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Abstract

For a surface patch on a smooth, two-dimensional surface inIR3, low-distortion parameter-
izations are described in terms of minimizers of suitable energy functionals. Appropriate
distortion measures are derived from principles of rational mechanics, closely related to the
theory of non-linear elasticity. The parameterization can be optimized with respect to the
varying importance of conformality, length preservation and area preservation. A finite el-
ement discretization is introduced and a constrained Newton method is used to minimize a
corresponding discrete energy. Results of the new approach are compared with other recent
parameterization methods.
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1 Introduction

The aim of this paper is twofold. At first, we present a new parameterization method
with a mathematically rigorous variational foundation derived from first principles.
It casts the parameterization problem in the language of rational mechanics and
provides built-in parameters for the control of angle, area and length distortion.
We provide existence proofs for minimizers of the resulting parameterization ener-
gies. Secondly, we derive a finite element discretization from the continuous model
in a straightforward way. The associated discrete non-linear energy minimization
problem can be solved efficiently with a constrained Newton method with step size
control. Our overall approach is closely related to the theory of non-linear elasticity
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and polyconvex functionals. Throughout, we we will restrict ourselves to surface
patches of disc type.

The most desirable property to achieve in a parameterization is isometry. This im-
plies intuitively that all of the properties of the surface are represented in the cor-
responding parameter domain. Strictly speaking, a map between two surfaces is an
isometry if their first fundamental forms coincide. It is well known that isometric
parameterizations exist only if the surface itself is locally flat,i.e. developable. A
broad variety of algorithms have been proposed to construct such parameterizations
for embedded triangle meshes (for a recent survey see the comprehensive overview
by Floater and Hormann [1]). Generically these algorithms are distinguished by
the way they measure distortion. Examples include linear and non-linear measures
of area, length, and angle change. Except for the case of harmonic and conformal
maps [2–5], little in the way of theory is available to guide the choice of distortion
measures and appropriate numerical methods to minimize them effectively. Conse-
quently it is often unclear whether unique solutions exist and what assertions can
be made about the resulting parameterizations. If we cannot preserve all quantities,
one may ask for certain quantities which may be preserved by a parameterization,
e.g., length, angles, and local area.

The question of an angle preserving,i.e., conformal map has a long history. The
question of whether all surfaces can be parameterized conformally was asked by
Gauß, who was able to solve this problem for real analytic metrics. An approach
for less regular, namelyC1,α-surfaces is due to Lichtenstein [6]. In this setting,
it is possible to parameterize the surface globally in a conformal way using the
uniformization theorem. The idea of a proof via direct methods in the calculus of
variations dates back to Morrey [7], although his reasoning contained errors and
Jost gave a rectified proof [8]. Sauvigny introduced a method of continuity for
conformal parameterizations of surfaces [9]. Recently, Hildebrandt and von der
Mosel [10] presented a new approach for the conformal parameterization of disc-
type surfaces which does not make use of the uniformization theorem. For more
details concerning the history and literature of conformal mappings we refer the
reader to [11, pp. 49] and [8]. Due to the fact that we intend to process triangu-
lated surfaces, all of the above approaches are improper for numerical purposes.
Only Morrey’s and Jost’s method seems (at a first glance) to be numerically useful.
But computing a first variation of their functional to be minimized requires higher
regularity of the surface thanC0,1.

On the other hand, from a practical point of view it does not make sense to restrict
ourselves to conformal parameterizations. One undesirable property of conformal
maps appears in the form of large area distortion effects. A related idea is to pro-
vide a parameterization that perfectly preserves area. The theoretical problem of
finding such maps has been studied, although not as deeply and detailed as the
problem of conformality [5,6,8]. Clearly there are strong relationships to the the-
ory of Monge-Amp̀ere equations and mass transfer problems [12]. To our knowl-

2



Fig. 1. For a surface mesh (left, 36k triangles), a parameterization is computed, depicted
through a texture map (middle). The parameter domain (right) is optimized through the
minimization of energy functions which control length, area and angle distortion (shown
clockwise from top right; dark regions indicate higher energy).

edge, it was Moser who was able to construct area preserving maps on general
manifolds [13,14]. In this setting one also faces the problem of distortion, which
typically appears as angle distortion.

In this paper we introduce a rigorous variational framework for the construction of
low-distortion parameterizations. It is based on the rich mathematical theory built
up over decades in the study of rational mechanics [15–17]. Starting with some ba-
sic axioms, we derive aunifiedenergy density which allows combined control over
angle, area, and length distortion in a single, concise framework. We will show in
the continuous setting that minimizers of such a parameterization energy exist un-
der suitable assumptions. Thus, we will study general parameterizations as well as
those which are constrained in the class of conformal maps and in the class of area
preserving maps. We strongly believe that one must study the continuous setting
before considering the discrete case: although questions of existence may be sim-
pler to answer when dealing with triangular grids, this approach hides other impor-
tant questions such as the asymptotic behavior for successively refined grids or the
proper choice of constraints. For example, enforcing point constraints is possible on
triangular grids, but singularities will be observed under refinement, a phenomenon
which is well understood in the continuous setting. Accordingly, we will propose
to fix integral quantities in what follows.

There are multiple relationships between our method and earlier parameterization
algorithms which share some of the properties with the method presented here. In
the overview given by Floater and Hormann [1], they discuss a variational method
on continuous surfaces and compare various energy densities. Other previous work
in surface parameterization can be distinguished through the different energies that
they minimize.

Sanderet al. [18] minimize norms of the eigenvalues of the Jacobian similar to our
length control energy in Eq. (6). Hormann and Greiner [19] define MIPS to mini-

3



mize the condition number of the Jacobian, using the same local quantity as we do
to penalize non-conformality. Degeneret al.extend MIPS with a term that penalizes
area distortion [20]. Sorkineet al. measure distortion as the maximum eigenvalue
of the Jacobian and its inverse [21]. Desbrunet al. [20] derive from a set of axioms
similar to ours (cf. Section 3), but lack the axiom of isotropy, a higher order energy
in the discrete setting of triangulations. Their derivation involves a conformal en-
ergy and a quadratic approximation to the mismatch of the Euler characteristic,i.e.,
the local sum of angles at the vertices. These quadratic energy terms are closely
related to our own conformal energy in Eq. (6).

Lévyet al. [4] minimize discrete conformal energies. Compared to our conformal-
ity control in Eq. (6), their energy density is not scale-invariant. Thus length and
angle control cannot be steered independently. Sheffer and de Sturler [22] formu-
late angle deviation directly as a non-linear optimization problem. Here, an energy
is considered which is based solely on angle distortion. They use a Newton method
to minimize a weighted sum of all these distortions under a large set of constraints
to keep the geometry in shape.

An approach to introduce conformal parameterizations on higher genus surfaces is
given by Gu and Yau [5]. In the case of surfaces which are topologically spheres,
they stress the fact that for spherical parameterizations harmonicity induces con-
formality. A generalization of our approach to spherical parameter domains would
make our length control energy reflect their Dirichlet energy.

In these approaches the interaction between area, angle and length distortion is
not always easily controlled or mathematically well understood,e.g., existence of
solutions. We desire a unified framework which incorporates different distortion
measurements and their trade-offs while providing clear mathematical statements
as to the properties of this energy. In particular the design ofstableandscalable
numerical solvers, such as those of multigrid type [23], requires an understanding
of the mathematical properties of the energy to be minimized.

In what follows, we develop an approach which is mathematically rigorous, pro-
viding the different distortion measure controls we desire, and having robust nu-
merical solution methods associated with it. We follow the general procedure in
rational mechanics, in particular the mathematical modeling in non-linear elastic-
ity [15–17], where we consider certain natural invariance principles, such as frame
indifference and a properly-defined notion of isotropy. In particular, in Section 3
we derive a class of energy functionals from the general principles of elasticity
and the axioms of frame indifference and isotropy. We show these to be geometri-
cally meaningful as they allow us to measure area, angle and length distortion in
a flexible manner. In Section 4 we will prove existence results for the correspond-
ing parameterizations and after a general discussion of our approach in Section 5,
we will discuss the Euler-Lagrange equation which characterizes the minimizer. In
Section 7 a straightforward discretization for arbitrary triangular meshes is intro-
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duced and we demonstrate that the resulting discrete minimization problems can
be efficiently solved using a constrained Newton method with a suitable step size
control. Finally, in Section 9 we draw conclusions.

2 Notation

Let Lp(ω,B) with p ∈ [1,∞] be the Lebesgue spaces of functions from a domain
ω into some vector spaceB. In the case thatB = IR we omit the second parameter.
Furthermore, we denote byH1,p(ω) the usual Sobolev space of functions inLp(ω)
with weak first derivatives also inLp(ω).

In what follows, we consider a smooth embedded manifoldM⊂ IR3. For a smooth
function u onM we can define a gradient∇Mu, which coincides with the pro-
jection of the Euclidean gradient inIR3 on the tangent spaceTxM for functions
u which extend to a neighborhood ofM in IR3. For the vector-valued mapping
u : M→ IR2 we define the gradient ofu as the tensor those rows are the gradients
of the components ofu.

Suppose(x, ω) is an initial parameterization of an open, bounded and connected
subsetΩ ⊂ M. Furthermore, we assume thatx : ω̄ → M; ξ 7→ x(ξ) is a dif-
feomorphism from the closurēω of ω onto the closurex(ω̄) = Ω̄ of the surface
patchΩ. Later the regularity assumptions will be weakened (cf. Theorem 4.2). In
x = x(ξ) onM the tangent spaceTxM is spanned by the basis{ ∂x

∂ξ1
, ∂x

∂ξ2
}. Measur-

ing length onM requires the definition of a metricg. In matrix notation we obtain
g = (gkl) with

gkl =
∂x

∂ξk
· ∂x
∂ξl

,

where “·” indicates the scalar product inIR3. It is well known that the metricg
defines a scalar product “·g ” with v ·g w := gv · w on ω, where here “·” is
the standard scalar product onIR2. This new product is the pull-back of the scalar
product of tangent vectorsDxv andDxw on TxM for v, w ∈ IR2, whereDx ∈
IR3,2 is the derivative of the parameterizationx. As in the standard case of the
Euclidean scalar product, one can define for any matrixA ∈ IR2,2 a g-adjoint map
A∗ ∈ IR2,2 by

gAv · w = gv · A∗w

for all v, w ∈ IR2. It follows thatA∗ = g−1ATg. Indeed, we obtaingAv · w =
Av · gw = g−1gv · ATgw = gv · g−1ATgw. A matrix A ∈ IR2,2 is calledg-self
adjoint ifA∗ = A andg-orthogonal ifA∗ = A−1.
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Fig. 2. The setup of our parameterization with a given initial chartx and the deformed chart
x[φ]; a rigid body motionr : ξ 7→ Rξ + b of the deformed parameter domainφ(ω) and a
smooth mappingu fromM onto itself, which atx ∈M is locally a rotationQ onTxM.

3 A Variational Formulation Derived From First Principles

To measure the localdistortion of a parameterizationx, we define thedistortion
tensoras the intrinsic gradient∇My of the mappingy : M→ IR2, wherey = x−1

denotes the inverse of the parameter mappingx from the surface into the parameter
domain at some pointx onM. As a linear mapping,∇My maps tangent vectors
w ∈ TxM to vectors inIR2,

(∇My)w =
d

dt
(y ◦ c)(0) ,

wherec is a curve onM, c(0) = x andċ(0) = w. To motivate our definition of dis-
tortion, we replace for a moment the surface patchΩ onM by a Euclidean domain
Ω ⊂ IR2. A fundamental assumption from the theory of elasticity [15,16] tells us
that all distortion measures for a given deformationφ : Ω → IR2, such as length,
area, or angle distortion, can be expressed in terms of the deformation tensor∇φ.
Thus measuring the distortion of a mapping is directly linked to measuring the elas-
tic energy of the associated deformation. In our setting we replace the elastic body
Ω ⊂ IR2 by our surface patchΩ ⊂M and consider parameterizations to be elastic
surface deformations. What remains is to select a suitable energy which depends
on∇My. The choice of this energy will be guided by fixing suitable axioms (see
below) and the desired parameterization will follow as the minimizer of this energy.

Instead of optimizing the mappingx−1 directly, we will consider a Euclidean defor-
mationφ : ω → IR2 of an initial parameter domainω which is a diffeomorphism.
On the deformed domaiñω := φ(ω) a new parameterization

x̃ = x[φ] := x ◦ φ−1

is given. Hence, one can rephrase the goal of finding an optimal parameterization
in terms of deformations of a given parameterization and ask for an optimal defor-
mation of the latter (cf. Fig. 2). Obviously, any smooth parameterizationx̃ of the
surface patchΩ can be written as̃x = x[φ] for φ := x̃−1 ◦ x. Optimality will be
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expressed in terms of deformations minimizing a suitable energyE on a space of
admissible deformationsA. We will now state some assumptions on this energy:

• Elasticity. The energy is elastic, in particular it is translation invariant and lo-
cally onM depends solely on the distortion tensor∇Mx

−1(·) of the deformation
from Ω ⊂M onto the deformed parameter domainφ(ω). Here,x−1[φ] = x̃−1 =
φ ◦ x−1. In particular, the energy density does not depend on the history of the
deformation, nor on higher deformation derivatives. Physically, we might think
of our surface as a thin shell which we press flat between two plates. One can
distinguish between stresses induced by stretching, shearing and other deforma-
tions, and stresses induced by bending that occurs in the surface as it is being
pressed. Our deformationx[φ] can be regarded as the flattening of such a thin
shell. Then the elastic energy considered here reflects the stresses in the plane
but not the bending of the normals orthogonal to the plane. The latter would lead
to an energy which depends on higher derivatives of the deformation.

We suppose that the local energy depends solely on the first order variation
of the deformation. In fact, we assume that there exists an energy densityWM :
TM2 → IR such that

E[φ] =
∫
Ω
WM(∇Mx

−1[φ]) dA .

We can rewrite this in terms of the Euclidean deformationφ as

E[φ] =
∫

ω
Ŵ (Dφ)

√
det g dξ , (1)

whereŴ (A) := WM(A∇Mx
−1) for anyA ∈ GL(2).

• Frame indifference. The energy does not depend on rigid body motionsξ 7→
Rξ + b of the parameter domainφ(ω) with R ∈ SO(2) andb ∈ IR2 (cf. Fig. 2),
i.e.atx onM we require

WM(∇Mr ◦ x−1[φ]) = WM(∇Mx
−1[φ])

and hence for̂W and allA ∈ GL(2) we obtain

Ŵ (RA) = Ŵ (A) . (2)

• Isotropy. The energy does not depend on directions onM. If u : M → M is
any smooth mapping fromM onto itself which at any pointx ∈ M is locally a
rotation, then the energy density at the pointx is not affected by this transforma-
tion (cf. Fig. 2),i.e.atx onM we require

WM(∇M(u ◦ x[φ])−1) = WM(∇Mx
−1[φ]) .

In terms ofŴ we obtain that for allg-orthogonal matricesQ and allA ∈ GL(2)

Ŵ (AQ) = Ŵ (A) . (3)

7



Based on these “first principles” we will now derive a simple form of the energy.
Furthermore, the free parameters of the resulting energy density will have a clear
geometric interpretation. For a matrixA ∈ IR2,2 we denote the principal invari-
ants byιA := (tr(A), det(A)), whereι(·) : IR2,2 → R2. The following theorem is
an adaptation of the famous Rivlin-Ericksen representation theorem in non-linear
elasticity to our geometric setting (cf. also Theorem 4.4-1 [16]). As in this clas-
sical result from rational mechanics, the remaining free parameters are those we
intuitively already expect. In particular, the above theorem precisely refers to the
assumptions that we have made.

Theorem 3.1 (Representation of the energy)SupposeM is a smooth surface,
andx is an initial parameterization of an open setΩ ⊂ M over a bounded, open
setω ⊂ IR2. We assume thatx is actually defined on̄ω and it is a diffeomorphism
ontoΩ̄. Let the assumptions of elasticity (1) frame indifference (2) and isotropy (3)
hold. Then there exists a functionW : IR2 → IR such thatŴ (A) = W (ιg−1AT A)
and thus

E[φ] =
∫

ω
W (tr(Dφg−1DφT ), (detDφ)2(det g)−1)

√
det g dξ . (4)

Proof Due to our assumptions,g−1 is symmetric, uniformly positive definite and
uniformly bounded. SupposeA is an arbitrary invertible matrix inIR2,2. By the po-
lar decomposition theorem there exists an orthogonal matrixQ such thatA = QU

whereU = (ATA)
1
2 is symmetric and positive definite. Hence, by the assumption

of frame indifference (2) we obtain

Ŵ (A) = Ŵ (QU) = Ŵ (U) = Ŵ ((ATA)1/2) .

Next, we defineW̃ (C) := Ŵ (C
1
2 ) for all symmetric, positive definite matricesC

and obtain

Ŵ (A) = W̃ (ATA) .

From this and the assumption of isotropy (3) one deduces

W̃ (ATA) = Ŵ (A) = Ŵ (AQ) = W̃ (QTATAQ)

for all g-orthogonal matricesQ. In particular, for symmetric, positive definite ma-
tricesC we get

W̃ (C) = W̃ (QTCQ) (5)
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Next, we show that wheneverιg−1A = ιg−1B for symmetric, positive definite matri-
cesA,B ∈ IR2,2, thenW̃ (A) = W̃ (B). Thus, we immediately deduce that there is a
functionW such thatW̃ (A) = W (ιg−1A) and hence for general matricesA ∈ IR2,2,

Ŵ (A) = W̃ (ATA) = W (ιg−1AT A)

which is the assertion in our theorem.

First, we observe that for any symmetric matrixA, the matrixg−1A is g-self adjoint.
Indeed,(g−1A)∗ = g−1ATg−1g = g−1A. Thus, we deduce thatg−1A andg−1B
diagonalize with respect to the scalar product “·g” and we obtain

g−1A=λ1r1(g r1)
T + λ2r2(g r2)

T

g−1B=µ1s1(g s1)
T + µ2s2(g s2)

T

with gri·rj = δij andgsi·sj = δij. Due to our assumptionιg−1A = ιg−1B we achieve
µi = λi after a possible reordering. Furthermore, there exists ag-orthogonal matrix
Q with Qsi = ri. Thus we get

A= gg−1A =
∑

i=1,2

λigQsi(gQsi)
T =

=
∑

i=1,2

λigQsis
T
i Q

Tg =
∑

i=1,2

λiQ
−Tgsis

T
i gQ

−1

=Q−Tg
∑

i=1,2

λisi(gsi)
TQ−1 = Q−Tgg−1BQ−1

=Q−TBQ−1 .

Here we have used the fact thatgQ−1 = QTg holds forg-orthogonal matricesQ and
thatQ−1 is g-orthogonal ifQ is g-orthogonal, which impliesgQ = g(Q−1)−1 =
Q−Tg. Now, Eq. (5) applied totheg-orthogonal matrixQ−1 leads to

W̃ (A) = W̃ (Q−TBQ−1) = W̃ (B) ,

which is what we have claimed above. Finally, we obtain for the principal invariants

tr(g−1DφTDφ) = tr(Dφg−1DφT ) ,

det(g−1DφTDφ) = (det g)−1(detDφ)2 .

2

Let us give a geometric interpretation of this result. For a given smooth and injective
deformationφ : ω → IR2 with inverseψ = φ−1 we have already considered the
new parameterization(x̃, ω̃) with
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x̃(ξ̃) =x[φ](ξ̃) = (x ◦ ψ)(ξ̃) .

From d
dξ̃

= dξ

dξ̃
d
dξ

= Dψ d
dξ

we obtain the push-forward of the metricgij on ω̃,

g[φ] := g̃=DψTgDψ .

The inverseg−1[φ] := g̃−1 = (g̃ij)ij is then given by

g−1[φ] = ((DxDψ)TDxDψ)−1 = (DψT DxTDxDψ)−1

=Dφg−1DφT .

Thus,ιg−1[φ] = ιDφg−1DφT = ιg−1DφT Dφ and our representation theorem above im-
plies that the energy integrand depends on the principal invariants of the inverse
metricg−1[φ] of the deformed configuration. Obviously,g−1[φ] is symmetric posi-
tive definite. We denote its eigenvalues byΓ andγ, where we assumeΓ ≥ γ.

If we consider the Frobenius norm‖A‖ =
√

trATA for linear mappings then
the pull-back norm on the space of linear maps fromTxM → Tx̃M is given by

‖A‖g−1 =
√
Ag−1AT . Hence, just as

√
tr(ATA) measures theaverage change of

length under a linear mappingA, ‖Dφ‖g−1 =
√

tr(Dφg−1DφT ) measures the
average length change of the tangent vectors under the inverse parameterization
x−1[φ]. Note that Theorem 3.1 implies that we are not able to distinguish length
change in different directions separately, mainly due to the postulated isotropy as-
sumption. Additionally,

√
det(g−1[φ]) measures thechange of areaunder the in-

verse mapx−1[φ]. This map is locally area preserving ifdet(g−1[φ]) = 1. In terms
of the eigenvaluesΓ, γ we obtain:

a= tr(g−1[φ]) = Γ + γ ,

d= det(g−1[φ]) = Γ γ .

In fact, the eigenvalues can be expressed in terms of the invariants:

Γ =
a

2
+

√
a2

4
− d , γ =

a

2
−
√
a2

4
− d .

The condition for conformality isΓ = γ. Thus, (Γ − γ)2 = a2 − 4d = 0 is
an indication for local conformality. This expression is not invariant w.r.t. simple
scaling. Therefore we propose to replace it by the expression

(Γ− γ)2/d =
Γ

γ
+
γ

Γ
− 2 = a2/d− 4
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which is scale invariant. It follows that these are natural quantities for an energy
measuring the quality of parameterizations. The representation theorem states that
under our assumptions an energy density depending on these quantities already
reflects the most general case. Now, we are going to discuss the actual quality of
a parameterizationx[φ] in terms of the energy integrandW . We are aiming for
minimal distortion of length, area and angles. One easily verifies (cf. [15,16]) that
length is strictly preserved ifx[φ] is an isometry (g[φ] = 1I) and thus

Dφg−1DφT = 1I .

Precise area preservation is ensured if(detDφ)2(det g)−1 = 1. Thus, we propose
a concrete energy density

W (a, d) = αla
p
2 + αa(d

r
2 + βd−

s
2 ) + αc(a

2/d− 4)t (6)

with a = a(A) = tr(Ag−1AT ) andd = d(A) = det(A)2 det g−1, which takes care
of all our distortion quantities. This energy can be regarded as a prototype of an en-
ergy density which is in accordance of Theorem 3.1 and reflects the convexity and
growth conditions required for the existence result in Theorem 4.2 below. Here,
αla

p
2 controls the length change of the inverse parameterizationx−1[φ], whereas

αa(d
r
2 + βd−

s
2 ) penalizes area compression and expansion of the parameteriza-

tion x[φ], respectively. Finally,αc(a
2/d − 4) controls the lack of conformality. In

particular, we have seen above thata2/d − 4 = 0 holds for conformal parameteri-
zations. This energy is not convex, but it ispolyconvex[24] (i.e., a functionF̂ (A)
is called polyconvex ifF̂ (A) = F (A, detA) with F convex in both arguments).
It is a specific, suitable model from a larger class of functionals for which we will
prove the existence of a minimizing deformation in a suitable class of admissible
deformations.

It is reasonable to ask that an isometry is an optimal parameterization. From this
requirement we deduce the following restriction on the parameters:

Lemma 3.2 SupposeM is a smooth surface, andx is an initial parameterization
of an open setΩ ⊂ M over a bounded, open setω ⊂ IR2. We assume thatx is
defined on̄ω and it is a diffeomorphism ontōΩ. A deformationφ which turns the
parameterizationx[φ] into an isometry is a local minimizer of the elastic energy
E[·] with the density defined in Eq. (6) if

p ≥ 2 , r, s ≥ 0 , t ≥ 2 or t = 1 , αl, αa > 0 , αc ≥ 0 ,

αl2
p
2
−1p+ αa(r − βs) = 0 .

Proof Let us take derivatives of the energy integrandW with respect to the inverse
metricq = Ag−1AT in the direction of an arbitrary symmetric matrixC ∈ IR2,2:
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∂qW (ιq)(C) = αl
p

2
tr(q)

p
2
−1tr(C) + αa

(r

2
(det q)

r
2 − β

s

2
(det q)−

s
2

)
tr(q−1C)

+αc t

(
tr(q)2

det(q)
− 4
)t−1(

2
tr(q)
det(q)

tr(C)− tr(q)2

det(q)
tr(q−1C)

)
,

∂2
qW (ιq)(C,C) = αl

p

2
(
p

2
− 1)tr(q)

p
2
−2tr(C)2

+αa

(
(
r

2
)2(det q)

r
2 + β(

s

2
)2(det q)−

s
2

)
tr(q−1C)2

+αa

(
β

s

2
(det q)−

s
2 − r

2
(det q)

r
2

)
tr(q−1Cq−1C)

+αc t

(
tr(q)2

det(q)
− 4
)t−1(

2
tr(C)2

det(q)
− 2

tr(q)tr(C)tr(q−1C)
det(q)

+
tr(q)2

det(q)
tr(q−1C)2 +

tr(q)2

det(q)
tr(q−1Cq−1C)

)
+αc t(t− 1)

(
tr(q)2

det(q)
− 4
)t−2(

2
tr(q)
det(q)

tr(C)− tr(q)2

det(q)
tr(q−1C)

)2

Under our usual assumptions every diffeomorphismφ : ω → φ(ω) induces a posi-
tive definite inverse metricq = g−1[φ]. Hence,q = 1I is a local minimizer ofW (ιq) if
∂qW (ι1I) = 0 and∂2

qW (ι1I) is positive definite. This leads to

∂qW (ι1I)(C) = 1
2(αl2

p
2
−1p + αa(r − βs))tr(C) = 0 ,

∂2
qW (ι1I)(C,C) = 1

2(αlp(
p

2
− 1)2

p
2
−2 + αa((

r

2
)2 + β(

s

2
)2))tr(C)2

+1
2αa(βs− r)tr(C2) + 6αct δ(t− 1)tr(C2) > 0 ,

for all symmetric matricesC 6= 0, with δ(s) = 1 if s = 0, otherwiseδ(s) = 0. Here we
have used the fact thattr(C2) > 0 for any symmetric matrixC with C 6= 0, and we have
taken into account the preceding equation to obtain the last inequality above.2

4 Existence of minimizing deformations

So far, we have not taken into account the invariance of the energy with respect
to rigid body motions due to our assumption on frame indifference (2). Indeed, if
we do not enforce additional restrictions on the minimizing deformationφ, we can
only expect an optimal parameterization to be given up to rigid body motions in
IR2 and anyφ̂(ξ) = Rφ(ξ) + b with R ∈ SO(2) andb ∈ IR2 also minimizesE. To
overcome this ambiguity we require admissible deformations to have a fixed zero
moment and in addition we fix the angular momentum,i.e., we considerφ with
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M0(φ) :=
∫

ω
φ(ξ) dξ = 0 , (7)

M1(φ) :=
∫

ω
φ(ξ)2 ξ1 − φ(ξ)1 ξ2 dξ = 0 . (8)

Lemma 4.1 Letφ and φ̂ be as above,i.e., they only differ by a rigid body motion.
If M0(φ) = M0(φ̂) = 0 andM1(φ) = M1(φ̂) = 0 then eitherφ = φ̂ or φ = Rπφ̂,
whereRπ is a rotation byπ.

Proof If the zero momentM0 vanishes, the rigid body motion is a rotation. There-
fore it may be represented asφ̂(x) = exp(αZ)φ(x), where

Z =

 0 −1

1 0



andα ∈ IR. The conditionM1(φ̂) = 0 implies

0 =
∫

ω
exp(αZ)φ(ξ) · Zξ dξ = −

∫
ω
Z exp(αZ)φ(ξ) · ξ dξ

=
d

dα

∫
ω

exp(αZ)φ(ξ) · ξ dξ .

From this we deduceα = 0 or α = π. 2

Let us emphasize that due to the non-existence of an embeddingH1,2 intoC0 in two
dimensions we have to avoid point constraints, and therefore we choose to fix the
integral quantities above. Even in the case of higher integrability of the gradients
it is preferable to consider integral quantities, since they improve the stability and
robustness of the numerical algorithm.

Based on these preliminaries we can now formulate the following existence result:

Theorem 4.2 (Existence of an optimal parameterization)SupposeM is a Lip-
schitz continuous surface andΩ is a bounded, open, connected subset ofM, such
that Ω̄ is the image under a bi-Lipschitz continuous initial parameterizationx over
the closure of a setω with Lipschitz boundary. Consider the energy

E[φ] =
∫

ω
W (tr(Dφg−1DφT ), (detDφ)2(det g)−1)

√
det g dξ .

(cf. Eq. (4)) acting on deformations from the set of admissible deformations
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A := {φ : ω → IR2| φ ∈ H1,p(ω, IR2), detDφ ∈ Lr(ω),

detDφ > 0 a. e. inω, φ obeys Eq. (7) and Eq. (8)}

with p ≥ 2, r > 1, ands > 0. Furthermore, we assumeW (·, ·) to be convex in both
arguments and that the following growth conditions hold:

W (a, d) ≥ αla
p
2 + αa(d

r
2 + βd−

s
2 ) ,

whereαl, αa, β > 0. Then there exists a minimizing deformationφ in A. If in
addition we assume thatp > 2, s > p

p−2
and require the constraint

∫
Ω

√
det g−1[φ] dA ≤ area(x−1[φ](Ω))

to be fulfilled for admissible deformationsφ, then the minimizerφ is continuous
and there exists a continuous deformationψ ∈ H1,σ(φ(ω)) with σ = p(1+s)

s+p
, which

is almost everywhere the inverse ofφ.

Before we give a proof of the theorem, let us comment on the analytic background.
The growth condition with respect todet g−1[φ] ensures the local injectivity of
the deformation. Thus local overfolding in the interior of the parameter domain
is already ruled out. The additional constraint stated in the theorem prevents the
domain image from undergoing a (global) overfolding. Indeed, for general defor-
mations we get from the area formula (cf. Ambrosioet al. [25, Theorem 2.71]) that∫
Ω

√
det g−1[φ] dA =

∫
φ(ω) cardφ−1(ξ̃)dξ̃. Hence, with this constraint we enforce

thatcardφ−1(ξ̃) = 1 for a. e.ξ̃ ∈ φ(ω). Nevertheless self-contact on the boundary
of the deformed domainφ(ω) is still possible. Unfortunately, this condition is very
difficult to control and to implement algorithmically. Practically, if we detect a loss
of global injectivity due to overfolding, we should allow the initial parameteriza-
tion to be split into a finite number of pieces. Then, we restart and expect to obtain
smaller optimal parameterizations which are not self-intersecting.

In [26,27] the minimizing deformation is proven to be a homeomorphism under the
same growth conditions we use here. The homeomorphism argument is crucial at
the boundary, where Ball [26] requires Dirichlet boundary data, which is already
given as the trace of a homeomorphism and the domain is assumed to fulfill the cone
condition. Due to the application we have in mind, we have to deal with Neumann
boundary conditions. Hence, we have no strong knowledge on the regularity of
the deformed boundary. This makes it difficult to obtain the full regularity stated
in [26].

Proof [Theorem 4.2] Based on a nowadays classical result in the calculus of
variations the proof is quite straightforward. Let us briefly sketch the main ingredi-
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ents. We follow the well-known procedure of the direct methods in the calculus of
variations [7,24,28], in particular the proof of the existence of minimizers for such
polyconvex energy functions by Ball [29] (cf. also the monograph by Ciarlet [16],
Theorem 7.7-1). Here, we only give a brief summary of the arguments. From the bi-
Lipschitz assumption on the initial parameterization we deduce thatg−1 ∈ L∞(ω)

and it is uniformly positive definite. Hence,
√

tr(Ag−1AT ) is actually a norm on

linear mappingsA ∈ IR2,2.
The growth conditions imply that for every constantC there exists a ballBR(0) in
Awith radiusR such thatE[φ] > C outsideBR(0). Thus, there exists a minimizing
sequence(φk)k∈IN with

∥∥∥Dφk
∥∥∥

Lp(ω)
and

∥∥∥detDφk
∥∥∥

Lr(ω)
being uniformly bounded.

Due to the constraint on the zero moment and a generalized Poincaré inequality,
theH1,p(ω) norm ofφk also is uniformly bounded. Because of the reflexivity of
H1,p(ω) × Lr(ω) for p , r > 1 we can extract a weakly convergent subsequence
from the minimizing sequence.
Applying well-known results on the weak continuity of the determinant we get that
(φk, detDφk) converges weakly to(φ, detDφ). Furthermore, Ball proved that for
the limit deformationdetDφ > 0 holds a. e. inω for s > 0. Due to the convexity
ofW in both arguments we finally obtain a result on weak sequentially lower semi-
continuity and thus establish the existence of a minimizing deformation inA. By
Sobolev’s embedding theorem we claim thatφ ∈ C0(Ω̄) if p > 2. In the constrained
case, we follow Ciarlet and Necas [30] and use the weak continuity ofdetDφ to
prove that the set of admissible deformations including the additional constraint is
weakly closed. In particular we obtain that the deformationφ is almost everywhere
invertible. The existence and the stated properties of the functionψ can be derived
using the arguments by Ball [26]. First, one verifies that the candidate for the gradi-
ent of the inverse(Dφ)−1 is inLσ with σ = p(1+s)

s+p
. This follows immediately from

the growth conditions by Ḧolder’s inequality. Furthermore, one verifies thatσ > 2.
Then, following Ball we are able to prove that an inverseψ exists a. e. and its gra-
dient at the deformed position is actually(Dφ)−1. Hence,ψ ∈ H1,σ and again by
Sobolev’s embedding theoremψ is continuous. 2

Remark 4.3 (Generalizing to higher dimensions)The approach presented here
is not restricted to two-dimensional surfaces. Following the guidelines on non-
linear elasticity [15,16,24,29] one can easily generalize these results to higher di-
mensionsn > 2. Besides length and volume control, a control of the average area
change of all types of immersedn − k dimensional surfaces fork = 2, · · · , n − 1
can be taken into account. This will be reflected in the energy by corresponding
norms of all minors ofg−1[φ]. Due to the applications we have in mind here, we
restrict ourselves to the case of two-dimensional surfaces embedded inIR3.

One might ask for explicitly area preserving parameterizations, and thus request
that det g−1[φ] = 1. Indeed, there is the following modified existence result for
such deformations.
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Corollary 4.4 (Existence of an optimal, area preserving parameterization)Under
the assumptions of Theorem 4.2 withM being smooth, and for the modified set of
admissible deformations

Aa := {φ ∈ A | det g−1[φ] = 1} ,

there exists a minimizing deformationφ in Aa. If in addition we assume thatp > 2
and require that admissible deformationsφ fulfill the constraint

area(Ω) ≤ area(x−1[φ](Ω)) ,

then the minimizerφ is continuous and there exists a continuous deformationψ
which is almost everywhere the inverse ofφ.

Proof We can reformulate the additional constraint requiring thatdetDφ =
√

det g.
But detDφ is weakly continuous onA. HenceAa is weakly closed. Thus, we can
proceed as in the proof of Theorem 4.2. We only have to ensure that there is at least
one area preserving, homeomorphic parameterizationx[φ0] for some deformation
φ0. But the existence of such a parameterization has been established by Moser and
Dacorogna [13,14]. 2

In the same spirit we have a corresponding result on conformal parameterizations:

Corollary 4.5 (Existence of an optimal, conformal parameterization) Under the
assumptions of Theorem 4.2 withΩ being of disc type, and for

Ac := {φ ∈ A | γ = Γ}

with p > 2, there exists a minimizing deformationφ inAc. Thus, there is an optimal
parametrizationx[φ] in the class of conformal maps.

Before proving the corollary above let us discuss some basic facts from complex
analysis. Assume that a conformal mapφ : B1(0) → IR2 on the unit discB1(0) with
non-vanishing determinant is given. We denote the points ofB1(0) by z = (x, y),
and the components ofφ by φ = (u, v). Conformality means that the system

‖φx‖ = ‖φy‖ , φx · φy = 0 (9)

is solved byφ. Due to the fact thatdet(φx, φy) 6= 0, we can conclude that there
is a rotationRπ/2 by π/2 such thatφx = ±Rπ/2φy and in the case of orientation
preserving mapsφ the Cauchy-Riemann equationsux = vy, uy = −vx are valid.
Thus, a conformal, orientation preserving mapping is holomorphic. On the other
hand, it is obvious that the Cauchy-Riemann equations imply Eq. (9).
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Proof [Corollary 4.5] It is well known that there is one conformal, orienta-
tion preserving parameterizationx : B1(0) → IR3 of the surface patchΩ over
the unit discB1(0). Let us consider a minimizing sequence of conformal maps
ψk : Ω → IR3. By the above considerations, these parameterizations induce a
sequence of biholomorphic mapsφk : B1(0) → ωk with φk := ψk ◦ x and
ωk := ψk(Ω). This sequence is bounded as in Theorem 4.2 on account of a gen-
eralized Poincaré inequality and the embeddingH1,p ↪→ C0. By Montel’s theo-
rem, a uniformly bounded sequence of holomorphic functions is normal [31, Chap-
ter 14]. Thus, we can find a subsequence converging uniformly to a holomorphic
mapφ : B1(0) → ω. Finally,ψk := φk ◦ x−1 converges uniformly to the inverse
ψ = φ ◦ x−1 of a conformal parameterization.2

5 Discussion

Our parameterization approach is characterized by

- its close relation to non-linear elasticity, a classical and well-developed field in
mechanics;

- a rigorous mathematical foundation leading toone geometrically meaningful
class of parameterization energies (Theorem 3.1 shows that our energy already
reflects the most general geometrically meaningful case);

- a continuous model independent of the actual triangle grid allowing a straight-
forward discretization (see Section 7 below);

- existence results for optimal parameterizations, including those with the addi-
tional restriction of either conformality or area preservation; and

- a flexible set of parameters offered to the user to formulate preferences for the
parameterization, in particular whenαa dominates one obtains a nearly area pre-
serving parameterization (see Fig. 3), whereas a large value forαc leads to almost
conformal parameterizations.

Additionally we make the following observations.

Forαa = αc = 0 the Euler-Lagrange equations for our minimization problem turn
into a system of linear equations and the parameter mappingx[φ] is a harmonic
map. This derives from the fact thattr(C[φ]) is the squared magnitude of the first
derivatives of the mapφ ◦ x−1, namely, the integrand of the Dirichlet energy. In
fact, a non-zero weighted length term is essential for the well-posedness of the free
boundary approach. As a consequence, methods which solely consider the control
of area and angle will in general lack a proper, continuous limit problem for succes-
sively refined surface triangulations. Additionally, Moser [13] showed that control
of area—directly or indirectly via a conformal energy—is similarly critical in that
it ensures the local injectivity on the discrete level of triangulations.
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Fig. 3. Area preserving parameterizations of geographic data for Mount St. Helens, before
and after its eruption in 1980 (shown here: reconstructed surface and parameter domain).

Generally speaking, there is no single set of optimal parameters to match the user’s
requirements. Instead, based on their clear geometric meaning, the parameters can
be tuned to certain applications. The linear termsαl, αa, αc control the relative im-
portance of length, area and angle distortion in the parameterization, respectively,
whereas the exponentsp, r, s, t act to prevent high distortion as measured by their
related energies. Finally, Lemma 3.2 gives a recipe for the dependent parameterβ.

Uniqueness of optimal parameterizations cannot be expected in general. Classical
non-uniqueness examples [16] in elasticity give a recipe for a corresponding con-
struction in the case of parameterizations. Furthermore, a variational energy which
ensures injectivity is generically non-linear (see the injectivity discussion in [16]).
Hence, linear methods [3,4,32] face difficulties for parameterizations which have
large distortion. These issues are well known as the presence of negative cotan-
gent weights for discrete harmonic maps and the convexity conditions for Floater’s
positive weights.

Finally, we observe that the various measures of the singular values of the Jaco-
bian of the parameter mapping used in earlier approaches are closely related to our
measures involvingΓ andγ. For example, thel2 norm of the singular values of the
Jacobian used by Sanderet al. is essentially our length control energy. Hormann
and Greiner, in their use of the condition number of the Jacobian, use the same
local quantity,a2/d, to penalize non-conformality as we do. A similar observation
holds for the energy terms used by Desbrunet al.and Ĺevyet al.
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6 Euler-Lagrange Equations

In the general case of an energy

E[φ] =
∫

ω
Ŵ (Dφ)

√
det g dξ

with the energy densitŷW : IR2,2 → IR; B 7→ f(B) we obtain

E ′[φ](ϑ) =
∫

ω
∂AŴ (Dφ)(Dϑ)

√
det g dξ ,

E ′′[φ](ϑ, ζ) =
∫

ω
∂2

AŴ (Dφ)(Dϑ,Dζ)
√

det g dξ .

Explicit formulas for the energy density defined in Eq. (6) are given in the Ap-
pendix. The representation of the first and the second derivative in theL2 scalar
product on the space of deformationsH1,2(ω, IR2) define the gradient∇E and the
Hessian∇2E, respectively:

(∇E[φ], ϑ) :=E ′[φ](ϑ) , (10)

(∇2E[φ]ϑ, ψ) :=E ′′[φ](ϑ, ψ) . (11)

Then the necessary condition for a sufficiently smooth deformationφ to minimize
the energyE is ∇E[φ] = 0. We have already seen this for a sufficiently smooth
deformationφ which leads to an isometric parameterizationx[φ] and under the
assumption of Lemma 3.2 we obtain that∇2E[φ] is positive definite. With respect
to the later discretization, the gradient and Hessian of the energy are required to set
up a Newton method. Due to the required normalization with respect to rigid body
motions, we actually have to solve a saddle point problem. In fact, we replace the
energyE by an energyEc : A× IR3 → IR; (φ, λ) 7→ Ec[φ, λ] with

Ec[φ, λ] = E[φ] +
∫

ω
λ1φ(ξ)1 + λ2φ(ξ)2 + λ3(φ(ξ)2ξ1 − φ(ξ)1ξ2) dξ . (12)

Instead of solving∇φE[φ] = 0 for φ, one now solves the equation

∇(φ,λ)Ec[φ, λ] = 0

for the deformationφ and the Lagrange multipliersλ1, λ2, λ3.
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7 Discretization

SupposeΩh is a triangular mesh on some discrete surfaceMh andωh is the corre-
sponding admissible triangular mesh in the parameter spaceIR2 of an initial piece-
wise affine and continuous parameterizationx. Let T denote the triangles ofωh

and suppose that
⋃

T∈ωh
= ω. Let Vh be the space of piecewise affine, continuous

functions onωh. We denote discrete functions and in particular discrete deforma-
tions by upper case letters. Furthermore, we suppose{Φk}k=1···n to be the nodal
basis ofVh for an index setK corresponding to the set of nodesξk of ωh. Hence,
{Φik}i=1,2;k=1,···n with Φik := Φkei forms a basis of the discrete space of defor-
mationsV 2

h . Given a discrete deformationΦ ∈ V 2
h the coordinate vector will be

denoted bȳΦ, whereΦ̄ik = Φ(ξk)i. On each triangleT of ωh, the derivativeDΦik

is a constant matrix inIR2,2. Also, the discrete metricG = (Gij)ij ∈ IR2,2 with
Gij := ∂iX · ∂jX is constant onT . For a discrete deformationΦ, we obtain

E[Φ] =
∑

T∈ωh

W (ιA(T )G(T )−1A(T )T )
√

detG(T ) |T | ,

where on each triangleT we define the constant matricesA(T ) := DΦ|T and
G(T ) := G|T . Let Ē : IR2n → IR be the discrete counterpart of the energy func-
tionalE defined on coefficient vectors with respect to the basis{Φik}, i.e.,

Ē[Φ̄] := E[φ] .

Then,∇Ē ∈ IR2n with

(∇Ē[Φ̄])ik = (∇E[Φ],Φik) = E ′[Φ](Φik)

and∇2Ē ∈ IR2n,2n with

(∇2Ē[Φ̄])ikjl = (∇2E[Φ]Φik,Φjl) = E ′′[Φ](Φik,Φjl) .

Similarly, we defineĒc[Φ̄, λ] corresponding to the minimization problem with mo-
ment constraints. Then the Hessian ofĒc reads as follows:

∇2Ēc[Φ̄, λ] =

∇2Ē[Φ̄] M

MT 0

 , M =

m 0 −m

0 m m

 ,
wherem := (

∫
ωh

Φk)k is the vector of the masses of the basis functionsΦk. Finally,
we have collected all the ingredients of a fully discrete Newton method, which we
list here in pseudo code:
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Fig. 4. Successive refinement of a triangulation demonstrates the convergence of the param-
eterization, due to the fact that the different discretizations minimize consistent approxima-
tions of the same continuous energy functional.

Newton(Φ̄, λ, ε) {
do{

Lc = ∇2Ēc[Φ̄], F = ∇Ēc[Φ̄];
find (Ψ̄, λ) ∈ V × IR3 such that

Lc

 Ψ̄

λ

 = −

F
0

;

Φ̄ = Φ̄ + Ψ̄;
} while (‖Ψ‖H1,2(ωh) > ε);

}

We refer to the Appendix for explicit formulas for the derivatives ofŴ defined
in Eq. (6). For the solution of the linear saddle point problem, one could apply
Uzawa’s algorithm [33]. We simply use a preconditioned standard conjugate gra-
dient algorithm. We have never observed any difficulty in practice even though
theoretically the matrixLc is not positive definite. As a preconditioner, we apply a
diagonal preconditioning to∇2Ē.

8 Results

Our parameterization method is implemented by an algorithm which finds the op-
timal parameterization for a given surface, starting from an initial parameterization
which is also provided. The final parameterization is optimal in the sense that it
minimizes the energy in Eq. (6), controlled by the parametersα = (αl, αa, αc)
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Fig. 5. The parameterization is controlled by parametersα = (αl, αa, αc) which capture
the trade-off between length, area and angle preservation, respectively. Texture maps of
the initial parameterization on the left and solutions for different parameter settings are
shown on top, with the parameter domain beneath. A plot of the maximum, minimum and
mean distortion is shown below. Notice that the measured distortion tends to to reflect the
trade-offs in the choice of parameters.

which balance the trade-off between length, area and angle preservation, respec-
tively. For the sake of simplicity, we restrict ourselves to the exponentsp = 2,
q = 2, r = 2, andt = 1. The remaining parameters must satisfy the conditions in
Lemma 3.2, and furthermore we require thatαl +αa +αc = 1. Fig. 5 demonstrates
our algorithm for a variety of parameter values. Given the initial parameterization
on the left, each parameterization on the right is obtained by minimizing the corre-
sponding energy with the Newton method above.

The relative importance of the three competing parametersαl, αa, αc is reflected in
the distortion of the final parameterization. Recall that distortion can be measured
as a function of the maximum and minimum eigenvaluesΓ, γ of the first funda-
mental form of the parameterization function. We calculate the mean distortion for
a parameterization as the geometric sum of the contributions from each triangle in
our discretization. Popular measures of distortion for angles (

√
Γ/γ), area (

√
Γ γ)

and length (
√

Γ + γ) for Fig. 5 are reported in the bottom graphs, where the ex-
treme deformations in the parameterization functions clearly show the trade-offs
between the different distortion measures. This correspondence is further explored
in Fig. 6, which demonstrates the effect of minimizing the different energy terms
on parameterizations of a sphere that has been cut.
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Fig. 6. Flattening the earth. The sphere is opened with a semi-circular cut and its param-
eterization is optimized for angle, area and length preservation, respectively. Here texture
maps show the deformation of the surface in the parameter domain.

All of our results were computed using a simple Newton method to perform the
energy minimization, starting from a reasonable initial guess. In our implemen-
tation, we use an adaptive line search [34] to ensure a robust minimization. At
each step, we compute a search directionΨ̄ by solving the sparse linear system
described in Section 7. The number of Newton iterations needed to minimize the
energy depends on the initial parameterization. If the optimal parameterization is
quite different, performance can be adversely affected. Furthermore, local injectiv-
ity is guaranteed in the discrete method through step size control. Specifically, the
condition for sufficient decrease of the energy is violated in the presence of a fold,
due to the fact that the area energy functional grows unbounded. Therefore, folds
cannot appear from an admissible deformation.

The initial parameterization plays an important role, both in preventing overfolding
in the final solution, and in improving performance. We have found that the natural
conformal map [3,4] works very well in practice: it is cheap to compute, it has
natural boundary conditions and it has low angle distortion. We use this initial
parameterization in all of our examples. Finally, we can improve the performance
and the stability of our method by incrementally varyingα to reach the desired
parameterization. This tends to reduce the number of Newton iterations, because
the starting parameterization at each increment is very close to optimal.

The continuous energy model that we use has several distinct advantages. The pre-
vious examples demonstrate the unlimited range of parameterizations that can be
achieved by varyingα. Additionally, since our energy is defined in the continu-
ous setting, the solution to the minimization problem is insensitive to the partic-
ular discretization of the surface. This fact can be observed because different dis-
cretizations minimize consistent approximations of the same continuous energy
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Fig. 7. A comparison of previous work to parameterizations generated by our method.
Unlike other methods, we are not restricted to optimizing for only one notion of distortion,
as demonstrated in the table of mean distortion measurements above.

functional. In Fig. 4, we consider the successive refinement of a triangular grid that
represents a stamped mechanical part. Notice how the parameterization converges
rapidly, and its main features are apparent even at the coarsest resolution. Not sur-
prisingly, the number of Newton steps taken for each of these examples is also
identical.

The results shown here were obtained in a matter of seconds to a few minutes on a
2GHz Intel Pentium processor. The execution time depends on the number of New-
ton iterations, which in turn depends on the quality of the initial parameterization.
For the example in Fig. 1, a hierarchical solver was used to solve the linear system
for each Newton step, which drastically reduced the time to generate the parame-
terization. Due to the straightforward finite element discretization of the previous
section, numerous classical numerical methods apply, however their discussion is
beyond the scope of this paper.

9 Conclusions

We have presented a parameterization method that gives the user flexible control
over the trade-off between area, length and angle distortion. Fig. 5 demonstrates this
control with examples that range from angle preserving to area preserving, and a
comprehensive balance with length distortion in the rest. This contrasts our method
from previous work, which largely focused on optimizing for only one measure of
distortion, or possibly using linear combinations of energies. Fig. 7 demonstrates
that this trade-off is highly effective. For example, when emphasizing conformality,
we achieve a smaller mean distortion than methods which were geared towards the
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construction of conformal mappings. The same is true for the stretch minimization
(note however that we only minimize thel2 error with respect to length, not thel∞
error as Sanderet al.do). Because of the inherent non-linearity of our method, we
find that the discrete conformal mappings which result from linear systems provide
us with an excellent starting point for our optimization.

The fundamental advantages of our approach stem from its foundation in the clas-
sical theory of rational mechanics. This allows us to rephrase the surface param-
eterization problem as one of optimizing aunified energy from a small class of
admissible energy densities that simultaneously captures angle, area and length dis-
tortion. Remarkably, this uniqueness follows directly from the axioms of isotropy
and frame invariance. Furthermore, putting this method into practice is simple and
well understood from the point of robust numerical methods.

In some settings it may be desirable to explicitly introduce anisotropy. Here too
elasticity theory can provide tools whose exploration should be pursued in future
work.
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10 Appendix

Here we provide the concrete formulas for the derivatives of the energy density
Ŵ (A) = W (ιAg−1AT ) defined in Eq. (6). By straightforward computation one ob-
tains for the derivatives ofW appearing in the fully discrete∇Ē in Eq. (10) and
∇2Ē in Eq. (11):

(∇Ē)ik =
∑

T∈ωh

|T |∂AŴ (A(T ))Bik(T )
√

detG(T ) ,

(∇2Ē)ikjl =
∑

T∈ωh

|T |∂2
AŴ (A(T ))Bik(T )Bjl(T )

√
detG(T ) ,

whereA(T ) = DΦ|T as above andBrs(T ) = DΦrs|T . Furthermore,
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and using the fact that∂A(A−1)(C) = −A−1CA−1,

∂a

∂A
(C) = 2 tr(Ag−1CT ) ,

∂2a

∂A2
(C,H) = 2 tr(Hg−1CT ) ,

∂d

∂A
(C) = 2 (detA)2(det g)−1tr(A−1C) ,

∂2d

∂A2
(C,H) = 2 (detA)2(det g)−1(2tr(A−1C)tr(A−1H)− tr(A−1HA−1C)) .
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