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Abstract— The stable local classification of discrete sur-
faces with respect to features such as edges and corners or
concave and convex regions respectively is as well difficult
as indispensable for many surface processing applications.
Usually the feature detection is done via a local curvature
analysis. If concerned with large triangular and irregular
grids, e. g. generated via a marching cube algorithm, the
detectors are tedious to treat and a robust classification is
hard to achieve. Here a local classification method on sur-
faces is presented which avoids the evaluation of discretized
curvature quantities. Moreover, it provides an indicator for
smoothness of a given discrete surface and comes together
with a built-in multi scale. The proposed classification tool
is based on local zero and first moments on the discrete
surface. The corresponding integral quantities are stable to
compute and they give less noisy results compared to dis-
crete curvature quantities. The stencil width for the inte-
gration of the moments turns out to be the scale parameter.

Prospective surface processing applications are the seg-
mentation on surfaces, surface comparison and matching
and surface modeling. Here a method for feature preserving
fairing of surfaces is discussed to underline the applicability
of the presented approach.

Keywords— Surface classification, surface processing, edge
detection, non-smooth geometry

I. INTRODUCTION

Feature detection is known to be an indispensable tool in
image processing. Features such as edges and corners have
to be classified in a stable way to enable edge preserving
image denoising [19], [1], [25] and robust segmentation of
image subdomains bounded by edges [18], [2], [25]. Corre-
spondingly, the local classification of surfaces, in particular
the detection of edge and corner features or the distinc-
tion of concave and convex areas on the surface turns out
to be an important ingredient for many surface processing
applications. Indeed, some applications are:

- surface fairing: a given initial, noisy surface is smoothed,
while edges on it are simultaneously preserved or even en-
hanced (cf. [23], [8], [4]),

- mesh decimation: a given surface mesh is simplified while
edge features are preserved (cf. [26], [11]),

- surface segmentation: identification of homogeneous re-
gions, indicated by characteristics such as convexity and
concavity, or bounded by feature lines,

- surface matching:, surfaces are reduced to a skeleton of
features lines to enable a better comparison.

In image processing, a straightforward identification of
edges can be based on an evaluation of the image gradi-
ent. A sufficiently large gradient is supposed to indicate
an edge. Alternatively, a frequently considered edge indi-
cator is the Canny edge indicator, which searches for ex-
trema of the second derivatives in the gradient direction
[6]. Furthermore, the structure tensor (cf. [24]) enables a

robust classification of edges and edge directions in images.
On surfaces, gradients are no more natural objects for the
identification of intrinsic surface characteristics. Here, the
canonical quantity for the detection of edges is the curva-
ture tensor, in the case of codimension 1 represented by the
symmetric shape operator. An edge is supposed to be indi-
cated by one sufficiently large principle curvature and the
corresponding principle curvature direction is perpendicu-
lar to the edge on the surface. For smooth objects, this
method is well suited. Curvature evaluation for discrete
surfaces can be based on the algorithm proposed by More-
ton and Séquin [17]. In particular in surface processing,
curvature evaluation is used to detect important features
[4], [23], [14], [7]- Another method of computing the curva-
ture on discrete datasets is given by [4] where the surface
is locally projected on polynomial graphs over the tangent
space. In [7] the mean curvature is defined as the first
variation of the area functional.This approach is closely
related to the minimal surface algorithm by Polthier and
Pinkall [20]. Furthermore, in [16] discrete curvatures are
computed, where the discrete Gaussian curvature is based
on the quotient of a local spherical image and the corre-
sponding local surface area. Curvature is an object which
comes along with smoothness. Consequently, on discrete
surfaces we can separate areas of low curvature from non-
smooth areas. Nevertheless we cannot obtain information
about the structure of the non-smooth part. For that rea-
son, curvature estimation requires a tedious treatment and
is unstable on irregular surfaces or on surfaces perturbed by
noise. In addition, discrete curvature evaluation is a local
process without a scale and therefore very noise sensitive
(see [16, Fig. 6 (¢)])-

Here, in contrast to the curvature-based approach for
surface classification, we propose a novel set of surface clas-
sification criteria based on local zero and first moments.
This approach is related to the structure tensor approach
for images [24] and provides a stable way to distinguish
smooth regions from the vicinity of edges and corners on
surfaces. Furthermore, it allows to robustly extract in-
formation on the geometry close to, or even on a feature
singularity (cf. Section III). In [22], moments have already
been applied for the computation of skeletons from dis-
tance function singularities in 2D and 3D. For an approach
to skeletons of 3D point clouds representing surfaces we
refer to [15]. In this paper we generalize the techniques
presented in [22] and [5] to yield a general tool for the clas-
sification of feature singularities. A subsequent advantage
of our method is that it comes along with an embedded
scale factor that allows a simple and natural way for detect-
ing important surface structures at or above a user-selected



scale. In addition, this paper provides a detailed quantita-
tive analysis of the local surface classifiers which we believe
to be the backbone of the observed robustness in the appli-
cation. Here, in particular the different scalings of the zero
moment in smooth and non-smooth situations respectively
and the corresponding scaling and the eigenvalues of the
first moment are derived.

We apply the presented surface classification tool for a
number of fairly distinct triangular surfaces, of different ori-
gin, complexity, and resolution. Finally, as an application
in actual surface processing we consider edge preserving
surface fairing. Hence, we apply an anisotropic geometric
diffusion. Here, moment based local classification is used
to distinguish edges from smooth surface areas and to iden-
tify edge directions on the surface. For the corresponding
background and literature we refer to [4], [5].

The paper is organized as follows. In section II we re-
call how surfaces may be classified using curvature infor-
mation. In Section III the local moment analysis is pre-
sented. We give proofs of the fact that the zero moment
scales quadratically in smooth domains of a surface, where
it scales only linearly in non-smooth domains (cf. Theorem
2 and Theorem 4), and that the scaling of the first moment
is quadratically in smooth and non-smooth areas. Indeed,
to distinguish smooth from non-smooth regions based on
first moments requires a comparison of the eigenvalues of
the first moment (cf. Theorem 3 and Theorem 5). Further-
more we discuss the implementation on triangle meshes. In
Section IV we compare curvature and moment classification
and demonstrate experimentally the robustness of the ap-
proach. The application in surface fairing is described in
Section IV-B. Finally, in Section V we draw conclusions.

Notation: Let us summarize notations and conventions
we are going to use in the sequel. We consider a parameter
manifold M which essentially fixes the topological type
of immersed surfaces x : M — IRY'. Hence the ac-
tual surface is z(M). With a slight misuse of notation
we will denote the surface z again by M. The parame-
ter on M is denoted by £. By T¢M we denote the tan-
gent space at £ and by T M the tangent bundle of M.
For immersions z, the differential Dz induces canonically
a metric on M via the relation g(v,w) = Dz(v) - Dz(w),
which holds for all v,w € TM. Here, the scalar prod-
uct in IR™ is denoted by -. In coordinates we obtain
gij = 9(9;,0;). Suppose [,, fdA denotes the usual in-
tegral of a function f over M. Thus, the area element
dA is given by \/det gd¢, where g = (g;;);; is the met-
ric tensor corresponding to g(-,-). Integration over M
leads to the L2-scalar product of L2-functions f,g on M:
(f,9) = [\ f-9dA. We will make use of the gradient V
and the divergence div 4 on the manifold. For a function
f on M the gradient Vaf € TeM in € € M is defined
by g(Vaf,w) = % f(c(t))|i—o, where c(t) is a curve on M
with ¢(0) = £ and ¢(0) = w. Furthermore the divergence is
defined as the corresponding dual differential operator. In
particular [, divmv(dA = — [,  g(v, V() dA. The mani-
folds M are assumed to be oriented and the normal map-
ping will be denoted by n : M — S? where d is the dimen-

sion of the manifold M. This enables us to define the shape
operator S : Te M — Te M by g(STemw, v) := Oyn-Dz(v).
The trace of the shape operator is the classical mean cur-
vature h = tr St p. We often write S = S a4 if a mis-
understanding is ruled out. The Laplacian divas grad a7 is
denoted by Axq. Finally, let us from now on use Einstein
summation convention.

II. A REVIEW OF CURVATURE BASED LOCAL SURFACE
CLASSIFICATION

In this section, we briefly recall how to locally classify
surfaces based on curvature analysis. The quantity for the
detection of highly curved surface areas - namely edges -
is the curvature tensor: In the codimension 1 case it is
represented by the symmetric shape operator S . An
edge is supposed to be indicated by one sufficiently large
eigenvalue of S7, py. The main drawback of this approach is
that it involves derivatives of “noisy” data, which is usually
a risky enterprise. In particular, in the interesting case of
surfaces with sharp edges, these quantities are not even
defined on the actual surface.

Thus we have to stabilize the evaluation of the shape
operator. This can either be done by a straightforward
“geometric Gaussian” filter, which turns out to be a short
time-step 7 = €2/2 of mean curvature motion (for details
cf. [4], [9]) or by local L? projection of the surface onto
quadratic polynomial graphs. Let us denote this prefiltered
surface by M.. Hence, for stability reasons, we compute
a shape operator St,am, on M. Here the parameter €
either indicates the “geometric Gaussian” filter-width, or
the size of the neighourhood, which we take into account
for the local L? projection [21]. Let us emphasize that we
are able to reduce noise by this filter operator. But we
might also remove features in a hard to predict way. Now,
we introduce for every point on M., a classification tensor
af,-e M, It is supposed to be a symmetric, positive definite,
linear mapping on the tangent space 7¢M_. Let us sup-
pose that w'€, w?¢ are the principal directions of curva-
ture - the orthogonal eigendirections of the shape operator
- and k!¢, k% the principle curvatures - the corresponding
eigenvalues. Then we define the tensor ag, M, in the basis

{wh €, w?<} as follows:

e = (957 6 ) g

where the function G is given by G(2) := 1575 Here
B serves as a user defined threshold parameter which clas-
sifies the significance of surface features. Hence, a point is
supposed to belong to an edge if there is one principal di-
rection of curvature on M, with large curvature compared
to . If the second principal curvature is small w.r.t. 3,
we consider the first direction as being orthogonal to an
edge on the surface. At corners both principal curvatures
of M, are large. Summarizing this, our tensor leads to the
following surface classification:

s Smooth areas are characterized by a7, M, diag[1, 1].



o Edges are defined by a%, ,, - diag[1, 0]. In this case, the

Z¢ and we assume |gb¢| >>

edge direction is given by w
|k>].

o Corners are defined by a7, ,, - diag[0,0].

As a simple edge indicator we can use the function

Cém(x) = traf g - Depending on the threshold pa-

€

rameter 3, edges and corners are given by CS*"(z) < 1.
However, the above classifier encounters serious problems
on noisy data or data containing features (e.g. edges) at
several spatial scales (cf. Section IV).

Finally, let us mention that we can make use of this
classification tensor as a diffusion tensor for surface fair-
ing. Generalizing the algorithm introduced by Dziuk [10]
for mean curvature flow, we can define an anisotropic ge-
ometric diffusion process, which smoothes the surface in
regions being classified as smooth and preserves edges on
the surface. In addition we can allow smoothing along an
edge. The corresponding generalized mean curvature flow
is given by the following equation.

Oyr — divM(a%—fMeva) =0.

For a more detailed discussion of this type of equation, we
refer to Section IV-B and to [4]. This approach generalizes
image processing methodology presented and discussed by
Perona and Malik [19], Alvarez et al. [1] and Weickert
[24]. Let us mention that our approach here differs from
Kimmels method [13], where denoising of textures on sur-
faces are discussed, whereas we consider the denoising of
the surface itself.

III. MOMENT-BASED SURFACE ANALYSIS

In the following, we will introduce and discuss local sur-
face classification based on zero and first order surface mo-
ments. This will in particular allow to robustly distinguish
smooth regions from the vicinity of edges on the curve or
surface. To begin with, we introduce the corresponding
definitions:

Definition 1: For an embedding z : M — IR*t! the zero
moment is given by the barycentre M?(z(£)),£ € M, of
(M) N B(x(£)), where B.(z(£)) is the Euclidean e-ball in
R centered at z(€):

zdA.
B.NM

Ma() = §

The parameter € is called the scanning width. Furthermore,
the first moment is defined as

M (©)
= f @ M) © @ - M) dA,

where YRz := (yizj)z',jzl,...,d+1-

Due to the definition via local integration, the zero and the
first moment is expected to be robust with respect to noise.
To study the effectiveness of our moment-based classifiers,
we next examine their behavior on smooth (Sec. III-A),
respectively non-smooth (Sec. III-B) surfaces.

A. Smooth surface case

We first show that a locally smooth surface is charac-
terized by a quadratic scaling of the zero moment shift
ne = MO(z(€)) — z(£) and the first moment M!(z(£)).
Here n. plays the role of a scaled approximate normal.

Indeed, for a smooth function 5 on a Euclidean e-ball
B.(0) C R?, we have:

f o
B.

][ 0(0) + Vi(0) -
B

+%V2n(0)x -z dx + o(€?)

1

n(0) + —][ V29(0)z - z dx + o(€®)
2J) B.(o)

1
n(0) + —)\i][ zidz + o(€?),
2 J B.(o)

where the ); for i = 1,...,d are the eigenvalues of V27(0).
Note that in the above equation we used the fact that:

d
/ Vn(0) - zdz = Z/ 9in(0)z; dz
B. i=1 7 Be

and [, x;dz = 0. Therefore we have:

J‘Be
].

1
n(0) + - - —][ |z|?dz - tr VZn(0) + o(€?)
2 dJ B.(0)

= 1(0) + ¢(d) € An(0) + o(e?),

where the dimension depending constant ¢(d) is given by
c(d) =1/[2(d + 2)].

Now we consider the surface M in the vicinity of some
point £ on M. In a first step we replace the Euclidean
ball B(z(€)) C R*™! by a geodesic ball B.(z(£)) ¢ M
and compute the barycentre M?(z(¢)) of B.(z(€)). To
evaluate [ B.(2(6)) z(€)dA(§) we take into account normal
coordinates, i.e.,

9i5(0) =65 ,0rgi;(0) =0.

For more details on normal coordinates see e.g. the text-
book [12, p. 19]. Then one obtains for the Laplacian on
M at z(&):

(Amn)(z(£)) = (8:0:m)(0) = An(0) . 2)

Hence, for the difference M’ 9(z(€))—=x (&) we get. Note that

we identify z(£) and z(0) as well as B.(z(£)) and B.(0) in
the chart and on the surface respectively. Due to the choice
of normal coordinates, the Euclidean ball in IR? and the



geodesic ball on M coincide via the chart map.

][ zdz — z(0)
B.(0)
= ¢(d)e2Az(0) + o(e?)

M(x(9) —x(§) =

= c(d)eApz(€) + o(€?)

= —c(d)EREn(E) + o),

where h is the mean curvature of M. Here we have taken
into account the classical [3] relation between Laplace-
Beltrami operator applied to the coordinate mapping and
the mean curvature vector:

Apmz=—hn.

Let us point out here, that for the Euclidean ball on the
surface B.(z(£))NM and for the geodesic ball B, (z(£)) we
have the relation

|1Be(2(€)) N M| = |B(2())]| = O(*?).

We observe an order d+ 2 instead of d due to the vanishing
first order terms 9y g;;(0) for normal coordinates. Therefore
one can replace the geodesic ball by the Euclidean ball
without losing the corresponding scaling order.

So far we obtain

Theorem 2: Let x : M — IR%*! be an immersion. For
& € M consider a ball of radius € with center z(§) and
the e-normal n(§) = M2(z(€)) — z(£). Then n, scales
quadratically in € and

ne(€) = —€*c(d)h(€)n(€) + o(e?).
Using equation (2) we can give a corresponding scaling re-
sult for the first moment. Choosing n = z;z;, one easily
evaluates the components of the first moment:

][ ZiTj dA
BN M

i(€);(€) + c(d) € Apm(ziz;) + o(€?)
i(€)2; (&) + c(d) € 2V - Vuz;
+2; Az + TiApms) + o(€?) .

Therefore the scaling of the first moment is also quadratic:

(M})i;

€

B.NM B.nM B.NM

2¢(d) €V pmziV ez + o(€?)
2¢(d) €M pm)ij + o(€?),

where Il7, v is the linear projection onto the tangent space
of M at point x(£). More precisely, Il7; o¢ is the matrix
representation w.r.t. canonical basis of R and (II7; um1)4;
is the corresponding matrix entry. We can state:

Theorem 3: For an embedding x : M — IRt1, the first
moment w.r.t. (£) and scanning width € scales quadrati-
cally:

M (2(8)) = 2¢(d) €Tl am + of€?) .

B. Non-smooth surface case

We now discuss the case of non-smooth surface features,
such as edges and corners. To this aim, let  : M —
IR*! be a Lipschitz continuous immersed surface, which
is smooth up to a one-dimensional subset X (. Here ¥4
is the edge set on the surface. With respect to the scaling
behavior of the shift n. of the zero moment centered at
xo = z(&0), & € X, it suffices to assume that for a small
open domain U = U(zo) C IR, the set M NU is of cone
type, i.e., z € MNU implies a(zx—2x¢)+20 € MNU for all
a € [0,1). This is a first order, i.e., linear approximation
of the curvilinear case. Furthermore, consider ¢; such that
B, (z0) C U(zp) and let €1,e2 < €. If we assume for
a moment zg = 0, we derive from the cone property the
following identity:

efdil/ mdA:efd/ x/er dA
B, NM B, nM

=6;d/ m/egdAzegdfl/ zdA,
B,NM Be,NM

and this leads to

efl][ ardA:e;l][ zdA (3)
B, nM Be,NM

These equations are a result of the self-similarity of a cone.
For the general case, where x( is not necessarily the origin,
we have the following result:

Theorem 4: Let x : M — IR%! be a Lipschitz con-
tinuous embedding that is smooth on M — ¥ ¢; then for
& € T p consider a ball of radius € with center z¢ = x(&)
and n (&) = M2 (x(&)) — z(&)- Then there is a vector 7
such that

ne(&) = en + ofe) .

In the case d = 1 we are able to compute the length of the
above vector 7i. This enables us to determine the apex an-
gle of an edge of a given curve explicitly. The corresponding
computation and result can be found in [5].

Next, let us consider the first moment and consider the
following special situation for d = 2:

Let D. = {(z1,%2,73) € R3¥|z3 = 0,21 > 0,27 + 23 <
€’} be a semi-disc in IR®. Rotating D, around the z»-
axis by an angle ¢ resp. —p we obtain two semi-discs S}
and S2, respectively. Now, we compute the first moment
of the union S = S! U S2. This tensor coincides up to
higher order terms with the actual first moment M} (z())
where z(£) is contained in the singularity set X aq of the
Lipschitz continuous surface, where S! and S? are the two
tangential planes at z(£). Here, due to the invariance of the



first moment w.r.t. translations, we assume that z(&) = 0.
We observe that for €1, €5 < € one has

6;2][ x®di:ez_2][ TRzdA.
SNB., SNB.,

By Theorem 4, one obtains for the zero moment M?l of
SN B,

M2 @ M2 =€l @i+ o(e).
Hence, we obtain quadratic scaling of the first moment as
in the smooth case.

We now explicitly compute the eigenvalues of the first
moment of S. On account of the above considerations
concerning the scaling behavior, we set € = 1 as well as
St =81 S2 =52 D; = D. The two subsets S* and S2
are of the same area. Thus we can express the first mo-
ment M1(S) of S by the first moments of S! and S? and
an additional correction term:

MY(S) = M'(S'uS?)

:1M1(51)+1M“’(52)+1 ][ r®zdA
4 4 4\ J &

—][ di®][ a:dA+][ TR xdA
st 52 52
—][ ;ch®][ di}

S2 St

1 1

1
= _M'(S") + —M*(S*) + = ][ di®][ rdA
2 2 4\ ) & 51

—][ :ch®][ di-{-][ di®][ zdA
st 52 52 52
—][ di®][ :ch}

52 St

= %Ml(Sl) + %MQ(SQ) +{TPT}, (4)

where by TPT we denote all tensor product terms above.
The first moment of the semi-disc D in the z3-plane is

1/4—-14/B3m)? 0 0

MY(D) = 0 1/4 0
0 0 0

§ ~ 0.0699 0 0

0 0 0

Introducing the matrix @ = diag(1,1,—1) one gets
MY(S?) = Q M*(S')QT. Analogous relations are valid
for each tensor product term of TPT in (4). Finally, by
taking into consideration these arguments, we obtain:

dcos?p 0 0

MY(S) = 0O v 0
0 0 &sin’p

00 0

+[o0o0 0
0 0 (fqzsdA)’

On account of the equation dsin®¢ + (fq 3 dA)2 =
~ sin? ¢, we finally obtain

Theorem 5: Let z : M — IR?® be a C%'-surface which
is smooth up to a one-dimensional set Xy C M. We
assume that for £y € ¥z the surface (M) has an edge of
apex angle 2¢. In that case, the first moment M}(z(&))
scales quadratically as in the smooth case. Furthermore,
the eigenvalues of the first moment are €27, €>y sin”  and
€26 cos? p (up to higher order terms), if v and § are the
eigenvalues of the first moment of D.

Let us summarize, what we have obtained so far: The
zero moment shift n. on surfaces scales quadratically with
respect to the scanning width e in smooth surface ar-
eas, whereas it scales linearly in non-smooth areas. Even
though the scaling behavior of the first moment in the
smooth and the non smooth case is identical, the eigen-
values give additional information on the presence of an
edge and the corresponding edge angle. This justifies the
usage of moments as detectors for surface features. For a
given, usually small, parameter €, only features larger than
€ will be detected. In Section IV-A we will derive feature
classifiers based on these results and illustrate their perfor-
mance by a number of examples.

C. Implementation of zero and first moment computation

Above, we have treated arbitrary surfaces. In the ap-
plications we usually deal with two-dimensional, irregular,
triangular grids. In the following we will detail the dis-
cretization of the presented local surface classification in
this case. Hence, we consider a polyhedron M, consist-
ing of triangles. In our implementation, we compute the
moments centered at each node of the triangulation.

Let us fix one node X; and denote the moments by M2,
and M, 61’ - Here h indicates the grid size and e is as before
the radius of the corresponding Euclidean ball. Given this
radius e, first of all one collects all triangles {T1,...Tn} of
the triangulation such that T; N B.(X;) #0, i = 1,...m.
This set of triangles splits into two subsets. The first one -
denoted by T° - consists of all elements with T; N B, = T;.
The second one 72 is supposed to be the complement, i.e.,
T; € T? implies T; N B, # (. Now we iteratively compute
the integrals f ,# dA and f -,z ®x dA. To this aim we use
the following relation for averaged integrals over disjoint
sets A, B:

4 1|
f won! A |B|][ Ry |B|][ RANRD

On each triangle of 7° we use the following exact integra-
tion formulas:

MYT;) =

][ rQ@xrdA =
T.

i

1
S(XO + X1+ X5),

1
§%®%+K®H+H®HL

where Xg, X7, X are the nodes of T; and Yy = (Xo +
Xl)/Q, Yi = (X1 +X2)/2 and sz = (X() +X2)/2 For
the corresponding computations on 77 N B, we apply an



approximation. For each triangle T} € 72, the intersection
of the sphere 9B, and the edges of the triangle consists of
two points denoted by P, P,. We replace the curvilinear
connection T;N OB, by the line segment connecting P; and
P,. Hence, we replace T; N B, by a polygon which we
again can split into triangles. Now, we proceed as above
using exact integration on all these virtual triangles. Using
equation (5) one is able to compute the average integrals
over the quadrilaterals. Next, once again we iteratively
compute f -,z dA and {52 ® x dA. Finally, we get

TeouT?®

T, T2 oo
= Ly Ly

e+ o M T e M)

and an analogous relation for Dt’rﬂu’rﬁx ® xdA and achieve
Mel,h:f .Z'®Z'dA—M2h®M2h
TouT?

IV. FEATURE CLASSIFICATION AND APPLICATIONS

In this section, we will derive feature detectors on sur-
faces and experimentally verify their robustness. We pro-
pose the following two classification methods:

- zero moment classification: C° = G(|n.|/€)
- combined zero and first moment classification: C%' =

Ne| Amin
G( € Amaz )
with Apin, Amaez the smallest and largest eigenvalue of
M (z).
Here the function G is G(s) = 575z
sen a, 3 > 0. The quotient A\pin/Amaz iS approximatively

given by Theorem 5:

with suitably cho-

Amin/Amaz = 6/7 cos? ¢ = 0.2796 cos® o,

where 2¢p is the apex angle as in Theorem 5. This rela-
tion for Apin/Amaz is valid for ¢ larger than 0.2726 ~ 16°.
Especially, in the smooth case (¢ = m/2), this quotient van-
ishes where it increases for decreasing ¢. For ¢ smaller than
16°, the quotient again tends to 0, when ¢ — 0. In this
sense, very sharp features will be detected in a weaker sense
as they should. Nevertheless, as our experiments show, this
seems to be a theoretical detail. In real-world applications,
the above observation does not play an important role and
is partly compensated by the zero moment.

First, we show the classifiers on various datasets (Section
IV-A) and compare the zero and first moment classifiers
with respect to robustness, detail detection, and computa-
tion time. In particular, it turns out, that the combined
classification is performing much better. Indeed, already
for small parameters € we obtain a robust feature detec-
tion. Let us mention that the computational cost for a
single moment evaluation on a vertex of the surface My, is
O(%z). Hence, the cost is large for a scanning width € which
is relatively large compared to the grid size h. As we will
see, one obtains satisfying results for typical meshes My,
and € &~ 3h, 4h. Finally, we present an application of the
proposed detectors for surface denoising (Section IV-B).

A. Classification Results

At first, we test our classification in Figure 1 on a se-
quence of octahedra with an increasing noise level. In this
case, the scale, i.e., the scanning width is always the same.

Figure 2 shows the detection of details on different scales

Fig. 1. From left to right: zero moment classifier (top row) and
combined classifier (bottom row), for white noise perturbations of
maximal amplitudes h,2h,3h in normal direction (from left to right).
We always choose the scanning width € = 4h.

choosing a different scanning width e. Here, the norm of the
linearly rescaled zero moment shift n.(£) = M2(§) —z(€) is
color coded from red (low) to green (high). Next, we con-

Fig. 2. Different scales of the zero moment shift on a surface choosing
€ = 0.02 on the left, 0.04 in the middle and 0.06 on the right. The
diameter of the object is scaled to 1.

sider the classification of human cortices. Here, the focus
is on visually separating convex and concave areas of the
surface, which is a difficult task due to the complicated lo-
cal geometry. Potential applications are the segmentation
of certain domains on the cortex, analyzing the course of
diseases as e.g. the Alzheimer’s disease, and perspectively
the matching of different cortices.

Figure 3 shows the classification of a human cortex using
our zero moment classifier, on the same red to green col-
ormap as in Figure 2. Here we use a slightly improved color
coding. To be able to distinguish sulci from gyri (“moun-
tains and valleys”, or convex and concave areas respec-
tively) we in addition consider the sign of the scalar prod-
uct ne(€) - n(€) where n(€) is an averaged oriented normal
on the surface. The surface was generated by a marching



Fig. 3. Human cortex classification using the zero moment shift,
different viewpoints. The scanning width is ¢ = 0.05, where the
diameter of the object is scaled to 1.

cube algorithm and consists of approx. 130,000 triangles.

Fig. 4. Zero moment (left) and combined (right) classifiers for the
human cortex in figure 3.

Figure 4 compares both types of surface classifications.
Here, the scanning width is € = 3h, where h is the average
diameter of the dataset triangle cells. This corresponds to
a fraction of 0.015 of the object size. We notice that by the
combined zero and first moment classification we obtain
the best results. The zero moment classification delivers
a significantly weaker result for the same scanning width.
Although for a larger scanning width one is able to de-
tect the major edges (cf. Figure 3) the combined classifier
visualizes and separates fine structures much better. Fur-
thermore, Figure 5 shows a comparison of the classification
based on moments and based on local curvature computa-
tion as introduced in Section II (here based on the local
L? projection onto polynomial graphs). This comparison
clearly demonstrates the robustness of the new moment
based method with respect to noise.

Fig. 5. Human cortex surface classified with zero moments (left) and
curvature classification (right)

In Figure 6, subsequent examples are shown using both
classifiers C° and C%' The scanning width is € = 4h in
all cases. As in the previous examples, the zero moment
classifier C? only is able to detect coarser scale features.
The best results are obtained by the combined zero and first
moment classifier C%!. In all applications listed so far, we
used a = 0.1, whereas 3 was set to 5 for the zero moment
classifier, 100 for the first moment classifier, and 20 for
the combined classifier, respectively. The computation of
the classifiers took around 7 seconds for a mesh of 269,000
triangles on a Pentium 4 PC at 1.7 GHz.

Fig. 6. Classifier applied to different surfaces. Left column: C2 and
right column: C?’l.

B. Edge preserving surface fairing

As an application of our local surface classification in sur-
face processing, we consider the fairing of surfaces based
on anisotropic geometric diffusion. Our model preserves
edges and in addition enables tangential smoothing along
edges. Therefore — as in Section II — we consider an
anisotropic diffusion tensor af. ,,. For a suitable defini-
tion of a%—e am we take into account the eigenvectors of the

first moment M!(z) (see Section III-B). Hence, we de-
fine the actual diffusion tensor on 7¢ M in the orthogonal
basis {w!¢,w?¢ n}, where n denotes the surface normal
and {wh¢, w?¢} C IR® denote the embedded tangent vec-
tors corresponding to the eigenvectors of the first moment.
More precisely, w!'¢ corresponds to the largest eigenvalue
of the first moment and w?*¢ is the orthogonal complement
of wh¢ in the tangent space. Practically, we compute the



eigenvalues and eigenvectors of the three by three matrix
M!(T) of every mesh triangle T applying Jacobi iteration.

Next, we take the eigenvector w!¢ corresponding to the
largest eigenvalue, project it on the plane of the triangle,
and normalize it. Then we compute w?€ as a cross product
between w!:¢ and the triangle’s normal. This gives a stable
and simple way to determine the tangent basis (w!*¢, w?¢).
To illustrate this procedure, we show in Figure 7 the eigen-
vector wl*¢ corresponding to the largest eigenvalue of the
first moment as an arrow plot. The vector is shown only in
areas where the combined zero and first moment classifier
is larger than a given threshold, i.e., where features such
as edges and cusps are detected. Hence w'€ is aligned to
the direction of the features (edges). As shown by the de-
tailed images in Figure 7, the computation of the feature
directions is robust and reliable.
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Fig. 7. In the vicinity of edges indicated by the combined classifier
c%!, the feature directions based on the first moment M} are drawn.
On the right-hand-side, we zoom into the areas a) and b), respectively.

Next, we define the application of the diffusion tensor
af, pm to a vector z € R® by

azmz = 1lrm (G(O)(z b )w'e

+COL (2 - w€)w?e + (2 - n)n) . (6)
Here II7; p denotes the orthogonal projection onto the tan-
gent space 7¢ M and we identify the operator on the ab-
stract tangent space and the endomorphism in IR3. Fur-
thermore, the function G(-) is chosen as in Section IV-
A, where in our applications a = 0.1 and g = 20. Now,
we apply a%—e um as diffusion tensor in the following type of
parabolic evolution problem:

Given an initial compact embedded manifold Mg in
IR?, we compute a one parameter family of manifolds
M) }e Ef with corresponding coordinate mappings x(t)
which solves the system of anisotropic geometric evolution
equations:

Oyx — diVM(t)(a’erfM VM(t):E) = f on IRt x M(t), (7)

and satisfies the initial condition
M(0) = My.

Hence, due to the anisotropy defined above, we enforce a
signal enhancement in the direction of the eigenvector cor-
responding to the largest eigenvalue of the first moment.
In the perpendicular direction on the tangent space, the
amount of diffusion is determined by the combined zero
and first moment classifier C21, i.e., as a function of the
surface smoothness. For f = 0, we can rewrite the evolu-
tion problem by use of the notion of the generalized mean
curvature hqe (for the corresponding background, we re-

fer to [3], [5]):
Ox = —haeTEM n + (diva af, ) (@) -

Hence the velocity 0;z splits into a tangential component
and a component orthogonal to the surface,
= —h

Trer s O aem ™

Orm Oz = (divaag p)(2) ,

Here II(7;aq)+ v = (v - n)n (with n being the surface nor-
mal), is the orthogonal projection onto the normal direc-
tion.

Fig. 8. Several time steps of the evolution problem for surface fairing
using anisotropic diffusion based on the local surface classification via
moments. The parameters of the function G are @ = 0.1 and g = 20.

The tangential part II7, o Oz causes a tangential drift
of the surface coordinates on the surface but it does not
influence the shape of the surface itself. Nevertheless this
drift property may result in degeneration of triangles in
the case of discrete surfaces. To avoid this problem we
reformulate (7) by

6t:v—(divM (a%—sMVMx)-n)nzo. (8)
In the spatially discretized form, we project the displace-
ment of the mesh nodes onto node normals. The node
normals are recomputed after each mesh smoothing step.
The problem is discretized by a semi-implicit time stepping
scheme (cf. the algorithm be Dziuk [10] and its generaliza-
tion in [4]). Frequently, due to the robustness of our clas-
sification it suffices to compute the classifier on the initial
noisy mesh once and use it subsequently for all the defor-
mation steps. The corresponding linear system is solved
using CG-iterations. One deformation step takes about



two seconds on a mesh of 269,000 triangles on a Pentium
4 PC at 1.7 GHz.

Figure 8 shows several time steps during the edge pre-
serving fairing of a triangular surface. The leftmost image
corresponds to the original noisy surface.

V. CONCLUSION

In this paper, we have presented a range of local classi-
fiers that are able to detect surface features such as edges,
corners, and concave and convex smooth regions. Our main
focus was to provide a stable tool that is robust even on
irregular, discrete and noisy surfaces. We have described
two classifiers, based on the zero moment and a combina-
tion of the first moment eigenvalues and the zero moment.
The classifiers are able to detect surface features on com-
plex, real-world discrete surface meshes. They are simple to
compute, and come with a built-in scale parameter, which
is the scanning width in the integration of the moments.
This parameter allows to detect only features which are
above a user-specified scale. Moreover, we have proven re-
sults about the scaling behavior as well as the eigenvalues
of the first moment in the smooth surfaces areas and on
edges. These results serve as a quantitative basis for the
use of the classifiers. For the moment calculation we con-
sider a block filter approach. In signal processing it can
be advantageous to use a Gaussian-type filter kernel. But
in the geometric context relevant here this would require
a corresponding time step of mean curvature motion [4] as
the geometric counter part of Gaussian filtering. Hence,
we confine to the simplest filter here, which in particular
allows us to present a detailed qualitative and quantitative
analysis.

Future work will address the use of the presented sur-
face classifiers, especially the combined one, for devising
better surface smoothing methods and for the multi-scale
modeling of surfaces.
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