinality of A. But even
better, already a single multigrid VV—cycle is characterized by nice smoothing properties
[4, 10] which we suppose to be the essential and sufficient property of A;l. In fact we
are not interested in any convergence but only in the smoothing properties of the multigrid
cycle.

Henn and Witsch [13] already used this improvement in their iterative Tikhonov regu-
larization approach.

We replace the operator A;l in our discrete flow by the operator M G M}, representing
a single multigrid VV—cycle for the solution of a linear problem with the discrete operator
- "2—2Ah. Hence, we consider a sequence of grids (Mp, )i=o,--- 1,.... With successively
finer grid size h; (e.g. hy = 27%). Then the building blocks of our multigrid operator are

e on each grid My, with discrete function space V' := V™ Jacobi iterations as
smoother and
e standard prolongation and restriction operators defined on V',

Finally, we are left to choose the number of pre-smoothing and post-smoothing steps in
our V—cycle (cf. Fig. 3 for comparison of the resulting filter kernels). In our applications we
confine with a single pre— and post-smoothing step. Table 1 lists the resulting computing
times for the components of a single time-step in the discrete descent algorithm. Finally, let
us underline that the discrete metric gy, is now induced by the multigrid operator M G M}, as

follows: We consider M G My}, as an approximation of <1I — %zAh) . For our discrete

metric gy, this means g,(U,V) = MGM,; 'U - V. Still this can be regarded as some
approximation of the original metric g(u,v) = (u,v)r2 + "2—2 (Vu, Vou)ge.
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Coarse scale problems on coarse grids. As the scale space operator S (cf. Section
4) actually applied in our approach we initially use an implicit step of the heat equation
semigroup, i.e., we consider

where M}, is the lumped mass matrix and L, the usual stiffness matrix. Here e plays the
role of a filter width parameter. Again, with respect to an improved efficiency, we replace
the exact linear solver for this system by the corresponding multigrid VV—cycle, now acting
on images and not on displacement descent directions (cf. Section 3 example (iii)). Let
us recall that the scale parameter is chosen as in (4.1). Now we couple the sequence of
meshes M, and corresponding function spaces V' on the one hand and the sequence of
scales on the other hand. Thus we restrict on scale &k the whole problem to grid level I(k).
In the case where S corresponds to the heat equation, a suitable choice for I(k) would be
the smallest integer such that

hyry < aeg

for some constant @ > 0. In the concrete applications we have chosen the parameter
a€l1,2).

Effectively coupling scales. Furthermore it is not required to reach a local minimum
of the corresponding energy E., by the discrete gradient descent on level k. Expressed in
formal geometric terms it is sufficient if for some integer n, a discrete displacement U
of the discrete gradient descent sequence (U}}),—o,... On scale k enters the attractive region
of the global minimum of the energy E, ,, on the next finer scale k£ + 1. By construction
in the k,.x-th step we would then end up in the contraction region of the actual energy E.
Unfortunately, the above condition is rather implicit.

Hence, we confine with a heuristic stopping criterion for the discrete gradient descent
on scale k, i.e., we turn to the next finer scale, if for some fixed constant v we observe that
for some norm || - ||

IUE* = Ukl < ver

holds. Actually, in the application we consider v = 1 and evaluate the L?-norm of the
displacement update.

If the iteration is finished on a certain scale k a regularization is applied to the defor-
mation obtained on this scale before starting the iteration on the next scale. (We use our
multigrid regularization approximating HESG(%).)

Based on this multilevel approach, the overall cost of the multiscale method is opti-
mal. Here by optimal we mean that the number of considered scales does not contribute
significantly to the overall cost. Indeed the overall cost reduces to the cost for the gradient
descent on the finest grid and the finest scale times a constant C'. For o = 1 and an equal
number of gradient descent iterations on all scales the overall cost geometrically decays
with decreasing scale and grid level respectively, i.e., C = 4/3in 2D and C = 8/7 in 3D.
Due to our adaptive stopping criteria the actual factor for the offset cost for solving a mul-
tiscale problem is even smaller (cf. Table 2 which lists the required number of iterations
and the computing times on every scale for an application problem in 3D).
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7. Applications

Let us now collect numerical results in 2D and 3D for some test cases. In two di-
mensions it is still feasable to solve the resulting linear systems for A = 1l — %-A by
CG iterations. In three dimensions we define A~! by one multigrid cycle related to the
operator A = 1l — ";A (cf. Section 6). We applied the presented algorithm on synthetic
problems with large deformations as well as on medical MR-images which also lead to
a non-local matching problem. In Figures 1, 2, and 4 2D-results for the matching of an
artificially twisted resp. mirrored brain with the original image are depicted.

Figures 7 and 5 show the 3D-matching of a strongly rotated synthetic image and a re-
flected MR-image versus the corresponding original. All Figures corresponding to results
in 3D show planar slices through the 3D volume.

The synthetically generated matching problem should demonstrate an important ad-
vantage of the multiscale approach, namely the capability to handle the registration of
heavily distorted images, where the distortion itself is additionally highly non-rigid and
non-local.

Naturally, the applicability to medical images is of fundamental importance for the
evaluation of the method. Although we have confined to the most simple matching en-
ergy for a starting point, we wanted to get some insight on the fundamental behaviour of
the gradient descent on realistic MR-images. Due to the fact, that both hemispheres of
a healthy brain have — apart from minor geometrical differences — the same fundamental
structure, a reflection provides a useful and solvable test example and is comparable to
a matching problem from a patient to a reference image from an atlas. Thus, our aim is
to find the displacement which describes both hemispheres given the corresponding other
hemispheres and not to find the global minimum, which would be the reflection itself. This
is naturally ruled out by the regularization and the gradient descent approach. The method
is capable to compute a rather regular approximation of a local minimum, but with con-
vincing coherence of the deformed first image and the initial second one, which can be
seen by comparing the sulci of the cortex on the reference image with those of the match-
ing result. Due to its high contrast to the surrounding tissue, the ventricles are perfectly
matched as well. In contrast to the synthetic example, the resulting matching deformation
varies locally in magnitude because some regions match initially quite well while others
have to be deformed quite drastically. It turns out in the experiments, that the choice of o
in the metric operator A should not be too large in order not to destroy local variations in
the deformation.

| Process | Duration |
V-cycle (single component) 3.3s
computation of Efu] and grad E[u] 5.25s
computation of (E'[u], ¢) 5.38s
computation of E[u] 1.23s
time—step control 1-3s

TABLE 1. Approximate computing times for the key ingredients of each
gradient descent step in our algorithm on a reference PC (Pentium 1V,
1.7 Ghz, 1Gb RAM) applied on 3D images with 1292 voxels.
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FIGURE 3. Profiles through a three dimensional data set after the appli-
cation of one multigrid cycle for the solution of the discrete heat equa-
tion with corresponding filter width ¢ = 0.1 and a discrete centered
Dirac distribution as initial image. We applied 1 through 3 pre- and
post-smoothing steps. These correspond to the actually applied kernels
in a multigrid smoothing cycle. The bottom right image shows the pro-
file corresponding to the exact discrete solution. One can clearly ob-
serve, that the overall shape varies only very slightly when the number
of smoothing steps is changed.

| scale k | filter widthe;, | steps ny | grid level [(k) | time |
0 .250 5 5| <1s
1 177 3 5| <1s
2 125 3 5| <1s
3 .088 4 6 9s
4 .062 3 6 7s
5 .044 4 7 67s
6 .031 6 71 95s
7 .022 6 71 96s
8 .016 5 7| 82s
9 .0 5 71 83s

TABLE 2. lIteration counts on different scales due to the adaptive stop-
ping criteria and the corresponding absolute timings for the computation

on the correspondingly chosen grid levels. Here we assume o = 1,7 =
1

3

8. Conclusion and Outlook

We have presented an efficient and robust registration method which is capable to
compute large deformations on fine two and three dimensional grids. Here the focus is
not on the generality of the presented method but on the acceleration potential based on
the gradient flow perspective and the multigrid and multiscale approach for this class of
optimization problems. Computations on medical images have pointed out the method’s
applicability and the quality of the achievable results. Nevertheless let us emphasize that
the method is restricted to intensity matching applications. It is applicable to images of
the same modalitiy for example to register a medical MR-image of a patient to a equally
weighted reference image in a medical atlas library or to describe temporal deformations
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FIGURE 4. Due to the multiscale approach, the method is capable to
generate relatively large displacement fields, here depicted for a 2D ex-
ample. From top left to bottom right: original image, plane-mirrored
image, application of the deformation to a uniform grid, matching result.

of subsequently aquired images of the same patient. It is however not capable to corre-
late image morphologies, i. e. it is not grey scale invariant [1], which is important for the
registration of CT, MRI, PET and ultrasound datasets for example. Instead of matching
image intensity one may consider image morphologies only and try to match them be-
tween images of different modality or different time steps from a sequence of images. The
morphologies are characterized uniquely by the entity of level sets and their Gauss maps
respectively. Hence, we will investigate a cost functional to be minimized which measures
the effect of the deformation on the image Gauss maps instead of the image intensities.
Furthermore in certain applications it turns out to be useful (cf. Section 1) to consider
a non-homogeneous metric on the space of deformations depending on the images and
image features. Furthermore constraints on the velocity fields such as a vanishing diver-
gence —which ensures volume preservation of the resulting deformation at least in the time
continuous case — can be included in the approach via a projection method.
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FIGURE 5. In this 3D—matching example the second image is generated
from the first by reflecting the original at a central mirror plane. Thus the
matching process has to cope with locally large deformations. From top
left to bottom right: axial slice through the original 3D image, second
image generated by reflection, deformation applied to a uniform grid,
matching result.
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