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AbstratFast multisale and multigrid methods for the mathing of images in2D and 3D are presented. Espeially in medial imaging this problem -denoted as the registration problem - is of fundamental importane in thehandling of images from multiple image modalities or of image time series.The paper restrits to the simplest mathing energy to be minimized, i.e.,E[�℄ = 12 R
 jT Æ��Rj2, where T , R are the intensity maps of the two imagesto be mathed and � is a deformation.Mathing of images, i.e., �nding an optimal deformation � whih mini-mizes E is known to be an ill-posed problem. Here, the fous is on regular-ization methods. We ompare di�erent iterative methods where the nees-sary regularization is inorporated via an additional onvex energy funtional.Furthermore we give a new interpretation of these methods in the frameworkof gradient ows. Hene, a regularization is interpreted as a regular metriused to measure length on the desent path in the gradient ow method.Typially regularizing energies appear together with a small oeÆient.We obtain an interpretation of this oeÆient as a time-step parameter.Examples on 2D and large 3D image mathing problems prove the robust-ness and eÆieny of the proposed approah.1



2 1 INTRODUCTION1 IntrodutionImage assisted diagnostis and surgery planning requires robust and valid segmen-tation and lassi�ation results and an analysis of the temporal hange of anatomistrutures. Espeially in brain researh it is neessary for the analysis of the orga-nization and variation in the struture of human brains.This an only be ahieved properly if images reorded with di�erent imagingmahinery or at di�erent times an suitably be orrelated to eah other. Varioustehniques have been proposed to solve this registration problem. They all ask foran \optimal" deformation whih deforms one image suh that there is an \optimal"orrelation to another image with respet to a suitable oherene measure.Mainly two di�erent approahes have been disussed in the literature [3, 4, 6,8, 14, 15, 21℄. On the one hand, so alled elasti registration tehniques deal witha regularization of the energy, typially adding a onvex energy funtional basedon gradients to the atual mathing energy. The regularization energy is regardedas a penalty for \elasti stresses" resulting from the deformation of the images.This approah is related to the well known lassial Tikhonov regularization of theoriginally ill-posed problem. On the other hand, visous ow tehniques are takeninto aount. They ompute smooth paths from some initial deformation towardsthe set of minimizers of the mathing energy. Thereby, a suitable regularization ofthe veloity, e.g., adding an arti�ial visosity, ensures a ertain problem dependentsmoothness modulus. This lass of methods an be interpreted as a gradient owapproah with respet to a metri whih penalizes non{regular desent diretions.Taking into aount a time-step disretization, this methodology is losely relatedto iterative Tikhonov regularization methods [9, 19, 11℄.The aim of this paper is to show the strong relations between both approahes.We will see that regularizing by adding a onvex energy funtional �g(�; �) or alter-natively introduing a regularizing metri di�ers only in the kind of disretization.Furthermore we will give an interpretation of 1=� as time-step size (see setion 5).Furthermore let us reall the optial ow method in image proessing. The taskis to extrat motion �elds from image time sequenes. We ask for the time disretemotion veloity between two images of a time sequene, i.e., a short time deforma-tion whih is again a mathing problem. A �rst method in this �eld is due to Hornand Shunk [12℄. We will desribe this method shortly (setion 3.3) and show thatthis approah an also be regarded as a gradient ow w.r.t: a regularizing metri(setion 5.3). If the motion is only pieewise smooth a simple regularization addinga Dirihlet-integral would not be able to retain the often disontinuous deforma-tions on image edges. Nagel and Enkelmann proposed an anisotropi quadratiform for the gradient of the deformation whih regularizes edges of the image onlyin the tangential diretion [7, 16℄. Alvarez, Weikert and Sanhez [2℄ used theseideas for deriving a onsistent model, entering deformation and anisotropy in thesame image.Due to the non{onvexity of the minimization problem in image registration itmight be diÆult to �nd the absolute minimum in ase of larger deformations. Al-ternatively, one an onsider a onvolution of the images with a large orresponding�lter width whih destroys muh of the detailed struture, math those images, andthen suessively redue the �lter-width and iterate the proess [2, 18, 22℄. This



3proedure is omparable to an annealing algorithm, where the �lter width playsthe role of the temperature.The paper is organized as follows. In setion 2 we desribe the general problemand aspets of its ill-posedness. Setion 3 ontains three regularization strategies toobtain well posed minimization problems. For eah regularization, we add the or-responding algorithm whih approximately solves the resulting optimization prob-lem. In setion 4 we desribe the role of gradient ows in image registration. It willbeome lear in whih sense a metri regularizes the problem. Setion 5 shows thestrong relation between the approahes of setion 3 and the gradient ow perspe-tive. Espeially, we will present the metris related to the energy regularizationsdesribed in setion 3. In setion 6 we give a brief overview of the algorithmiingredients and examples for the robustness and eÆieny of our methods.2 The ill-posed optimization problemGiven two images T;R : 
 ! R, where 
 � Rd and d = 2; 3, we would like todetermine a deformation � : 
 ! Rd whih maps grey values in the �rst image Tvia a deformation � to grey values at the deformed position in the seond image Rsuh that T Æ � � R :Furthermore, we expet �(
) = 
. For the ease of presentation we assume 
 =[0; 1℄d throughout this paper. We onsider u as the displaement orresponding to�: 1I +u = �. Aiming to optimize the deformation with respet to a proper mathof the two images we de�ne the most basi energyD depending on the displaementu (resp: the deformation �):D[u℄ = 12 Z
 jT Æ (1I + u)�Rj2 : (D)In what follows we use either � or u as the argument of the energyD. If u is an idealdeformation the above energy vanishes. Thus we ask for solutions of the problemto minimize D[ � ℄ in some Banah spae X . Obviously, this problem is ill-posed.Consider a deformation � and for  2 R the level sets MT = fx 2 
 jT (x) = g.Then for any displaement � whih keeps MT �xed for all , the energy does nothange, i.e:, D[�℄ = D[� Æ �℄:This espeially holds true for a possible minimizer �. Hene, a minimizer { if itexists { is non-unique and the set of minimizers is expeted to be non-regular andnot losed in a usual set of admissible displaements.A minimizer u of (D) is haraterized by the neessary ondition D0[u℄ = 0,where D0[u℄ 2 X 0 for the dual spae X 0 of X . Indeed, we requirehD0[u℄; 'i = 0 8' 2 X :Suppose [L2(
)℄d is embedded in the spae X 0. Under obvious integrability ondi-tions for T , R and rT we obtain the L2-representation of D0gradL2D[u℄ = (T Æ (1I + u)�R)rT Æ (1I + u) : (1)



4 3 REGULARIZATION METHODS3 Regularization methodsThe aim of this setion is to introdue three di�erent minimization approahes tothe problem D[�℄ �! min. (2)Most ommon approahes to minimize nonlinear funtionals are steepest deent andnewton type methods. Unfortunately, realling our observation above disontinuoussolutions with arbitrary large strain are possible. To rule out this unrequestedsolutions it is neessary to penalize them.In the following, the spae of deformations is always denoted by X . The hoieof X in appliations will be desribed in setion 5.4.3.1 A linearized iterative minimization approahFor a given urrent approximation u(k) of a solution of (2), we searh the nextapproximation u(k+1) suh thatD[u(k+1)℄ < D[u(k)℄:The funtional D[u(k+1)℄ is replaed by its linearization around u(k)D[u(k+1)℄ � D[u(k)℄ + hD0[u(k)℄; u(k+1) � u(k)i:Henn and Witsh [10℄ add a suitable bilinear form resp: energy g(�u(k+1);�u(k+1))with �u(k+1) := u(k+1) � u(k), to the linearized funtional and get the followingminimization problem:arg min�u(k+1)2X �hD0[u(k)℄;�u(k+1)i+ �2 g(�u(k+1);�u(k+1))�:The Euler-Lagrange equation is given by the linear variational equation�g(�u(k+1); ') = �hD0[u(k)℄; 'i: (3)This leads to:Algorithm 3.1 Linearized iterative approah for minimizing D[u℄:k = 0; u(0) = u�;repeatompute �u(k+1) as solution of equation (3);u(k+1) = u(k) +�u(k+1);until � D0[u(k+1)℄ � 0�The solution �u(k+1) of (3) exists, is unique and depends on the hoie of thebilinear form g(�; �) as well as on the parameter �. The above algorithm an bere�ned introduing an additional line searh algorithm.



3.2 A nonlinear iterative minimization approah 5With d(k+1) = �u(k+1)=k�u(k+1)k1 we get a deformation with jjd(k+1)jj1 = 1.Due to the hoie of d(k+1) the funtion f(t) = D[u(k) + t � d(k+1)℄ is a dereasingfuntion, when t 2 R+ is small enough. We hoose t as a solution to the followingone dimensional minimization problem�nd tk so that tk = arg mint2R+D[u(k) + t � d(k+1)℄: (4)3.2 A nonlinear iterative minimization approahConsider the nonlinear minimization problem:minu �D[u℄ + �2Q[u℄� (5)with a penalty funtional Q[�℄ and a regularization parameter � > 0, whih ontrolsthe quality of the �t of the data, as measured by D[u℄, and the variability of theapproximate solution, as measured by the penalty Q[u℄. This penalty approah isin the inverse problem ommunity widely known as Tikhonov regularization.Henn and Witsh [11℄ introdued the so alled iterative Tikhonov regularizationfor minimizing D[u℄. Here, the solution urve u� is been followed for dereasing �.One starts with �0 � 0 whih is helpful for the solution method. Then minimalsolutions of the Tikhonov funtionalu(k+1) = argminu fD[u℄ + �k2 g(u� u(k); u� u(k))gwith a monotone dereasing sequene �k ! 0 for k ! 1 and initial guess u(k)are omputed. Here g(�; �) is again a suitable regularizing bilinear form. Eahsubproblem, for regular hosen g(�; �) and �k suÆiently large, is well posed. Theiteration is stopped at the point where the least squares funtional D inreases.Algorithm 3.2 Iterative Tikhonov regularization for minimizing D[u℄.k = 0; u(0) = u�; �0 = N � 0;repeatompute u(k+1) = argminv2X D[v℄ + �k2 � g(v � u(k); v � u(k))redue �k+1 = � � �k, with � 2 (0; 1);until �D[u(k+1)℄ > D[u(k)℄�:3.3 An iterative minimization approah based on lineariza-tion of the integrandA further possibility to obtain a well-posed minimization problem related to (2)is to linearize the integrand of D[u℄. Thus we replae the deformed image T (x +u(k+1)(x)) by its Taylor expansionT (x+ u(k+1)(x)) = T (x+ u(k)(x)) + hrT (u(k));�u(k+1)i+O([�u(k+1)℄2)



6 4 IMAGE REGISTRATION BY GRADIENT FLOW METHODSaround the known deformation u(k), with the derivative rT of T and �u(k+1) =u(k+1) � u(k). This leads to a quadrati funtionalQ[v℄ = jjrT (x+ u(k)(x)) � v + T (x+ u(k)(x)) �R(x)jj2L2(
)for the orretion v. The funtional measures the square of the rate of hangeof image brightness and should be minimized. The problem is regularized with abilinear form. It an be shown [20℄, that the resulting minimization problemargminv2X nQ[v℄ + �2 a(v; v)oattains its unique solution �u(k+1) satisfying the following variational equation:g(�u(k+1); ') = hf; 'i 8' 2 X (6)with a bilinear formg(v; ') = �a(v; ') + hrT (x+ u(k)); vihrT (x+ u(k)); 'iand a linear form hf; 'i = R
hrT (u(k)) � (T (x + u(k)(x)) � R(x)); 'idx. Equation(6) is preisely the Euler-Lagrange equation suggested by Horn and Shunk [12℄ toompute the optial ow (see equation (11)).Algorithm 3.3 Quadrati minimization approah for minimizing D[u℄:k = 0; u(0) = u�;repeatompute �u(k+1) as solution of equation (6);set u(k+1) = u(k) +�u(k+1);until � D0[u(k+1)℄ � 0�4 Image registration by gradient ow methodsGradient ow methods are well known tools in minimization of funtionals. Classi-al examples are the heat ow equation as gradient ow for the Dirihlet integral ormean urvature evolution of surfaes minimizing the area-funtional (see e.g. [13℄).Here, we want to desribe a gradient ow approah to the minimization problem(2), i.e., we would like to determine a path within a suitable spae of deformations,that tends towards the set of minima of D.On aount to the ill-posedness of this problem, gradient ows have to integrateregularizations to avoid nonsmooth paths on the energy landsape.At this point, we see a prinipal di�erene between "lassial" gradient owmethods [17℄ for PDEs and our approah to ill-posed optimization problems. Wedo not interprete a given PDE as a gradient ow but we use metris for modelingand regularization purposes.



4.1 Existene and uniqueness 7The idea is to introdue a regularizing metri g measuring the derivative of Din a regular spae X , as e.g: X = [H1;2(
)℄d. If we onsider the duality in X 0 wehave a representation A : X ! X 0 of g :g(u; v) = hAu; vi :Obviously, this mapping is bijetive on aount of the metri properties. If wemeasure the derivative w.r.t: g then the formal gradient ow with respet to themetri g(�; �) �tu(t) = �gradgD[u(t)℄reads as g(�tu; ') = �hD0[u℄; 'i ;for all ' 2 X . This an be re-formulated using the mapping A by A�tu = �D0[u℄or equivalently: �tu = �A�1D0[u℄and the mapping A�1 transfers the derivative of D into the more regular spae X .We will obtain existene and uniqueness results and analyze this regularity aspetin detail (see setion 5.4).4.1 Existene and uniquenessIn what follows let us assume X to be a Banah spae. Furthermore suppose thatthere is a seond Banah spae W � X whih is embedded in the dual spae X 0 ofX . Hene, we an state the followingTheorem 4.1 Let A be a linear isomorphism A : X ! W. If D0[X ℄ � W andD0[�℄ : X ! W is Lipshitz ontinuous, then there exists a unique solution of theproblem:For given initial data u0 2 X , �nd a solution u : R+0 ! X , suh that�tu = �A�1D0[u℄ ;u(0) = u0 :Remark: Theorem 4.1 espeially ensures that solutions of the gradient oware X -regular for �nite times. Let us emphasize that in general we an neitherexpet the X -norm to be uniformly bounded in time nor that there exists a steadystate.The proof is a straightforward appliation of the Piard-Lindel�of Theorem inBanah spaes. We have shown that there is an L2-representation gradL2 D ofD0 (f. Setion 2), if T and R are of suitable regularity. Therefore in ase W =[L2(
)℄d the inlusion D0(X ) � W is valid. Let us prove Lipshitz ontinuity ofgradWD = gradL2D.Lemma 4.2 Let X = X 0 = W = [L2(
)℄d; then the derivative of the energy Ew.r.t: W is Lipshitz ontinuous, i.e:,jjgradL2D[u1℄� gradL2D[u2℄jjL2 � C jju1 � u2jjL2if T 2 C1;1(Rd ) and R 2 L1(
).



8 5 REGULARIZATION REGARDING A METRIC POINT OF VIEWProof. Let u1, u2 2 X . Then we havegradL2D[u1℄� gradL2D[u2℄= (T Æ (1I + u1)�R)rT Æ (1I + u1)�(T Æ (1I + u2)�R)rT Æ (1I + u2)= [(T Æ (1I + u1)�R)� (T Æ (1I + u2)�R)℄rT Æ (1I + u1)�(T Æ (1I + u2)�R)[rT Æ (1I + u1)�rT Æ (1I + u2)℄ :Let us introdue some notation for funtions de�ned on 
:kfkC0 = supx2
 jf(x)j ; jf jC1 = supx2
 jrf(x)j ; kfkC1 = kfkC0 + jf jC1 :Furthermore we use Lipshitz norms:kfkC0;1 = kfkC0+ supx;y2
 jf(x)� f(y)jjx� yj ; kfkC1;1 = kfkC1+ supx;y2
 jrf(x)�rf(y)jjx� yj :On aount of our regularity assumptions we an �nish our proof of Lipshitzontinuity: jgradL2D[u1℄� gradL2D[u2℄j� jjT jjC1 jjT jjC0;1 ju1 � u2j+ (jjT jjC0 + jRj)jjT jjC1;1 ju1 � u2jwhih leads to jjgradL2D[u1℄� gradL2D[u2℄jjL2(
)� jjT jjC1 jjT jjC0;1 jju1 � u2jjL2(
) +jjT jjC0 jjT jjC1;1 jju1 � u2jjL2(
) +jjT jjC1;1 jjRjjL1 jju1 � u2jjL2(
) :5 Regularization regarding a metri point of viewThe goal of this setion is to show relations between the regularization approahesdesribed in setion 3 and the above regularization tehnique via metris.5.1 The linearized approahAs in setion 3 we start with the linear kind of regularization in image mathing.Our starting point is equation (3):�g(�u(k+1); ') + hD0[u(k)℄; 'i = 0 ;whih is valid for all ' 2 X . Now, we regard g as a metri and the above equationan be equivalently expressed asu(k+1) = u(k) � 1�gradgD[u(k)℄ (7)= u(k) � 1�A�1D0[u(k)℄ :



5.2 The nonlinear method 9We an interprete this approah as an expliit disretization of a gradient ow withonstant time-step size ��1. Hene, we an regard 1=� in algorithm 3.1 as a timeparameter.5.2 The nonlinear methodIn the same sense, iterative Tikhonov regularization an be viewed as a gradientdesent method measuring the derivative of D in a regularizing metri. Again weinteprete g(�; �) as a metri. As explained in setion 3.2 the iterated Tikhonovregularization onsists of a sequene of minimization subproblemsD[u℄ + �k2 g(u� u(k); u� u(k)) : (8)The solutions u(k+1) depend on the parameter �k > 0 and the result u(k). Here,the Euler-Lagrange equation is simply given by the nonlinear variation equation:�k g(u� u(k); ') = �hD0[u℄; 'i :whih is nothing but an impliit time-step of length ��1k :u = u(k) � 1�k gradgD[u℄ : (9)Algorithm 3.2 starts with a very short time-step 1=N . Reduing the parameter �k ineah step means from a metri point of view to inrease the time-steps suessively.5.3 Linearization of the integrandNow we ome to the metri formulation of setion 3.3. We onsider the integrandh(u; x) := T (x+ u)�R(x) and its linearization, i.e.,D[u(k+1)℄ = 12 Z
 jh(u(k+1); x)j2dx = 12 Z
 jh(u(k) +�u(k+1); x)j2dx� 12 Z
 jh(u(k); x) + h�uh(u(k); x);�u(k+1)ij2 dx:We point out that these onsiderations are valid for general funtionals of theform R
 jh(u(x); x)j2 dx. Now one adds a suitable bilinear form a(�; �) and ends upwith the funtional to be minimizedJ [�℄ = 12 Z
 jh(u(k); x) + h�uh(u(k); x); �ij2dx+ �2 a(�; �) : (10)The Euler-Lagrange equation for this problem is given byZ
hrT (x+ u(k)); �ihrT (x + u(k)); 'i dx + �a(�; ') = �hD0[u(k)℄; 'i ; (11)for all ' 2 X . The orresponding metri to this method isg�w(u; v) = �a(u; v) + Z
 (rT (x+ w)
rT (x+ w)[u; v℄) dx: (12)



10 5 REGULARIZATION REGARDING A METRIC POINT OF VIEWLet us emphasize that this metri is atually Riemannian. Indeed gw(�; �) dependson the position w in the spae of displaements. The iteration now is given for all' 2 X as: g�u(k)(�u(k+1); ') = �hD0[u(k)℄; 'i :and we have an expliit time sheme with time-step size 1:u(k+1) = u(k) � gradg�D[u(k)℄ :5.4 Examples of suitable metrisLet us now onsider several examples for the hoie of the metri g(�; �) resp: thebilinear form a(�; �):(i) For the bilinear form a(u; v) = (u; v)L2 one solely penalizes large displae-ments in a square integrable sense. In this ase, we have A = 1I and theexistene and uniqueness are shown by Lemma 4.2 and Theorem 4.1.(ii) The proof of Lemma 4.2 learly extends to X = [Hs;2(
)℄d, where s � 0,W = [L2(
)℄d, and X 0 = [Hs;2(
)0℄d. Indeed in this ase [Hs;2(
)℄d ,![L2(
)℄d ,! [Hs;2(
)0℄d.For our purpose of image mathing the regularity indued by the L2-metri willnot be suÆient to obtain proper approximations of energy minimizers for our ill-posed problem w.r.t: atual appliations. Thus we annot expet to obtain smoothdeformations in ase A = 1I and X = X 0 = W = [L2(
)℄d, even if we start withsmooth initial deformations. Therefore we deal with spaes X of higher regularityand suitable operators A representing a metri:(iii) We might hoose the Helmholtz type operator A = 1I� �22 � for � 2 R+ . Themetri representing A isg(v; w) = (v; w)L2 + �22 (rv;rw)L2 : (13)This hoie orresponds to an impliit time disretization of the heat equationwith time-step � = �22 and is thus related to Gaussian �ltering with a �lterwidth �. As orresponding spaes we take into aount X = [H1;2(
)℄d,X 0 = [H1;2(
)0℄d and W = [L2(
)℄d. The isomorphism property of A andthereby the Lipshitz ontinuity of A�1 is well known in this ase. Thuswe have an existene and uniqueness result at hand but now with improvedsolution regularity.(iv) Let us assume the di�erene between images is based on a physial, elastideformation. This suggests to use in a very simple version a regularizingmetri of the form:g(u; v) = Z
 24Xi;j � �ui�xj + �ui�xj�� �vi�xj + �vi�xj�35 dx (14)



11This metri measures the energy of the elasti deformation and is neutralw.r.t: translations and rotations. The operator A is given byAu = ��u�r (divu) :As is well known, by Korn's inequality, that the operator A is a bi-Lipshitzmapping A : [H1;20 (
)℄d ! [H�1;2(
)℄d.6 Disretization and numerial resultsThe gradient ow methods (7) and (9) as desribed in setion 5 have been testedon synthetially generated images as well as on pairs of MRI images.Let us desribe briey disretization and implementation of our methods. Formore details we refer the reader to [10, 11, 5℄.Time disretization and sale spaes in the gradient ow approahFor typial image intensity funtions T , R the energy D[�℄ is non-onvex and weexpet an energy landsape with many loal minima. This implies that gradientdesent paths mostly tend to asymptoti states whih only loally minimize theenergy. Following Alvarez et al: [1℄ we onsider a ontinuous annealing methodbased on a sale of image pairs T�, R�, where � � 0 is the sale parameter. Herewe onsider sale spaes of images generated by a sale spae operator S(�) whihmaps an initial image f onto some oarser image, i.e.,f� = S(�)f :The sale parameter � allows to selet �ne grain representations orresponding tosmall values of � and oarse grain representations with most of the image detailsskipped for larger values of �. For the hoie of S we refer to [5, setion 4, 6℄.For given � � 0 we onsider an energyD�[u℄ = 12 Z
 jT� Æ (1I + u)�R�j2 :and the orresponding gradient owg(�tu� ; ') = �hD0�[u�℄; 'iu�(0) = u0;� :We are left to hoose the initial data u0;� for the evolution on sale �. Here weexpet the minimizer or a suÆiently good approximation of the same problem ona oarse sale to be a suitable starting point to approah the global minimum onthe �ner sale. The preise implementation is desribed in [5, setion 4, 6℄.Aiming at an eÆient implementation of a disrete gradient ow we apply a suit-able time-step ontrol. Thus, it pays o� to onsider the gradient ow perspetivenot only as a oneptually intuitive setting but also in the appliation of lassialnumerial tools. A time-step ontrol strategy for the minimization of energy fun-tionals on Rm turns into a time-step ontrol for our disrete generalized gradient



12 6 DISCRETIZATION AND NUMERICAL RESULTS
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Figure 1: Using a sale spae approah our gradient ow method turn out tobeome also very robust w.r.t: noise. The 3D mathing task was given by 2 noisyimages (20% salt and pepper noise). Previously, the seond problem was arti�allygenerated by a rotational twist. From top left to bottom right: slie throughthe noisy volume image T , seond image R generated via arti�ial deformation,omputed deformation applied to an uniform grid (atually independent of theomputational grid), same deformation applied to the original image without noiseon it, and for omparison purposes the original images T and R, now without noise.desent algorithm. We only have to replae the Eulidian distane in Rm by the
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0 20 40 60 80 100 120Figure 2: In this 3D{mathing example the seond image R is generated from the�rst image T by reeting the original at a entral mirror plane. Thus the mathingproess has to ope with loally large deformations. From top left to bottom right:an axial slie through the original 3D image T , the seond image R generated byreetion, the deformation � applied to a uniform grid, and the mathing resultT Æ �.norm indued by g(�; �) on X . We onsider the expliit sheme:un+1 � un�n = �A�1D0[un℄ ;where A : X ! X 0 is the usual representation of the metri g. Thus we onstruta sequene (un)n=0;���, suh that un approximates u(tn) with tn = Pni=1 �i. Theatual fous is not on the quality of the approximation but on a fast and robustdesent. In our implementation we determine �n using Armijo's rule.Spatial disretizationThe set 
 = [0; 1℄d is given as the union of squares or ubes Ei for i in an indexset Jh. The set of elements fEigi2Jh forms the mesh Mh. Here the subsripth indiates the grid size. We on�ne to grids whih are generated by iteratedsubdivision into 4 squares or 8 ubes respetively.



14 6 DISCRETIZATION AND NUMERICAL RESULTSThus the resulting grids form a pyramid with grid sizes hl = 2�l for l =0; � � � ; lmax. The set of verties of the mesh Mh is denoted by Nh. Interpret-ing pixel or voxel values of a 2D or 3D image as nodal values we onsider disreteimages as pieewise multilinear ontinuous funtions on Mh. The orrespondingmultilinear �nite element spae is denoted by X h.We suppose f	igi2Ih to be the anonial nodal basis of X h, where Ih is the indexset orresponding to Nh. Hene we obtain Fi =Pj2Ih F ji 	j as the representationof the image Fi in this basis, where F ji = Fi(xj) for the node xj 2 Nh orrespondingto the basis funtion 	j . Analogously, we take into aount [X h℄d as the set ofdisrete deformations.For the implementation of the spatial operators appearing in our algorithms,namely 1I� �22 �as metri in (13) and ���r(div )in the iterative Tikhonov approah we onsider �nite element resp: �nite di�erenedisretizations.The omputation of D0 indues the evaluation of T Æ �, where � 2 X is adeformation. The spatial disretization of � is de�ned on all nodes xi and wede�ne T Æ � as the bi- or trilinear interpolation of (T Æ �)(x) for all x 2 Nh.MultigridThe time onsuming part in the gradient ow methods is to solve the Euler-Lagrange equations in every time-step. The approah known to be the most eÆientto solve suh a linear system of equations is a multigrid method. It leads to analready optimal omplexity of O(nh) if nh is the ardinality of Nh.The building bloks of our multigrid operator are� on eah grid with disrete funtion spae X l := X hl a smoothing operator.Here we use in the simplest ase Jaobi iterations. In a multigrid CorretionSheme Gau�-Seidel relaxation is taken into aount (lexiographi and red-blak ordering), where in ase of a Full Approximation Sheme we use Gau�-Seidel-Piard operators with lexiographi numbering.� standard prolongation and full weighting restrition operators de�ned on X l.Finally, we are left to hoose the number of pre-smoothing and post-smoothingsteps in our V{yle.ExperimentsIn order to onlude this paper we would like to present some results for the im-age registration problem. To demonstrate the performane and robustness of thedi�erent gradient ow methods, we present the registration of syntheti images(�gure 3) as well as a Magneti Resonane Imaging (MRI) registration (�gure 4)by using the metri introdued in (14). We perform the registration proess on
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Figure 3: From left to right: 1.) Template image T . 2.) Referene image R.3.) Uniform grid. 4.) Grid showing the deformation (resulting from the impliitgradient ow method) applied to the template.three di�erent image resolutions. For the impliit gradient ow method resp. theiterative Tikhonov regularization on the di�erent image resolutions, we start with aregularization parameter �0 = 103 whih leads to a time-step size of t0 = 10�3 andproeed with the exponentially inreasing sequene of time-step size tk+1 = 2 � tk.In the expliit gradient ow method the time-step sizes are given by the solutionsof equation (4).First of all, we onsider the syntheti images displayed in �gure 3. The leftimage displays the template T (x), the right the referene R(x). These imagesshow the reliability of the gradient ow methods desribed above. The graphs(k;D[u(x; tk)℄)k=0;::;n in �gure 5 and 6 displays the dereasing least square di�er-ene between the images (with nx � ny pixel)D[u(x; tk)℄ = 1nx � ny nxXx=1 nyXy=1(T (x+ u1(x; tk); y + u2(x; tk))�R(x; y))2after eah time-step tk within the gradient ow methods. Here, the number oftime-steps is given by n.In the next experiment, we onsider a (Magneti Resonane Imaging) MRI math-ing problem. Figure 4 shows the MR template image T and the MR referene



16 6 DISCRETIZATION AND NUMERICAL RESULTS

Figure 4: From left to right: 1.) MRT template slide T 2.) Referene slide R.3.) Uniform grid. 4.) Grid showing the deformation (resulting from the impliitgradient ow method) applied to template.image R whih results by arti�ial geometri distortion of T (based on a set oftwo Gaussian kernels). For this example the �gures 7 and 8 show the graphs ofthe dereasing least square di�erene D[u℄ between the images after eah time-stepwithin the impliit resp. expliit gradient ow methods.In the following we disuss results whih were generated usingg(u; v) = (u; v)L2 + �22 (ru;rv)L2as metri. The time-disretization of our gradient ow method is expliit. Thetime-step size is determined via Armijo's rule. Furthermore we used sale spaesas desribed above. Figure 2 shows the mathing result of a 3D mathing problem.Here, a reeted MR-image versus the orresponding original is hosen as mathingproblem. Naturally, the appliability to medial images is of fundamental impor-tane for the evaluation of the method. Although we have on�ned to the mostsimple mathing energy for a starting point, we wanted to get some insight on thefundamental behavior of the gradient desent on realisti MR-images. Due to thefat, that both hemispheres of a healthy brain have { apart from minor geometrial
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Figure 5: Least squares di�erene D[u(k)℄ after eah time-step of the impliit gra-dient ow method for the example in �gure 3.
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18 6 DISCRETIZATION AND NUMERICAL RESULTSdi�erenes { the same fundamental struture, a reetion provides a useful andsolvable test example and is omparable to a mathing problem from a patient toa referene image from an atlas. Thus, our aim is to �nd the displaement whihdesribes both hemispheres given the orresponding other hemispheres and not to�nd the global minimum, whih would be the reetion itself.In a further experiment we analyze the dependene on noise of our tehniques(in this ase again expliit gradient ow method with time-step ontrol and salespaes). Figure 1 demonstrates that our gradient ow method is very robust w.r.t:noisy images. There are essentially two reasons for the robustness of our method.On the one hand we use a sale of mathing problems on di�erent grid resolutions.This learly eliminates noise on almost all sales. On the other hand we inorporatesmoothing of the diretion of desent. Thus replaing D0[u(k)℄ by A�1D0[u(k)℄ leadsto robustness of the gradient ow method.Aknowledgements: For the omputations of �gure 1 and �gure 2 we thankMar Droske from Duisburg University.
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Figure 7: Least squares di�erene D[u(k)℄ after eah time-step of the impliit gra-dient ow method for the example in �gure 4.
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Figure 8: Least squares di�erene D[u(k)℄ after eah time-step of the expliit gra-dient ow method for the example in �gure 4.
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