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Abstract. Anisotropic mean curvature motion and in particular anisotropic
surface diffusion play a crutial role in the evolution of material interfaces.
This evolution interacts with conservations laws in the adjacent phases on
both sides of the interface and are frequently expected to undergo topological
chances. Thus, a level set formulation is an appropriate way to describe the
propagation. Here we recall a general approach for the integration of geometric
gradient flows over level set ensembles and apply it to derive a variational
formulation for the level set representation of anisotropic mean curvature
motion and anisotropic surface flow. The variational formulation leads to a
semi-implicit discretization and enables the use of linear finite elements.
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1. Introduction

To capture the surface evolution in epitaxial growth on a large scale it is appropri-
ate to assume the surface to be smooth and to describe its evolution by continuum
equations. For a review of such approaches see [1]. Even if most of these mod-
els are heuristically introduced, most of them can be considered as small slope
approximations of anisotropic geometric evolution laws, such as mean curvature
flow or surface diffusion. These geometric nonlinear evolution laws can therefore
be viewed as a prototype of a more general class of models to describe epitaxial
growth. In this paper we present an approach to anisotropic second and fourth
order geometric evolution laws in a level set formulation. For more details on the
background and the derivation we refer to [2, 3]. A connection to the physical
problems in epitaxial growth and a comparison with the models described in [1]
will be given elsewhere. Level set formulations for isotropic geometric evolution
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laws have already been discussed and used numerically in the literature. In par-
ticular, isotropic surface diffusion is considered within a level set context i.e. in
[4, 5, 6].

For a given initial surface My, a geometric evolution law defines a family of
surfaces M(t), t > 0 with M(0) = My. Now consider M (t) to be given implicitly
as a specific level set of a corresponding function ¢(t). Thus the evolution of M(t)
can be described by an evolution of ¢(t). Given a velocity field v the evolution of
¢ is described by the convection equation d;¢ + ||Vé||v = 0, which is called the
level set equation. If the velocity v is determined through the geometric evolution
law we can implicitly evolve the surface M by solving the level set equation, [7].
Let us emphasize that different from second order problems, such as mean curva-
ture flow, no maximum principle is known for fourth order problems. Indeed two
surfaces both undergoing an evolution by surface diffusion might intersect in finite
time. Hence, a level set formulation in general will lead to singularities and we
expect a blow up of the gradient of ¢ in finite time. If one is solely interested in
the evolution of a single level set, one presumably can overcome this problem by a
reinitialization with a signed distance function with respect to this evolving level
set. We are here aiming to derive a suitable weak formulation for such evolution
problem, which only makes use of first derivatives of unknown functions and test
functions. In particular this will allow for a discretization based on a mixed for-
mulation with piecewise affine finite elements, closely related to results by Rusu
[8]. Hence we have to reformulate the problem in order to avoid curvature terms,
i.e. derivatives of the normal. Here, we take advantage of a fairly general gradient
flow perspective to geometric evolution problems. Indeed, given a gradient flow for
parametric surfaces, we derive a level set formulation, which describes the simulta-
neous evolution of all level sets corresponding to this gradient flow. This approach
is based on the co-area formula (cf. for example to the book of Ambrosio et al. [9])
and a proper identification of the temporal change of the level set function and
the corresponding evolution speed of the level surfaces. Thereby, we are able to
identify the natural dependent variables. This approach provides an insight into
the geometry of evolution problems on the space of level set ensembles.

The paper is organized as follows: In Section 2 we present a level set formula-
tion for a gradient flow with respect to the L? surface metric and recover the well
known level set formulation for isotropic mean curvature flow, as given in [10]. In
Section 3 this setting is adapted to derive a level set formulation for anisotropic
mean curvature flow and anisotropic surface diffusion. Based on these results a
numerical scheme for anisotropic surface diffusion is described in Section 4, and in
Section 5 some numerical results in two and three dimensions are presented.

2. Parametric gradient flow

Consider a closed, immersed, oriented, and smooth surface z : M — R? with a
two-dimensional parameter manifold M. Given an energy density f : M — R,
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the surface energy is denoted by

eM] = / fdA.
M
We consider the gradient flow with respect to a specific surface metric g(M)
Orx = —grady(pg e[M].
To derive a level set formulation of this equation, let us first introducing some
useful geometric notation. Furthermore, we derive representations for geometric
quantities on level sets M in terms of the corresponding level set function ¢.
Let ¢ : © = R be some smooth function on a domain @ C R Suppose
M. :={z € Q| ¢(x) = ¢} is a level set of ¢ for the level value c. In what follows

we write M = M, if no confusion is possible and allways assume that [|[V¢|| # 0
on M. Thus, M, is a smooth hypersurface and the normal

ne V¢
IVl
on the tangent space 7, M is defined for every = on M. The projection onto 7, M
is given by
P=T-n®n,

where 1I denotes the identity on R%*!. In what follows we will make extensive
use of the Einstein summation convention. Furthermore vectors v € R**! and
matrixes A € R are written in index form v = (v;);, A = (A;j)i;. For a
tangential vector field v on M and a scalar function u on R4 the tangential
divergence and tangential gradient are defined as

diVM’U = 6,'1},' - ninjajvj
VMU = (8zu - ninjaju)i .
Furthermore we use the notation d;u = u; and 0;0;u = u;;. Furthermore 0,
denotes the normal derivative and h := divn = n;; the mean curvature on M.
Finally, for the the shape operator S on M - which is defined as the restriction of
Dn on the tangent space 7, M - we obtain
1
IVl

2.1. The general procedure to derive a level set formulation

S=DnP= PD*$P. (2.1)

Let us assume that we simultaneously want to evolve all level sets M, of a given
level set function ¢. We take into account the co-area formula [18, 9] and define
the global energy

Bl = [ elmdde= [ 997 da.

Here, we set e[M.] = 0 if M, = (. We interpret a function ¢ or the corresponding
set {M,}cer as an element of the manifold £ of level set ensembles. Here, we
follow the exposition in [3, 11]. A tangent vector s := 0;¢ on £ can be identified
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with a motion velocity v of the corresponding level set M, via the classical level
set equation

s+ ||Ve|lv=0

(cf. the book of Osher and Paragios [12] for a detailed study). Thus, we are able
to define the corresponding metric on £. If the L? metric is used it follows

96(s1,82) = // v1 - vadAde

(V6] de = /Q s182 Vo)~

i1
o IVell IIW)I

Finally, we are able to rewrite the simultaneous gradient flow of all level sets in
terms of the level set function ¢ as

¢ = —grad,, Elg],

which is equivalent to
96(8:6, 9) / 009 Vol dz = —(E'[4],9) (2.2)

for all functions ¥ € C§°(Q).

3. Anisotropic evolution laws

By considering the specific choice of the energy density f = 7(n), with v an
anisotropy function, we obtain a generalization of the area functional in the above
example.

3.1. Anisotropy function
The anisotropy function « is a smooth function
v : S?5RT
z = v(2), (3.1)

and we may assume, that + is given as a one-homogeneous function on R?, i.e.,
for A > 0 we have v(Az) = Ay(z). In addition, let there be a positive constant m
such that for the second derivative we have

D*(y(z) —mlz2[) > 0.

In this case, v is called elliptic and the eigenvalues of D27y(z) restricted to 21 =
{x € R®|z - z = 0} are bounded from below by m.
By parameterizing v over the unit sphere
Y. o SE=W,
z = 7:(2), (3.2)
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the so called Wulff-shapes W,, are obtained. Solutions of the isoperimetric problem
for e, are given by these Wulff-shapes [13]. For a proof of the isoperimetric property
of the Wulff-shape and more references to the literature see [14].

Considering a surface z : M — R®, we can give a version of the second
derivative of 7 on its tangential space as follows

My ot TgM - TgM
v+ Dz 'y, (n)Dz(v). (3.3)
The endomorphism field . is well defined due to the fact that D2y (z) z = 0 for

all z # 0. By ellipticity, u, is positive definite. The classical area functional is
obtained for the function v(z) = |z|. In this case, u, is the identity

3.2. Anisotropic mean curvature flow

Anisotropic mean curvature flow is the L?*-gradient flow of e,[M] := [ MY dA.
The first variation of e, in direction ¢ may be represented in the L?-metric by a
generalized mean curvature vector

(€[], ) = /M h(n-9)dA. (3.4)

Here h., = tr(u,S) will be called the y-mean curvature. In level set formulation this
can also be expressed as follows (where S;; are the components of the symmetric
shape operator defined in Section 2)

hy = 7225 (3:5)
= ﬁ%"“ (Oir — ning) Ok (015 — mun) (3.6)
- mwzjz,.aim = div . (n). (3.7)
The corresponding level set functional is similar to the isotropic case
Bldl = [ elMlde= [ awIVollds = [ 1(Teraa. @

From this we easily obtain the representation of the anisotropic mean curvature
flow in level set formulation

(B[], 9) = /Q 7+(V$) VI dz (3.9)

Note that at this point we need a suitable regularization of V¢/|V¢| due to the fact
that v, is zero-homogeneous. This regularization, denoted by n€, will be chosen as

e _ V¢ __V¢

e+ VelE IVl

for € > 0, where obviously we use the definition ||[V¢|. = /€2 + ||V¢]||?. For
more details on regularization see [3]. If we consider a regularized version of the
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L?-gradient flow in the level set case we obtain for any admissible test function ¥

1
0¥ ——dx = / Y. (n®)Vddz , 3.10
089 e = J - (310
which is the weak formulation of anisotropic curvature motion in level set form.

3.3. Anisotropic surface diffusion

Anisotropic surface diffusion is the H~'-gradient flow of e,. The corresponding
H~' metric is

- _ 1|51 | _S2

where M denotes the level set, the integration point z belongs to. The gradient
flow w.r.t. the H~! metric of e, in level set formulation is now given by

9(06,9) = — /Q (V)Y dz

which is by the above representation of g

_/Q(AM)_1 [ﬁ] 3t¢d$:_/g’)’z(V¢)V19da:.

Replacing 9 by [|[V@|Ar¥ we arrive at
/6t¢19dm - —/ by Aped V9] der
Q Q

From this representation of the H—! gradient flow, one is lead to introduce the
additional variable y = h.,. Thus we just have to find a numerically suitable form
of the expression [, y|V¢|Arq dz. We observe

/y||V¢||AM19d$ = // yAMcﬂdAdcz—/ Vam.y Vm, ddAde
Q R c R J M.
= —/PVy-PVﬁHV(ﬁde
Q

taking into account the properties PT = P and P? = P. Concluding, the weak
formulation of anisotropic surface diffusion for level sets is given by

S9de = /PVy-VﬁHVqﬁHdm
Q Q

Aywdx

4. Numerical schemes

- /Q = (V) Vi d

In this section we want to derive numerical schemes which can be used to dis-
cretize the anisotropic surface diffusion problem. We provide both, spatial and
time discretization schemes.
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4.1. Spatial discretization

Let us consider a uniform mesh C covering the whole image domain {2 and consider
the corresponding interpolation on cells C' € C to obtain discrete intensity functions
in the accompanying finite element space V". Here, the superscript h indicates
the grid size. Suppose {®;};cs is the standard basis of hat shaped base functions
corresponding to nodes of the mesh indexed over an index set I. To clarify the
notation we will denote spatially discrete quantities with upper case letters to
distinguish them from the corresponding continuous quantities in lower case letters.
Hence, we obtain

Vh = {® € C°(Q)|®|c € PLVC €C},

where P; denotes the space of (d+1)-linear functions. Suppose 7}, is the Lagrangian
interpolation onto V*. Now, we formulate the semi discrete and regularized finite
element problem

Problem 4.1. Find a function & : R — V" with ®(0) = Zj, ¢ and a corresponding
weighted mean curvature function Y : Rt — V" such that

/ 8,8(4)0 da / P[B(1)]VY (1) - VO |[VB(2)|| do
Q Q

/ Y(t)¥ dz = / Y. (N€) - VT de
Q Q
for all ¢t > 0 and all test functions ©, ¥ € V',

Here, we use the notation

Vo Vo Vo
Pdl = (11— . N
[2] ( e, © ||v<1>||e)

and consider Neumann boundary conditions on 0.

Vel

4.2. Time discretization

For a given time step 7 > 0 we aim to compute discrete functions ®*(-) € V',
which approximate ¢(k7,-) on Q. Thus, we replace the time derivative d;¢ by a
backward difference quotiont and evaluate all terms related to the metric on the
previous time step. In particular in the (k 4+ 1)th time step the weight ||V®|| and
the projection P are taken from the kth time step. Explicit time discretizations are
ruled out due to accompanying severe time step restrictions of the type 7 < C'(e)h?,
where h is the spatial grid size (cf. results presented in [15, 16]). We are left to
decide, which terms in each time step to consider explicitly and which implicitly.
Taking all linear terms implicitly, leads to

Problem 4.2. Find a sequence of level set functions (®F)g—o,... C V" with ° =
Th¢o and a corresponding sequence of weighted mean curvature functions (Y*)_q ...
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C V" such that

q)k—}-l_@k
/7@@ _ /Pe[ék]VYk“-V@ IV, do
Q Q

T

VoFk
Yl ode = /72 <7) -V dz
/Q o \IIVe¥|.

for all test functions @, ¥ € V.

However, this algorithm leads to a completely explicit time-discretization.
Therefore, we use the advice of Deckelnick and Dziuk [17] and add an implicit
term to the second equation as follows.

Problem 4.3. Find a sequence of level set functions (®*)g—o.. C V" with ®° =
T ¢o and a corresponding sequence of weighted mean curvature functions(Y*)z—g
C V" such that

(I)k-i-l _ (I>k
/7@@ _ /pé[qﬂv]vykﬂ-ve V||, do
Q Q

yoer

.
vk
Yl ode = /fyz (7) -V dx
A o \Iver:
7 ()
+,\/ — Ly (kt — dFYVT dz
AT )

for all test functions ©, ¥ € V" and some parameter \.

As a motivation for this additional term lets consider the isotropic case. Here
= |z| and 7, = id. Thus the second equation in Problem 4.3 becomes

V(I)k V(‘I)k+1 _ (I)k)
YEL @ dg VOdz+)\ | ———— VU dz
/ o IV o |IVeF|.

which leads for A = 1 to the implicit formulation. Compare [17] for more details
and an optimal choice of the parameter A.

5. Implementation and numerical results

In this section we show some preliminary results of our implementation. All calcu-
lations were performed on a regular, uniform triangulation, where we used standard
Courant finite elements (i.e. globaly continuous and piecewise affine). We employed
a Schur complement approach and used left and right diagonal preconditioning for
the resulting linear system. In Figures 1 and 2 we show results for the isotropic
case in 2d and 3d respectively.

Neumann boundary conditions have been imposed and one sees that the
bizarly shaped initial data become ever more ball shaped as the evolution proceeds,
approximating the steady state solution of isotropic surface diffusion.
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FIGURE 1. Isotropic surface diffusion in 2d. Level sets -0.5, 0.0,
0.5, 1.0 (from inner to outer curve). From left to right ¢ =

0.0,0.01,0.02,0.05,0.1. Computational domain: 4 x 4 square; tri-
angulation: 2.100 grid points; time step: 10™4; A = 1.0.

FI1GURE 2. Isotropic surface diffusion in 3d. Level set 0 at ¢t =
0.0, 0.001, 0.002, 0.005, 0.01, 0.05 (from top left to bottom right).
Computational domain: 4 x 4 x 4 cube; triangulation: 36.000 grid
points; time step: 107%; X = 1.0.

In Figures 3 and 4 we present numerical results for anisotropic surface diffu-
sion with anisotropy function

d 1
(@) = (jal 3 (el + |zk|2)%) * =001 d=2,3. (5.1)
k=0

Here the limit configuration is clearly determined by the rectangular symmetry of
the anisotropy.
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@@ EE

F1GURE 3. Anisotropic surface diffusion in 2d. Levesets -0.5, 0.0,
0.5, 1.0 (from inner to outer curve). From top left to bottom right
t = 0.0, 0.001, 0.002, 0.005, 0.01. Computational domain: 4 x 4
square; triangulation: 2.100 grid points; time step: 10~%, A = 10.0.

FI1GURE 4. Anisotropic surface diffusion in 3d. Levelset 0 at t =
0.0,0.001,0.002,0.005,0.01,0.02 (from top left to bottom right).
Computational domain: 4 x 4 x 4 cube; triangulation: 36.000 grid
points; time step: 1072, A = 20.0.
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