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Abstract

The a posteriori analysis of the discretization error and the modeling error is studied for
a compliance cost functional in the context of the optimization of composite elastic materials
and a two-scale linearized elasticity model. A mechanically simple, parametrized microscopic
supporting structure is chosen and the parameters describing the structure are determined
minimizing the compliance objective. An a posteriori error estimate is derived which in-
cludes the modeling error caused by the replacement of a nested laminate microstructure by
this considerably simpler microstructure. Indeed, nested laminates are known to realize the
minimal compliance and provide a benchmark for the quality of the microstructures. To es-
timate the local difference in the compliance functional the dual weighted residual approach
is used. Different numerical experiments show that the resulting adaptive scheme leads to
simple parametrized microscopic supporting structures that can compete with the optimal
nested laminate construction. The derived a posteriori error indicators allow to verify that
the suggested simplified microstructures achieve the optimal value of the compliance up to
a few percent. Furthermore, it is shown how discretization error and modeling error can be
balanced by choosing an optimal level of grid refinement. Our two scale results with a single
scale microstructure can provide guidance towards the design of a producible macroscopic fine
scale pattern.

1 Introduction

It is a fundamental insight in shape optimization that elastic bodies subjected to external sur-
face loadings exhibit the spontaneous development of microstructures, for example in the case of
compliance optimization [3]. This phenomenon is a practical manifestation of the fact that the
associated minimization problem is in general ill-posed. One popular solution appeals to relaxation
theory, thereby allowing composite materials with intermediate density and effective elasticity ten-
sors resulting from a microscopic mixture of the involved constituents. Homogenization theory
[24, 51] is then used to derive the effective material properties of a composite elastic material,
starting from a given microscopic decomposition into homogeneous regions of the individual in-
gredient materials. Using the G-closure theory [22, 51] it can be shown that a nested lamination
structure realizes the minimal value of the compliance functional [3]. Let us note that optimal
constructions exist but are not unique. In fact, several entirely different microstructures lead to
globally optimal material properties at the macroscopic level [22, 51]. Most of them are however
purely theoretical, lack a truly mechanical equivalent and would not be manufacturable. We ad-
dress this optimal design problem for 2D elastic material composites numerically and introduce a
microscopic supporting structure consisting of two orthogonal trusses with varying thickness and
arbitrary rotation (cf. Figure 1). For these simple microscopic cell geometries a collocation type
boundary element method is employed to compute the corrector problem in a two-scale ansatz and
to evaluate the local effective elasticity tensor. This is then combined with a bi-quadratic finite
element scheme on a rectangular grid on the macroscale to set up a two-scale approach for the
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simulation of microstructured composite elastic materials. We shall in particular focus on a micro-
scopic construction with rotated, orthogonal trusses with varying thickness, and show that it leads
to material composites with a compliance cost remarkably close to the optimal composite obtained
from sequential lamination. Numerical experiments with different simple, parametrized geometries
in the microscopic cells were performed in [25], and have lead to the identification of the rotated
truss construction as the most promising candidate. This microscopic pattern has already been
extensively studied in the literature (see the discussion below). Based on this two-scale approach
for the elastic state equation one can optimize the parameters controlling the microscopic pattern,
i. e., the two width parameters of the trusses and the rotation angle, considered as functions of the
macroscale position. Numerical results suggest that the parameter functions controlling the mi-
croscopic patterns are smooth in large regions of the elastic workpiece. At the same time, in small
regions the simple model for the microscopic supporting structure tends to show more complex
patterns.
Related work. Shape optimization in general is a well-established field and covered extensively in
the literature, see e. g. the textbooks [14, 3]. Regarding the theory of homogenization we refer to [39,
18, 24, 21, 22, 51]. The foundations for the sequential laminates construction were already laid early
in [63, 54, 32, 50, 34, 6]. Jog et al. [40] and Allaire et al. [1] used the nested lamination ansatz to
develop a practical numerical scheme for the optimization of the material composition in mechanical
work pieces. Thus, these methods approximate the truly optimal material microstructure.
Elastic shape optimization with geometrically simple microscopic structures has first been inves-
tigated by Bendsøe and Kikuchi [16]. They in particular already considered rotated cells with
a rectangular hole (see [16, Section 3]) and applied adaptive meshes to resolve the macroscopic
variation of the microstructure parameters. Optimal microstructures based on these rotated truss
geometries are also studied by Kikuchi and Suzuki [62] for instance for the cantilever design prob-
lem. The same quasi periodic microscopic pattern was applied by Rodrigues and Fernandes [60] for
thermoelastic material optimization also using an adaptive finite element method. Here, we pick
up this approach and provide a posteriori estimates for the discretization error and the modeling
error. Surely, due to the explicit relation between the lamination parameters and the effective
elasticity tensor, algorithms based on the nested lamination approach are very efficient and need
a numerical discretization solely on the macroscale. The intention of this paper is to study in par-
ticular the modeling error that arises when replacing the nested laminate with its 3 different scales
in 2D by the two-scale model with the rotated trusses on the microscale. Surely, this comes at the
expense of the solution of the microscopic PDE problem. In fact, we demonstrate exemplarily that
the a posteriori error estimation of modeling errors of this type is accessible via the dual weighted
residual approach. To this end, we combine a finite element scheme on the macroscale as for in-
stance in [16, 62] with a boundary element scheme on the microscale. A priori error estimates for
a finite element scheme in two-scale PDE-constrained optimization were very recently presented
by Li et al. [49], were the PDE is a diffusion equation in a domain with periodic microstructure.
Further optimal microstructures include concentric spheres for hydrostatic loads [36], confocal
ellipsoids [35], and the Vigdergauz construction [66]. We refer to [22, 51] for a more complete
discussion. Related to our two-scale approach with parametrized microstructures [25] is also the
earlier work by Barbarosie and Toader. Based on optimization of holes in generalized periodic
domains for given macroscopic affine displacements [7, 8] they set up a macroscopic finite element
scheme in [9] working with effective material properties evaluated via numerical homogenization.
All these methods are in line with the heterogeneous multi-scale method (HMM) [30, 28, 29, 31],
a general paradigm to tackle numerical problems involving different length scales.
A different approach to the optimization of microscopic geometries is the free material optimization
approach, where one first aims at the locally optimal elasticity tensor. Bendsøe et al. showed in [13]
that one is lead to orthotropic materials with directions of orthotropy aligned with the directions
of principal strains. Furthermore, they computed numerical optimal material properties. Haslinger
et al. used this ansatz to numerically compute a distribution of optimal elasticity tensors in 3D
[37]. In this case one first optimizes the coefficients of the effective elasticity tensor, and then
in a post-processing step one searches for approximating microscopic realizations. Our approach
is also related to the post processing method by Pantz and Trabelsi [58] who used a local truss
construction which is deformed based on the optimal lamination directions (cf. [58, Section 4.1]).
Therefore, as in our approach the nested microstructure construction is avoided. Indeed, their
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structures do not have any inconsistency at macroscopic cell boundary and can in principle be
manufactured.
A posteriori error estimates for elliptic homogenization problems with fine scale diffusion were
derived in the context of HMM in [57, 38]. In contrast to classical discretization error estimates it is
however often required to assess the error w. r. t. a certain cost functional. Such goal-oriented error
estimates for quantities of interest of a real composite work piece were derived in [59, 55, 56, 64].
In this contribution we follow the dual weighted residual (DWR) method [12], see e. g. [11] in
particular for optimal control problems. This approach has recently been put to work for a variety
of different applications. See [10] for a quasi-optimality result of the adaptive finite element scheme
using a special marking strategy, [17, 65, 48] for the treatment of control and state constraints,
and [46] for matrix valued L1 optimal control. A posteriori error estimates in the context of
shape optimization have been studied in [45] for a tracking type cost functional and Helmholtz
state equation, in [52, 53], where DWR is used to assess the PDE error while the geometric error
estimates relate to the Laplace Beltrami operator, and in [43, 44] for one shot methods applied
to fuel ignition problems and aerodynamic shape optimization. In [20] error estimation for the
optimal design in the context of Navier Stokes flow is discussed and in [69] estimates for the
variable thickness sheet model are derived. In [33] a posteriori error estimates have been derived
for shape optimization in a two-scale context with nested laminates on the microscale. To this end,
the dual weighted residual approach has been applied leading to an associated adaptive meshing
strategy.

The paper is organized as follows. In Section 2 we will briefly address the fundamental concepts
of linearized elasticity, shape optimization w. r. t. the compliance objective and optimal material
composites attained by the sequential lamination construction. Furthermore, we briefly review the
numerical two-scale model in linearized elasticity. The dual weighted residual approach for the
compliance cost is developed in Section 3. In the resulting estimates, as usual, certain weights still
involve the continuous solution of the state equation. A suitable numerical approximation which
enables to derive effective local error indicators is presented in Section 4. Some comments on the
implementation are given in Section 5 and in Section 6 we present our numerical results.

2 Optimization of material composites

In this section we will briefly revise the fundamental concepts of linearized elasticity, shape opti-
mization with the compliance objective and optimal microstructures given by sequential lamination.
Furthermore, we will introduce a two-scale approach for the elastic behavior of microstructured
materials, where the microstructure is given by a parametrized truss construction.
Linearized elasticity. Let us assume that an elastic workpiece is described by a simply connected
domain D ⊂ R2 with Lipschitz boundary ∂D. Suppose that the boundary is split into a fixed
relatively open subset ΓD, a Dirichlet part where the displacement vanishes, and ΓN := ∂D \ ΓD,
a Neumann part where sufficiently regular surface loads g can be applied. Then the induced
displacement u[C] is the unique solution u : D → R2 of the partial differential equations of
linearized elasticity, given in variational form as

a(C;u, ϕ) = l(ϕ) ∀ϕ ∈ H1
ΓD (1)

with the quadratic form a(C;u, ϕ) :=
∫
D
C(x) ε[u] : ε[ϕ] dx and the linear form l(ϕ) :=

∫
ΓN

g ·
ϕ da(x) . Here H1

ΓD
denotes the Sobolev space of L2 vector-valued functions with weak derivatives

in L2(D) and vanishing trace on ΓD, ε[u] := 1
2

(
Du+ Du>

)
denotes the symmetrized strain tensor

with the Jacobian Du, ν the outward pointing normal on ΓN and C ∈ L∞(D,R24

) the elasticity
tensor. Furthermore, (Cε)ij =

∑
kl Cijklεkl and σ : ε =

∑
ij σijεij for two matrices σ, ε ∈ R2×2.

The fourth order tensor C(x) characterizes the material properties at each point x ∈ D and will
later be given by the effective tensor arising either from the explicit homogenization formula for
laminate microstructures or from the solution of the microscopic cell problem. As usual, we assume
that C fulfills the symmetry properties Cijkl = Cjikl = Cijlk = Cklij and the ellipticity condition
C ξ : ξ ≥ c |ξ + ξ>|2.
Shape optimization. We consider a cost functional J [C, u] which we aim at minimizing under
the constraint that u solves the associated elastic problem (1). In our numerical application, we
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adopt the classical compliance optimization approach to shape optimization. This means that we
optimize the rigidity of an object by minimizing the elastic energy, or compliance, given by the
functional

J [C, u] :=

∫
ΓN

g · u da(x) = l(u) , (2)

which does not depend explicitly on C. However, from (1) one obtains J [C, u[C]] = a(C;u[C], u[C]).
The shape optimization problem now amounts to finding a subset Ω ⊂ D where a hard material
with elasticity tensor A should be placed. The remaining part D \ Ω is either left void or filled
with a weak material with elasticity tensor B, so that the actual elasticity tensor is given by
C = χΩA + (1 − χΩ)B, where χ ∈ L∞(D, {0, 1}) is the characteristic function of Ω. Throughout
this paper we only consider isotropic materials that are described by the two Lamé parameters λ
and µ. If the amount of hard material is constrained, i. e.

∫
D
χΩ dx = Θ with Θ > 0 fixed, the

resulting minimization problem is ill-posed and the formation of microstructures can be observed
in numerically computed minimizing sequences.
Sequential lamination. To recover well-posedness the minimization problem can be relaxed by al-
lowing material of intermediate density at each point, i. e. χ ∈ [0, 1]. The theory of homogenization
then permits to compute the effective material properties C∗ of mixtures of the constituents A and
B on different underlying length scales. We will refer to the literature for details [19, 3, 24, 51].
Most important for our exposition here is the fact that a sequential lamination construction yields
effective materials that attain lower bounds on the local elastic energy density, called Hashin-
Shtrikman bounds, and thus represent optimal microstructures. They are obtained by layering
hard and soft material along a certain direction with a certain ratio, computing homogenized elas-
tic properties and using those to iterate the construction on a subsequent, substantially larger
length scale, see the sketch in Figure 1. For the compliance objective in two space dimensions
two iterations of the lamination construction are indeed sufficient and the parameters of the con-
struction (direction of the lamination, volume fraction of each phase, and overall local density) can
explicitly be computed from the local stress σ(x) = C∗(x)ε[u(x)]. At the same time the effective
material properties can likewise be computed explicitly from the parameters, leading to an alter-
nating algorithm for computing globally optimal relaxed shapes. Such a numerical method for the
two-scale optimization with nested laminates and an alternating descent algorithm was presented
by Jog et al. [40]. It is moreover possible to ultimately pass from the weak material B to void.
For further details we refer to [47, 4, 2, 1].
A two-scale approach for approximating microstructures. In this paper, we aim at the numerical
computation of a near optimal material composite which consists of a simple microstructure, which
is at least locally mechanically constructible. For this microstructure we choose a model which has
already been proposed in the 80s [16, 62] based on a microscopic pattern of two rotated, orthogonal
trusses of different width, see Figure 1 and the discussion above. To this end, assume that the
microstructure of the two orthogonal, rotated trusses is parametrized via the (relative) width δ1
and δ2 of the two trusses (0 < δ1, δ2 < 1) and the rotation angle α. The vector of parameters is
denoted by q = (α, δ1, δ2) and depends on the macroscopic position x, q(x) := (α(x), δ1(x), δ2(x)).
We then define the microscopic pattern on the (periodically extended) fundamental cell ω[q(x)] :=
Q(α(x))(− 1

2 ,
1
2 )2 of a periodic lattice at the position x, with Q(α) denoting the rotation by the

angle α. In fact, the cell ω[q(x)] splits into a domain ωA[q(x)] with hard material described by
the elasticity tensor A and a remaining domain ωB [q(x)] := ω[q(x)] \ ωA[q(x)] with soft material
described by the elasticity tensor B. The hard phase is given by

ωA[q(x)] := Q(α(x))
(

[− δ1(x)
2 , δ1(x)

2 ]× [− 1
2 ,

1
2 ] ∪ [− 1

2 ,
1
2 ]× [− δ2(x)

2 , δ2(x)
2 ]
)
.

Let us remark that in the implementation of the boundary element method used to solve the
microscopic correction problem it is advantageous to consider a shifted fundamental cell ω̃[q(x)]
resulting from a shift on the periodic lattice by 1

2Q(α(x))(1, 1), with the splitting ω̃B [q(x)] =

Q(α(x))
(

[ δ1(x)
2 , 1− δ1(x)

2 ]× [ δ2(x)
2 , 1− δ2(x)

2 ]
)

and ω̃A[q(x)] = ω̃[q(x)]\ω̃B [q(x)] which describe the

identical periodic, microscopic pattern (cf. dotted red line in Figure 1) with a single interface. The
microscopic problem can be separated from the macroscopic one using the theory of homogenization
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Figure 1: Sketch of twofold sequential lamination. Freely rotated cells with rectangular holes (see
dotted red marking) representing orthogonal trusses (see red marking).

[19, 24, 3]. The key modeling assumption here is that the truss microstructure is locally periodic
and much finer than the macroscopic degrees of freedom. Given the isotropic constituents A and
B and admissible locally periodic perforations on the microscale, which at a material point x are
represented by the parameters q(x), one obtains the local effective elasticity tensor C∗(x) applied
to any strain ξ ∈ R2×2

sym by the cell problem (see [24, Section 10.2] or [19, Theorem 14.7])

C∗[q](x) ξ : ξ =

∫
ω[α(x)]

C(x, y) ε[ξy + w] : ε[ξy + w] dy (3)

with the ω[α(x)]-periodic corrector w defined as the (up to constant translations unique) solution
of ∫

ω[α(x)]

C(x, y) (ξ + ε[w(x, y)]) : ε[ψ(x, y)] dy = 0 ∀ψ ∈ H1
per(ω[α(x)];R2)

in the space H1
per(ω[α(x)];R2) of vector valued functions in H1 on ω[α(x)] with periodic boundary

conditions. Here, C(x, y) = A for y ∈ ωA[q(x)] and C(x, y) = B for y ∈ ωB [q(x)], and by
uniqueness ε[w] depends linearly on ξ. The tensor C∗[q](x) describes the effective elastic properties
of a material with an infinitesimally fine microstructure described by the three parameters q(x) =
(α(x), δ1(x), δ2(x)). The macroscopic (homogenized) problem than takes the same form as in (1)
with the local elasticity tensor C(x) replaced by the effective elasticity tensor C∗[q](x),

a(C∗[q];u, ϕ) = l(ϕ) ∀ϕ ∈ H1
ΓD (D;R2).

Practically, based on (3) and the symmetry assumption for the effective elasticity tensor we can
obtain the components of C∗ by

C∗ijkl = C∗εij : εkl = C∗εij+kl : εij+kl − C∗εij−kl : εij−kl (4)

with εij = 1
2 (ei ⊗ ej + ej ⊗ ei) and εij±kl = 1

2 (εij ± εkl) where e1 = (1, 0) and e2 = (0, 1).
Equivalently, we can formulate a single two-scale problem, which contains both the microscopic
and the macroscopic degrees of freedom: For given isotropic constituents A and B and admissible
locally periodic perforations on the microscale parametrized by q, find an effective macroscopic
displacement u? ∈ H1,2

ΓD
and a periodic microscopic correction w? ∈ Wα solving the two-scale

equation (see for example [24, Section 9.3] for a derivation in a scalar situation)∫
D

∫
ω[α(x)]

C(x, y)(ε[u?(x)] + ε[w?(x, y)]) : (ε[φ(x)] + ε[ψ(x, y)]) dy dx =

∫
ΓN

g(x) · φ(x) da(x)

for all φ ∈ H1,2
ΓD

and all functions ψ ∈ Wα, where the function space of microscopic periodic
displacement corrections is defined as

Wα :=
{
ψ : (x, y) 7→ ψ(x, y) ∈ R2 measurable, where

x ∈ D,ψ(x, y + z) = ψ(x, y)∀z ∈ Q(α(x))Z2, ‖ψ‖Wα
≤ ∞

}
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with ‖ψ‖Wα
:=

(∫
D

∫
ω[α(x)]

ψ(x, y)2 + |Dyψ(x, y)|2 dy dx
) 1

2

. As above, C(x, y) = A for y ∈
ωA[q(x)] and C(x, y) = B for y ∈ ωB [q(x)]. For the underlying two-scale methodology we refer to
[31].
Macroscopic and microscopic discretization. To discretize the problem we assume the macroscopic
domain D to be polygonally bounded and equipped with an admissible and regular finite element
mesh Mh, cf. [23], with elements E ∈ Mh and a piecewise constant mesh size function h. In our
implementation, we assume that D can be meshed with a rectangular mesh and use a finite element
ansatz for the discrete elastic displacement uh on the macroscale in the finite element space Vh of
piecewise bi-quadratic and continuous vector-valued functions with vanishing trace on ΓD. As for
the elastic material properties we consider a piecewise constant tensor field C∗h, derived either from
a set of parameters describing sequential lamination or from microscopic perforation in the two-
scale model. We then compute the solution uh of the discrete weak problem a(C∗h;uh, ϕh) = l(ϕh)
for all ϕh ∈ Vh.
In case the effective material properties C∗h are not given explicitly, as in our case of the rotated
trusses, they have to be computed numerically by solving the cell problem (3). To this end, we
employ a boundary element method for which only the boundaries of the perforated unit cell
ωA[q(x)] need to be discretized by polygon arcs. Let us mention here that this microscopic mesh
is discretized uniformly and will not undergo any refinement. The boundary element method
requires to deal with the fundamental solution of the linearized elasticity PDE. Here we choose as
the underlying material model the Lamé Navier model for an isotropic material, see e. g. [61],

u∗ki(p, q) =
λ+ µ

4π (µ(λ+ 2µ))

(
−δki

λ+ 3µ

λ+ µ
log ‖p− q‖+

(qk − pk)(qi − pi)
‖p− q‖2

)
,

where λ and µ are the Lamé parameters that will both be set to 1 for our numerical computations.
The fundamental solution is used to rewrite the elasticity equation as a boundary integral equation
leading to

w = U [Aε[w] · ν]− V [w] , (5)

where the boundary integral operators U and V are the single and double layer operator, respec-
tively. On the discretized boundary a set of collocation points ξi is fixed and the displacement w
as well as the normal tension Aε[w] · ν is approximated by linear interpolation of nodal values at
ξi. Equation (5) now has to hold for every ξi leading to a linear system of equations. The bound-
ary integral operators U and V are only applied to piecewise affine functions on the boundary,
therefore their application to the basis functions has been computed analytically. As we typically
consider mixed boundary value problems equation (5) has to be rearranged according to known
and unknown values. Further details can be found in [5].
The coefficients of the effective material tensor can then be evaluated as in (3) using a boundary
integral formulation. Likewise it is possible to derive a shape gradient, cf. [26], to be able to com-
pute sensitivities ∇q(x)C

∗
ijkl of the elastic coefficients w. r. t. the describing microscopic parameters.

It is then used in the optimization scheme for the minimization of the macroscopic cost functional
(2). Let use mention that deriving the cost functional initially also leads to sensitivities of the
elastic solution w. r. t. q(x). We use as usual the associated Lagrangian approach and derive the
adjoint equation to compute the gradient of the cost functional. For further details we refer to the
earlier work [25]. In Section 5 we will give further details on the implementation.

3 Modeling and discretization estimate

In what follows we will derive an estimate for the difference of the achievable compliance cost
using the numerical two-scale model with a macroscopically parametrized microscopic pattern
of two rotated, orthogonal trusses and the optimal compliance cost associated with the nested
laminate construction. This estimate reflects both the modeling error caused by the choice of the
mechanically simple but non optimal microscopic pattern and the numerical discretization error.
Let us emphasize that we do not expect that the resulting difference of compliance costs vanishes
for the mesh size tending to zero. In fact, we are interested in the remaining global modeling error

6



and its associated spatial distribution. Furthermore, we will use the resulting error estimate to
adapt the macroscopic finite element mesh.
Let uL be the solution of the continuous problem (1) involving the optimal elasticity tensor field CL

resulting from an optimal sequentially laminated microstructure at each point. Likewise let uS
h be

the discrete macroscopic solution when using the two-scale model with piecewise constant effective
tensors CS

h obtained by solving the cell problems (3) for a pattern of two rotated, orthogonal
trusses. Ultimately we are interested in an estimate of the corresponding difference of compliance
cost values∣∣J [CL;uL]− J [CS

h ;uS
h]
∣∣ ,

in particular for CS
h being the field of elasticity tensors resulting for the optimal choice of the

microstructure parameters and for uS
h computed as the resulting discrete macroscopic strain in the

finite element space Vh. To derive such an estimate we employ the dual weighted residual approach
[11] for optimal control problems. Here, the controls—which have to reside in the same space—are
the coefficient functions of the elasticity tensors CL, CS

h . Using the usual notation ‖ · ‖m,p,A for
the Wm,p Sobolev norm on a set A we obtain the following theorem.

Theorem 3.1 (Weighted a posteriori modeling error estimate). Given the continuous solution uL

to (1) for an optimal effective elasticity tensor field CL (as obtained from optimal nested lami-
nation) and the macroscopic finite element solution uS

h for the two-scale model with a piecewise
constant tensor field CS

h we obtain for the difference of the associated compliance cost values the
estimate∣∣J [CL, uL]− J [CS

h , u
S
h]
∣∣ ≤∑

E

ηE(uL, CL, uS
h, C

S
h) +R , (6)

where the cellwise ηE values are decomposed as follows

ηE(uL, CL, uS
h, C

S
h) := ηuE + ηu∂E + 1

2η
C
E with

ηuE :=

∣∣∣∣∫
E

div
{
CS
hε[u

S
h]
}
·
(
uL − uS

h

)
dx

∣∣∣∣ ,
ηu∂E :=

∣∣∣∣∫
∂E

j(CS
hε[u

S
h]) ·

(
uL − uS

h

)
da(x)

∣∣∣∣ ,
ηCE :=

∣∣∣∣∫
E

(CL − CS
h) ε[uS

h] : ε[uS
h] dx

∣∣∣∣ ,
and j denotes the jump of the normal stress across an edge. Furthermore, the remainder is given
by

R :=
1

2
a(eC ; eu, eu)

and is thus of higher order in the difference of states eu := uL − uS
h and the difference of elasticity

tensors eC := CL − CS
h .

Proof. The proof follows the usual procedure for deriving dual weighted residual estimates (cf. [11]
for the method in general or [33] for a shape optimization problem based on microscopic sequential
lamination). We consider the Lagrangian

L̃(C, u, p) := J [C, u] + a(C;u, p)− l(p) (7)

for arbitrary C, u, and p. The newly introduced function p represents the solution to an adjoint
equation. In case of the compliance cost functional it is, however, trivially determined by p = −u,
cf. [3]. According to our assumption uL and uS

h solve the continuous and the discrete state equation
for given CL and CS

h , respectively. Thus, we obtain a(CL;uL,−uL)− l(−uL) = 0, a(CS
h ;uS

h,−uS
h)−

l(−uS
h) = 0, which implies

eL := L̃(CL, uL,−uL)− L̃(CS
h , u

S
h,−uS

h) = J [CL, uL]− J [CS
h , u

S
h] . (8)
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Thus, we focus on the error in the Lagrangian involving the tensor fields CL, CS
h and the corre-

sponding primal solutions uL, uS
h. We use the shortcut notation L(C, u) := L̃(C, u,−u).

To derive a first order expansion of eL we interpolate linearly between the quantities of the contin-
uous lamination and the discrete two-scale problem and obtain for the difference in the Lagrangian

eL =

∫ 1

0

d

ds
L(CS

h + seC , u
S
h + seu) ds .

We define f(s) as the above integrand, i. e. f(s) := d
dsL(CS

h + seC , u
S
h + seu), and apply the

trapezoidal rule
∫ 1

0
f(s)ds = 1

2 (f(0) + f(1))− 1
2

∫ 1

0
f ′′(s)s(1− s) ds. All derivatives exist and can

be explicitly calculated, since L is a polynomial in its arguments, but it is convenient to do this
only at the final stage of the computation. From the assumption that CL is the optimal field of
elasticity tensors and uL the associated primal elastic solution we deduce that (CL, uL,−uL) is a
stationary point of the Lagrangian. Thus, we obtain that

f(1) = ∇L(CL, uL) · (eC , eu)> = 0 .

Hence, using the remainder term R := − 1
2

∫ 1

0
d3

ds3L(CS
h + seC , u

S
h + seu) s (1− s)ds we end up with

the following representation of the difference of compliance cost values:

eL =
1

2
L,u(CS

h , u
S
h)(uL − uS

h) +
1

2
L,C(CS

h , u
S
h)(CL − CS

h) +R. (9)

Next, we decompose the first two terms into contributions on the elements and element boundaries
of the macroscopic finite element mesh and obtain using integration by parts

L,u(CS
h , u

S
h)(uL − uS

h)

= −2

∫
D

CS
h ε[u

S
h] : ε[uL − uS

h] dx+ 2

∫
ΓN

g · (uL − uS
h) da(x)

= 2
∑
E

(∫
E

div
{
CS
hε[u

S
h]
}
· (uL − uS

h) dx−
∫
∂E

CS
hε[u

S
h]n · (uL − uS

h) da(x)

+

∫
∂E∩ΓN

g · (uL − uS
h) da(x)

)
≤ 2

∑
E

(ηuE + ηu∂E) (10)

with the postulated residual terms ηuE = |
∫
E

div
{
CS
hε[u

S
h]
}
·
(
uL − uS

h

)
dx| and ηu∂E = |

∫
∂E

j(CS
hε[u

S
h])·(

uL − uS
h

)
da(x)|. Thereby, j(σ)(x) = 1

2 [σ(x) · ν(x)] on interior edges, j(σ)(x) = σ(x) ·ν(x)−g(x)
on ΓN , and j(σ)(x) = 0 on ΓD. Here, [σ(x) · ν(x)] denotes the jump of the normal stress across
an edge, i. e. [σ(x) · ν(x)] = (σ(x)|E − σ(x)|E′) · ν(x) for x ∈ E ∩ E′, and ν being the normal on
E ∩E′ pointing from E to E′. For the second term in (9) we obtain the straightforward splitting

L,C(CS
h , u

S
h)(CL − CS

h) = −
∫
D

(CL − CS
h) ε[uS

h] : ε[uS
h] dx ≤

∑
E

ηCE . (11)

Finally, d3

ds3L(CS
h + seC , u

S
h + seu) = −6a(eC ; eu, eu) does not depend on s, and a straightforward

integration concludes the proof.

Let us remark that the first two terms in the definition of ηE (i. e. ηuE + ηu∂E) measure the
discretization error. Indeed, ηuE and ηu∂E include the element and the singular residual of the primal
problem along with weighting terms. They both are expected to vanish for the mesh size tending to
0. The last term represents the difference of the stored elastic energy E [C, u] = 1

2

∫
D
C ε[u] : ε[u] dx

for the different elasticity tensors CL and CS
h evaluated for the discrete strain uS

h. This term
measures the modeling error and is not required to vanish in general. It measures the error caused
by the choice of the rotated truss microstructure compared to the optimal nested laminate.
In Theorem 3.1 we have restricted ourselves to an optimization of the compliance cost. A gen-
eralization to other cost functionals, such as a tracking type cost functional, is straightforward.
However, in this case the dual solution p no longer coincides with −u. Furthermore, the La-
grangian is not necessarily a polynomial in its arguments and thus there is in general no explicit
representation of the residual term R as stated in the theorem.
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4 Derivation of effective local error indicators

The cellwise values ηE of the weighted a posteriori error estimate in Theorem 3.1 depend on the
computed numerical solution uS

h and on the unknown, continuous displacement field uL correspond-
ing to the as well unknown, optimal elasticity tensor field CL. Furthermore, the energy difference
terms ηCE involve the optimal continuous elasticity tensor CL. In order to make practical usage of
this estimate we need to compute suitable approximations of the weighting terms

(
uL − uS

h

)
and

to efficiently estimate the locally optimal effective elasticity tensor CL. Based on these approxi-
mations we then replace ηE by a computable approximation. This can then in the fully practical
algorithm be used to steer the grid refinement and to evaluate a distribution of the modeling error
due to the replacement of the nested lamination microstructure by the microstructure consisting
of rotated, orthogonal trusses.
Approximation of uL. On a given mesh Mh let us consider a two-scale model, where the effective
discrete macroscopic strain uh ∈ Vh in the Galerkin approximation of (1) on Mh results from a
microscopic nested laminate construction. We denote by CL

h and uL
h the optimal effective elasticity

tensor and strain resulting from a minimization of the compliance cost functional. Thereby, we
take into account discrete tensor fields which are piecewise constant on the elements of the mesh.
It is well-known that the CL

h can be easily retrieved from the corresponding stress field σh =
CL
h ε[u

L
h]. Indeed, the lamination directions coincide with the eigendirections of σh and based on

this insight the optimal ratios between the two materials in each involved lamination of the local
composite can be easily identified as functions of the eigenvalues of the stress σh (for details we
refer to [3]). Altogether, we obtain

CL
h = C(α(σh), λ1(σh), λ2(σh)) (12)

for some function

C : R3 → R24

; α, λ1, λ2 7→ C(α, λ1, λ2) ,

which maps the rotation angle α from the canonical basis into the basis of the eigendirections of
the stress and the two eigenstresses λ1 and λ2 to the effective elasticity tensor of the optimal nested
laminate associated with the corresponding underlying elastic stress. For the detailed derivation
of this function we refer to [3]. In Section 5 we give the explicit formulas. Equation (12) gives rise
to a simple iterative minimization algorithm starting from some initial strain. Indeed, given uL

h,i−1

one first evaluates

CL
h,i = C(α(σh,i), λ1(σh,i), λ2(σh,i))

with σh,i = CL
h,i−1ε[u

L
h,i−1] and then computes uL

h,i as the discrete solution of the Galerkin approx-

imation of (1) with the elasticity tensor CL
h,i in Vh. As a suitable initial elasticity tensor and strain

field we consider CS
h and uS

h, respectively. Then, we compute for some fixed k ∈ N the elasticity
tensor CL

h,k and the associated strain uL
h,k.

Following the usual procedure in the context of the dual weighted error estimation approach we
now use a higher order interpolation of a discrete PDE solution in a neighborhood of each cell as a
higher order approximation for the continuous PDE solution and apply this to uL

h,k. Specifically,
for a cell E of an adaptive mesh Mh we proceed as follows. Let us assume that Mh is generated
based on an adaptive quadtree data structure and that E is one of the four child cells of a coarser

cell Ec. Now, we consider the Lagrangian interpolation I(4)
h on the space of bi-quartic polynomials

based on functional evaluation on the union of bi-quadratic Lagrangian nodes on the children of

Ec. Given uL
h,k we define ũL

h,k on the cell E as I(4)
h uL

h,k|E .

With ũL
h,k at hand, we can define the approximations

η̃uE =

∣∣∣∣∫
E

div
{
CS
hε[u

S
h]
}
·
(
ũL
h,k − uS

h

)
dx

∣∣∣∣ , η̃u∂E =

∣∣∣∣∫
∂E

j(CS
hε[u

S
h]) ·

(
ũL
h,k − uS

h

)
da(x)

∣∣∣∣ , (13)

which can be computed based on a Gaussian (tensor product) quadrature with order 5 and 3× 3
nodes, respectively.
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Approximation of CL. The stress tensor σ is uniquely determined by the rotation angle α and its
two eigenvalues λ1 and λ2, i. e.

σ = R(α)

(
λ1 0
0 λ2

)
R(α)T ,

where R(α) is the rotation from the canonical basis into the basis of the eigenstrains. On the other
hand σ = CLε[uL] with CL = C(α, λ1, λ2). Hence, we define a function

F (α, λ1, λ2) = C(α, λ1, λ2)ε[uL]−R(α)

(
λ1 0
0 λ2

)
R(α)T , (14)

which maps the three parameters α, λ1, λ2 to a symmetric 2× 2 matrix with its three degrees of
freedom. Roots of this function correspond to stresses σ and elasticity tensors CL for a given strain
tensor ε[uL] in the optimal laminate configuration. In the implementation we use Newton’s method
to compute for given ε[ũL

h,k] a root (α, λ1, λ2) of F . Thus, we obtain C̃L
h,k = C(α, λ1, λ2) as an

admissible elasticity tensor corresponding to an optimal nested laminate microstructure for a given
approximation ũL

h,k of the optimal strain. Finally, based on C̃L
h,k we compute as an approximation

of the local modeling error term ηCE

η̃CE =

∫
E

(C̃L
h,k − CS

h) ε[uS
h] : ε[uS

h] dx (15)

applying the above Gaussian (tensor product) quadrature of order 5.
Approximate evaluation of ηE. Taking into account the above approximation of the local weighting
terms in η̃uE , η̃u∂E and the local modeling error term η̃CE , we obtain as an approximate upper bound
for the difference J [CL, uL]− J [CS

h , u
S
h] in (6) the term

∑
E η̃E(uS

h, C
S
h) +R with

η̃E(uS
h, C

S
h) = η̃uE + η̃u∂E + 1

2 η̃
C
E , (16)

which is evaluated based on a given pair of discrete strain uS
h and discrete elasticity tensor CS

h ,
which correspond to the optimal compliance cost in the case of the microstructure formed by
rotated, orthogonal trusses of varying width and rotation angle.
In what follows, we give some numerical evidence that an early truncation of the laminates al-
gorithm already yields a sufficiently good approximation to the fully converged solution of the
lamination model. In Figure 2 we show the absolute error in the compliance and the L2-error in
the elastic solution for each iteration of the alternating lamination algorithm, see below, starting
from the two-scale solution uS

h corresponding to CS
h . The difference is computed w. r. t. the final

value at convergence, i. e. when subsequent compliance values differ by no more than 10−8, of the
lamination algorithm starting from the same initial values. In fact, we will use k = 50 iterations
for our numerical computations.

5 Implementation

Our macroscopic computations are performed on an regular quadrilateral mesh implemented within
the QuocMesh library1. The library also provides a collocation type boundary element method
for the solution of cell problems on the microscale. Furthermore it includes a classical Newton
scheme using optimal step size control to solve (14). Adaptive refinements are realized via uniform
subdivision and handling of constrained hanging nodes. Checkerboard instabilities were reported
for a density optimization model by Jog and Haber [41] and by Jouve and Bonnetier [42] for the
sequential lamination microstructure. Following the observations reported in these papers we use
bi-quadratic finite elements for stabilization on the macroscale. For numerical integration we use
a Gauss quadrature rule of order 5 which turned out to be sufficient.
We reimplemented the alternating algorithm for sequential lamination microstructures suggested
in [1] and already described in [33].

1http://numod.ins.uni-bonn.de/software/quocmesh
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Figure 2: After each iteration of the laminates algorithm, starting from an initial state given by
the two-scale model, the compliance objective and elastic solution are compared to the final state.
The error in the compliance is the absolute value, the error in the elastic solution is the L2-error.

Given the rotation α of the dominant eigenvector of σh and its eigenvalues λ1 and λ2, the lamination
parameters and the effective elasticity tensor in equation (12) are explicitly given by

m[σh] =
|λ2(σh)|

|λ1(σh)|+ |λ2(σh)|
, θ[σh] = min

{
1,

√
2µ+λ

4µ(µ+λ) l
(|λ1(σh)|+ |λ2(σh)|)

}
,

C∗mnop[q] = R[α] C̄[m, θ] := Qmi[α]Qnj [α]Qok[α]Qpl[α] C̄ijkl[m, θ] ,

C̄1111[m, θ] =
4κµ(κ+µ)θ(1−θ(1−m))(1−m)

4κµm(1−m)θ2 + (κ+µ)2(1−θ)
, C̄2222[m, θ] =

4κµ(κ+µ)θ(1−θm)m

4κµm(1−m)θ2 + (κ+µ)2(1−θ)
,

C̄1122[m, θ] =
4κµλθ2m(1−m)

4κµm(1−m)θ2 + (κ+µ)2(1−θ)
.

Here R is a linear mapping rotating the tensor C̄ given in reference configuration into the appropri-
ate coordinate frame given by rotation parameter α. In its definition Q are 2× 2 rotation matrices
and the Einstein summation convention is used. The bulk modulus is defined as κ = λ+ µ and l
is a Lagrangian multiplier used in the alternating algorithm to enforce the volume constraint. The
tensor C̄ is complemented using the symmetry relations and filling the remaining entries with 0.
This yields a singular elasticity tensor that has to be regularized by adding a small constant.
Within each cell the underlying microstructure is specified by a small set of parameters leading to
a finite dimensional constrained optimization problem solved by the open source software Ipopt

[67, 68]. It implements an SQP type minimization scheme using limited memory BFGS updates
to approximate the Hessian. To steer the adaptivity we follow a Dörfler strategy [27] marking cells
giving rise to the top 40% of the total estimated error.

6 Numerical results

In the following we discuss the concrete application of our adaptive algorithm to four textbook
examples of 2D shape optimization problems. For each of them we visualize the resulting solution
and refinement patterns and list the error indicator values and the computed cost values at each
refinement step. As expected, the modeling error cannot be reduced beyond a problem-dependent
positive lower bound. In fact, after a substantial reduction of the discretization and the modeling
error in the initial refinement stages, the algorithms builds an oscillatory pattern on the grid scale
in certain regions. We discuss below the implications of these observations for the appropriate
usage of the a posteriori error control.
The first scenario is a carrier plate modeled by a square domain D = [0, 1]2 fixed at the bottom
and subject to a uniform shearing load on the top, cf. Figure 3. The next scenario is a cantilever,
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cf. Figure 5. It is modeled by a rectangular domain D = [0, 1] × [0, 0.5], fixed at the left hand
side and subject to a downwards pointing load located in the center of the right hand side. The
third example is a bridge configuration given on the domain D = [0, 1]× [0, 0.5], cf. Figure 6. We
prescribe roller boundary conditions on a small fraction of the lower boundary on the left and right
hand side, i. e. only the vertical displacement component is kept fixed there. In between a uniform
downwards pointing load is applied. Finally we consider an L-shaped domain D = [0, 1]2 \ [0.5, 1]2

fixed on top and subject to a downwards pointing load in the center of the lower right boundary,
cf. Figure 7. All applied loadings have a magnitude of 1. For the cantilever scenario the global
volume fraction is constrained to 50%, for all other scenarios to 67%, respectively.
For the carrier plate scenario we show the macroscopic computational domain at several steps of
the adaptive scheme in Figure 3. Moreover the optimized microscopic geometries underlying each
macroscopic element of the grid, the associated elementwise volume densities, and a color coding
of the von Mises stress are shown. For the other scenarios we depict grid, visualization and von
Mises stress of two intermediate refinement steps in Figures 5, 6, 7. To analyze the computed error
indicators leading to the refined grids we list the contributions of each term for every refinement step
in Tables 1 and 3. A striking observation is that the error indicator does not decrease at later stages
of the adaptive algorithm. As noted earlier one cannot expect the indicator to go to zero due to the
non vanishing modeling error. However, the tables show that while the modeling error increases at
most mildly both discretization error terms show significant growth after a few refinement steps. In
fact, this appears in regions where the stress tensor would indicate a nested laminate construction
as the optimal local pattern. Thus, this locally optimal two-scale geometry cannot be realized by
the rotated truss construction. As a compensation of this deficiency the algorithm seems to try to
establish an additional intermediate scale on the grid level, This does not appear to be a classical
numerical instability caused by a non appropriate numerical discretization ansatz but a laminate
type oscillating pattern as a consequence of the non optimality of the choosen microscopic model.
This can be observed in the images, as for example in the last row of Figure 3, which shows a color
coding of the local discretization error contributions. These oscillations have small effect on the
energy but lead to significant additional discretization errors and therefore to the observed increase
of the global discretization error estimate. Furthermore, these oscillations have an impact on the
optimal compliance cost computed numerically on the various grids. This optimal cost depends on
the discrete solution of the underlying constrained optimization problem and is characterized by a
discrete saddle point of the Lagrangian (7). In particular, it increases if the elastic problem is not
fully resolved, which is the case if the coefficients are rapidly varying. These discretization errors
give rise to a substantial increase in the later refinement stages, as can be seen in the tables. The
process seems to be self-propelling and propagating during subsequent refinement steps, resulting
in refined computational domains that seem uneligible for the considered scenarios.
As a comparison we show a refined grid after 24 refinement steps for the carrier plate scenario
using the sequential lamination model from the earlier work [33] in Figure 4. Here one observes
sharply resolved interfaces between regions of diverse material density. However, in the central
gray domain where the optimal pattern is an actually nested laminate the grade of refinement
keeps being moderate. The observed phenomenon does not stem from the adaptivity of the grid,
as illustrated by the corresponding results based on four uniform refinement steps for the cantilever
scenario, starting from the same initial grid as before. In Table 2 we again recognize the dominant
increase of the discretization error terms. There is no a priori error analysis of the modeling
error and the discretization error at hand which would allow to study this type of phenomena in
full depth. Nevertheless in the context of a posteriori error estimation these observations lead to a
practical strategy for the use of the error estimate as a stopping criterium in the refinement process
to avoid overrefinement.
In summary, our results illustrate good convergence of the objective functional and of the general
structure of the two-scale shape. They also show that the modeling error can be reduced via the
adaptive meshing strategy until a problem-dependent lower bound is approached. At this point the
limit of the chosen microscopic model of the rotated trusses for the local shape pattern is obviously
reached, as indicated by the necessity to construct an intermediate pattern via oscillations on the
grid scale. The proposed a posteriori error bounds show a clear indication of this effect and allow to
stop the algorithm at that point. Extreme refinement appears to be neither necessary nor useful in
the present setting. Without an additional regularity term in the cost functional which penalizes
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strong variations in the parameters of the microscopic patterns, the cost functional cannot be
further reduced via a refinement of the grid, as observed in the tables. We also observe a clear
coincidence of the increase in discretization error with the increase in the numerically computed
cost value.

Figure 3: For the carrier plate scenario we depict from top to bottom: the adaptively refined grid
after 0, 4, 7, 10, 13 refinement steps; a visualization of the optimized microstructure of the two-
scale model using an iconic representation with the periodically extended perforations in white
and the truss geometry on the fundamental cell in black on a uniformly gray background; the
volume density on the elements of the macroscopic mesh; the von Mises stress color coded with

for values in [0, 6], and the element wise error indicator η̃uE + η̃u∂E with the same color
coding now for values in [0, 0.4].
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#Refs Edge η̃u∂E Volume η̃uE Model 1
2 η̃
C
E Total η̃E(uS

h, C
S
h) J [CS, uS] #El

0 0.216758 0.371898 0.726425 1.315083 2.163037 64
1 0.089962 0.109742 0.496442 0.696147 2.142808 100
2 0.080205 0.107282 0.410473 0.597961 2.026496 154
3 0.045338 0.057250 0.355282 0.457871 2.006264 262
4 0.032952 0.030399 0.290097 0.353449 1.992369 382
5 0.024614 0.021315 0.216723 0.262653 1.941411 598
6 0.021418 0.022156 0.188472 0.232046 1.932662 868
7 0.020352 0.020339 0.165938 0.206630 1.906596 1318
8 0.019183 0.018444 0.140885 0.178513 1.901717 2077
9 0.020706 0.018520 0.128235 0.167461 1.890917 3241
10 0.022799 0.019582 0.107348 0.149730 1.898300 5002
11 0.026824 0.021944 0.096681 0.145451 1.901327 7576
12 0.031593 0.025283 0.100130 0.157007 1.914866 11365
13 0.052313 0.041381 0.129384 0.223079 1.933688 16903
14 0.079236 0.061311 0.151317 0.291865 1.952025 25558

Table 1: Components of the error indicator for the carrier plate scenario and each refinement
step. The optimal compliance cost based on extrapolation of values obtained from a series of
computations for the sequential lamination model on uniform grids is 1.83992. At steps 7 to 11
the value for the two-scale model differs from the optimal one by 2 to 3%.

#Refs Edge η̃u∂E Volume η̃uE Model 1
2 η̃
C
E Total η̃E(uS

h, C
S
h) J [CS, uS] #El

0 0.216758 0.371898 0.726425 1.315083 2.163037 64
1 0.117318 0.131675 0.469026 0.718020 1.992764 256
2 0.026711 0.028785 0.374861 0.430358 1.922647 1024
3 0.010379 0.009895 0.207756 0.228032 1.903045 4096
4 0.004076 0.004095 0.220584 0.228756 1.945240 16384

Table 2: Components of the error indicator for the carrier plate scenario using uniform refinement.

Figure 4: For comparison grid, density, and von Mises stress with color coding as in Figure 3 for
values in [0, 6] for the sequential lamination model after 24 refinement steps, based on the approach
described in [33].

7 Conclusion

We presented a two-scale approach to shape optimization based on simple and physically realizable
microstructures, consisting of two orthogonal trusses whose width and orientation are optimized.
We gave a posteriori bounds of the resulting discretization and modeling error. We presented a
numerical implementation of the scheme, based on the boundary element method at the microscale
and finite elements at the macroscale, which uses the estimated error to guide grid adaptivity, and
employed it to study several standard model problems in shape optimization.
Our results illustrate good convergence of the objective functional and of the general structure of
the shape. However, after an initial decrease, the error indicator increases when the grid becomes
finer and finer. This is attributed to the emergence of oscillations in the microscopic parameters at
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Figure 5: For the cantilever scenario after 4 / 9 refinement steps: adaptively refined grid; visual-
ization of the two-scale model as in Figure 3; von Mises stress with color coding as in Figure 3 for
values in [0, 3].

Cantilever Bridge L-Shape
#Refs η̃uE + η̃u∂E

1
2 η̃
C
E J [CS, uS] η̃uE + η̃u∂E

1
2 η̃
C
E J [CS, uS] η̃uE + η̃u∂E

1
2 η̃
C
E J [CS, uS]

0 0.0243 0.0706 0.2416 0.7390 0.3552 0.9239 0.0668 0.0729 0.2848
1 0.0114 0.0503 0.2083 0.3058 0.3830 0.8466 0.0332 0.0508 0.2459
2 0.0068 0.0422 0.1924 0.2132 0.2909 0.7931 0.0206 0.0359 0.2270
3 0.0044 0.0324 0.1913 0.1011 0.2421 0.7632 0.0126 0.0322 0.2213
4 0.0049 0.0303 0.1889 0.0519 0.2139 0.7436 0.0088 0.0264 0.2198
5 0.0053 0.0250 0.1807 0.0413 0.2209 0.7355 0.0053 0.0239 0.2190
6 0.0050 0.0220 0.1772 0.0436 0.2620 0.7354 0.0088 0.0213 0.2147
7 0.0067 0.0182 0.1761 0.3006 0.4511 0.8585 0.0108 0.0221 0.2113
8 0.0111 0.0218 0.1776 0.0804 0.3054 0.7570 0.0185 0.0291 0.2123
9 0.0164 0.0242 0.1794 0.1393 0.3207 0.7785 0.0222 0.0310 0.2121

Table 3: Components of the error indicator for each refinement step for the cantilever, the bridge,
and the L-shaped domain.

Figure 6: For the bridge scenario after 4 / 9 refinement steps: adaptively refined grid; visualization
of the two-scale model as in Figure 3; von Mises stress with color coding as in Figure 3 for values
in [0, 8].

the grid scale and should be considered as an indication of the limits of the approximate microscopic
model used in the algorithm. The proposed error indicators robustly reports this turning point
where the algorithm could be stopped. Hence, the proposed algorithm allows to identify an adaptive
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Figure 7: For the L-shaped domain after 4 / 9 refinement steps: adaptively refined grid; visual-
ization of the two-scale model as in Figure 3; von Mises stress with color coding as in Figure 3 for
values in [0, 4].

mesh on which the physical realization of a close to optimal microstructure is mechanically easier
and possibly more realistic, and helps to avoid overrefinement.
Furthermore, let us emphasize that locally on each cell of the macroscopic finite element mesh the
periodic truss microstructure is mechanically constructable. Blending between the microstructures
of adjacent cells will have an impact on the cost of the overall construction, as discussed by Allaire
and Kohn [2] and Bendsøe et al. [15]. In that respect, it is advisable to start from the two scale
formulation and use it to generate a good initial configuration for a single scale optimization,
which will then result in a geometry which can actually be manufactured. The presented weighted
residual approach for a posteriori error estimates would then translate also to this single scale model
including the balance between model error reduction and potential increase of the discretization
error discussed above.
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[37] J. Haslinger, M. Kočvara, G. Leugering, and M. Stingl. Multidisciplinary free material opti-
mization. SIAM Journal on Applied Mathematics, 70(7):2709–2728, 2010.

18



[38] P. Henning and M. Ohlberger. The heterogeneous multiscale finite element method for elliptic
homogenization problems in perforated domains. Numerische Mathematik, 113, Issue 4:601–
629, october 2009.
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Études Rech. Élec. France, pages 319–369. Eyrolles, Paris, 1985.

[55] J. T. Oden and K. Vemaganti. Adaptive modeling of composite structures: Modeling error
estimation. International Journal for Computational Civil and Structural Engineering, 1:1–16,
2000.

19



[56] J. T. Oden and K. S. Vemaganti. Estimation of local modeling error and goal-oriented adaptive
modeling of heterogeneous materials. I. Error estimates and adaptive algorithms. J. Comput.
Phys., 164(1):22–47, 2000.

[57] M. Ohlberger. A posterior error estimates for the heterogenoeous mulitscale finite element
method for elliptic homogenization problems. SIAM Multiscale Mod. Simul., 4(1):88–114,
2005.

[58] O. Pantz and K. Trabelsi. A post-treatment of the homogenization method for shape opti-
mization. SIAM J. Control Optim., 47(3):1380–1398, 2008.

[59] S. Prudhomme and J. T. Oden. On goal-oriented error estimation for elliptic problems:
application to the control of pointwise errors. Comput. Methods Appl. Mech. Engrg., 176(1-
4):313–331, 1999. New advances in computational methods (Cachan, 1997).

[60] H. Rodrigues and P. Fernandes. Topology optimal design of thermoelastic structures using a
homogenization method. Control Cybernet., 23(3):553–563, 1994. Shape design and optimiza-
tion.
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