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Abstract. Risk averse stochastic optimization is investigated in the con-
text of elastic shape optimization, allowing for microstructures in the
admissible shapes. In particular, a two-stage model for shape optimiza-
tion under stochastic loading with risk averse cost functionals is com-
bined with a two-scale approach for the simulation of microstructured
materials. The microstructure is composed of an elastic material with
geometrically simple perforations located on a regular periodic lattice.
Different types of microscopic geometries are investigated and compared
to each other. In addition they are compared to optimal nested lami-
nates, known to realize the optimal lower bound of compliance cost
functionals. We combine this two-scale approach to elastic shapes with
a two-stage stochastic programming approach to risk averse shape op-
timization, dealing with risk neutral and risk averse cost functionals in
the presence of stochastic loadings.
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1. Introduction

In nature, when biological material has to resist strong mechanical loading,
fine scale structures frequently characterize the material. Prominent exam-
ples are the microstructure of wood [5] or the substantia spongiosa of bones
[37]. The pattern formed by these elastic structures is not uniform but varies
spatially. This spatial variation seems to be adapted to the local load con-
figuration, which supports the hypothesis of nature optimizing mechanical
structures in the ontogenesis [47]. Thus, a natural question arises, what are
“optimal” microstructures, which are observable in nature or can be used in
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the design of mechanical devices. When optimizing material structures one
has to take into account that load configurations in nature and in engineering
are usually not deterministic but stochastic.

This paper addresses the optimization of microstructures in elastic ma-
terials under stochastic loading. It is well known that microstructures form
when minimizing compliance or tracking type cost functionals, unless a pen-
alty on the area of material interfaces is taken into account. The optimal
microstructures are well-understood and can be represented by nested lam-
inates [1]. The laminate construction is an analytically elegant tool but can
hardly be reproduced in mechanical devices, nor is it observed in optimization
problems posed in nature. Thus, the question arises how close one can get to
the optimal design with constructible microstructures. To this end, different
types of parametrized microstructures will be investigated and compared.

2. Related work

Shape optimization under deterministic loading has extensively been investi-
gated in the literature. For an overview we refer to the textbooks [15, 1]. Most
approaches deal with a macroscopic shape description under the assumption
of sufficient shape regularity, which is usually guaranteed by an additional
regularizing cost functional such as the shape perimeter. If only scale invari-
ant cost functionals are taken into account, then in general an optimal shape
will not exist. Indeed, minimizing sequences of shapes will be characterized
by very fine microstructures. The theory of homogenization allows to de-
scribe the set of possible microstructures and the associated set of attainable
effective material properties [38, 20, 23, 21]. The heterogeneous multi-scale
method (HMM) [28, 29] depicts a very general paradigm for efficient numer-
ical treatment of multi-scale problems using independent macroscopic and
microscopic models. Homogenization theory was extended from multiphase,
uniformly coercive materials to perforated structures and porous materials,
see for example [24] and references therein. In [36] a two-scale adaptive fi-
nite element scheme has been proposed for elliptic problems on perforated
domains.

Optimal microstructures in elasticity have first been derived by Hashin
in 1962 [33] in the concentric sphere construction for hydrostatic loads. The
construction was later generalized for anisotropic strains using confocal el-
lipsoids in [31]. The investigation of nested laminate structures dates back
to the 1980s [48, 42] and was later used in a practical numerical scheme for
topology optimization in [2]. In all these cases proofs of optimality rely on the
Hashin-Shtrikman bounds on the attainable sets of effective elastic properties
[34]. Related to the homogenization approach is the so called free material
optimization method where the optimization is directly carried out on the
coefficients of the elasticity tensor, as for example in [35].

Alternatively, the cost functional can be reduced by a proper design
of fine scale perforations drilled into a homogeneous material. The layout of
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elastic structures based on this approach has been investigated already in
the early 1990s [16]. The shape optimization via such mechanically feasible,
periodic perforation patterns on the microscale has also been studied in [9].
Closely related to our approach is the approach by Barbarosie and Toader.
In [10, 11] they optimized the geometry of fine scale perforations. The nu-
merical method is based on a boundary tracking approach of a triangulated
domain with additional remeshing steps to ensure mesh quality. In [12] this
approach is extended to a two-scale setting combining a finite element scheme
on the macroscale with the above treatment of locally periodic perforations
on the microscale.

Shape optimization under a fixed load is rarely realistic. Multiload ap-
proaches consider a fixed (usually small) number of different loading con-
figurations and have been developed for example in [3, 32] and references
therein. In this paper, we deal with stochastic loading and risk averse opti-
mization. Optimization under uncertainty requires an appropriate treatment
of the available uncertain data information. Different approaches have been
analyzed, which are appropriate for different types of risk. Robust optimiza-
tion corresponds to a treatment of the worst-case [13] and is based on infor-
mation about the ranges of the uncertain parameters. Applications to shape
optimization can be found in [8, 22]. In stochastic optimization data un-
certainty, typically quantified by probability distributions, has been largely
studied in a finite-dimensional setting, both in a linear situation for mixed-
integer and other nonlinear models, see for example [44]. Shape optimization
with stochastic loading has been discussed previously in various contexts,
for example for beam models in [40]. A number of papers addressed worst-
case optimization, see for example [14, 8, 4] and the optimization scenario in
aerodynamic design in [45]. A trust-region algorithm for PDE optimization
under uncertainty was developed in [39]. In [25] we have proposed an efficient
optimization approach for stochastic loading based on the representation of
realizations of surface and volume loads as linear combinations of a few basis
modes. In our previous work [25, 26, 30] we have shown how this approach can
be used to effectively perform shape optimization with different treatments
of the stochastic loads.

3. Elasticity of micro perforated elastic material

We consider here an elastic body composed of microstructured material and
suppose that the microstructure is composed of mechanically constructible
perforations. On the microscale these perforations form a regular lattice,
which is not necessarily oriented parallel to the macroscopic axes. The geom-
etry of these perforations and the orientation of the lattice vary macroscopi-
cally and are locally described by a finite set of parameters.

Before we investigate a computationally feasible two-scale formulation
let us discuss the case of an elastic object with perforation on a fine scale lat-
tice with regular lattice spacing δ > 0, as illustrated in Figure 1. We denote by
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D ⊂ Rd the underlying object domain with Lipschitz boundary and suppose
that ΓD ⊂ ∂D is the Dirichlet boundary where the elastic object is fixated
and ΓN ⊂ ∂D the Neumann boundary on which boundary forces are applied.
We suppose that Dirichlet and Neumann boundaries are relatively open sub-
sets of ∂D with Lipschitz boundary. The elastic object itself is perforated
with holes of size less than δ drilled into homogeneous elastic bulk material
onD and described by the perforated domainDδ

α = D\
(⋃

x∈δZd x+ δmα(x)

)
.

Here, mα(x) ⊂ [−γ, γ]d with γ fixed and 0 < γ < 1
2 describes the geometry

of the perforation placed at x ∈ δZd and defined on the reference domain
[− 1

2 ,
1
2 ]d for a parameter function α : D → Rm with m ∈ N. We denote by

Uad a closed set of admissible parameters such that α(x) ∈ Uad for every
x ∈ D. Let us assume that there are no perforations close to the Dirichlet
and Neumann boundary, i. e. mα(x) = ∅ for dist(x,ΓD ∪ ΓN ) ≤ ∆ for some

fixed ∆ > 0. For a displacement uδ : Dδ
α → Rd and a boundary force density

g : ΓN → Rd the elastic energy is given by

Eδ[α, uδ] =
1

2

∫
Dδα

C(x)ε[uδ](x) : ε[uδ](x) dx−
∫

ΓN

g(x) · uδ(x) da

where C is the elasticity tensor of the homogeneous bulk material, ε[φ] =
1
2 (Dφ + DφT ) denotes the strain tensor with Dφ being the Jacobian of

the displacement φ and A : B := tr(ATB). If C is uniformly coercive

and g ∈ L2(ΓN ,Rd), the unique minimizer in the space H1,2
ΓD,δ

:= {u ∈
H1,2(Dδ

α)d|u = 0 on ΓD} is the solution of the associated variational prob-

lem
∫
Dδα

C(x)ε[uδ](x) : ε[φδ](x) dx =
∫

ΓN
g(x) · φδ(x) da for all φδ ∈ H1,2

ΓD,δ
.

Figure 1 shows an elastic object with a perforation based on ellipsoidal holes
where the parameters of the ellipses are optimized with respect to a compli-
ance type cost functional.

Figure 1. Single-scale model for a carrier plate under
shearing with 45 × 45 ellipsoidal holes. The two blow-ups
show regions with locally (almost) periodic patterns.

A classical result from homogenization theory [23, 21] describes the
elastic behavior of the material in the limit for δ → 0. Indeed a suitable
extension of the elastic displacement uδ onto the whole domain D converges
to a displacement u? ∈ H1,2

ΓD
:= {u ∈ H1,2(D)d |u = 0 on ΓD} which solves
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the variational problem∫
D

C?(x)ε[u?](x) : ε[φ](x) dx =

∫
ΓN

g(x) · φ(x) da (3.1)

for all φ ∈ H1,2
ΓD

. Here, C?(x) is the effective elasticity tensor encoding the
effective properties of the perforated material on the macroscale. Thereby,
the underlying two-scale formulation of the limit problem is as follows. Find
an effective macroscopic displacement u? ∈ H1,2

ΓD
and a microscopic correction

w? ∈Wα which solve the equation∫
D

∫
Cα(x)

C(y)(ε[u?](x)+ε[w?](x, y)) : (ε[φ](x)+ε[ψ](x, y)) dy dx =

∫
ΓN

g(x)·φ(x) da

for all φ ∈ H1,2
ΓD

and all functions ψ ∈Wα where Cα(x) := (− 1
2 ,

1
2 )d \ mα(x)

and the function space of microscopic periodic displacement corrections is
defined as

Wα := {φ : (x, y)→ φ(x, y) ∈ Rd |x ∈ D , y ∈ Cα(x) ,

φ(x, y + z) = φ(x, y)∀z ∈ Zd with ‖φ‖Wα
≤ ∞}

where ‖φ‖Wα :=
(∫

D

∫
Cα(x)

φ(x, y)2 + |Dyφ(x, y)|2 dy dx
) 1

2

. The effective

elasticity tensor C? = C?[α] can be defined variationally

C?(x)ε[u](x) : ε[u](x) =

∫
Cα(x)

C(y)ε[R?[u]](x, y) :ε[R?[u]](x, y) dy

where R?[u](x, y) := u(x)+w(x, y) for u ∈ H1,2
ΓD

is the microscopic reconstruc-

tion with w solving the correction problem
∫
Cα(x)

C(y)(ε[u](x) + ε[w](x, y)) :

ε[ψ](x, y) dy = 0 for all ψ ∈ Wα. Indeed, using the symmetry assumption
C?
ijkl = C?

jikl = C?
ijlk = C?

klij , also for the effective elasticity tensor C? one
observes that

C?
ijkl = C?εij : εkl = C?εij+kl : εij+kl −C?εij−kl : εij−kl (3.2)

with εij = 1
2 (ei ⊗ ej + ej ⊗ ei) and εij±kl = 1

2 (εij ± εkl) where ei is the

ith canonical basis vector in Rd. Thus, for every x ∈ D one evaluates the
reconstruction R? for a basis of affine displacements and then via the above
representation the coefficients of the effective elasticity tensor C?

ijkl for all
1 ≤ i, j, k, l ≤ d.

In shape optimization it turns out to be advantageous to allow also spa-
tially varying orientation of the microscopic perforation pattern, for which
the microscopic perforation mα(x) is no longer contained in [−γ, γ]d. This
enlarges substantially the class of possible microstructures which can be
achieved without increasing much the number of parameters. To this end,
we allow for a rotation Q(α(x)) of the microscopic cell x+ δ[− 1

2 ,
1
2 ]d depend-

ing on the local value α(x) of the macroscopic parameter function and use
Cα(x) = Q(α(x))(− 1

2 ,
1
2 )d \mα(x) in the definition of the two-scale approach

above. Furthermore, we have to adopt the definition of Wα using the ro-
tated periodicity assumption φ(x, y + z) = φ(x, y)∀z ∈ Q(α(x))Zd. Let us
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emphasize that in this case the fine scale problem on a scale δ need not to be
properly defined any longer.

In this paper we will compare the performance of different types of
microscopic perforations on two dimensional domains (d = 2). In what follows
we will describe the associated parametrization (cf. Figure 2):

- Cells with single ellipsoidal holes. An ellipsoidal shaped hole is consid-
ered, parametrized by the lengths α1, α2 ∈ (0, γ) of its two semiaxes
and a rotation α3 (cf. Figure 1).

- Cells with 2 × 2 ellipsoidal holes. A natural extension is achieved by
allowing 2× 2 holes with 12 independent parameters per cell.

- Cell structures consisting of axes-aligned trusses. As an alternative con-
struction we consider truss like structures along the edges and the di-
agonals of the cell, where the thickness αi (i = 1, . . . , 6) can be varied.
Additional constraints make sure that the holes generated between the
trusses maintain a triangular shape.

- Cell structures consisting of freely rotated orthogonal trusses. Finally
two orthogonal trusses connecting midpoints of opposing edges of the
cell are allowed to rotate freely. This periodic pattern is equivalently
determined by the rectangular hole centered at the corners of the cell
and parametrized by the half edge lengths α1, α2 ∈ (0, γ) and an un-
constrained rotation α3.

Figure 2. Form left to right the different cells with different
type of perforation are displayed: cells with single ellipsoidal
holes, cells with 2 × 2 ellipsoidal holes, cell structures con-
sisting of axes aligned and diagonal trusses, freely rotated
cells with rectangular holes representing orthogonal trusses
(see red marking).

All parametrizations described above lead to perforations of the funda-
mental cell leaving behind a certain amount of rigid constituent. The fraction
θ(x) = Vol(Cα(x)) can be interpreted as the macroscopic local density of the
effective material. To rule out trivial solutions to the shape optimization
problem we impose a global volume constraint. The total amount of mate-
rial spent Θ =

∫
D
θ(x) dx is to be kept fixed throughout the optimization

procedure.

In the implementation of our two-scale simulation method we use a finite
element scheme on the macroscale and a boundary element scheme on the
microscale (cf. Section 5).
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4. Two-scale shape optimization under stochastic loadings

For every choice of the parameter function α we can compute a corresponding
macroscopic displacement u?[α]. Given a cost functional J, which may depend
directly on the parameter function α and the macroscopic displacement u?,
we ask for an optimal shape, described via macroscopically parametrized
microscopic perforations. Precisely, we want to compute a parameter function
α which minimizes J [α] := J[α, u?[α]]. Before dealing with stochastic shape
optimization we briefly discuss the deterministic case.

Deterministic shape optimization. In this article we will focus on the compli-
ance cost functional as a global measure of rigidity. We can write the resulting
cost in the following equivalent ways (cf. (3.1)):

J[α, u] =

∫
ΓN

g(x) · u(x) da =

∫
D

C∗[α](x) ε[u](x) : ε[u](x) dx . (4.1)

The derivative J ′[α], which plays in our context the role of the shape de-
rivative, takes the form J ′[α] = J,α[α, u?[α]] + J,u[α, u?[α]](∂αu

?[α]) , where
J,α[α, u?[α]] =

∫
D
∂αC

?[α](x)ε[u?[α]](x) : ε[u?[α]](x) dx . To avoid comput-
ing sensitivities ∂αu

?[α] of the displacement w.r.t. to the perforation pa-
rameter function α we employ the dual problem. Here, the dual solution
p? = p?[α] ∈ H1,2

ΓD
is defined as the weak solution of∫

D

C?[α](x)ε[p?](x) : ε[φ](x) dx = −J,u[α, u?[α]](φ) (4.2)

for all φ ∈ H1,2
ΓD

. In our case of a compliance type cost functional p?[α] =
−2u?[α]. With the dual solution at hand one can rewrite the derivative of
the cost

J ′[α] = J,α[α, u?[α]] +

∫
D

(∂αC
?[α]) (x)ε[u?[α]](x) : ε[p?[α]](x) dx

= −
∫
D

(∂αC
?[α]) (x)ε[u?[α]](x) : ε[u?[α]](x) dx . (4.3)

Finally, we are left to compute ∂αC
?[α](x) for x ∈ D. To this end, taking

into account (3.2) we consider C?[α](x)εij±kl : εij±kl for fixed i, j, k, l and
for fixed x ∈ D and define the local cost functional jC [α] = jC [α,w?ij±kl[α]]

with jC [α,w] =
∫
Cα(x)

C(y) (εij±kl + ε[w](x, y)) : (εij±kl + ε[w](x, y)) dy and

w?ij±kl[α](x, ·) is given as the solution of the local correction problem 0 =∫
Cα(x)

C(y) (εij±kl + ε[w](x, y)) : ε[ψ](x, y) dy for all ψ ∈ Wα and with x

being fixed. This implies

jC [α,w?ij±kl[α]] =

∫
Cα(x)

C(y)
(
εij±kl + ε[w?ij±kl[α]](x, y)

)
:(

εij±kl + ε[w?ij±kl[α]](x, y)
)

dy .

From the correction problem we immediately deduce that ∂wjC [α,w?ij±kl[α]] =

0. Hence, one obtains ∂αjC [α] = ∂αjC [α,w?ij±kl[α]]. Taking into account a
family of perforations defined via the mapping s 7→ mα(x)+sβ for s ∈ R with
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|s| small, we then obtain for the variation of the local cost jC [α] in direction
β ∈ Rm

∂αjC [α](β) =
d

ds
jC [α+ sβ]

∣∣∣∣
s=0

=
d

ds
jC [α+ sβ,w?ij±kl[α]]

∣∣∣∣
s=0

=

∫
∂mα(x)

(vα,β(y) · n∂mα(x)
(y))C(y)

(
εij±kl + ε[w?ij±kl[α]](x, y)

)
:(

εij±kl + ε[w?ij±kl[α]](x, y)
)

dy

where n∂mα(x)
(y) denotes the inner normal of the perforation mα(x) at y ∈

∂mα(x) and vα,β(y) is the velocity vector associated with the variation of
mα(x) in the direction β at position y ∈ ∂mα(x). Finally, we obtain for the
variation of the effective elasticity tensor in a direction β ∈ Rm

∂αC
?
ijkl[α](β) =∫

∂mα(x)

C(y)
( (
εij+kl + ε[w?ij+kl](x, y)

)
:
(
εij+kl + ε[w?ij+kl[α]](x, y)

)
−(

εij−kl + ε[w?ij−kl](x, y)
)

:
(
εij−kl + ε[w?ij−kl[α]](x, y)

) )
· (vα,β(y) · n∂mα(x)

(y)) dy .

Two-stage stochastic shape optimization. In a more realistic situation the
actual loading of an elastic work piece is usually not fixed but varies stochas-
tically. Therefore we now extend the above framework and consider random
surface loads g(ω) ∈ L2(ΓN ;Rd) with ω being a realization on an abstract
probability space (Ω,A, ℘). Here, finite-dimensional linear stochastic pro-
grams serve as blueprints for our stochastic shape optimization models. In this
context a two-stage scheme of alternating decision and observation applies.
The first-stage decision of a concrete shape, in our context the parameter vec-
tor α, must not anticipate future information on the random data, here the
random boundary force g(ω). The second-stage decision in our context cor-
responds to the solution of the elastic problem and the evaluation of the cost
value for a concrete realization ω and for fixed α and g(ω). The overall aim of
two-stage stochastic programming is to find an α which is in a stochastic sense
“optimal” under these circumstances. Different modes of ranking random
variables then lead to different types of stochastic programs. In a risk neutral
setting the ranking is done by taking the expectation Eω. With risk aversion,
see [17, 43] for a recent textbook and a monograph as well as the journal publi-
cations [27, 41, 46], expectation is replaced by statistical parameters reflecting
some perception of risk (risk measures) or stochastic dominance relations are
employed. In what follows we will focus on risk measures. For a fixed real-
ization ω and fixed parameter function α primal and dual solutions u[α](ω),
p[α](ω) can be computed as described above in the deterministic setting. As
the solutions now depend on ω so do the associated variational problems (3.1)
and (4.2) as well as the cost functional (4.1) and its gradient (4.3). Altogether
we obtain the random shape optimization model min {J[α, u, ω] : α ∈ Uad} ,
which amounts to finding a “minimal” member in the family of random



Two-scale risk averse optimization 9

variables J[α, u, ω]. Taking the expectation yields the risk neutral problem
min {QEV[α] := Eω(J[α, u, ω]) : α ∈ Uad} . Risk averse problems are the ex-
pected excess min

{
QEEη [α] := Eω(max{J[α, u, ω]− η, 0}) : α ∈ Uad

}
or the

excess probability min
{
QEPη [α] := Pω(J[α, u, ω] > η) : α ∈ Uad

}
over a pre-

selected target η ∈ R. For the numerical realization we will use smooth
approximations of the max-function and the Heaviside function leading to
Qε

EEη
[α] := Eω (qε(J[α, u, ω])) , where qε(t) := 1

2 (
√

(t− η)2 + ε+(t−η)) and

Qε
EPη

[α] := Eω (Hε(J[α, u, ω])) with Hε(t) := (1 + e−
2(t−η)
ε )−1 for ε > 0.

For actual computations (Ω,A, ℘) is assumed to be finite, in the sense that
there are finitely many realizations ωi and probabilities πi, i = 1, . . . , Ns.

We can then rewrite QEV[α] =
∑Ns
i=1 πiJ[α, u, ωi], and Qε

EEη
[α] and Qε

EPη
[α]

accordingly. The shape derivative as derived above can directly be applied to
the stochastic functionals. The chain rule yields

Q′EV[α](β) =

Ns∑
i=1

πi J
′[α, u, ωi](β) ,

(Qε
EEη )′[α](β) =

Ns∑
i=1

πi
2 J′[α, u, ωi](β)

(
J[α,u,ωi]−η√

(J[α,u,ωi]−η)2+ε
+ 1

)
,

(Qε
EPη )′[α](β) =

Ns∑
i=1

2
επiJ

′[α, u, ωi](β) e−
2
ε (J[α,u,ωi]−η)(

1+e−
2
ε (J[α,u,ωi]−η)

)2

for a direction β : D → Rm in which α is varied. So far it seems that
for every ωi one has to compute a primal and a dual solution. The solu-
tion, however, depends linearly on the right hand side; therefore a significant
amount of computational time can be spared when a large number Ns of
scenarios is generated by a small set of basis surface loads g1, . . . , gK , as
was discussed in [25]. The actual loads g(ω) are given as linear combinations

g(ω) =
∑K
j=1 λj(ω)gj , with random coefficients λj(ω) ∈ R, j = 1, . . . ,K. We

thus only need to solve the elasticity problem for the different basis forces. To
be more precise let uj,?[α] be the solution of (3.1) for g = gj , j = 1, . . . ,K.

Then we find u?[α](ω) :=
∑K
j=1 λj(ω)uj,?[α] to be the unique solution of

(3.1) with g = g(ω). The same procedure can be taken for the dual solution
if the cost functional is at most quadratic guaranteeing the linearity in the
right hand side. As discussed, in our case of a compliance objective the dual
problem is already trivial.

5. Implementation

The two-scale simulation is based on a finite element discretization on the
macroscale and a boundary element method on the microscale. We use a
regular mesh with N quadratic cells on the macroscale and piecewise bi-
quadratic finite elements as checkerboard instabilities were reported in [18]
for the related case of nested laminates when using linear ansatz functions.
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We use a Gaussian quadrature of consistency order 5 with 3 × 3 quadra-
ture points per square cell. Within each cell the underlying microstructure
is specified by a set of parameters in Rm as the discrete counterpart of the
local parameter function α. For the cell problem a collocation type boundary
element method is used to compute numerical approximations to the micro-
scopic correction profiles. For details we refer to the corresponding discussion
for the single-scale model in [6]. The design constraints described in Section 3
are implemented as inequality constraints in the optimization. The global vol-
ume constraint leads to an additional equality constraint. Unless otherwise
noted we use a material with moderate anisotropy for the construction of
microscopic geometries. It is characterized by the elasticity tensor

Caniso =
3 1

1 3
1.1


using Voigt’s notation. For all numerical experiments we prescribe a volume
fraction of 67% as global constraint. Loads usually have magnitude 1.

Our algorithm for the two-scale shape optimization approach is written
in C++ based on the quocmesh library for finite element and boundary ele-
ment computations and the open source software Ipopt [49, 50] performing
constrained finite-dimensional optimization.

6. Numerical results

In this section we present numerical results for shape optimization prob-
lems both with deterministic and stochastic loadings, comparing the differ-
ent microstructure models. The key scenario we consider is a carrier plate,
in which the computational domain is the unit square, with homogeneous
Dirichlet boundary data on the bottom and Neumann boundary conditions
corresponding to a shearing on the top. To illustrate the generality of the
method we also study two classical problems from the literature.

6.1. Deterministic optimization

We start with the simplest microstructure, in which every unit cell has one
ellipsoidal hole (first sketch in Figure 2). The results for the three model
problems discussed above are presented in Figure 3 based on computations
on a macroscopic grid with 64× 64 square cells.

Comparing the results for the carrier plate scenario to the single-scale
case illustrated in Figure 1 a remarkable similarity is apparent. The oscil-
lating pattern observed in the single-scale case (Figure 1, left blow-up) for
the upper middle region however seems to be gone. The apparent reason for
these oscillations was to approximate criss-crossing beams. Such a construc-
tion is ruled out by the kinematics in the two-scale setting, since each unit
cell only contains one hole, which then gets repeated over and over again at
the microscale.

This suggests to allow for more than one hole within the fundamental
cell, each with its own set of parameters. We investigated this structure using
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Figure 3. Local minima for two-scale optimization of a car-
rier plate under shearing, a cantilever on a square domain
and a bridge scenario, all on a macroscopic regular rectan-
gular mesh with 64 × 64 cells. The local configuration is
drawn within each macroscopic element as a representative
for the underlying microstructure. Furthermore, the same
results are presented using a HSV color code: color corre-
sponds to the rotation of the major semiaxis, saturation to
the degree of anisotropy and value to the volume of the hole.

(a) (b) (c)

(d) (e)

Structure J

(a) 2.0358
(b) 2.0255
(c) 2.0276
(d) 1.8959
(e) 1.8122

(f)

Figure 4. Local minima for two-scale optimization of a
carrier plate under shearing for different configurations: (a)
64× 64 macroscopic cells with 1 ellipsoidal hole each (same
as in Figure 3), (b) 128 × 128 macroscopic cells with 1 el-
lipsoidal hole each, (c) 64× 64 macroscopic cells with 2× 2
ellipsoidal holes each, (d) 64 × 64 macroscopic cells with 6
trusses at fixed positions each, and (e) 64× 64 macroscopic
cells with 2 rotated orthogonal trusses each. Final objective
values are listed in (f).

2 × 2 holes on each cell, which is the microstructure sketched in the second
panel of Figure 2. In the result, see Figure 4(c), the oscillating pattern is now
captured as expected while other regions keep their microstructure by just
reproducing the shape of the former single hole four times.
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Since we already conjectured that a framework with diagonal trusses would
perform best in the upper middle region, we now explicitly consider such a
microstructure. First we place six trusses at fixed positions within the funda-
mental cell (third panel in Figure 2). In the resulting shape, see Figure 4(d),
the expected criss-crossing pattern is found. However we now see solid trusses
in the macroscopic picture. This is because the optimal shape has trusses
which are not inclined by 45 degrees and therefore cannot be reproduced by
the microstructure; the optimization hence generates “macroscopic trusses”
with the appropriate slope. This suggests to allow for a rotation of the whole
periodic lattice (fourth panel in Figure 2). The results are shown in Fig-
ure 4(e). The last panel of Figure 4 gives an overview of the final objective
values for the optimized designs. One can clearly see that the improvement of
the shape by allowing a more complex microstructure using 2×2 holes per cell
becomes manifest also in a quantitative way. The introduction of structures
made from fixed trusses leads to a further significant drop in the objective
functional. Finally allowing the structures to rotate freely again contributes
to a substantial improvement.

So far we have successively constructed microscopic geometries that
lead to a stepwise reduction in the objective value for the optimized design.
It seems natural to compare the results to a microstructure that is known
to be optimal a priori. For our comparison we decided to adopt the nested
laminates construction as it is valid on the full range of feasible strains and
explicit formulae as well as an algorithmic treatment is available in [1]. The
microstructure is built up in an iterative procedure. One starts by successively
layering a given rigid and a very weak material, determined by elasticity
tensors B and A respectively, with proportions m1 and (1−m1) in a direction
e1. The obtained material is then layered again with the rigid material B, now
with proportion m2 and in direction e2. In our shape optimization context
one considers the degenerate case in which the weak material A is replaced
by voids. By a limiting process the effective elasticity tensor C?

L of the nested
laminate can be given in closed form with the ratios m1, m2, the directions
e1, e2, and the overall material density θ as degrees of freedom [1]. Moreover,
these parameters depend explicitly on the local effective stress σ? = C?

Lu
?.

Indeed, the ratiosm1 andm2 = 1−m1 are given by the ratio of the eigenvalues
of σ and the directions e1 and e2 are aligned with the orthogonal system of
eigenvectors. Finally using a Lagrange multiplier approach also the optimal
local density θ depends, apart from elastic constants, only on the eigenvalues.

The variational structure of the problem and the values of the objec-
tive function listed in Figure 4(f) give a clear ordering in the quality of the
different microstructure patterns and show in particular that the rotated or-
thogonal trusses are superior to the other models considered, at least in the
present scenario. To assess how much room for improvement is left we com-
pare with the lower bound given by the Hashin-Shtrikman formula, focusing
for simplicity on the case of an isotropic material. In the present setting this
lower bound is known to be optimal and can indeed be attained by lamination
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[7, 1]. To this end we reimplemented the alternating algorithm for the nested
lamination construction proposed in [1]. The local density of the optimal
structure obtained in the carrier plate scenario is compared in Figure 5(b)
with the result of our two-scale method for perforated isotropic material. The
latter has been computed with the isotropic elasticity tensor

Ciso =
3 1

1 3
1


in which the lower right entry was replaced by 1.0001, since we use in our
boundary element scheme a fundamental solution for anisotropic elasticity.
The perforation pattern in Fig. 5(a) is qualitatively very similar to the one
obtained with anisotropic elasticity in Fig. 4(e), the quantitative values of
the objective function, however, differ significantly. The comparison of Fig-
ures 5(a) and 5(b) demonstrates that the performance of the two-scale ap-
proach with rotated orthogonal trusses is indeed very close to the one of
the optimal microstructure, which can be realized for example by the con-
struction with second-order laminates. Analytically, it is known that in the
low-volume-fraction limit the construction with single-scale laminates is op-
timal [19]. Single-scale laminates are, in the definition of [19], structures in
which thin trusses with different orientations coexist without interacting; for
low volume fraction and second-order laminates they correspond to our ro-
tated trusses. The present results show that rotated trusses give almost the
same objective function as laminates even for a total volume fraction of 67%,
at least in this geometry.

(a) J = 1.8842 (b) J = 1.8752

Figure 5. A comparison of the computed optimal pattern
for a carrier plate under shearing is displayed. The com-
putations are performed on a 64 × 64 grid: (a) shows the
microstructure composed of rotated orthogonal trusses, and
(b) renders the density in the case of sequential laminates.
The values of the objective function are listed below.

6.2. Risk averse stochastic optimization

In this section we show that our developed two-scale algorithm can directly
be applied to the more general situation of stochastic shape optimization. We
consider a variant of the carrier plate scenario with sets of different loads on
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the upper left and upper right edge with different probabilities, as illustrated
in Fig 6 and described in the figure caption, similar to the one that was stud-
ied for single-scale stochastic shape optimization in [26]. For the optimization
we consider both the risk neutral and the risk averse cost functionals intro-
duced in Section 4. In this stochastic optimization we focus on the simplest
choice of microstructure, the ellipsoidal holes, and on the one that performed
best in the deterministic setting, the rotated trusses.

Figure 6. Left panel: configuration used in the stochastic
optimization. The lower boundary has homogeneous Dirich-
let boundary conditions. The possible forces on the left have
a probability of 1%, those on the right 19%. Right panel:
result of the deterministic optimization using the expected
value of loads and the ellipsoidal holes microstructure.

(a) (b) (c)

Figure 7. Results of the two-scale shape optimization pro-
cedure using rotated trusses for the microstructure: stochas-
tic optimization of the expected value of costs (a), determin-
istic optimization using the expected value of the loads (b),
deterministic optimization computed for equal loads on the
left and right parts (c).

Figure 6 shows the result of the deterministic optimization using the
expected value of the loads. The larger probability of the forces on the right
results in a larger expected value of the force, and hence on a strong con-
centration of the available mass on the right hand side of the computational
domain. The (on average!) minor forces on the left hand side are dealt with
by two small trusses which connect the main pillar to the other side of the
domain.
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In Figure 7 we compare, using the microstructure of rotated orthogonal
trusses, three different approaches to the forcing. In Figure 7(a) we show
the optimization of the expected value of the costs, in which both left and
right forcing play a significant role. In particular, the presence of a scenario
with forcing only on the left-hand side generates a substantial mass on the
left side of the computational domain. Figure 7(b) illustrates the result of
optimizing the expected value of the cost. The two types of microstructures
lead to similar shapes. In Figure 7(c) we show, for a comparison, the result of
the optimization in the symmetric case, with the same forces acting on both
parts of the top boundary.

We now turn to the optimization of the expected excess. Figure 8 shows
the results for ellipsoidal holes and rotated trusses, respectively. As in the
previous case, the two types of microstructure generate similar patterns.
Introducing a threshold makes the largest deviations more important, and
therefore the forces on the left, which are large but have a small probabil-
ity, become more important in the optimization. Indeed, for small η (and for
the EV optimization) the forces on the right-hand side dominate, and cor-
respondingly the largest structures are the vertical one on the right (which
takes care of the vertical component of the forces on the right) and the di-
agonal from the lower left to the upper right corner (which takes care of the
horizontal component of the forces on the right). With increasing η the situa-
tion becomes first symmetric, and then tilted in the other direction, with the
left side and the lower right to upper left diagonal dominant at η = 0.0005.

In the case of the optimization of the excess probability, only the prob-
ability, and not the amplitude, of the large deviations plays a role. Results
are shown with ellipsoidal holes for the microstructure in Figure 9. Indeed,
for small η the best result the optimization can achieve is to keep the cost
functional in the scenarios corresponding to the small forces on the right-
hand side below the threshold; in order to do this the small probability forces
on the left-hand side are given up. The cost of these forces would, in the
ideal case, be infinite (it is not due to the many numerical regularizations,
including for example the fact that the volume fraction cannot be zero in any
cell). This divergence does not, however, result in a divergence of the total
cost functional because only the probability of these large deviations enters
the optimization, not their amplitude. With increasing η, it is less important
to keep the response to the small forces very small: as above, the thresh-
olding makes the exact value of the cost functional in that case irrelevant,
as long as it is below threshold. The optimization can devote material to
improving the response to the forces on the left. Since they are large (but
unlikely) more material is needed to bring them below threshold than for
the smaller forces on the right, hence the pattern also in this case changes
to a left-dominated one. When the threshold η becomes larger and larger,
it is easy to keep the response to all 10 forces below it, and the problem
degenerates: in a sense, there is “too much material” to achieve the aim, and
the details of the shapes are not any more meaningful. We stress that the
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discontinuity of the excess probability has been regularized in the numerics,
hence the transitions discussed are to be interpreted as gradual transitions,
not as abrupt discontinuities from “above threshold” to “below threshold”.

In closing we remark that, although the details of the shapes differ, the
qualitative trends we discussed are very similar to the ones we had observed
in the single-scale computations in [26].

(a) EV (b) η = 0.0001 (c) η = 0.0003 (d) η = 0.0005

(e) η = 0.0001 (f) η = 0.0002 (g) η = 0.0003 (h) η = 0.0005

Figure 8. Results of the two-scale stochastic optimization
of the expected excess for different values of the threshold
η, using ellipsoidal holes (top) and rotated trusses (bottom)
for the microstructure.

(a) η = 0.0003 (b) η = 0.0004 (c) η = 0.0005 (d) η = 0.0006

Figure 9. Results of the two-scale stochastic optimization
of the excess probability for different values of the threshold
η, using ellipsoidal holes for the microstructure.

7. Conclusions

In this paper we derived a two-scale framework for shape optimization in
which the parameters of microscopic perforations on a locally periodic lattice
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are optimized. We compare the performance of different types of perforation
geometries and demonstrate that the best performing geometry of locally
rotated orthogonal trusses gets very close to the known optimal approach
based on nested lamination construction on the microscale. Furthermore, we
studied stochastic shape optimization in the class of two-scale materials with
approximate models for expected excess and the excess probability as risk
averse cost functionals.
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