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Abstract

Fast multiscale and multigrid methods for the matching of images in
2D and 3D are presented. Especially in medical imaging this problem -
denoted as the registration problem - is of fundamental importance in the
handling of images from multiple image modalities or of image time series.
The paper restricts to the simplest matching energy to be minimized, i.e.,
E[¢] = 3 [, |To¢— R|*, where T, R are the intensity maps of the two images
to be matched and ¢ is a deformation.

Matching of images, i.e., finding an optimal deformation ¢ which mini-
mizes E is known to be an ill-posed problem. Here, the focus is on regular-
ization methods. We compare different iterative methods where the neces-
sary regularization is incorporated via an additional convex energy functional.
Furthermore we give a new interpretation of these methods in the framework
of gradient flows. Hence, a regularization is interpreted as a regular metric
used to measure length on the descent path in the gradient flow method.

Typically regularizing energies appear together with a small coefficient.
We obtain an interpretation of this coefficient as a time-step parameter.

Examples on 2D and large 3D image matching problems prove the robust-
ness and efficiency of the proposed approach.



2 1 INTRODUCTION

1 Introduction

Image assisted diagnostics and surgery planning requires robust and valid segmen-
tation and classification results and an analysis of the temporal change of anatomic
structures. Especially in brain research it is necessary for the analysis of the orga-
nization and variation in the structure of human brains.

This can only be achieved properly if images recorded with different imaging
machinery or at different times can suitably be correlated to each other. Various
techniques have been proposed to solve this registration problem. They all ask for
an “optimal” deformation which deforms one image such that there is an “optimal”
correlation to another image with respect to a suitable coherence measure.

Mainly two different approaches have been discussed in the literature [3, 4, 6,
8, 14, 15, 21]. On the one hand, so called elastic registration techniques deal with
a regularization of the energy, typically adding a convex energy functional based
on gradients to the actual matching energy. The regularization energy is regarded
as a penalty for “elastic stresses” resulting from the deformation of the images.
This approach is related to the well known classical Tikhonov regularization of the
originally ill-posed problem. On the other hand, viscous flow techniques are taken
into account. They compute smooth paths from some initial deformation towards
the set of minimizers of the matching energy. Thereby, a suitable regularization of
the velocity, e.g., adding an artificial viscosity, ensures a certain problem dependent
smoothness modulus. This class of methods can be interpreted as a gradient flow
approach with respect to a metric which penalizes non-regular descent directions.
Taking into account a time-step discretization, this methodology is closely related
to iterative Tikhonov regularization methods [9, 19, 11].

The aim of this paper is to show the strong relations between both approaches.
We will see that regularizing by adding a convex energy functional ag(-,-) or alter-
natively introducing a regularizing metric differs only in the kind of discretization.
Furthermore we will give an interpretation of 1/« as time-step size (see section 5).

Furthermore let us recall the optical flow method in image processing. The task
is to extract motion fields from image time sequences. We ask for the time discrete
motion velocity between two images of a time sequence, i.e., a short time deforma-
tion which is again a matching problem. A first method in this field is due to Horn
and Schunk [12]. We will describe this method shortly (section 3.3) and show that
this approach can also be regarded as a gradient flow w.r.t. a regularizing metric
(section 5.3). If the motion is only piecewise smooth a simple regularization adding
a Dirichlet-integral would not be able to retain the often discontinuous deforma-
tions on image edges. Nagel and Enkelmann proposed an anisotropic quadratic
form for the gradient of the deformation which regularizes edges of the image only
in the tangential direction [7, 16]. Alvarez, Weickert and Sanchez [2] used these
ideas for deriving a consistent model, centering deformation and anisotropy in the
same image.

Due to the non—convexity of the minimization problem in image registration it
might be difficult to find the absolute minimum in case of larger deformations. Al-
ternatively, one can consider a convolution of the images with a large corresponding
filter width which destroys much of the detailed structure, match those images, and
then successively reduce the filter-width and iterate the process [2, 18, 22]. This



procedure is comparable to an annealing algorithm, where the filter width plays
the role of the temperature.

The paper is organized as follows. In section 2 we describe the general problem
and aspects of its ill-posedness. Section 3 contains three regularization strategies to
obtain well posed minimization problems. For each regularization, we add the cor-
responding algorithm which approximately solves the resulting optimization prob-
lem. In section 4 we describe the role of gradient flows in image registration. It will
become clear in which sense a metric regularizes the problem. Section 5 shows the
strong relation between the approaches of section 3 and the gradient flow perspec-
tive. Especially, we will present the metrics related to the energy regularizations
described in section 3. In section 6 we give a brief overview of the algorithmic
ingredients and examples for the robustness and efficiency of our methods.

2 The ill-posed optimization problem

Given two images T,R : Q — R, where Q@ C R? and d = 2,3, we would like to
determine a deformation ¢ : Q@ — R? which maps grey values in the first image T
via a deformation ¢ to grey values at the deformed position in the second image R
such that

Topr~R.

Furthermore, we expect ¢(2) = Q. For the ease of presentation we assume Q =
[0,1]% throughout this paper. We consider u as the displacement corresponding to
¢: T+ u = ¢. Aiming to optimize the deformation with respect to a proper match
of the two images we define the most basic energy D depending on the displacement
u (resp. the deformation ¢):

D[u]:%/ﬁ|To(]I+u)—R|2. (D)

In what follows we use either ¢ or u as the argument of the energy D. If u is an ideal
deformation the above energy vanishes. Thus we ask for solutions of the problem
to minimize D[-] in some Banach space X. Obviously, this problem is ill-posed.
Consider a deformation ¢ and for ¢ € R the level sets MT = {z € Q|T(x) = c}.
Then for any displacement A which keeps M7 fixed for all ¢, the energy does not
change, i.e.,
D[¢] = D[A o g].

This especially holds true for a possible minimizer ¢. Hence, a minimizer — if it
exists — is non-unique and the set of minimizers is expected to be non-regular and
not closed in a usual set of admissible displacements.

A minimizer u of (D) is characterized by the necessary condition D'[u] = 0,
where D'[u] € X’ for the dual space X' of X. Indeed, we require

(D'lul,¢) =0 VpeX.

Suppose [L2(Q)]? is embedded in the space X’. Under obvious integrability condi-
tions for T, R and VT we obtain the L?-representation of D’

grad;oD[u] = (T o (I +u) — R)VT o (1 + u). (1)
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3 Regularization methods

The aim of this section is to introduce three different minimization approaches to
the problem
D[] — min. (2)

Most common approaches to minimize nonlinear functionals are steepest decent and
newton type methods. Unfortunately, recalling our observation above discontinuous
solutions with arbitrary large strain are possible. To rule out this unrequested
solutions it is necessary to penalize them.

In the following, the space of deformations is always denoted by X'. The choice
of X in applications will be described in section 5.4.

3.1 A linearized iterative minimization approach

For a given current approximation u(¥) of a solution of (2), we search the next
approximation u(**t1) such that

D[u*V] < Dlu®].
The functional D[u(**1)] is replaced by its linearization around u(*
D[u**] ~ D[u®] + (D'[u™], u+D — 4 ®)y,

Henn and Witsch [10] add a suitable bilinear form resp. energy g(Au(F+1) Aqy(k+1))
with Auk+1) .= 4 *k+1) — 4 (¥) to the linearized functional and get the following
minimization problem:

. ! (k) (k+1) g (k+1) (k+1)
argAu(I’}}FIBE‘X{<D [U ],AU >+ 2g(AU ,Au )}

The Euler-Lagrange equation is given by the linear variational equation
ag(Au**t, o) = ~(D'[u™], ). (3)
This leads to:

Algorithm 3.1 Linearized iterative approach for minimizing D[u]:
kE=0; u® = u*
repeat

compute Au*tY) as solution of equation (3);
u(k+1) = u(k) _|_ Au(k+1)}'

until ( D'[u*+1)] ~ 0)

The solution Au**+1) of (3) exists, is unique and depends on the choice of the
bilinear form g¢(-,-) as well as on the parameter «. The above algorithm can be
refined introducing an additional line search algorithm.
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With d*+1 = Au*+D /|| AuF+1) || we get a deformation with [|[d*+D]||,, = 1.
Due to the choice of d**1) the function f(t) = D[u®) 4+t -d**VD] is a decreasing
function, when ¢ € R" is small enough. We choose t as a solution to the following
one dimensional minimization problem

find ¢, sothat ¢, =arg Inﬂi}{r}r D[u® 4 ¢ . d*+1)], (4)
te

3.2 A nonlinear iterative minimization approach

Consider the nonlinear minimization problem:
. o
min { D + §.Qlul )

with a penalty functional @[] and a regularization parameter o > 0, which controls
the quality of the fit of the data, as measured by DJu], and the variability of the
approximate solution, as measured by the penalty Q[u]. This penalty approach is
in the inverse problem community widely known as Tikhonov regularization.
Henn and Witsch [11] introduced the so called iterative Tikhonov regularization
for minimizing D[u]. Here, the solution curve u, is been followed for decreasing a.
One starts with ag > 0 which is helpful for the solution method. Then minimal
solutions of the Tikhonov functional

u* V) = arg min {D[u] + %g(u —u® 4y — )}

with a monotone decreasing sequence aj — 0 for k — oo and initial guess u(*)

are computed. Here g(-,-) is again a suitable regularizing bilinear form. Each
subproblem, for regular chosen g(-,-) and «ay sufficiently large, is well posed. The
iteration is stopped at the point where the least squares functional D increases.

Algorithm 3.2 Iterative Tikhonov regularization for minimizing Du].
k=0;u® =u*; ag = N> 0:
repeat

k+1) argminveX .D[’U] + O‘Q_’C . g(/v _ u(k),’l} — U(k))

compute ul
reduce api1 = K - g, with k € (0,1);

until (D[u*+Y] > D[u®]),

3.3 An iterative minimization approach based on lineariza-
tion of the integrand

A further possibility to obtain a well-posed minimization problem related to (2)
is to linearize the integrand of D[u]. Thus we replace the deformed image T'(x +
u**t1) (z)) by its Taylor expansion

T(z +u**V(2)) = T(z +u (2)) + (VT (), Au® V) + O([AuF+D]?)
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around the known deformation u*), with the derivative VT of T and Au(kt1) =
u*+1) — (%) This leads to a quadratic functional

Q] = [IVT(z +u® () -v + T(z +u™ () — R(2)l[1, ()

for the correction v. The functional measures the square of the rate of change
of image brightness and should be minimized. The problem is regularized with a
bilinear form. It can be shown [20], that the resulting minimization problem

arg 51&1;1 {Q[v] + %a(v, v)}

attains its unique solution Au**1) satisfying the following variational equation:

g(AuMY o) = (f,0) Ve X (6)

with a bilinear form
9(v, @) = aa(v, @) + (VT (z +u®), o) (VT (z + uM), @)

and a linear form (f, ) = fQ(VT(u(k)) (T(x +u'®(z)) — R(x)), p)dx. Equation
(6) is precisely the Euler-Lagrange equation suggested by Horn and Schunk [12] to
compute the optical flow (see equation (11)).

Algorithm 3.3 Quadratic minimization approach for minimizing D[u]:
E=0; u® = u*;
repeat
compute Au*TY) as solution of equation (6);

set k1) = (k) 4 Ag(k+1) .

until ( D'[u*+1] 0)

4 Image registration by gradient flow methods

Gradient flow methods are well known tools in minimization of functionals. Classi-
cal examples are the heat flow equation as gradient flow for the Dirichlet integral or
mean curvature evolution of surfaces minimizing the area-functional (see e.g. [13]).

Here, we want to describe a gradient flow approach to the minimization problem
(2), i.e., we would like to determine a path within a suitable space of deformations,
that tends towards the set of minima of D.

On account to the ill-posedness of this problem, gradient flows have to integrate
regularizations to avoid nonsmooth paths on the energy landscape.

At this point, we see a principal difference between ”classical” gradient flow
methods [17] for PDEs and our approach to ill-posed optimization problems. We
do not interprete a given PDE as a gradient flow but we use metrics for modeling
and regularization purposes.
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The idea is to introduce a regularizing metric g measuring the derivative of D
in a regular space X, as e.g. X = [H2(Q)]?. If we consider the duality in X' we
have a representation A: X — X’ of g :

g(u,v) = (Au,v).

Obviously, this mapping is bijective on account of the metric properties. If we
measure the derivative w.r.t. g then the formal gradient flow with respect to the
metric g(-, )

Opu(t) = —grad, Dlu(t)]

reads as

g(atu7 (p) = _<Dl[u]a 90) )
for all ¢ € X. This can be re-formulated using the mapping A by Ad;u = —D'[u]
or equivalently:

Opu = —A'D'[u]

and the mapping A~! transfers the derivative of D into the more regular space X.
We will obtain existence and uniqueness results and analyze this regularity aspect
in detail (see section 5.4).

4.1 Existence and uniqueness

In what follows let us assume X to be a Banach space. Furthermore suppose that
there is a second Banach space YW D X which is embedded in the dual space X' of
X. Hence, we can state the following

Theorem 4.1 Let A be a linear isomorphism A : X — W. If D'[X] C W and
D'[[] : X = W is Lipschitz continuous, then there exists a unique solution of the
problem:

For given initial data ug € X, find a solution u : R — X, such that
ou = —A"'D'[u],
u(0) = wpg.

Remark: Theorem 4.1 especially ensures that solutions of the gradient flow
are X-regular for finite times. Let us emphasize that in general we can neither
expect the X-norm to be uniformly bounded in time nor that there exists a steady
state.

The proof is a straightforward application of the Picard-Lindel6f Theorem in
Banach spaces. We have shown that there is an L2-representation grad;. D of
D' (cf. Section 2), if T and R are of suitable regularity. Therefore in case W =

[L2(Q)]¢ the inclusion D'(X) C W is valid. Let us prove Lipschitz continuity of
grady, D = grad;.D.

Lemma 4.2 Let X = X' = W = [L%(Q)]¢; then the derivative of the energy E
w.r.t. W is Lipschitz continuous, i.e.,

llgrad;2Dlui] — gradp2D[us]||p2 < C ||ur — uz||L2
if T € CYY(R?) and R € L*>(9).
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Proof. Let u1, uy € X. Then we have

grad;» D[uy] — grad 2 D[us]
= (To(ll+u)—R)VTo (Il +u)—
(T o (T4 uz) — R)VT o (11 + uy)
(To (4 ur) = R) — (To (1 +us) — RVT o (4 uy) —
(To(l+uy) — R)[VT o (I 4+ uy) — VT o (1T 4 uy)].

Let us introduce some notation for functions defined on :
| fllco = sup | f(@)], [flor = sup [V f(@)], [[fllor = [[fllco + [fler
zef) zef)

Furthermore we use Lipschitz norms:

£@) - Fy)
1flloon = [ fllco+ sup LE =L@ o0 for+ sup
S =y

Vi) - Vi)
|z =yl '
On account of our regularity assumptions we can finish our proof of Lipschitz
continuity:
lgrad > Dlur] — grad, > Dus)
< Tl [Tl eon Jur — ua| + ([[Tllco + [RDIIT||crrfur — us

which leads to
ngaszD[ul] — gradLgD[ug]HLz(Q)
< Tl [IT]lcoa flur — ual|r2(o) +

[[Tl|col|T||crr |Jur — uallr2(0) +
[[T[|crr|[Rl[ee [lur — usllr2(q) -

5 Regularization regarding a metric point of view

The goal of this section is to show relations between the regularization approaches
described in section 3 and the above regularization technique via metrics.

5.1 The linearized approach

As in section 3 we start with the linear kind of regularization in image matching.
Our starting point is equation (3):

ag(Au** o) +(D'[uM],¢) = 0,

which is valid for all ¢ € X. Now, we regard g as a metric and the above equation
can be equivalently expressed as

1
whHt) = ) ——grang[u(k)] (7)
o

= w0 _ L ymipipep

(0]
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We can interprete this approach as an explicit discretization of a gradient flow with
constant time-step size a~!. Hence, we can regard 1/a in algorithm 3.1 as a time
parameter.

5.2 The nonlinear method

In the same sense, iterative Tikhonov regularization can be viewed as a gradient
descent method measuring the derivative of D in a regularizing metric. Again we
inteprete g(-,-) as a metric. As explained in section 3.2 the iterated Tikhonov
regularization consists of a sequence of minimization subproblems

D] + Frg(u—u®,u —u). (8)

The solutions u**1) depend on the parameter o, > 0 and the result u(*). Here,
the Euler-Lagrange equation is simply given by the nonlinear variation equation:

ar g(u—u) ) = —(D'lu],¢) .
which is nothing but an implicit time-step of length a,;l:

1
— ok
uw=u® — a—kgrang[u] . 9)

Algorithm 3.2 starts with a very short time-step 1/N. Reducing the parameter a4, in
each step means from a metric point of view to increase the time-steps successively.

5.3 Linearization of the integrand

Now we come to the metric formulation of section 3.3. We consider the integrand
h(u,z) :=T(x +u) — R(z) and its linearization, i.e.,

1 1
D[u(k+1)] _ 5/ \h(u(k+1),x)|2dx: 5/ \h(u(k)-l-Au(k“),:c)Fdx
O Q

X

1
5/ W™ z) + (D, h(u® ), AulFTVY |2 de,
Q
We point out that these considerations are valid for general functionals of the

form [, [h(u(z),z)> dz. Now one adds a suitable bilinear form a(-,-) and ends up
with the functional to be minimized

] = %/Q B 2) + (@uh(® 2) v)Pde + Ta(w.v). (10)

The Euler-Lagrange equation for this problem is given by
/Q(VT(x +u™), vV (2 +uM), ) dz + aa(v, ) = —(D'u®], ),  (11)

for all ¢ € X. The corresponding metric to this method is

g (u,v) = aa(u,v) + /Q (VT'(z +w) ® VT (z + w)[u,v]) dz. (12)
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Let us emphasize that this metric is actually Riemannian. Indeed g, (-,-) depends
on the position w in the space of displacements. The iteration now is given for all
p e X as:

gaw (Aut o) = —(D'u™], o).

3

and we have an explicit time scheme with time-step size 1:

’U,(k+1) — u(k) — gradgaD[u(k)] .

5.4 Examples of suitable metrics

Let us now consider several examples for the choice of the metric g(-,-) resp. the
bilinear form af(,-):

(i) For the bilinear form a(u,v) = (u,v)r2 one solely penalizes large displace-
ments in a square integrable sense. In this case, we have A = 1 and the
existence and uniqueness are shown by Lemma 4.2 and Theorem 4.1.

ii e proof of Lemma 4.2 clearly extends to = . , Where s >
Th f of L 4.2 clearl d X H%2(Q)]?, wh
W = [L2(0)])¢, and X' = [H>2(Q)']¢. Indeed in this case [H*2(Q)]¢
[L2()]* — [H>*(Q)']".

0,
(%

For our purpose of image matching the regularity induced by the L2-metric will
not be sufficient to obtain proper approximations of energy minimizers for our ill-
posed problem w.r.t. actual applications. Thus we cannot expect to obtain smooth
deformations in case A = M and X = X' = W = [L%(Q)]?, even if we start with
smooth initial deformations. Therefore we deal with spaces X’ of higher regularity
and suitable operators A representing a metric:

(iii) We might choose the Helmholtz type operator A = 11— ";A for o € RT. The
metric representing A is

g(v,w) = (v,w)r2 + %(VU,VM)LQ . (13)

This choice corresponds to an implicit time discretization of the heat equation
with time-step 7 = "2—2 and is thus related to Gaussian filtering with a filter
width 0. As corresponding spaces we take into account X = [H%2(Q)]?,
X' = [HY*(Q)']? and W = [L%(Q)]¢. The isomorphism property of A and
thereby the Lipschitz continuity of A~' is well known in this case. Thus
we have an existence and uniqueness result at hand but now with improved

solution regularity.

(iv) Let us assume the difference between images is based on a physical, elastic
deformation. This suggests to use in a very simple version a regularizing
metric of the form:

au,» 6ui 6vi avi
= 14
9(u,) /Q Z <3~’Uj - 61’;‘) <3~’Uj - 61’;‘) e (1)

1,7
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This metric measures the energy of the elastic deformation and is neutral
w.r.t. translations and rotations. The operator A is given by

Au=—-Au—V(divu).

As is well known, by Korn’s inequality, that the operator A is a bi-Lipschitz
mapping A : [Hy?(Q)]? — [H-12(Q)]7

6 Discretization and numerical results

The gradient flow methods (7) and (9) as described in section 5 have been tested
on synthetically generated images as well as on pairs of MRI images.

Let us describe briefly discretization and implementation of our methods. For
more details we refer the reader to [10, 11, 5].

Time discretization and scale spaces in the gradient flow approach

For typical image intensity functions 7', R the energy D[] is non-convex and we
expect an energy landscape with many local minima. This implies that gradient
descent paths mostly tend to asymptotic states which only locally minimize the
energy. Following Alvarez et al. [1] we consider a continuous annealing method
based on a scale of image pairs T,, R, where € > 0 is the scale parameter. Here
we consider scale spaces of images generated by a scale space operator S(-) which
maps an initial image f onto some coarser image, i.e.,

fe= S(E)f

The scale parameter € allows to select fine grain representations corresponding to
small values of € and coarse grain representations with most of the image details
skipped for larger values of e. For the choice of S we refer to [5, section 4, 6].

For given € > 0 we consider an energy

1
Dc[u] = E/Q|Te°(]I+U) ~R.”.

and the corresponding gradient flow

g(atué ) ‘,0) = _<D2[u€]= <P>
ue(0) = wug.-

We are left to choose the initial data ug . for the evolution on scale e. Here we
expect the minimizer or a sufficiently good approximation of the same problem on
a coarse scale to be a suitable starting point to approach the global minimum on
the finer scale. The precise implementation is described in [5, section 4, 6].
Aiming at an efficient implementation of a discrete gradient flow we apply a suit-
able time-step control. Thus, it pays off to consider the gradient flow perspective
not only as a conceptually intuitive setting but also in the application of classical
numerical tools. A time-step control strategy for the minimization of energy func-
tionals on R™ turns into a time-step control for our discrete generalized gradient
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Figure 1: Using a scale space approach our gradient flow method turn out to
become also very robust w.r.t. noise. The 3D matching task was given by 2 noisy
images (20% salt and pepper noise). Previously, the second problem was artifically
generated by a rotational twist. From top left to bottom right: slice through
the noisy volume image 7', second image R generated via artificial deformation,
computed deformation applied to an uniform grid (actually independent of the
computational grid), same deformation applied to the original image without noise
on it, and for comparison purposes the original images T' and R, now without noise.

descent algorithm. We only have to replace the Euclidian distance in R™ by the
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Figure 2: In this 3D-matching example the second image R is generated from the
first image T by reflecting the original at a central mirror plane. Thus the matching
process has to cope with locally large deformations. From top left to bottom right:
an axial slice through the original 3D image T', the second image R generated by
reflection, the deformation ¢ applied to a uniform grid, and the matching result
T o ¢.

norm induced by g(-,-) on X. We consider the explicit scheme:

n+1 n
Y Y ATDu,
Tn
where A : X — X' is the usual representation of the metric g. Thus we construct
a sequence (u")p=o,..., such that u™ approximates u(t,) with t, = > 7;. The
actual focus is not on the quality of the approximation but on a fast and robust
descent. In our implementation we determine 7, using Armijo’s rule.

Spatial discretization

The set Q2 = [0,1]? is given as the union of squares or cubes E; for i in an index
set Jp. The set of elements {E;};cs, forms the mesh Mj. Here the subscript
h indicates the grid size. We confine to grids which are generated by iterated
subdivision into 4 squares or 8 cubes respectively.
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Thus the resulting grids form a pyramid with grid sizes h; = 27! for | =
0, -+ ,lmax. The set of vertices of the mesh My is denoted by N},. Interpret-
ing pixel or voxel values of a 2D or 3D image as nodal values we consider discrete
images as piecewise multilinear continuous functions on Mjy. The corresponding
multilinear finite element space is denoted by X™*.

We suppose {¥'};¢1, to be the canonical nodal basis of X", where I}, is the index
set corresponding to Aj,. Hence we obtain F; = Zjelh F?¥; as the representation
of the image F} in this basis, where F/ = Fj(x;) for the node z; € A, corresponding
to the basis function ¥;. Analogously, we take into account [X"]? as the set of
discrete deformations.

For the implementation of the spatial operators appearing in our algorithms,

namely
2

g
H_TA

as metric in (13) and
—A —V(div)

in the iterative Tikhonov approach we consider finite element resp. finite difference
discretizations.

The computation of D' induces the evaluation of T o ¢, where ¢ € X is a
deformation. The spatial discretization of ¢ is defined on all nodes z; and we
define T o ¢ as the bi- or trilinear interpolation of (T o ¢)(x) for all z € Np,.

Multigrid

The time consuming part in the gradient flow methods is to solve the Euler-
Lagrange equations in every time-step. The approach known to be the most efficient
to solve such a linear system of equations is a multigrid method. It leads to an
already optimal complexity of O(ny) if ny is the cardinality of Nj.

The building blocks of our multigrid operator are

e on each grid with discrete function space X! := X" a smoothing operator.
Here we use in the simplest case Jacobi iterations. In a multigrid Correction
Scheme Gauf3-Seidel relaxation is taken into account (lexicographic and red-
black ordering), where in case of a Full Approximation Scheme we use Gauf3-
Seidel-Picard operators with lexicographic numbering.

e standard prolongation and full weighting restriction operators defined on X",

Finally, we are left to choose the number of pre-smoothing and post-smoothing
steps in our V—cycle.

Experiments

In order to conclude this paper we would like to present some results for the im-
age registration problem. To demonstrate the performance and robustness of the
different gradient flow methods, we present the registration of synthetic images
(figure 3) as well as a Magnetic Resonance Imaging (MRI) registration (figure 4)
by using the metric introduced in (14). We perform the registration process on
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Figure 3: From left to right: 1.) Template image T. 2.) Reference image R.
3.) Uniform grid. 4.) Grid showing the deformation (resulting from the implicit
gradient flow method) applied to the template.

three different image resolutions. For the implicit gradient flow method resp. the
iterative Tikhonov regularization on the different image resolutions, we start with a
regularization parameter ag = 102 which leads to a time-step size of t; = 1072 and
proceed with the exponentially increasing sequence of time-step size t11 = 2 - tg.
In the explicit gradient flow method the time-step sizes are given by the solutions
of equation (4).

First of all, we consider the synthetic images displayed in figure 3. The left
image displays the template T'(z), the right the reference R(z). These images
show the reliability of the gradient flow methods described above. The graphs
(k, D[u(z,tx)])k=0,..»n in figure 5 and 6 displays the decreasing least square differ-
ence between the images (with n, x n, pixel)

1 Ny Ny

Diu(z,ty)] = Z Z(T(SU +ui(z,t), y + us(z, 1)) — R(z,y))?

Ng * Ny

after each time-step t; within the gradient flow methods. Here, the number of
time-steps is given by n.

In the next experiment, we consider a (Magnetic Resonance Imaging) MRI match-
ing problem. Figure 4 shows the MR template image 7' and the MR reference
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Figure 4: From left to right: 1.) MRT template slide T' 2.) Reference slide R.
3.) Uniform grid. 4.) Grid showing the deformation (resulting from the implicit
gradient flow method) applied to template.

Pl

image R which results by artificial geometric distortion of T' (based on a set of
two Gaussian kernels). For this example the figures 7 and 8 show the graphs of
the decreasing least square difference D[u] between the images after each time-step
within the implicit resp. explicit gradient low methods.

In the following we discuss results which were generated using

2
9(u,0) = (u,0) 12 + - (Vu, Vo),

as metric. The time-discretization of our gradient flow method is explicit. The
time-step size is determined via Armijo’s rule. Furthermore we used scale spaces
as described above. Figure 2 shows the matching result of a 3D matching problem.
Here, a reflected MR-image versus the corresponding original is chosen as matching
problem. Naturally, the applicability to medical images is of fundamental impor-
tance for the evaluation of the method. Although we have confined to the most
simple matching energy for a starting point, we wanted to get some insight on the
fundamental behavior of the gradient descent on realistic MR-images. Due to the
fact, that both hemispheres of a healthy brain have — apart from minor geometrical
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Figure 5: Least squares difference D[u(*)] after each time-step of the implicit gra-
dient flow method for the example in figure 3.
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Figure 6: Least squares difference D[u(*)] after each time-step of the explicit gra-
dient flow method for the example in figure 3.
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differences — the same fundamental structure, a reflection provides a useful and
solvable test example and is comparable to a matching problem from a patient to
a reference image from an atlas. Thus, our aim is to find the displacement which
describes both hemispheres given the corresponding other hemispheres and not to
find the global minimum, which would be the reflection itself.

In a further experiment we analyze the dependence on noise of our techniques
(in this case again explicit gradient flow method with time-step control and scale
spaces). Figure 1 demonstrates that our gradient flow method is very robust w.r.t.
noisy images. There are essentially two reasons for the robustness of our method.
On the one hand we use a scale of matching problems on different grid resolutions.
This clearly eliminates noise on almost all scales. On the other hand we incorporate
smoothing of the direction of descent. Thus replacing D' [u(*)] by A~'D'[u(*)] leads
to robustness of the gradient flow method.

Acknowledgements: For the computations of figure 1 and figure 2 we thank
Marc Droske from Duisburg University.
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Figure 7: Least squares difference D[u(*)] after each time-step of the implicit gra-
dient flow method for the example in figure 4.
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Figure 8: Least squares difference D[u(*)] after each time-step of the explicit gra-
dient flow method for the example in figure 4.
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