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Abstra
tFast multis
ale and multigrid methods for the mat
hing of images in2D and 3D are presented. Espe
ially in medi
al imaging this problem -denoted as the registration problem - is of fundamental importan
e in thehandling of images from multiple image modalities or of image time series.The paper restri
ts to the simplest mat
hing energy to be minimized, i.e.,E[�℄ = 12 R
 jT Æ��Rj2, where T , R are the intensity maps of the two imagesto be mat
hed and � is a deformation.Mat
hing of images, i.e., �nding an optimal deformation � whi
h mini-mizes E is known to be an ill-posed problem. Here, the fo
us is on regular-ization methods. We 
ompare di�erent iterative methods where the ne
es-sary regularization is in
orporated via an additional 
onvex energy fun
tional.Furthermore we give a new interpretation of these methods in the frameworkof gradient 
ows. Hen
e, a regularization is interpreted as a regular metri
used to measure length on the des
ent path in the gradient 
ow method.Typi
ally regularizing energies appear together with a small 
oeÆ
ient.We obtain an interpretation of this 
oeÆ
ient as a time-step parameter.Examples on 2D and large 3D image mat
hing problems prove the robust-ness and eÆ
ien
y of the proposed approa
h.1



2 1 INTRODUCTION1 Introdu
tionImage assisted diagnosti
s and surgery planning requires robust and valid segmen-tation and 
lassi�
ation results and an analysis of the temporal 
hange of anatomi
stru
tures. Espe
ially in brain resear
h it is ne
essary for the analysis of the orga-nization and variation in the stru
ture of human brains.This 
an only be a
hieved properly if images re
orded with di�erent imagingma
hinery or at di�erent times 
an suitably be 
orrelated to ea
h other. Variouste
hniques have been proposed to solve this registration problem. They all ask foran \optimal" deformation whi
h deforms one image su
h that there is an \optimal"
orrelation to another image with respe
t to a suitable 
oheren
e measure.Mainly two di�erent approa
hes have been dis
ussed in the literature [3, 4, 6,8, 14, 15, 21℄. On the one hand, so 
alled elasti
 registration te
hniques deal witha regularization of the energy, typi
ally adding a 
onvex energy fun
tional basedon gradients to the a
tual mat
hing energy. The regularization energy is regardedas a penalty for \elasti
 stresses" resulting from the deformation of the images.This approa
h is related to the well known 
lassi
al Tikhonov regularization of theoriginally ill-posed problem. On the other hand, vis
ous 
ow te
hniques are takeninto a

ount. They 
ompute smooth paths from some initial deformation towardsthe set of minimizers of the mat
hing energy. Thereby, a suitable regularization ofthe velo
ity, e.g., adding an arti�
ial vis
osity, ensures a 
ertain problem dependentsmoothness modulus. This 
lass of methods 
an be interpreted as a gradient 
owapproa
h with respe
t to a metri
 whi
h penalizes non{regular des
ent dire
tions.Taking into a

ount a time-step dis
retization, this methodology is 
losely relatedto iterative Tikhonov regularization methods [9, 19, 11℄.The aim of this paper is to show the strong relations between both approa
hes.We will see that regularizing by adding a 
onvex energy fun
tional �g(�; �) or alter-natively introdu
ing a regularizing metri
 di�ers only in the kind of dis
retization.Furthermore we will give an interpretation of 1=� as time-step size (see se
tion 5).Furthermore let us re
all the opti
al 
ow method in image pro
essing. The taskis to extra
t motion �elds from image time sequen
es. We ask for the time dis
retemotion velo
ity between two images of a time sequen
e, i.e., a short time deforma-tion whi
h is again a mat
hing problem. A �rst method in this �eld is due to Hornand S
hunk [12℄. We will des
ribe this method shortly (se
tion 3.3) and show thatthis approa
h 
an also be regarded as a gradient 
ow w.r.t: a regularizing metri
(se
tion 5.3). If the motion is only pie
ewise smooth a simple regularization addinga Diri
hlet-integral would not be able to retain the often dis
ontinuous deforma-tions on image edges. Nagel and Enkelmann proposed an anisotropi
 quadrati
form for the gradient of the deformation whi
h regularizes edges of the image onlyin the tangential dire
tion [7, 16℄. Alvarez, Wei
kert and San
hez [2℄ used theseideas for deriving a 
onsistent model, 
entering deformation and anisotropy in thesame image.Due to the non{
onvexity of the minimization problem in image registration itmight be diÆ
ult to �nd the absolute minimum in 
ase of larger deformations. Al-ternatively, one 
an 
onsider a 
onvolution of the images with a large 
orresponding�lter width whi
h destroys mu
h of the detailed stru
ture, mat
h those images, andthen su

essively redu
e the �lter-width and iterate the pro
ess [2, 18, 22℄. This



3pro
edure is 
omparable to an annealing algorithm, where the �lter width playsthe role of the temperature.The paper is organized as follows. In se
tion 2 we des
ribe the general problemand aspe
ts of its ill-posedness. Se
tion 3 
ontains three regularization strategies toobtain well posed minimization problems. For ea
h regularization, we add the 
or-responding algorithm whi
h approximately solves the resulting optimization prob-lem. In se
tion 4 we des
ribe the role of gradient 
ows in image registration. It willbe
ome 
lear in whi
h sense a metri
 regularizes the problem. Se
tion 5 shows thestrong relation between the approa
hes of se
tion 3 and the gradient 
ow perspe
-tive. Espe
ially, we will present the metri
s related to the energy regularizationsdes
ribed in se
tion 3. In se
tion 6 we give a brief overview of the algorithmi
ingredients and examples for the robustness and eÆ
ien
y of our methods.2 The ill-posed optimization problemGiven two images T;R : 
 ! R, where 
 � Rd and d = 2; 3, we would like todetermine a deformation � : 
 ! Rd whi
h maps grey values in the �rst image Tvia a deformation � to grey values at the deformed position in the se
ond image Rsu
h that T Æ � � R :Furthermore, we expe
t �(
) = 
. For the ease of presentation we assume 
 =[0; 1℄d throughout this paper. We 
onsider u as the displa
ement 
orresponding to�: 1I +u = �. Aiming to optimize the deformation with respe
t to a proper mat
hof the two images we de�ne the most basi
 energyD depending on the displa
ementu (resp: the deformation �):D[u℄ = 12 Z
 jT Æ (1I + u)�Rj2 : (D)In what follows we use either � or u as the argument of the energyD. If u is an idealdeformation the above energy vanishes. Thus we ask for solutions of the problemto minimize D[ � ℄ in some Bana
h spa
e X . Obviously, this problem is ill-posed.Consider a deformation � and for 
 2 R the level sets MT
 = fx 2 
 jT (x) = 
g.Then for any displa
ement � whi
h keeps MT
 �xed for all 
, the energy does not
hange, i.e:, D[�℄ = D[� Æ �℄:This espe
ially holds true for a possible minimizer �. Hen
e, a minimizer { if itexists { is non-unique and the set of minimizers is expe
ted to be non-regular andnot 
losed in a usual set of admissible displa
ements.A minimizer u of (D) is 
hara
terized by the ne
essary 
ondition D0[u℄ = 0,where D0[u℄ 2 X 0 for the dual spa
e X 0 of X . Indeed, we requirehD0[u℄; 'i = 0 8' 2 X :Suppose [L2(
)℄d is embedded in the spa
e X 0. Under obvious integrability 
ondi-tions for T , R and rT we obtain the L2-representation of D0gradL2D[u℄ = (T Æ (1I + u)�R)rT Æ (1I + u) : (1)



4 3 REGULARIZATION METHODS3 Regularization methodsThe aim of this se
tion is to introdu
e three di�erent minimization approa
hes tothe problem D[�℄ �! min. (2)Most 
ommon approa
hes to minimize nonlinear fun
tionals are steepest de
ent andnewton type methods. Unfortunately, re
alling our observation above dis
ontinuoussolutions with arbitrary large strain are possible. To rule out this unrequestedsolutions it is ne
essary to penalize them.In the following, the spa
e of deformations is always denoted by X . The 
hoi
eof X in appli
ations will be des
ribed in se
tion 5.4.3.1 A linearized iterative minimization approa
hFor a given 
urrent approximation u(k) of a solution of (2), we sear
h the nextapproximation u(k+1) su
h thatD[u(k+1)℄ < D[u(k)℄:The fun
tional D[u(k+1)℄ is repla
ed by its linearization around u(k)D[u(k+1)℄ � D[u(k)℄ + hD0[u(k)℄; u(k+1) � u(k)i:Henn and Wits
h [10℄ add a suitable bilinear form resp: energy g(�u(k+1);�u(k+1))with �u(k+1) := u(k+1) � u(k), to the linearized fun
tional and get the followingminimization problem:arg min�u(k+1)2X �hD0[u(k)℄;�u(k+1)i+ �2 g(�u(k+1);�u(k+1))�:The Euler-Lagrange equation is given by the linear variational equation�g(�u(k+1); ') = �hD0[u(k)℄; 'i: (3)This leads to:Algorithm 3.1 Linearized iterative approa
h for minimizing D[u℄:k = 0; u(0) = u�;repeat
ompute �u(k+1) as solution of equation (3);u(k+1) = u(k) +�u(k+1);until � D0[u(k+1)℄ � 0�The solution �u(k+1) of (3) exists, is unique and depends on the 
hoi
e of thebilinear form g(�; �) as well as on the parameter �. The above algorithm 
an bere�ned introdu
ing an additional line sear
h algorithm.



3.2 A nonlinear iterative minimization approa
h 5With d(k+1) = �u(k+1)=k�u(k+1)k1 we get a deformation with jjd(k+1)jj1 = 1.Due to the 
hoi
e of d(k+1) the fun
tion f(t) = D[u(k) + t � d(k+1)℄ is a de
reasingfun
tion, when t 2 R+ is small enough. We 
hoose t as a solution to the followingone dimensional minimization problem�nd tk so that tk = arg mint2R+D[u(k) + t � d(k+1)℄: (4)3.2 A nonlinear iterative minimization approa
hConsider the nonlinear minimization problem:minu �D[u℄ + �2Q[u℄� (5)with a penalty fun
tional Q[�℄ and a regularization parameter � > 0, whi
h 
ontrolsthe quality of the �t of the data, as measured by D[u℄, and the variability of theapproximate solution, as measured by the penalty Q[u℄. This penalty approa
h isin the inverse problem 
ommunity widely known as Tikhonov regularization.Henn and Wits
h [11℄ introdu
ed the so 
alled iterative Tikhonov regularizationfor minimizing D[u℄. Here, the solution 
urve u� is been followed for de
reasing �.One starts with �0 � 0 whi
h is helpful for the solution method. Then minimalsolutions of the Tikhonov fun
tionalu(k+1) = argminu fD[u℄ + �k2 g(u� u(k); u� u(k))gwith a monotone de
reasing sequen
e �k ! 0 for k ! 1 and initial guess u(k)are 
omputed. Here g(�; �) is again a suitable regularizing bilinear form. Ea
hsubproblem, for regular 
hosen g(�; �) and �k suÆ
iently large, is well posed. Theiteration is stopped at the point where the least squares fun
tional D in
reases.Algorithm 3.2 Iterative Tikhonov regularization for minimizing D[u℄.k = 0; u(0) = u�; �0 = N � 0;repeat
ompute u(k+1) = argminv2X D[v℄ + �k2 � g(v � u(k); v � u(k))redu
e �k+1 = � � �k, with � 2 (0; 1);until �D[u(k+1)℄ > D[u(k)℄�:3.3 An iterative minimization approa
h based on lineariza-tion of the integrandA further possibility to obtain a well-posed minimization problem related to (2)is to linearize the integrand of D[u℄. Thus we repla
e the deformed image T (x +u(k+1)(x)) by its Taylor expansionT (x+ u(k+1)(x)) = T (x+ u(k)(x)) + hrT (u(k));�u(k+1)i+O([�u(k+1)℄2)



6 4 IMAGE REGISTRATION BY GRADIENT FLOW METHODSaround the known deformation u(k), with the derivative rT of T and �u(k+1) =u(k+1) � u(k). This leads to a quadrati
 fun
tionalQ[v℄ = jjrT (x+ u(k)(x)) � v + T (x+ u(k)(x)) �R(x)jj2L2(
)for the 
orre
tion v. The fun
tional measures the square of the rate of 
hangeof image brightness and should be minimized. The problem is regularized with abilinear form. It 
an be shown [20℄, that the resulting minimization problemargminv2X nQ[v℄ + �2 a(v; v)oattains its unique solution �u(k+1) satisfying the following variational equation:g(�u(k+1); ') = hf; 'i 8' 2 X (6)with a bilinear formg(v; ') = �a(v; ') + hrT (x+ u(k)); vihrT (x+ u(k)); 'iand a linear form hf; 'i = R
hrT (u(k)) � (T (x + u(k)(x)) � R(x)); 'idx. Equation(6) is pre
isely the Euler-Lagrange equation suggested by Horn and S
hunk [12℄ to
ompute the opti
al 
ow (see equation (11)).Algorithm 3.3 Quadrati
 minimization approa
h for minimizing D[u℄:k = 0; u(0) = u�;repeat
ompute �u(k+1) as solution of equation (6);set u(k+1) = u(k) +�u(k+1);until � D0[u(k+1)℄ � 0�4 Image registration by gradient 
ow methodsGradient 
ow methods are well known tools in minimization of fun
tionals. Classi-
al examples are the heat 
ow equation as gradient 
ow for the Diri
hlet integral ormean 
urvature evolution of surfa
es minimizing the area-fun
tional (see e.g. [13℄).Here, we want to des
ribe a gradient 
ow approa
h to the minimization problem(2), i.e., we would like to determine a path within a suitable spa
e of deformations,that tends towards the set of minima of D.On a

ount to the ill-posedness of this problem, gradient 
ows have to integrateregularizations to avoid nonsmooth paths on the energy lands
ape.At this point, we see a prin
ipal di�eren
e between "
lassi
al" gradient 
owmethods [17℄ for PDEs and our approa
h to ill-posed optimization problems. Wedo not interprete a given PDE as a gradient 
ow but we use metri
s for modelingand regularization purposes.



4.1 Existen
e and uniqueness 7The idea is to introdu
e a regularizing metri
 g measuring the derivative of Din a regular spa
e X , as e.g: X = [H1;2(
)℄d. If we 
onsider the duality in X 0 wehave a representation A : X ! X 0 of g :g(u; v) = hAu; vi :Obviously, this mapping is bije
tive on a

ount of the metri
 properties. If wemeasure the derivative w.r.t: g then the formal gradient 
ow with respe
t to themetri
 g(�; �) �tu(t) = �gradgD[u(t)℄reads as g(�tu; ') = �hD0[u℄; 'i ;for all ' 2 X . This 
an be re-formulated using the mapping A by A�tu = �D0[u℄or equivalently: �tu = �A�1D0[u℄and the mapping A�1 transfers the derivative of D into the more regular spa
e X .We will obtain existen
e and uniqueness results and analyze this regularity aspe
tin detail (see se
tion 5.4).4.1 Existen
e and uniquenessIn what follows let us assume X to be a Bana
h spa
e. Furthermore suppose thatthere is a se
ond Bana
h spa
e W � X whi
h is embedded in the dual spa
e X 0 ofX . Hen
e, we 
an state the followingTheorem 4.1 Let A be a linear isomorphism A : X ! W. If D0[X ℄ � W andD0[�℄ : X ! W is Lips
hitz 
ontinuous, then there exists a unique solution of theproblem:For given initial data u0 2 X , �nd a solution u : R+0 ! X , su
h that�tu = �A�1D0[u℄ ;u(0) = u0 :Remark: Theorem 4.1 espe
ially ensures that solutions of the gradient 
oware X -regular for �nite times. Let us emphasize that in general we 
an neitherexpe
t the X -norm to be uniformly bounded in time nor that there exists a steadystate.The proof is a straightforward appli
ation of the Pi
ard-Lindel�of Theorem inBana
h spa
es. We have shown that there is an L2-representation gradL2 D ofD0 (
f. Se
tion 2), if T and R are of suitable regularity. Therefore in 
ase W =[L2(
)℄d the in
lusion D0(X ) � W is valid. Let us prove Lips
hitz 
ontinuity ofgradWD = gradL2D.Lemma 4.2 Let X = X 0 = W = [L2(
)℄d; then the derivative of the energy Ew.r.t: W is Lips
hitz 
ontinuous, i.e:,jjgradL2D[u1℄� gradL2D[u2℄jjL2 � C jju1 � u2jjL2if T 2 C1;1(Rd ) and R 2 L1(
).



8 5 REGULARIZATION REGARDING A METRIC POINT OF VIEWProof. Let u1, u2 2 X . Then we havegradL2D[u1℄� gradL2D[u2℄= (T Æ (1I + u1)�R)rT Æ (1I + u1)�(T Æ (1I + u2)�R)rT Æ (1I + u2)= [(T Æ (1I + u1)�R)� (T Æ (1I + u2)�R)℄rT Æ (1I + u1)�(T Æ (1I + u2)�R)[rT Æ (1I + u1)�rT Æ (1I + u2)℄ :Let us introdu
e some notation for fun
tions de�ned on 
:kfkC0 = supx2
 jf(x)j ; jf jC1 = supx2
 jrf(x)j ; kfkC1 = kfkC0 + jf jC1 :Furthermore we use Lips
hitz norms:kfkC0;1 = kfkC0+ supx;y2
 jf(x)� f(y)jjx� yj ; kfkC1;1 = kfkC1+ supx;y2
 jrf(x)�rf(y)jjx� yj :On a

ount of our regularity assumptions we 
an �nish our proof of Lips
hitz
ontinuity: jgradL2D[u1℄� gradL2D[u2℄j� jjT jjC1 jjT jjC0;1 ju1 � u2j+ (jjT jjC0 + jRj)jjT jjC1;1 ju1 � u2jwhi
h leads to jjgradL2D[u1℄� gradL2D[u2℄jjL2(
)� jjT jjC1 jjT jjC0;1 jju1 � u2jjL2(
) +jjT jjC0 jjT jjC1;1 jju1 � u2jjL2(
) +jjT jjC1;1 jjRjjL1 jju1 � u2jjL2(
) :5 Regularization regarding a metri
 point of viewThe goal of this se
tion is to show relations between the regularization approa
hesdes
ribed in se
tion 3 and the above regularization te
hnique via metri
s.5.1 The linearized approa
hAs in se
tion 3 we start with the linear kind of regularization in image mat
hing.Our starting point is equation (3):�g(�u(k+1); ') + hD0[u(k)℄; 'i = 0 ;whi
h is valid for all ' 2 X . Now, we regard g as a metri
 and the above equation
an be equivalently expressed asu(k+1) = u(k) � 1�gradgD[u(k)℄ (7)= u(k) � 1�A�1D0[u(k)℄ :



5.2 The nonlinear method 9We 
an interprete this approa
h as an expli
it dis
retization of a gradient 
ow with
onstant time-step size ��1. Hen
e, we 
an regard 1=� in algorithm 3.1 as a timeparameter.5.2 The nonlinear methodIn the same sense, iterative Tikhonov regularization 
an be viewed as a gradientdes
ent method measuring the derivative of D in a regularizing metri
. Again weinteprete g(�; �) as a metri
. As explained in se
tion 3.2 the iterated Tikhonovregularization 
onsists of a sequen
e of minimization subproblemsD[u℄ + �k2 g(u� u(k); u� u(k)) : (8)The solutions u(k+1) depend on the parameter �k > 0 and the result u(k). Here,the Euler-Lagrange equation is simply given by the nonlinear variation equation:�k g(u� u(k); ') = �hD0[u℄; 'i :whi
h is nothing but an impli
it time-step of length ��1k :u = u(k) � 1�k gradgD[u℄ : (9)Algorithm 3.2 starts with a very short time-step 1=N . Redu
ing the parameter �k inea
h step means from a metri
 point of view to in
rease the time-steps su

essively.5.3 Linearization of the integrandNow we 
ome to the metri
 formulation of se
tion 3.3. We 
onsider the integrandh(u; x) := T (x+ u)�R(x) and its linearization, i.e.,D[u(k+1)℄ = 12 Z
 jh(u(k+1); x)j2dx = 12 Z
 jh(u(k) +�u(k+1); x)j2dx� 12 Z
 jh(u(k); x) + h�uh(u(k); x);�u(k+1)ij2 dx:We point out that these 
onsiderations are valid for general fun
tionals of theform R
 jh(u(x); x)j2 dx. Now one adds a suitable bilinear form a(�; �) and ends upwith the fun
tional to be minimizedJ [�℄ = 12 Z
 jh(u(k); x) + h�uh(u(k); x); �ij2dx+ �2 a(�; �) : (10)The Euler-Lagrange equation for this problem is given byZ
hrT (x+ u(k)); �ihrT (x + u(k)); 'i dx + �a(�; ') = �hD0[u(k)℄; 'i ; (11)for all ' 2 X . The 
orresponding metri
 to this method isg�w(u; v) = �a(u; v) + Z
 (rT (x+ w)
rT (x+ w)[u; v℄) dx: (12)



10 5 REGULARIZATION REGARDING A METRIC POINT OF VIEWLet us emphasize that this metri
 is a
tually Riemannian. Indeed gw(�; �) dependson the position w in the spa
e of displa
ements. The iteration now is given for all' 2 X as: g�u(k)(�u(k+1); ') = �hD0[u(k)℄; 'i :and we have an expli
it time s
heme with time-step size 1:u(k+1) = u(k) � gradg�D[u(k)℄ :5.4 Examples of suitable metri
sLet us now 
onsider several examples for the 
hoi
e of the metri
 g(�; �) resp: thebilinear form a(�; �):(i) For the bilinear form a(u; v) = (u; v)L2 one solely penalizes large displa
e-ments in a square integrable sense. In this 
ase, we have A = 1I and theexisten
e and uniqueness are shown by Lemma 4.2 and Theorem 4.1.(ii) The proof of Lemma 4.2 
learly extends to X = [Hs;2(
)℄d, where s � 0,W = [L2(
)℄d, and X 0 = [Hs;2(
)0℄d. Indeed in this 
ase [Hs;2(
)℄d ,![L2(
)℄d ,! [Hs;2(
)0℄d.For our purpose of image mat
hing the regularity indu
ed by the L2-metri
 willnot be suÆ
ient to obtain proper approximations of energy minimizers for our ill-posed problem w.r.t: a
tual appli
ations. Thus we 
annot expe
t to obtain smoothdeformations in 
ase A = 1I and X = X 0 = W = [L2(
)℄d, even if we start withsmooth initial deformations. Therefore we deal with spa
es X of higher regularityand suitable operators A representing a metri
:(iii) We might 
hoose the Helmholtz type operator A = 1I� �22 � for � 2 R+ . Themetri
 representing A isg(v; w) = (v; w)L2 + �22 (rv;rw)L2 : (13)This 
hoi
e 
orresponds to an impli
it time dis
retization of the heat equationwith time-step � = �22 and is thus related to Gaussian �ltering with a �lterwidth �. As 
orresponding spa
es we take into a

ount X = [H1;2(
)℄d,X 0 = [H1;2(
)0℄d and W = [L2(
)℄d. The isomorphism property of A andthereby the Lips
hitz 
ontinuity of A�1 is well known in this 
ase. Thuswe have an existen
e and uniqueness result at hand but now with improvedsolution regularity.(iv) Let us assume the di�eren
e between images is based on a physi
al, elasti
deformation. This suggests to use in a very simple version a regularizingmetri
 of the form:g(u; v) = Z
 24Xi;j � �ui�xj + �ui�xj�� �vi�xj + �vi�xj�35 dx (14)



11This metri
 measures the energy of the elasti
 deformation and is neutralw.r.t: translations and rotations. The operator A is given byAu = ��u�r (divu) :As is well known, by Korn's inequality, that the operator A is a bi-Lips
hitzmapping A : [H1;20 (
)℄d ! [H�1;2(
)℄d.6 Dis
retization and numeri
al resultsThe gradient 
ow methods (7) and (9) as des
ribed in se
tion 5 have been testedon syntheti
ally generated images as well as on pairs of MRI images.Let us des
ribe brie
y dis
retization and implementation of our methods. Formore details we refer the reader to [10, 11, 5℄.Time dis
retization and s
ale spa
es in the gradient 
ow approa
hFor typi
al image intensity fun
tions T , R the energy D[�℄ is non-
onvex and weexpe
t an energy lands
ape with many lo
al minima. This implies that gradientdes
ent paths mostly tend to asymptoti
 states whi
h only lo
ally minimize theenergy. Following Alvarez et al: [1℄ we 
onsider a 
ontinuous annealing methodbased on a s
ale of image pairs T�, R�, where � � 0 is the s
ale parameter. Herewe 
onsider s
ale spa
es of images generated by a s
ale spa
e operator S(�) whi
hmaps an initial image f onto some 
oarser image, i.e.,f� = S(�)f :The s
ale parameter � allows to sele
t �ne grain representations 
orresponding tosmall values of � and 
oarse grain representations with most of the image detailsskipped for larger values of �. For the 
hoi
e of S we refer to [5, se
tion 4, 6℄.For given � � 0 we 
onsider an energyD�[u℄ = 12 Z
 jT� Æ (1I + u)�R�j2 :and the 
orresponding gradient 
owg(�tu� ; ') = �hD0�[u�℄; 'iu�(0) = u0;� :We are left to 
hoose the initial data u0;� for the evolution on s
ale �. Here weexpe
t the minimizer or a suÆ
iently good approximation of the same problem ona 
oarse s
ale to be a suitable starting point to approa
h the global minimum onthe �ner s
ale. The pre
ise implementation is des
ribed in [5, se
tion 4, 6℄.Aiming at an eÆ
ient implementation of a dis
rete gradient 
ow we apply a suit-able time-step 
ontrol. Thus, it pays o� to 
onsider the gradient 
ow perspe
tivenot only as a 
on
eptually intuitive setting but also in the appli
ation of 
lassi
alnumeri
al tools. A time-step 
ontrol strategy for the minimization of energy fun
-tionals on Rm turns into a time-step 
ontrol for our dis
rete generalized gradient
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Figure 1: Using a s
ale spa
e approa
h our gradient 
ow method turn out tobe
ome also very robust w.r.t: noise. The 3D mat
hing task was given by 2 noisyimages (20% salt and pepper noise). Previously, the se
ond problem was arti�
allygenerated by a rotational twist. From top left to bottom right: sli
e throughthe noisy volume image T , se
ond image R generated via arti�
ial deformation,
omputed deformation applied to an uniform grid (a
tually independent of the
omputational grid), same deformation applied to the original image without noiseon it, and for 
omparison purposes the original images T and R, now without noise.des
ent algorithm. We only have to repla
e the Eu
lidian distan
e in Rm by the
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0 20 40 60 80 100 120Figure 2: In this 3D{mat
hing example the se
ond image R is generated from the�rst image T by re
e
ting the original at a 
entral mirror plane. Thus the mat
hingpro
ess has to 
ope with lo
ally large deformations. From top left to bottom right:an axial sli
e through the original 3D image T , the se
ond image R generated byre
e
tion, the deformation � applied to a uniform grid, and the mat
hing resultT Æ �.norm indu
ed by g(�; �) on X . We 
onsider the expli
it s
heme:un+1 � un�n = �A�1D0[un℄ ;where A : X ! X 0 is the usual representation of the metri
 g. Thus we 
onstru
ta sequen
e (un)n=0;���, su
h that un approximates u(tn) with tn = Pni=1 �i. Thea
tual fo
us is not on the quality of the approximation but on a fast and robustdes
ent. In our implementation we determine �n using Armijo's rule.Spatial dis
retizationThe set 
 = [0; 1℄d is given as the union of squares or 
ubes Ei for i in an indexset Jh. The set of elements fEigi2Jh forms the mesh Mh. Here the subs
ripth indi
ates the grid size. We 
on�ne to grids whi
h are generated by iteratedsubdivision into 4 squares or 8 
ubes respe
tively.



14 6 DISCRETIZATION AND NUMERICAL RESULTSThus the resulting grids form a pyramid with grid sizes hl = 2�l for l =0; � � � ; lmax. The set of verti
es of the mesh Mh is denoted by Nh. Interpret-ing pixel or voxel values of a 2D or 3D image as nodal values we 
onsider dis
reteimages as pie
ewise multilinear 
ontinuous fun
tions on Mh. The 
orrespondingmultilinear �nite element spa
e is denoted by X h.We suppose f	igi2Ih to be the 
anoni
al nodal basis of X h, where Ih is the indexset 
orresponding to Nh. Hen
e we obtain Fi =Pj2Ih F ji 	j as the representationof the image Fi in this basis, where F ji = Fi(xj) for the node xj 2 Nh 
orrespondingto the basis fun
tion 	j . Analogously, we take into a

ount [X h℄d as the set ofdis
rete deformations.For the implementation of the spatial operators appearing in our algorithms,namely 1I� �22 �as metri
 in (13) and ���r(div )in the iterative Tikhonov approa
h we 
onsider �nite element resp: �nite di�eren
edis
retizations.The 
omputation of D0 indu
es the evaluation of T Æ �, where � 2 X is adeformation. The spatial dis
retization of � is de�ned on all nodes xi and wede�ne T Æ � as the bi- or trilinear interpolation of (T Æ �)(x) for all x 2 Nh.MultigridThe time 
onsuming part in the gradient 
ow methods is to solve the Euler-Lagrange equations in every time-step. The approa
h known to be the most eÆ
ientto solve su
h a linear system of equations is a multigrid method. It leads to analready optimal 
omplexity of O(nh) if nh is the 
ardinality of Nh.The building blo
ks of our multigrid operator are� on ea
h grid with dis
rete fun
tion spa
e X l := X hl a smoothing operator.Here we use in the simplest 
ase Ja
obi iterations. In a multigrid Corre
tionS
heme Gau�-Seidel relaxation is taken into a

ount (lexi
ographi
 and red-bla
k ordering), where in 
ase of a Full Approximation S
heme we use Gau�-Seidel-Pi
ard operators with lexi
ographi
 numbering.� standard prolongation and full weighting restri
tion operators de�ned on X l.Finally, we are left to 
hoose the number of pre-smoothing and post-smoothingsteps in our V{
y
le.ExperimentsIn order to 
on
lude this paper we would like to present some results for the im-age registration problem. To demonstrate the performan
e and robustness of thedi�erent gradient 
ow methods, we present the registration of syntheti
 images(�gure 3) as well as a Magneti
 Resonan
e Imaging (MRI) registration (�gure 4)by using the metri
 introdu
ed in (14). We perform the registration pro
ess on
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Figure 3: From left to right: 1.) Template image T . 2.) Referen
e image R.3.) Uniform grid. 4.) Grid showing the deformation (resulting from the impli
itgradient 
ow method) applied to the template.three di�erent image resolutions. For the impli
it gradient 
ow method resp. theiterative Tikhonov regularization on the di�erent image resolutions, we start with aregularization parameter �0 = 103 whi
h leads to a time-step size of t0 = 10�3 andpro
eed with the exponentially in
reasing sequen
e of time-step size tk+1 = 2 � tk.In the expli
it gradient 
ow method the time-step sizes are given by the solutionsof equation (4).First of all, we 
onsider the syntheti
 images displayed in �gure 3. The leftimage displays the template T (x), the right the referen
e R(x). These imagesshow the reliability of the gradient 
ow methods des
ribed above. The graphs(k;D[u(x; tk)℄)k=0;::;n in �gure 5 and 6 displays the de
reasing least square di�er-en
e between the images (with nx � ny pixel)D[u(x; tk)℄ = 1nx � ny nxXx=1 nyXy=1(T (x+ u1(x; tk); y + u2(x; tk))�R(x; y))2after ea
h time-step tk within the gradient 
ow methods. Here, the number oftime-steps is given by n.In the next experiment, we 
onsider a (Magneti
 Resonan
e Imaging) MRI mat
h-ing problem. Figure 4 shows the MR template image T and the MR referen
e
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Figure 4: From left to right: 1.) MRT template slide T 2.) Referen
e slide R.3.) Uniform grid. 4.) Grid showing the deformation (resulting from the impli
itgradient 
ow method) applied to template.image R whi
h results by arti�
ial geometri
 distortion of T (based on a set oftwo Gaussian kernels). For this example the �gures 7 and 8 show the graphs ofthe de
reasing least square di�eren
e D[u℄ between the images after ea
h time-stepwithin the impli
it resp. expli
it gradient 
ow methods.In the following we dis
uss results whi
h were generated usingg(u; v) = (u; v)L2 + �22 (ru;rv)L2as metri
. The time-dis
retization of our gradient 
ow method is expli
it. Thetime-step size is determined via Armijo's rule. Furthermore we used s
ale spa
esas des
ribed above. Figure 2 shows the mat
hing result of a 3D mat
hing problem.Here, a re
e
ted MR-image versus the 
orresponding original is 
hosen as mat
hingproblem. Naturally, the appli
ability to medi
al images is of fundamental impor-tan
e for the evaluation of the method. Although we have 
on�ned to the mostsimple mat
hing energy for a starting point, we wanted to get some insight on thefundamental behavior of the gradient des
ent on realisti
 MR-images. Due to thefa
t, that both hemispheres of a healthy brain have { apart from minor geometri
al
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Figure 5: Least squares di�eren
e D[u(k)℄ after ea
h time-step of the impli
it gra-dient 
ow method for the example in �gure 3.
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e D[u(k)℄ after ea
h time-step of the expli
it gra-dient 
ow method for the example in �gure 3.



18 6 DISCRETIZATION AND NUMERICAL RESULTSdi�eren
es { the same fundamental stru
ture, a re
e
tion provides a useful andsolvable test example and is 
omparable to a mat
hing problem from a patient toa referen
e image from an atlas. Thus, our aim is to �nd the displa
ement whi
hdes
ribes both hemispheres given the 
orresponding other hemispheres and not to�nd the global minimum, whi
h would be the re
e
tion itself.In a further experiment we analyze the dependen
e on noise of our te
hniques(in this 
ase again expli
it gradient 
ow method with time-step 
ontrol and s
alespa
es). Figure 1 demonstrates that our gradient 
ow method is very robust w.r.t:noisy images. There are essentially two reasons for the robustness of our method.On the one hand we use a s
ale of mat
hing problems on di�erent grid resolutions.This 
learly eliminates noise on almost all s
ales. On the other hand we in
orporatesmoothing of the dire
tion of des
ent. Thus repla
ing D0[u(k)℄ by A�1D0[u(k)℄ leadsto robustness of the gradient 
ow method.A
knowledgements: For the 
omputations of �gure 1 and �gure 2 we thankMar
 Droske from Duisburg University.
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Figure 7: Least squares di�eren
e D[u(k)℄ after ea
h time-step of the impli
it gra-dient 
ow method for the example in �gure 4.
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e D[u(k)℄ after ea
h time-step of the expli
it gra-dient 
ow method for the example in �gure 4.



20 REFERENCESReferen
es[1℄ L. Alvarez, J. Wei
kert, and J. S�an
hez. A s
ale{spa
e approa
h to nonlo
alopti
al 
ow 
al
ulations. In M. Nielsen, P. Johansen, O. F. Olsen, and J. We-i
kert, editors, S
ale-Spa
e Theories in Computer Vision. Se
ond InternationalConferen
e, S
ale-Spa
e '99, Corfu, Gree
e, September 1999, Le
ture Notes inComputer S
ien
e; 1682, pages 235{246. Springer, 1999.[2℄ L. Alvarez, J. Wei
kert, and J. S�an
hez. Reliable estimation of dense opti
al
ow �elds with large displa
ements. International Journal of Computer Vision,39:41{56, 2000.[3℄ G. E. Christensen, S. C. Joshi, and M. I. Miller. Volumetri
 transformationsof brain anatomy. IEEE Trans. Medi
al Imaging, 16, no. 6:864{877, 1997.[4℄ G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable templatesusing large deformation kinemati
s. IEEE Trans. Medi
al Imaging, 5, no.10:1435{1447, 1996.[5℄ U. Clarenz, M. Droske, and M. Rumpf. Towards fast non-rigid registration.Preprint, 2002.[6℄ C. A. Davatzikos, R. N. Bryan, and J. L. Prin
e. Image registration based onboundary mapping. IEEE Trans. Medi
al Imaging, 15, no. 1:112{115, 1996.[7℄ R. Deri
he, P. Kornobst, and G. Aubert. Opti
al{
ow estimation while pre-serving its dis
ontinuities: A variational approa
h. In Pro
. Se
ond AsianConf. Computer Vision (ACCV '95, Singapore, De
ember 5{8, 1995), vol-ume 2, pages 290{295, 1995.[8℄ U. Grenander and M. I. Miller. Computational anatomy: An emerging dis
i-pline. Quarterly Appl. Math., LVI, no. 4:617{694, 1998.[9℄ M. Hanke and C. Groets
h. Nonstationary iterated tikhonov regularization.J. Optim. Theory and Appli
ations, 98:37{53, 1998.[10℄ S. Henn and K. Wits
h. A multigrid-approa
h for minimizing a nonlinearfun
tional for digital image mat
hing. Computing, 64(4):339{348, 1999.[11℄ S. Henn and K. Wits
h. Iterative multigrid regularization te
hniques for imagemat
hing. SIAM J. S
i. Comput. (SISC), Vol. 23 no. 4:pp. 1077{1093, 2001.[12℄ B. Horn and B. S
hun
k. Determining opti
al 
ow. Arti�
ial Intelligen
e,17:185{203, 1981.[13℄ G. Huisken. The volume preserving mean 
urvature 
ow. J. Reine Angew.Math., 382:35{48, 1987.[14℄ S. C. Joshi and M. I. Miller. Landmark mat
hing via large deformation dif-feomorphisms. IEEE Trans. Medi
al Imaging, 9, no. 8:1357{1370, 2000.



REFERENCES 21[15℄ F. Maes, A. Collignon, D. Vandermeulen, G. Mar
hal, and P. Suetens. Multi{modal volume registration by maximization of mutual information. IEEETrans. Medi
al Imaging, 16, no. 7:187{198, 1997.[16℄ H. H. Nagel and W. Enkelmann. An investigation of smoothness 
onstraintsfor the estimation of displa
ement ve
tor �elds from image sequen
es. IEEETrans. Pattern Anal. Ma
h. Intell., 8:565{593, 1986.[17℄ F. Otto. The geometry of dissipative evolution equation: the porous mediumequation. Comm. Partial Di�erential Equations, 26 (1-2):101 { 174, 2001.[18℄ E. Radmoser, O. S
herzer, and J. Wei
kert. S
ale{spa
e properties of regular-ization methods. In M. Nielsen, P. Johansen, O. F. Olsen, and J. Wei
kert,editors, S
ale-Spa
e Theories in Computer Vision. Se
ond International Con-feren
e, S
ale-Spa
e '99, Corfu, Gree
e, September 1999, Le
ture Notes inComputer S
ien
e; 1682, pages 211{220. Springer, 1999.[19℄ O. S
herzer and J. Wei
kert. Relations between regularization and di�usion�ltering, 1998.[20℄ C. S
hn�orr. Determining opti
al 
ow for irregular domains by minimizingquadrati
 fun
tionals of a 
ertain 
lass. Int. J. Comput. Vision, 6:25{38, 1991.[21℄ J. P. Thirion. Image mat
hing as a di�usion pro
ess: An analogy withmaxwell's demon. Medi
al Imag. Analysis, 2:243{260, 1998.[22℄ J. Wei
kert. Anisotropi
 di�usion in image pro
essing. Teubner, 1998.


