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1 Introduction

Geometric evolution problems for curves and surfaces and especially curvature flow
problems are an exciting and already classical mathematical research field. They
lead to interesting systems of nonlinear partial differential equations and allow the
appropriate mathematical modeling of physical processes such as material interface
propagation, fluid free boundary motion, crystal growth.

On the other hand, curves and surfaces are essential objects in computer aided
geometric design and computer graphics. Here, issues are fairing, modeling, defor-
mation, and motion. Constructive and more explicit approaches based for instance
on splines are nowadays already classical tools. More recently geometric evolu-
tion problems and variational approaches have entered this research field as well
and have turned out to be powerful tools. Their strength relies on the possibility
to mathematically model problems on a continuous level, initially not worrying
about the discretization. Furthermore, the resulting models come along with natu-
ral Galerkin discretizations which lead to consistent and simple algorithms mostly
based on widespread simplicial grids approximating the continuous curves and sur-
faces [12, 26, 27, 36].

Not very surprisingly the resulting models mostly lead to similar geometric evo-
lution problems as known from the above physical applications. Again systems of
nonlinear partial differential equations control transport and diffusion phenomena in
curve and surface processing applications.

Here, we will report on recent results concerning generalized mean curvature
motion and its application in curve and surface fairing.

The processing of detailed triangulated surfaces is a fundamental topic in com-
puter aided geometric design and in computer graphics. Nowadays, various such
surfaces are delivered from different measurement techniques [9] or derived from
two- or three dimensional data sets [28]. Recent laser scanning technology for exam-
ple enables very fine triangulations of real world surfaces and sculptures. Also from
medical image generation methods, such as CT and MRI devices or 3D ultrasound,
certain surfaces of interest can be extracted - frequently in triangulated form - at a
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Fig. 1. A noisy initial surface (top left) is evolved by discrete mean curvature flow (top right) and
by the new anisotropic diffusion method (bottom right). Furthermore for the latter surface the
dominant principal curvature - on which the diffusion tensor depends - is color coded (bottom
left). The snapshots are taken at the same time-steps. (cf. color plate 8, Page 670)

high resolution for further post processing and analysis. These surfaces are usually
characterized by interesting features, such as edges and corners. On the other hand,
they are typically disturbed by noise, which is often due to local measurement errors.

The aim of this paper is to discuss methods which allow the fairing of discrete
curves and surfaces. Additionally they are able to retain and even enhance important
features such as surface edges and corners. Figure 1 shows the performance of the
basic method and compares it with a simple smoothing by mean curvature flow, the
appropriate geometric “Gaussian” smoothing filter. Two alternative approaches are
presented and compared:
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– An anisotropic geometric diffusion problem is presented which respects edge fea-
tures and in addition incorporates tangential smoothing along noisy edges.

– An anisotropic energy is formulated, where the local energy integrand reflects
detected geometric features.

Both methods have in common that they are based on a local surface classification and
the actual surface evolution which locally depends on the results of the classification.
Furthermore they both lead to anisotropic curvature motion problems. A scale of
successively smoothed representations is generated, where time is considered as
the scale parameter. Such approaches have been originally developed for image
processing purposes. Here we generalize them to curve and surface processing.

The methods differ with respect to the type of local classification and the model
starting point. On the one hand, we model an anisotropic diffusion tensor in the
geometric evolution problem. On the other hand, we define an energy density and
ask for the gradient flow with respect to the corresponding energy. Furthermore,
appropriate finite element algorithms based on the schemes in [15, 17] are proposed
to discretize the continuous evolution problems. For convergence results in 1D we
refer to [16, 17]. For 2D graphs in R

3 an error analysis is contained in [11, 10].
The paper is organized as follows. First, in Section 2 we will discuss the back-

ground work on surface fairing by geometric smoothing and on image processing.
In the following paragraph we collect some important notation. In Section 3 we in-
troduce the different approaches to anisotropic curvature motion, i.e., the parabolic
problem for an anisotropic Laplace Beltrami operator and the gradient flow for a
spatially varying crystalline energy density. Their principal difference is discussed
in Section 3.3. In Section 4 we derive finite element discretizations for both types of
methods. Furthermore, in Section 5 the local classification types are introduced and
in Section 6 the different classifications are incorporated in the geometric evolution
approaches to steer the local evolution.

The volume enclosed by a surface without boundary is an important characteris-
tic, which we should try to preserve during processing. Section 6 ends with a theorem
that enables us to define generalized resp. anisotropic mean curvature motion keeping
fixed the volume enclosed by the evolving surface.

2 Image and Surface Processing Background

In physics, diffusion is known as a process that equilibrates spatial variations in
concentration. If we consider some initial noisy concentration or image intensity ρ0
on a domain Ω ⊂ R

2 and seek solutions of the linear heat equation

∂tρ−∆ρ = 0 (1)

with initial data ρ0 and natural boundary conditions on ∂Ω, we obtain a scale of
successively smoothed concentrations {ρ(t)}t∈R+ . For Ω = R

2 the solution of this
parabolic problem coincides with the filtering of the initial data using a Gaussian filter
G

∞
σ (x) = (2πσ2)−1e−x2/(2σ2) of width or standard deviation σ, i.e., ρ(σ2/2) =
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G
∞
σ ∗ ρ0. Concerning the smoothing of disturbed surface geometries one may ask

for analogues strategies. The geometrical counterpart of the Euclidian Laplacian ∆
on smooth surfaces is the Laplace Beltrami operator ∆M [14, 5]. Thus, one obtains
the geometric diffusion ∂tx = ∆M(t)x for the coordinates x on the corresponding
family of surfacesM(t).
From differential geometry [13] we know that the mean-curvature vector hn equals
the Laplace Beltrami operator applied to the immersion x of a surfaceM:

h(x)n(x) = −∆Mx. (2)

Thus geometric diffusion is equivalent to mean curvature motion (MCM)

∂tx = −h(x)n(x) , (3)

where h(x) is the corresponding mean curvature (here defined as the sum of the two
principal curvatures), and n(x) is the normal on the surface at point x. In dimensions
higher than two, singularities may occur in the evolution. Generalized - so called
viscosity solutions - can be defined in terms of a level set formulation

∂tφ− |∇φ|div

(
∇φ
|∇φ|

)
= 0 .

Existence in this context has been proved by Evans and Spruck [18]. The mean
curvature h is known to be the first variation of the surface area

∫
M dA. We obtain

for the area Ar(ω(t)) of a subset ω(t) of a smooth surfaceM undergoing the MCM
evolution (cf. [23]) d

dtAr(ω(t)) = −
∫
ω(t)

H2dA. This is one indication for the strong

regularizing effect of MCM.
In the context of Finsler geometry MCM can be generalized considering a 1-

homogeneous convex scalar function γ(·) and a weighted area
∫

M γ(N)dA depend-
ing on the surface orientation. As its first variation we obtain the weighted mean
curvature hγ [38, 6]. The corresponding anisotropic curvature flow has been studied
for instance by Bellettini and Paolini [2].

On triangulated surfaces as they frequently appear in geometric modeling and
computer graphics applications, several authors introduced discretized MCM oper-
ators [36, 26, 27, 22, 12]

Unfortunately MCM doesn’t only decrease the geometric noise due to imprecise
measurement but also smoothes out geometric features such as edges and corners of
the surface. Hence, we seek models which improve a simple high pass filtering.

In image processing, Perona and Malik [31] proposed a nonlinear diffusion
method, which modifies the diffusion coefficient at edges. Edges are indicated by
steep intensity gradients. For a given initial image ρ0 they considered the evolution
problem

∂tρ− div

(
G

(
‖∇ρ‖
λ

)
∇ρ

)
= 0 (4)
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Fig. 2. Isotropic Perona-Malik diffusion (right) is applied to a noisy initial image (left).

for some parameter λ ∈ R
+. For increasing time t - the scale parameter - the

original image at the initial time is now successfully smoothed and image patterns
are coarsened. But simultaneously edges are enhanced if one chooses a diffusion
coefficient G(.) which suppresses diffusion in areas of high gradients (cf. Fig. 2). A
suitable choice for G is

G(s) =
(
1 + s2)−1

. (5)

Thus edges are classified by the involved parameter λ.
Kawohl and Kutev [24] gave a detailed analysis of the diffusion types in this

method. Unfortunately the above original Perona and Malik model is still ill-posed
because there is a true backward diffusion in areas of large gradients. Catté et al. [4]
proposed a regularization method where the diffusion coefficient is no longer evalu-
ated on the exact intensity gradient. Instead they suggested to consider the gradient
evaluation on a prefiltered image.

Weickert [37] improved this method taking into account anisotropic diffusion,
where the Perona Malik type diffusion is concentrated in one direction, for instance
the gradient direction of a prefiltered image. This leads to an additional tangential
smoothing along edges and amplifies intensity correlations along lines. Kimmel [25]
generalized the scale space approach for planar images to the case of images mapped
on surfaces.

Unfortunately, none of the above models is invariant under gray value transfor-
mations. In the axiomatic work by Alvarez et al. [1] general nonlinear evolution
problems were derived from a set of axioms. Especially including the axiom of gray
value invariance they end up with a curvature evolution model, i.e.,

∂tφ− |∇φ|
(
t div

(
∇φ
|∇φ|

)) 1
3

= 0 .
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Beyond this result, curvature motion based models proved as successful ingredients
in segmentation and image enhancement methods. They have been considered by
Pauwels et al. [30]. Sapiro [34] proposed a modification of MCM considering a
diffusion coefficient which depends on the image gradient. Malladi and Sethian [29]
presented a numerical level set method on 2D images called “min/max“ flow which
also considers the curvature evolution. In [7] and [32] anisotropic curvature motion
methods on parametric surfaces (which will partially be revisited here) and on the
entity of level sets of a 3D image have been considered. For an exposition and
further references on geometric concepts in image processing we refer to the book
of Sapiro [35].

Notation

Let us summarize notations and conventions we use in the sequel. We consider a
parameter manifold M which essentially fixes the topological type of immersed
surfaces x : M → R

d+1. The parameter on M is denoted by ξ. For immersions
x the differential Dx induces canonically a metric on M via the following relation
which holds for all v, w ∈ TM

g(v, w) = Dx(v) ·Dx(w) .

The scalar product in R
m is denoted by · . For smooth functions onMwe can define

a gradient∇M or gradM as the representation of its differential in the metric g, i.e.,

df(v) =: g(∇M f, v) = g(gradM f, v) ,

for all v ∈ TM. The Levi-Civita connection will be denoted by ∇. With the Levi-
Civita connection at hand we define the divergence of a vector field v by

divMv = tr (∇•v) ,

which is nothing but the trace of the endomorphism w �→ ∇wv. This definition
generalizes to the divergence of mappings z : M→ R

d+1 by:

divMz = tr
(
Dx−1[Dz( · )]tan

)
,

where ” tan” represents the tangential component of Dz. For tangential mappings z,
i.e., z = Dx(v), with v ∈ TM we have the identity divMz = divMv.

The manifolds M are assumed to be oriented and the normal mapping will be
denoted by n : M→ Sd, where d is the dimension of the manifoldM. This enables
us to define the shape operator S by

g(STxMw, v) := ∂wN ·Dx(v) .

The trace of the shape operator is the classical mean curvature h = tr STxM. We
often write S = STxM if a misunderstanding is ruled out.
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The Laplacian divM∇M is denoted by∆M.We will use the concept of tangential
gradients. The tangential gradient for a function u ∈ C1(Rd+1) is defined as

Du = ∇Rd+1u− (n · ∇Rd+1u)n .

For the components of Du we have Diu = dxi(∇M u). We sometimes identify
x(M) and M and in this sense Du = ∇Mu. Note the relation for the Laplacian
∆Mu =

∑
iDiDiu. For more details on tangential gradients we refer to [21, Chapter

16]. Integration overM leads to the L2-scalar product of L2-functions f, g onM:

(f, g) :=
∫

M
f · g dA .

Finally, let us from now on use Einstein summation convention.

3 Anisotropic Curvature Motion

3.1 Generalized Mean Curvature Motion

Let x : M → R
d+1, M an orientable manifold of dimension d, be an immersion

with normal n : M → Sd. In this section we consider general endomorphisms of
the tangent space

a : TM→ TM

and the corresponding generalized mean curvature flow:

∂tx = −han, ha = tr (a ◦ S) , (6)

where S denotes the shape operator. The variational formulation of this problem is:

(∂tx, ϑ) = −
∫

M
ha (n · ϑ) dA

for allϑ ∈ C1
0 (M,Rd+1). In case of classical mean curvatureh, the relation∆Mx =

−hn leads to a re-formulation of the above equation:

(∂tx, ϑ) =
∫

M
∆Mx · ϑ dA = −

∫
M

g(∇Mx,∇Mϑ)dA.

Let us already emphasize that this formulation will enable the later discretization by
finite elements (cf. [15]). Now, we seek a generalization of the equation ∆Mx =
−hn that involves generalized mean curvatures. The next theorem gives such a
generalization. The idea is to make use of the operator ∆a · = divM(a∇M · ). We
will see that the application of this operator tox leads to tangential components which
are given by the divergence of the endomorphism a. For this reason we remind of
the definition and basic properties of the divergence:
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Definition 3.1 The divergence of an endomorphism

a : TM→ TM

is a vector field given by

g(divMa, v) := tr(∇•a
∗v),

where the above equation is supposed to hold for all v ∈ TM.

From this definition we obtain the representation:

g(divMa, v) = g(∇eia∗v, ei)

= g(v,∇eia ei)

and thus divMa = ∇eia ei for an orthonormal basis {e1, . . . , ed} ⊂ TξM. Hence
we obtain in coordinates

divMa = gij∇ ∂
∂ξi

a
∂

∂ξi
.

Now we are prepared to formulate

Theorem 3.2 Let x : M→ R
d+1 be an immersion of an orientable d-dimensional

manifold. If a : TM→ TM is differentiable, linear and symmetric on each tangent
space, then there is a second order differential operator Θa with

Θax = −han,

where ha = tr (a ◦ S). The second order operator is given by

Θa(·) = ∆a(·)− (divMa)(·) .

A proof of the above theorem can be found in [6]. It shows that we are able to
express the velocity −han via projection of divM(a∇Mx) onto the space spanned
by the normal n. Consequently, the equation ∂tx = −han can be written as follows:

v = divM(a∇Mx)
∂tx = (v · n)n . (7)

Once more, let us emphasize that this formulation with the operator in divergence
form enables us to generalize the algorithm in [15] for mean curvature motion (see
sections 4 and 6.1).

3.2 Anisotropic Energies and Gradient Flow

As it is well known mean curvature evolution ∂tx = −hn can be considered as L2-
gradient flow w.r.t. the area functional. In this section we study more generally, so
called anisotropic energies. Here the functional

∫
M dA is generalized to the energy
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Eγ [x] =
∫

M
γ(ξ, n(ξ)) dA(ξ) , (8)

where

γ : M× R
d+1 −→ R

+

(ξ, z) �−→ γ(ξ, z) (9)

is an integrand of class C2(M× (Rd+1 − {0})) which is positively homogeneous
of degree 1 in the z-variable.

The corresponding functional not only depends on the normal mapping of x but
also on the parameter ξ. Thus favorable normal directions w.r.t. the energy Eγ may
differ locally.

The derivative of E involves the generalized mean curvature hγ = tr (aγ ◦ S)
induced by γ, where

aγ : TM → TM
(ξ, v) �→ (ξ,Dx−1 ◦D2

zγ(ξ, n(ξ)) ◦Dx(v)).

The endomorphismD2
zγ(ξ, n(ξ)) : R

d+1 → R
d+1 can be interpreted as an endomor-

phism on the orthogonal complement n(ξ)⊥ of n. Indeed – due to the homogeneity
of γ – we have

D2
zγ(ξ, n)n = 0

and therefore, aγ is well defined. The application of the derivative of Eγ to ϑ ∈
C1

0 (M,Rd+1) is given by

〈E′
γ [x], ϑ〉 =

∫
M

hγ(ϑ · n) dA.

For more details and proofs we refer to [6], [33], [38]. The gradient flow correspond-
ing to Eγ is

∂tx = −hγn .

Wulff-Shape and Frank-Diagram

Let us restrict for a moment to the case, that γ is constant w.r.t. the ξ-variable, i.e.,
γ(ξ, z) = γ(z). In the following we will explain that there is a bijection between
convex bodies and these anisotropic integrands resp. energies. For the visualization
of the energy Eγ one frequently uses the so called Wulff-shape and Frank-diagram.
First let us consider a compact convex body K ⊂ R

d. Then we have

Proposition 3.3 There is a 1-homogeneous and convex function γ : R
d → R, called

the support function of the compact convex body K, such that

K = {x ∈ R
d |x · ν ≤ γ(ν) for all ν ∈ R

d} .

Conversely, the set K defined by the above relation is convex if γ is convex and
1-homogeneous. In case γ(ν) > 0 for ν �= 0, the origin is contained in intK.
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Fig. 3. A typical example of a Wulff-shape and the corresponding Frank-diagram

The above proposition shows a bijective relation between convex bodies and convex
1-homogeneous functions. A proof can be found in the classical introduction to
convex analysis [3].

Now we fix an integrand γ of an energy E. The corresponding convex body K
will be denoted by Wγ and is called Wulff-shape. (This denomination goes back to
the work [39] of the cristallograph G. Wulff from 1901.) Introducing the dual γ∗ of
γ which is given by

γ∗(z∗) = sup
z∈Sd−1

z · z∗

γ(z)
,

Wγ can be described in a different way:

Wγ = {x ∈ R
d | γ∗(x) ≤ 1} .

The justification of the name dual is the content of the next

Proposition 3.4 Let γ : R
d → R

+ be a convex integrand then the duality relation
γ∗∗ := (γ∗)∗ = γ holds.

For a proof of this proposition we refer to [2]. The dual shape Fγ of the Wulff-
shapeWγ is according to Proposition 3.4 given by

Fγ = {z ∈ R
d | γ(z) ≤ 1}

and is called the Frank diagram.

Example 3.5 Consider the integrand in R
d:

γp(z) =

(∑
i

|zi|p
) 1
p

, p ∈ [1,∞] ,

then the dual integrand is given by
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Fig. 4. Here, the Wulff shape is a sphere whose center is not the origin.

γ∗
p(z

∗) =

(∑
i

|z∗
i |p

∗
) 1
p∗

= γp∗(z∗),

where 1
p + 1

p∗ = 1.

Remark 3.6 For the computation of Frank diagrams we derive a simple algorithm.
Given a convex body with boundary ∂Wγ we would like to determine the boundary
∂Fγ of the corresponding Frank diagram. To this aim consider a point ν of the
surface and the normal n in ν. The support function γ of the convex body evaluated
in n

n·ν equals 1. Therefore we consider the map f : ∂Wγ → R
d

f(ν) =
n

n · ν

and we have γ(f(ν)) = 1.

Wulff-shapes are known to be the solution of an isoperimetric problem. The
boundary of Wγ is the minimizer of Eγ in the class of surfaces enclosing the same
volume. For details we refer to [19] and [20].

3.3 Comparing the Two Approaches

The preceding section contained two methods to define generalized resp. anisotropic
mean curvature motion.

The generalized mean curvature approach consists in introducing an anisotropic
tensor a : TM → TM, without specifying this tensor in detail. In this sense one
might think of a = a(ξ) depending on the parameter ξ ∈M.
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On the other hand, we considered a gradient flow defined by the energy Eγ [x] =∫
M γ(ξ, n(ξ)) dA. Principally, this flow is nothing but a special case of a generalized

mean curvature flow choosing a(ξ) = Dx−1D2
zγ(ξ, n(ξ))Dx. We point at the fact

that for this special choice the tensor a depends on the geometry of x via the surface
normal n.

4 Discretization

4.1 Generalized Mean Curvature

Using the operator Θa we can give a weak formulation of (6), which can numerically
be solved by finite elements:

∫
M

∂tx · ϑ dA =
∫

M
Θax · ϑ dA.

Concerning numerical realization of theΘa-operator we emphasis that the tangential
term divMa has to be taken into consideration. Otherwise, on a triangulated surface
one observes strong tangential shifts leading to irregular meshes. The operator divMa
is not easy to handle numerically. Therefore we use a projection of the ∆a-operator
as follows:

Θax = (∆ax · n)n.

Let us identify from now onM and x(M). Furthermore, for time discretization, we
follow [15] and view in each time-step x(k+1) as a mapping fromM(k) ontoM(k+1)

instead of a mapping defined on a fixed parameter domain. For a semi-implicit time
discretization of (7) we are lead to:

∫
M(k)

v(k+1) · ϑ dA =
∫

M(k)
g
(
a(k)∇M(k)(x(k) + τv(k+1)),∇M(k)ϑ

)
dA

for ϑ ∈ C1
0 (M) and

x(k+1) = x(k) + τ
(
v(k+1) · n(k)

)
n(k) .

This scheme defines approximations x(k) of x(τk).

Next, we discuss the spatial discretization. To clarify the notation we will al-
ways denote discrete quantities with upper case letters to distinguish them from the
corresponding continuous quantities in lower case letters.

We restrict our considerations to the case d = 2 and consider a polyhedron con-
sisting of trianglesMh which is an approximation ofM. X will be the parametriza-
tion ofMh, i.e., X is in each component an affine linear function on the triangles of
Mh. The corresponding finite element space

Vh = {Φ ∈ C0(Mh)
∣∣ ΦT ∈ P1, T ∈Mh} (10)
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consisting of those functions being affine linear on each triangle ofMh has the basis
{Φj}Jj=1, where J is the number of vertices ofMh and Φj(Xi) = δij for all vertices
Xi. We can represent X as

X = XjΦj ,

i.e., X ∈ [Vh]3. The discretization of a : TM → TM will be denoted by A and
will be considered as constant symmetric positive definite endomorphism of R

3 on
each triangle.

The gradient-operator onMh is now∇Mh
, the gradient on the Lipschitz surface

Mh (see [15] for more details). For the fully discrete semi implicit scheme we
introduce the discrete velocities V (k) ∈ [Vh]3 and obtain for all Φ ∈ Vh:

∫
M(k)

h

V (k+1) · Φ =
∫

M(k)
h

(
A(k)∇M(k)

h

(X(k) + τV (k+1)) · ∇M(k)
h

Φ
)
,

X(k+1) = X(k) + τ(V (k+1) ·N (k))N (k),

where N (k) is given on each vertex Xj by the weighted sum N
(k)
j =

∑�j
i=1 |Ti|N(k)

Ti∣
∣
∣
∑�j
i=1 |Ti|N(k)

Ti

∣
∣
∣

andN (k)
Ti

is the normal onTi ∈Mh withXj ∈ T i. Here �j is the number of elements

Ti with node Xj . Thus starting with M(0)
h we obtain a sequence of triangulated

surfaces M(k)
h approximating M(t) at time t = kτ . The implementation of this

discrete scheme is straightforward. We introduce the mass matrix M (k) and the
stiffness matrix L(k):

M
(k)
ij =

∫
M(k)

h

ΦiΦj dA, L
(k)
ij =

∫
M(k)

h

(
A(k)∇M(k)

h

Φi

)
· ∇M(k)

h

Φj dA

The computation of V (k+1) requires the solution of the linear systems

(M (k) − τL(k))V
(k+1)
l = L(k)X

(k)
l , (11)

where we set V
(k+1)
l = (V

(k+1)
1,l , . . . , V

(k+1)
J,l ) and X

(k+1)
l ∈ R

J analogue. For
more details we refer to [7].

The above algorithm is clearly applicable for the case d = 1. Let us have a look
at this simple case only considering spatial discretization. The system we have to
solve is: ∫

Mh(t)
〈Vh, Φk〉+

∫
Mh(t)

〈A∇Mh
Xh,∇Mh

Φk〉 = 0

∂tXh = 〈Vh, Nh〉Nh
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4.2 Anisotropic Gradient Flow

The 1D case.
In this section we want to derive a numerical scheme for energies as defined in (8) in
case of curves, thus M = S1. The algorithm we derive here is related to [17]. Our
starting point for the computation of the generalized mean curvature flow

∂tx = −hγn

is the weak formulation∫
S1

xtϑ |xξ|dξ +
∫
S1

γz(ξ, x⊥
ξ )ϑ⊥

ξ dξ = 0 for all ϑ ∈ C1(S1,R2) . (12)

The symbol ⊥ denotes a rotation by 90o. For the spatial discretization of this weak
form of curvature flow consider a decomposition of S1 = R/2π into intervals:

[0, 2π] =
J⋃
j=1

Ij , Ij = [ξj−1, ξj ], hj = |Ij |.

The underlying finite element space is [Sh]2, where

Sh = {Φ ∈ C0(S1) |Φ|Ij ∈ P1, j = 1, . . . , J}

The discrete solution X : (0, T ) → [Sh]2 is represented as:

X(t, ξ) := Xj(t)Φj(ξ).

Now we assume γ to be a piece-wise linear function for fixed z ∈ S1, i.e.,

γ(ξ, z) = Φj(ξ)γj(z).

A discrete solution X fulfills∫
S1

∂tX|Xξ|Φdξ +
∫
S1

γz(ξ,X⊥
ξ )Φ⊥

ξ dξ = 0 for all Φ ∈ [Sh]2.

Taking Φ = Φj ∈ Sh separately for each component as test function one obtains:
∫
S1

γ⊥
z (ξ,X⊥

ξ )Φj,ξdξ =

1
2

[
γ⊥
j−1,z(X

⊥
j −X

⊥
j−1) + γ⊥

j,z(X
⊥
j −X

⊥
j−1)

]

− 1
2

[
γ⊥
j,z(X

⊥
j+1 −X

⊥
j ) + γ⊥

j+1,z(X
⊥
j+1 −X

⊥
j )

]

Lumping of masses leads to:
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1
2
∂tXj(|Xj −Xj−1|+ |Xj+1 −Xj |)

−1
2

[
γ⊥
j−1,z(X

⊥
j −X

⊥
j−1) + γ⊥

i,z(X
⊥
j −X

⊥
j−1)

]

+
1
2

[
γ⊥
j,z(X

⊥
j+1 −X

⊥
j ) + γ⊥

j+1,z(X
⊥
j+1 −X

⊥
j )

]
= 0.

Introducing qj = |Xj − Xj−1|, τj = (Xj − Xj−1)/qj , Nj = τ⊥
j and using the

zero homogeneity of γj,z in the z-variable we can rewrite the above equation as:

∂tXj(qj + qj+1)− γ⊥
j−1,z(Nj)

− γ⊥
j,z(Nj) + γ⊥

j,z(Nj+1) + γ⊥
j+1,z(Nj+1) = 0 (13)

For all i, j the following relation is valid:

γ⊥
j,z(Ni) = (γ⊥

j,z(Ni) · τi)τi + (γ⊥
j,z(Ni) ·Ni)Ni

= −(γj,z(Ni) ·Ni)τi + (γj,z(Ni) · τi)Ni

= −γj(Ni)τi + (γj,z(Ni) · τi)Ni.

Equation (13) now can be formulated as:

∂tXj(qj + qj+1) + γj−1(Nj)τj + γj(Nj)τj

− γj(Nj+1)τj+1 − γj+1(Nj+1)τj+1 =

(γj−1,z(Nj) · τj)Nj + (γj,z(Nj) · τj)Nj

− (γj,z(Nj+1) · τj+1)Nj+1 − (γj+1(Nj+1) · τj+1)Nj+1

and with gi,j = γi(Nj), g′
i,j = γi,z(Nj)τj this leads to:
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∂tXj(qj + qj+1) −
(
gj−1,j

qj
+

gj,j
qj

)
Xj−1

+
(
gj−1,j

qj
+

gj,j
qj

+
gj,j+1

qj+1
+

gj+1,j+1

qj+1

)
Xj

−
(
gj,j+1

qj+1
+

gj+1,j+1

qj+1

)
Xj+1

+
(
g′
j−1,j

qj
+

g′
j,j

qj

)
X

⊥
j−1

−
(
g′
j−1,j

qj
+

g′
j,j

qj
+

g′
j,j+1

qj+1
+

g′
j+1,j+1

qj+1

)
X

⊥
j

+
(
g′
j,j+1

qj+1
+

g′
j+1,j+1

qj+1

)
X

⊥
j+1 = 0

We would like emphasize that this scheme is intrinsic, in the sense that it is inde-
pendent of the parametrization. For the time-discretization we use a semi-implicit
scheme, where qj , gi,j and g′

i,j are treated explicitly. For more details see [17].

The 2D case.
In the following we describe the discretization of the generalized mean curvature flow
for anisotropic energies (8) depending only on the surface normal. The discretization
will be such that it only contains the first derivatives of the anisotropy function γ. In
abstract form the problem reads

(∂tx, ϑ) = −〈E′
γ [x], ϑ〉 (14)

for every test function ϑ ∈ C1
0 (M,Rd+1). For practical reasons we use the concept

of tangential gradients for a reformulation of (14). Easy calculations show, that

〈E′
γ [x], ϑ〉 =

∫
M

hγ n · ϑ dA =
∫

M
tr

(
D2
zγ(n)∇Mn

)
n · ϑ dA

=
∫

M

d+1∑
k,l=1

γzkzl(n)Dknl n · ϑ dA

= −
∫

M

d+1∑
k,l=1

Dk

(
γ(n)Dkxl −

d+1∑
m=1

γzm(n)nlDkxm

)
ϑl dA

=
∫

M

d+1∑
k,l=1

(
γ(n)DkxlDkϑl −

d+1∑
m=1

γzm(n)nlDkxmDkϑl

)
dA

=
∫

M
γ(n)∇Mx · ∇Mϑ−

d+1∑
k,l=1

γzk(n)nl∇Mxk · ∇Mϑl dA.
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Thus anisotropic mean curvature flow (14) can be written as

∫
M

∂tx · ϑ +
∫

M
γ(n)∇Mx · ∇Mϑ dA (15)

=
∫

M

d+1∑
k,l=1

γzk(n)nl∇Mxk · ∇Mϑl dA.

for every ϑ ∈ C1
0 (M,Rd+1). The right hand side of (15) can be simplified using the

relation

Djxk = δjk − njnk.

Hence

∫
M

d+1∑
k,l=1

γzk(n)nl∇Mxk · ∇Mϑl dA =
∫

M

d+1∑
k,l=1

γzk(n)nlDkϑl dA.

But as we shall see, the right hand side in (15) is numerically more convenient after
time discretization. For isotropic mean curvature flow, i. e. for γ(z) = |z|, this right
hand side vanishes. We also observe that the left hand side of (15) decouples with
respect to the components of x.

For the discretization we restrict ourselves to d = 2. We use the following time
discretization:

∫
M(k)

1
τ

(
x(k+1) − x(k)

)
· ϑ dA +

∫
M(k)

γ(n(k))∇M(k)x(k+1) · ∇M(k)ϑ dA

=
d+1∑
l,m=1

∫
M(k)

γzm(n(k))n(k)
l ∇M(k)x(k)

m · ∇M(k)ϑl dA. (16)

Here τ is the time step and g(k) stands for the evaluation of a generic function g on
the k–th time level. x(0) is given by the initial surface.

The discretization in space is based on piece-wise linear finite elements similar
to the approach above in Section 4.1.

We compute a sequence of time step solutions X(k) for k = 0, · · · , where the
initial polyhedron X(0) is the interpolant of x(0). The fully discrete scheme then
reads: for every Φ ∈ [Vh]3
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∫

M(k)
h

1
τ

(
X(k+1) −X(k)

)
· ΦdA +

∫
M(k)

h

γ(N (k))∇M(k)
h

X(k+1) · ∇M(k)
h

ΦdA

=
3∑

l,m=1

∫
M(k)

h

γzm(N (k))N (k)
l ∇M(k)

h

X(k)
m · ∇M(k)

h

Φl dA. (17)

This linear system of equations is quite easy to implement. For given M(k)
h we

define the mass matrix M (k) as in Section 4.1, the stiffness matrix L(k) by

L
(k)
ij =

∫
M(k)

h

γ(N (k))∇M(k)
h

Φi · ∇M(k)
h

Φj dA

(i, j = 1, . . . , J), and the right hand sides C(k)
l by

C
(k)
l,j =

3∑
m=1

∫
M(k)

h

γzm(N (k))N (k)
l ∇M(k)

h

X(k)
m · ∇M(k)

h

Φj dA

(l = 1, 2, 3, j = 1, . . . , J). In every time step of the scheme we have to solve 3 linear

systems with the same matrix for the computation of X
(k+1)
l ∈ R

J :
(

1
τ
M (k) + L(k)

)
X

(k+1)
l =

1
τ
L(k)X

(k)
l + C

(k)
l .

Fig. 5. From left to right the initial surface and two evolution steps of an anisotropic mean
curvature flow are depicted (graphically scaled).
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Fig. 6. The sliced surfaces of Figure 5 are shown.

The discrete normal N (k) is piece-wise constant and so the matrix L(k) and the right
hand sides C

(k)
l follow the usual setup of the stiffness matrix in a finite element

code via a loop over the triangles. Only a constant factor has to be included on every
triangle.

In Figure 5 and Figure 6 a result of an anisotropic evolution is shown. The
anisotropy is similarly chosen as in Figure 3.

5 Curve and Surface Classification

In this section we will describe two methods for the local classification of curves and
surfaces. This will enable us to distinguish smooth areas on the curve or surface from
edge or corner regions. Both methods will be robust with respect to noise. Later on
in Section 6 we will make use of these local classifications to process noisy curves
and surfaces.

5.1 Classification via Curvature Analysis

In this approach, the quantity for the detection of edges is the curvature tensor, in
case of codimension 1 represented by the symmetric shape operator STxM (note that
we identify x(M) and M and consequently x and ξ). An edge is supposed to be
indicated by one sufficiently large eigenvalue of STxM.

We define a tensor depending on STxM, which considered as diffusion tensor
(see Section 6.1) enables us to decrease diffusion significantly at edges indicated by
STxM. This tensor locally classifies the curve or surface.
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Furthermore we will introduce a threshold parameter λ (see equation (19)) for
the identification of edges. Roughly speaking, this parameter enables us to define
what is an important characteristic.

The evaluation of the shape operator on a noisy surface might be misleading
with respect to the original but unknown surface and its edges. Thus we prefilter the
surface M before we evaluate the shape operator. The straightforward “geometric
Gaussian” filter is a short time-step τ = σ2/2 of mean curvature motion. Hence, we
compute a shape operator STxMσ

on the resulting prefiltered surfaceMσ . Here the
parameter σ is the “geometric Gaussian” filterwidth.

For every point x on Mσ the tensor aσTxMσ
is supposed to be a symmetric,

positive definite, linear mapping on the tangent space TxMσ:

aσTxMσ
(x) : TxMσ → TxMσ .

There is an orthonormal basis {w1,σ, w2,σ} of TxMσ such that STxMσ is rep-
resented by

STxMσ
=

(
κ1,σ 0
0 κ2,σ

)
(18)

because of the symmetry of the shape operator. Now we consider a tensor which is
defined with respect to the above orthonormal basis as follows:

aσTxMσ
=


G

(
κ1,σ

λ

)
0

0 G
(
κ2,σ

λ

)

 (19)

with the function G as defined in the introduction.
Hence, due to the anisotropy defined in (19), a point belongs to an edge if there is

a principal direction of curvature onMσ with large curvature compared to λ. If the
second principal curvature is small w.r.t. λ, we regard the first direction as orthogonal
to an edge on the surface. At corners both principal curvatures ofMσ are large.

In summary, analyzing our classification tensor leads to a surface classification as
follows: Smooth parts of the surface can be characterized by aσTxMσ

� diag[1, 1]. An
edge can be defined via the relation aσTxMσ

� diag[1, 0]. In this case, the direction
along the edge is given by w2,σ where we assume here |κ1,σ| >> |κ2,σ|. In this
setting, corners are given by the relation aσTxMσ

� diag[0, 0]. We may introduce as
an edge-indicator the function ηλ(x) = tr aσTxMσ

. Depending on the parameter λ
edges and corners are given by ηλ < 1.

5.2 Classification via Moments

The second approach to local surface classification is to use the zero surface moments.
This allows to distinguish smooth regions from the vicinity of edges on the curve or
surface. Hence, we compute for x : M→ R

d+1 the barycenter M0
ε (x(ξ)), ξ ∈ M,
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Fig. 7. The curvature classification scheme, where the trace of the classification operator is
color coded. Red means that the trace is approximately 0, blue indicates smooth domains
where the trace equals 2. (cf. color plate 10, Page 671)

of x(M) ∩ Bε(x(ξ)), where Bε(x(ξ)) is the Euclidian ε-ball. The parameter ε will
be called the scanning-width.

It is well known, that the difference nε(ξ) = M0
ε (x(ξ)) − x(ξ) (denoted as the

ε-normal) is independent of translations and in addition |nε(ξ)| is independent of
rotations. We will show that a locally smooth surface is characterized by a quadratic
scaling of nε in ε and close to edges we observe a linear scaling. Let us first consider
a locally smooth curve or surface. For a smooth function η on a Euclidian ε-ball
Bε(0) ⊂ R

d, d = 1, 2, we have:∫
−
Bε

η =
∫
−
Bε

η(0) +∇η(0) · x +
1
2
∇2η(0)x · x dx + o(ε2)

= η(0) +
1
2

∫
−
Bε(0)

∇2η(0)x · x dx + o(ε2)

= η(0) +
1
2
λi

∫
−
Bε(0)

x2
i dx + o(ε2),

where each λi is an eigenvalue of ∇η2(0). Therefore we have:∫
−
Bε

η = η(0) +
1
2
· 1
d

∫
−
Bε(0)

|x|2dx · tr∇2η(0) + o(ε2)

= η(0) +
1
2
· 1
d
· 1
4− d

ε2∆η(0) + o(ε2).

In a first step we replace in our considerations the Euclidean ballBε(x(ξ)) ⊂ R
d+1 by

a geodesic ball B̃ε(x(ξ)) ⊂M and compute the barycenter M̃0
ε (x(ξ)) of B̃ε(x(ξ))∩
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M. For the evaluation of
∫
B̃ε(x(ξ))

x(ξ)dA(ξ) we use normal coordinates, i.e.,

gij(0) = δij , ∂kgij(0) = 0 .

Then one obtains for the Laplacian onM at x(ξ):

(∆Mf)(x(ξ)) = (∂i∂if)(0) = ∆f(0) ,

where f ∈ C2(M). For the difference M̃0
ε (x(ξ))− x(ξ) we obtain

M̃0
ε (x(ξ))− x(ξ) =

∫
−
Bε(0)

xdA− x(ξ)

=
1
2d
· 1
4− d

ε2∆x(0) + o(ε2)

=
1
2d
· 1
4− d

ε2∆Mx(ξ) + o(ε2)

= − 1
2d
· 1
4− d

ε2h(ξ)n(ξ) + o(ε2) ,

whereh is the mean curvature ofM. The ratio |B̃ε(x(ξ))|/|Bε(x(ξ))∩M| converges
to 1, where ε→ 0. So far we have shown:

Theorem 5.7 Let x : M→ R
d+1, d = 2, 3, be an immersion. For ξ ∈M consider

a ball of radius ε with center x(ξ) and the ε-normal nε(ξ) = M0
ε (x(ξ))−x(ξ). Then

nε scales quadratically in ε and

nε(ξ) = −ε2 1
2d(4− d)

h(ξ)n(ξ) + o(ε2) .

Now we are going to examine the scaling w.r.t. ε in a non-smooth situation. Here,
we restrict ourselves to curves. The generalization to surfaces in higher dimension
will be subject of future work.

On account of the invariance of translation and rotation of |M0
ε (x)− x| one can

consider a normalized situation:
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The center of the circle in the picture above is the curve-pointx. For the barycenter
of Γ ∩Bε(x) we have

M0
ε =

(ε + a)2

2(ε + a + b)

(
− cosψ
sinψ

)
+

b2

2(ε + a + b)

(
cosψ
sinψ

)
.

and thus for nε(x) we obtain

M0
ε (x)− x =

[
(ε + a)2

2(ε + a + b)
− a

](
− cosψ
sinψ

)
+

b2

2(ε + a + b)

(
cosψ
sinψ

)
.

The length b is depending on a and ϕ:

b2 − 2ab cosϕ + a2 − ε2 = 0

and one computes for b:

b = b(ε, a, ϕ) = a cosϕ +
√
a2 cos2 ϕ + ε2 − a2.

We now can determine |M0
ε (x)− x|2 just knowing the values a, ε and ϕ:

|M0
ε (x)− x|2

=
∣∣∣∣
[

(ε + a)2

2(ε + a + b(ε, a, ϕ))
− a

](
− cosψ
sinψ

)
+

b2(ε, a, ϕ)
2(ε + a + b(ε, a, ϕ))

(
cosψ
sinψ

)∣∣∣∣
2

= f2
1 (ε, a, ϕ) + f2

2 (ε, a, ϕ) + 2f1(ε, a, ϕ)f2(ε, a, ϕ)[sin2 ψ − cos2 ψ]

= f2
1 (ε, a, ϕ) + f2

2 (ε, a, ϕ) + 2f1(ε, a, ϕ) · cosϕ,
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where

f1(ε, a, ϕ) =
(ε + a)2

2(ε + a + a cosϕ +
√
a2 cos2 ϕ + ε2 − a2)

− a

= ε




(
1 + a

ε

)2
2
(

1 + a
ε + a

ε cosϕ +
√(

a
ε

)2 cos2 ϕ + 1−
(
a
ε

)2) −
a

ε




f2(ε, a, ϕ) =
[a cosϕ +

√
a2 cos2 ϕ + ε2 − a2]2

2(ε + a + a cosϕ +
√
a2 cos2 ϕ + ε2 − a2)

= ε

[
a
ε cosϕ +

√(
a
ε

)2 cos2 ϕ + 1−
(
a
ε

)2]2

2
(

1 + ε
a + ε

a cosϕ +
√(

a
ε

)2 cos2 ϕ + 1−
(
a
ε

)2)

Using the following definitions

g1(γ, ϕ) =
(1 + γ)2

2(1 + γ + γ cosϕ +
√
γ2 cos2 ϕ + 1− γ2

− γ

g2(γ, ϕ) =
[γ cosϕ +

√
γ2 cos2 ϕ + 1− γ2]2

1 + γ + γ cosϕ +
√
γ2 cos2 ϕ + 1− γ2

we arrive at:
∣∣∣∣M

0
ε (x)− x

ε

∣∣∣∣
2

= g2
1

(a
ε
, ϕ

)
+ g2

2

(a
ε
, ϕ

)
+ 2 cosϕg1

(a
ε
, ϕ

)
g2

(a
ε
, ϕ

)
(20)

and analyzing the local shape on two scales ε1, ε2 one is able to determine a and ϕ,
the distance of x to the edge and the apex angle respectively. The rescaled ε-normal
ηε(x) := ε−1|nε(x)| may serve as an edge indicator. If ε−1|ηε(x)| exceeds a given
threshold λ then we expect an edge in a neighborhood of x.

Let us point out that the above computation can be regarded as a first order
approximation in case that in an edge two non-linear curve pieces intersect.

6 Applications in Curve and Surface Processing

We are now prepared to discuss the application of anisotropic curvature flow as a
powerful multiscale method in curve and surface processing. Hence, we will consider
two different approaches. One is based on the definition of an anisotropic diffusion
tensor which incorporates the local surface classification based on the approximate
shape operator. The other one takes into account the local moment analysis and de-
rives a position dependent anisotropic surface energy integrand. In both cases the
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Fig. 8. Left the curve we want to analyze via moments, right the graph of |nε|, where ε = 0.2.
On the abscissa of the graph the arc length is drawn; obviously three edges are clearly depicted
by |nε|.

solution of the resulting parabolic problem - either the diffusion problem itself or the
gradient flow corresponding to the defined energy - deliver a multiscale of surface
representations. For increasing time, in the evolution noise is reduced. Simultane-
ously features on the curves and surfaces are preserved. Let us already emphasize
that especially the gradient flow approach is capable to evolve sharp edges in re-
gions where the classification gives strong evidence for an edge feature. Thus, to
our knowledge this is the first multiscale method, which not only retains features for
longer times, but robustly enhances them.

We consider a noisy initial curve or surface M0. Both approaches share the
general algorithm outline:

– A local classification is involved to figure out the expected curve or surface shape
especially distinguishing between smooth areas, edges and corners (cf. Section 5).

– In time the multiscale evolution is driven by forces derived from the current local
classification (cf. Section 3).

Thereby a family of surfaces {M(t)}t∈R
+
0

is generated, where the time t serves
as the scale parameter. Spatial discretization based on finite element and time-step
algorithms are applied to implement the multiscale methods numerically on usual
triangulated curves or surfaces (cf. Section 4). Thus, with respect to our building
blocks classification and evolution, the complete algorithms cycle through the local
classification and the next time step. The classification results and the curve or surface
metric are always considered explicitly in every time-step.

The resulting methods lead to spatial displacement and the volume enclosed by
M(t) is changed in the evolution. An additional force f in the evolution depending
on certain integrated curvature expressions leads to volume preservation and further
improves our methods.
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6.1 Generalized Mean Curvature Motion in Surface Processing

We will explain how one can use the classification via curvature analysis in our
general scheme. To this aim we take into account the tensor aσTxMσ

introduced in
Section 5. This tensor classifies the surface and indicates edges together with its
tangential edge direction as well as corners. Now, we consider a diffusion method
involving a closely related tensor aσTxM. We use aσTxMσ

for its definition.
W.r.t. surface processing, our model integrates tangential smoothing along edges

into the multiscale approach. To define the actual diffusion on TxM we decompose
a vector z ∈ R

3 in the orthogonal basis {w1,σ, w2,σ, Nσ} (cf. Section 5.1), i.e.,

z = (z · w1,σ)w1,σ + (z · w2,σ)w2,σ + (z ·Nσ)Nσ

where {w1,σ, w2,σ} ⊂ R
3 denotes the embedded tangent vectors corresponding to

the basis w1,σ , w2,σ (see equation (18)) and Nσ is the surface normal ofMσ . Thus,
we define the diffusion coefficient aσTxM in a sloppy but intuitive way by

aσTxM z := ΠTxM

(
G(κ1,σ)(z · w1,σ)w1,σ

+G(κ2,σ)(z · w2,σ)w2,σ + (z ·Nσ)Nσ
)
, (21)

Here ΠTxM denotes the orthogonal projection onto the tangent space TxM and we
identify the operator on the abstract tangent space and the endomorphism in R

3.
Using aσTxM as diffusion tensor ends up with the following type of parabolic

surface evolution problem. Given an initial compact embedded manifoldM0 in R
3,

we compute a one parameter family of manifolds {M(t)}t∈R
+
0

with corresponding
coordinate mappingsx(t) which solves the system of anisotropic geometric evolution
equations:

∂tx− divM(t)(aσTxM∇M(t)x) = 0 on R
+ ×M(t), (22)

and satisfies the initial condition

M(0) = M0.

Hence, due to the anisotropy defined in (19), we enforce a signal enhancement
in a principal direction of curvature with curvature larger than λ. If the second
principal curvature is smaller than λ we regard the first direction as orthogonal to
an important edge on the surface which is going to be sharpened. Simultaneously, in
the other direction - the tangent direction along the edge - we invoke smoothing. At
approximate corners both principal curvatures are large, thus sharpening takes place
in both directions.

To avoid tangential velocity components in the evolution we project the velocity
in equation (22) in normal direction and obtain

∂tx− (divM
(
aσTxM∇Mx

)
· n)n = 0 , (23)
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Fig. 9. The initial surface (top left) and three timesteps from the generalized mean curvature
evolution of a venus head consisting of 268714 triangles are shown.

Fig. 10. Here, for the evolution shown in Figure 9, the norm of the dominant principal curvature
is color coded. (cf. color plate 9, Page 670)

which is an example of the system (7) and indeed our diffusion method is a generalized
mean curvature evolution.

In Figure 9 three time-steps of the evolution are shown. Figure 10 demonstrates
that curvature is reduced significantly throughout the evolution.

6.2 A Gradient Flow Approach

We will proceed analogously as above but change the type of local classification and
consider the gradient flow with respect to a surface energy.

The classification is now with respect to moments. As we saw in Section 5 we
can distinguish a non-smooth situation from a smooth one by use of different scaling
properties of the ε-normal. W.r.t. the definition of a normal velocity we want to have
isotropic mean curvature evolution in smooth areas. Close to edges and corners we
aim at the definition of an anisotropic mean curvature evolution respecting the local
shape of the surface. This can be done by prescribing locally different Wulff-shapes.

Indeed, we consider a gradient flow for the energy (8). This implies that in x(ξ)
we prescribe the Wulff shape defined by γ(ξ, •).
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Fig. 11. Two prototypes of prescribed Wulff shapes occurring typically in the evolution steered
by the gradient flow of energy (8).

If a point ξ is classified to be smooth and the distance to non-smooth domains
is large enough (belonging by definition to the set S), the local Wulff-shape is the
sphere, i.e., one has the isotropic integrand γ(ξ, n) = |n|.

In the present paper we confine to the case of curves concerning the definition of
γ in the remaining setM−S.

On curves, we just have to determine edges together with their apex angles
and the directions of the apex angle. Assume that for a given scanning-width ε a
neighborhood Nε of an edge is defined by

Nε = {x ∈M| ε−1‖nε‖ ≥ λ}

whereλ is some threshold parameter.A point ξ0, wherenε achieves a local maximum
in Nε is defined to be an edge. This is motivated by the observation that in (20) the
left hand side is maximal for a = 0. The corresponding direction of the apex angle in
x(ξ0) is given bynε(ξ0). It remains to determine the apex angle. Using two scanning-
widths ε and rε, where r is a positive constant (in our applications we choose r = 2),
we are able to compute the apex angle by relation (20). Now we define for all ξ ∈ Nε
the integrand γ(ξ, n) = γ0(n) and γ0 determines a Wulff-shape whose apex angle
and direction of apex angle coincides with the computed quantities of the curve onNε.
Furthermore we choose γ0 as an even integrand, i.e., γ0(n) = γ0(−n). This enables
us to treat convex and concave situations equivalently. By definition Wulff-shapes
are convex bodies and on a first glance it seems to be impossible to enhance concave
situations. But by the choice of even integrands it is energetic favourable to enhance
a concave edge instead of convexifying the situation. Finally, we use interpolation
in γ(·, n) which lead to a convex blending from the non-smooth Wulff-shape to the
sphere a long the curve if we move from the neighborhood of an edge to a smooth
region (see Figure 11).
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Fig. 12. On top the initial surface is depicted, bottom left a time-step of a mean curvature
evolution and bottom right the same time-step is chosen for the anisotropic evolution.

Figure 12 shows a comparison between mean curvature evolution and our gradient
flow approach. In Figures 13 and 14 we see results of this method.

Volume Conservation

Now we come to a theorem that allows to define an algorithm for image processing
that keeps the enclosed volume fixed.

Theorem 6.8 Let a : TxM → TxM be an endomorphism of the tangent-space in
every point on M. Then the enclosed volume of the surface does not change under
the evolution

∂tx−
(
divM

(
aσTxM∇Mx

)
· n

)
n = h(t)n

if we choose h(t) := 1∫
M(t) dA

∫
M(t) ha dA.

This theorem is an immediate consequence of the following
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Fig. 13. The method is able to cope with strong noise. Left the initial curve is shown, right the
result of the algorithm minimizing the energy (8).
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Fig. 14. This figure shows that the gradient flow method is able to handle acute and obtuse
angles.

Proposition 6.9 Consider an evolution of a surface x(t) : M → R
d+1 in normal

direction, i.e., ∂tx = ϕn. The change of the enclosed volume in time is given by

d

dt
[Vol(M(t))]t=t0 = (d + 1)

∫
M(t0)

ϕdA .

Proof. For the time derivative of the volume we obtain
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∂t

∫
M

(x · n) dA

=
∫

M
(∂tx · n) dA +

∫
M

(x · ∂tn) dA +
∫

M
(x · n) divM(ϕn) dA

=
∫

M
ϕdA−

∫
M

(x ·Dx(∇Mϕ) dA +
∫

M
(x · n)ϕhdA

For the relations used in the above equalities see [6] and [8]. Integration by parts
leads to:

∂t

∫
M

(x · n) dA

=
∫

M
ϕdA +

∫
M

divMxϕdA = (d + 1)
∫

M
ϕdA

and we can finish our proof. �

Choosing ϕ with vanishing mean value leads to constant volume under the evo-
lution and thus Theorem 6.8 is proved.
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