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Abstract. We present an algorithm for shape-optimization under stochastic loading, and representative numerical results. Our
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1. Introduction. Uncertainty is a prevailing issue in many, if not most, practical shape optimiza-
tion problems. In the optimization of elastic structures, one usually deals with volume and in particular
surface loadings which are not fixed but vary stochastically over time. Decisions on the shape have to
be made before the stochastic forcing is applied. Thus, an optimal structure for the expectation of the
stochastic loading does not properly reflect the actual stochastic optimization set up. Indeed, one ob-
serves a striking similarity with two-stage stochastic programming. Our work received inspiration from
this field and this paper is intended to work out this analogy in the case of shape optimization for linear
elastic material laws and stochastic volume and surface loadings.
Optimization under uncertainty depends on information available on the uncertain problem components.
At the one end, there are worst-case approaches, as in online or robust optimization [2, 15]. These ap-
proaches assume that only the ranges of the uncertain parameters are known, without distributional
information. At the other end, stochastic optimization deals with models where uncertainty can be cap-
tured by a probability distribution. Stochastic optimization has been analyzed in continuous time, as for
example in stochastic dynamic programming or stochastic control [19, 27]. In particular, there exists a
rich theory and methodology to treat stochastic uncertainty in (mostly finite-dimensional) mathemati-
cal programming models, mainly linear [48], less often linear mixed-integer or nonlinear programming
models [13, 45, 54]. In two-stage stochastic programming [17, 33, 46], first-stage decisions must be
taken without knowing the realizations of the random data, and then, after observation of the random
data, a second-stage (or recourse) decision is taken. The requirement that the first-stage decision must
not depend on the future observation is referred to as nonanticipativity. This notion extends accordingly
if the two-stage scheme of alternating decision and observation is expanded into a (finite) multistage
scheme. For a recent comprehensive overview we refer to [57]. Related work on nonlinear models can
be found in optimal design of structural systems under uncertainty, see [40] and references therein. The
essential difference to the present work is that design decisions in these contributions vary in Euclidean
spaces, while our design decisions are shapes (open sets) in suitable working domains.
Shape optimization under deterministic loading is a well-developed field, which can be seen as an in-
stance of PDE-constrained infinite-dimensional optimization, see e.g. the books [3, 16]; a brief review
of the points relevant for us is presented below. We are not aware of two- or multistage stochastic pro-
gramming approaches in shape optimization, or more generally in PDE constrained optimization. There
are, however, recent approaches in shape optimization which generalize the single load assumption.
In so–called multiload approaches a fixed (usually small) number of different loading configuration is
considered and optimization refers to this set of configurations, see, e.g., [7, 29, 58] and references
therein, as well as [12] for an one-dimensional model. In these approaches each evaluation of the objec-
tive functional requires a separate computation for each of the possible stochastic forces, which renders
them infeasible if the set of possible forces is large, as for example is the case when one aims at approx-
imating a continuous distribution of forces. A more efficient method was derived for a truss model in
[11], where it is shown that optimization of the expected compliance is equivalent to a convex problem,
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and hence efficiently solvable. This however is based on additional geometrical assumptions, namely,
on considering a fixed ground structure, and leaving only the thickness of the bars to be optimized.
Worst-case situations in a multiload context have also been considered, see, e.g., [14].

In shape optimization one seeks the shape O of a body which optimizes certain response properties.
We shall focus here on optimality criteria which depend on the linear elastic response to applied forces.
Therefore we start by describing the elastic problem. Given an admissible shapeO ⊂ Rd (d = 2, 3) rep-
resenting the elastic body, the displacement u : O → Rd is determined as the solution of the following
system of linear partial differential equations:

−div (Ae(u)) = f(ω) in O ,

u = 0 on ΓD , (1.1)
(Ae(u))n = g(ω) on ΓN ,

(Ae(u))n = 0 on ∂O \ ΓN \ ΓD .

Here, e(u) = 1
2 (∇u+∇u>) is the linearized strain tensor and A = (Aijkl)ijkl the elasticity tensor. We

shall for simplicity focus on isotropic materials, where Aijkl = 2µδikδjl + λδijδkl, where δij denotes
the Kronecker symbol and µ, λ the positive Lamé constants of the material. We only consider admissible
shapes O which are subsets of a fixed, bounded working domain D ⊂ Rd. On ΓD ⊂ ∂O we assume
homogeneous Dirichlet boundary conditions u = 0, and on ΓN ⊂ ∂O we assume inhomogeneous
Neumann boundary conditions, with ΓD ∩ ΓN = ∅. Both parts of the boundary are kept fixed during
the optimization. Precisely, we shall fix a certain open set O∗ ⊂ D, restrict the class of admissible
shapes to O such that O∗ ⊂ O ⊂ D, and assume that ΓD,ΓN ⊂ ∂O∗ ∩ ∂D. Then necessarily
ΓD,ΓN ⊂ ∂O. Finally, f(ω) ∈ L2(D; Rd) and g(ω) ∈ L2(ΓN ; Rd) are random volume forces and
surface loads, respectively, and ω is a realization on a probability space Ω. Standard results show that
for any connected open setO with Lipschitz boundary and any fixed realization ω the elasticity problem
(1.1) has a unique weak solution u = u(O, ω) ∈ H1(O; Rd) [20, 39].
The unique solution to (1.1) can be equivalently characterized as the unique minimizer of a correspond-
ing quadratic variational problem. In fact, u(O, ω) minimizes

E(O, u, ω) :=
1
2
A(O, u, u)− l(O, u, ω) with (1.2)

A(O, ψ, ϑ) :=
∫
O
Aijkleij(ψ)ekl(ϑ) dx , (1.3)

l(O, ϑ, ω) :=
∫
O
fi(ω)ϑi dx+

∫
∂O

gi(ω)ϑi dHd−1 (1.4)

among all u inH1
ΓD

(O; Rd) := {u ∈ H1(O; Rd) |u = 0 on ΓD in the sense of traces}, see [20, 26, 39]
for details. Here and below we implicitly sum over repeated Cartesian indices.
As an objective functional J we consider

J(O, ω) = J(O, u(O, ω)) :=
∫
O
j(u(O, ω)) dx+ γ

∫
∂O

dHd−1, (1.5)

where γ is a non negative control parameter. The second term measuring surface area serves as a regu-
larization. We assume that j(·) is linear or quadratic and does not depend explicitly on the realization
ω.
A shape optimization problem under uncertainty is then formulated as

minimize {IEω (J(O, ω)) : O ∈ Uad} (1.6)

where Uad is the set of admissible shapes, e.g., Uad := {O ⊂ D : O open, O∗ ⊂ O, Per(O) < ∞}.
Here and below IEω (. . . ) represents the expected value with respect to the probability distribution of
the random variables f(ω), g(ω).
We emphasize that we solve the elasticity problem only in the physical domain O. This differs from
common practice in shape optimization, which is based on solving the elasticity problem on D with
very small (but still positive) values of the elasticity constants λ and µ on D \ O. For existence results
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in this context we refer to [9] and references therein. Our approach is closer to physical reality, but
brings some technical difficulties. The surface area term in the definition of the cost functional (1.5)
ensures rectifiability of the domain boundary for configurations with finite energy but is not expected to
guarantee existence of an optimal design. From a theoretical viewpoint, we are unaware of any result for
the existence of solutions for the presently-considered shape-optimization problem. From a numerical
viewpoint, this requires robust techniques to solve elasticity problems on badly-shaped domains, which
are discussed below. Furthermore, numerically different regularization strategies can be considered.
In the optimization problem (1.6) there is a natural information constraint stating that first, and inde-
pendently on the realizations of f(ω), g(ω), the shape O has to be selected. Then, after observation
of f(ω), g(ω), (1.1) determines the displacement field u = u(O, ω), leading to the objective value
J(O, ω). This manifests the interpretation of (1.6) as a two-stage random optimization problem: In the
outer optimization, or first stage, the nonanticipative decision onO has to be taken. After observation of
f(ω), g(ω) the second-stage optimization problem is the mentioned variational problem, given O and
ω.
The paper is organized as follows. In the next paragraph 1.1 we review deterministic shape optimization
based on a level formulation. Then in paragraph 1.2 we recall finite dimensional, two-stage stochastic
optimization to underline the close similarity of the approach to shape optimization to be discussed here.
In Section 2 the two-stage shape optimization with stochastic volume and surface loads is introduced, the
primal and dual stochastic state equations are investigated in 2.1 and a representation of the stochastic
shape gradient is given in 2.2. A finite element discretization for elastic domains described via level sets
is discussed in Section 3. In 3.1 we introduce composite finite elements and suitable multigrid methods
to apply them for the efficient solution of the discrete primal and dual problem in 3.2, whereas in 3.3
the actual numerical algorithm based on a regularized gradient descent is presented. Finally, in Section
4 we show numerical results for two and three dimensional optimization problems.

1.1. Deterministic level set based shape optimization. For the readers’ convenience and to intro-
duce notation we here briefly sketch the general procedure in deterministic shape optimization, where
the volume and surface forces do not depend on a stochastic realization ω. Furthermore, we give an
outline of our level set approach.
To get started, we consider variations Ov = (Id + v)(O) of a smooth elastic domain O for a smooth
vector field v defined on the working domain D. The shape derivative [22] of the objective functional J
in the direction v takes the form

J′(O)(v) = J,O(O, u(O))(v) + J,u(O, u(O))(u′(O)(v)) (1.7)

=
∫

∂O
(v · n) (j(u(O)) + γ h) dHd−1 +

∫
O
j,u(u(O)) (u′(O)(v)) dx .

Here, h denotes the mean curvature on ∂O, defined as the sum of the principal curvatures, and u′(O)(v)
denotes the shape derivative of the elastic displacement defined by u′(O)(v) = limt→0[u((Id+tv)O)−
u(O)]/t.
In order to avoid the need of a separate evaluation of u′(O)(v) for any infinitesimal domain displacement
v, we seek a simpler expression for the J,u term. This is obtained by determining the variation of u with
v implicitly, through its definition. Precisely, u(O) was defined as the weak solution of (1.1), i. e.,

A(O, u(O), ϑ) = l(O, ϑ) (1.8)

for all ϑ ∈ H1
ΓD

(O; Rd). Differentiating this with respect to the variation v of the domain O (which in
this entire discussion is assumed to be sufficiently smooth), we get

A(O, u′(O)(v), ϑ) = l,O(O, ϑ)(v)−A,O(O, u(O), ϑ)(v) with (1.9)

A,O(O, ψ, ϑ)(v) =
∫

∂O
(v · n)Aijkleij(ψ)ekl(ϑ) dHd−1 , (1.10)

l,O(O, ϑ)(v) =
∫

∂O
(v · n) (fi + gi h+ ∂ngi)ϑi dHd−1 , (1.11)

We observe that J,u(O, u(O))(·) is a linear bounded functional on L2(D; Rd). Therefore we can con-
sider the dual problem, and define p(O) ∈ H1

ΓD
(D; Rd) to be the solution of

A(O, ϑ, p(O)) = −J,u(O, u(O))(ϑ) (1.12)
3



for all ϑ in H1
ΓD

(O; Rd). For the purpose of later reference let us also give a variational interpretation
of this dual approach. Equation (1.12) corresponds to the fact that p(O) ∈ H1

ΓD
(O; Rd) minimizes the

quadratic functional

F (q) =
1
2
A(O, q, q) + J,u(O, u(O))(q) (1.13)

among all q ∈ H1
ΓD

(O; Rd). In the strong formulation, we thus ask for a solution p of the system of
partial differential equations −div (Ae(p(O))) = −j,u(u(O)), with p(O) = 0 on ΓD and Ae(p(O)) ·
n = 0 on ∂O \ ΓD. Choosing ϑ = u′(O)(v) in (1.12) and recalling (1.19), one finally rewrites the
shape derivative (1.7) of the objective functional as follows:

J′(O)(v) = J,O(O, u(O))(v)−A(O, u′(O)(v), p(O))
= J,O(O, u(O))(v)− l,O(O, p(O))(v) +A,O(O, u(O), p(O))(v)

=
∫

∂O
(v · n)

[
j(u(O)) + γ h− (fi + gi h+ ∂ngi) pi(O)

+Aijkleij(u(O))ekl(p(O))
]

dHd−1 . (1.14)

In order to permit the topology of the domain O to change, we consider an implicit description of
shapes in terms of a level set function φ : D → R. In particular, the elastic body is represented
by O = {φ < 0} := {x ∈ D |φ(x) < 0}, and its boundary ∂O corresponds to the zero level set
of φ, i.e., D ∩ ∂O = {φ = 0}. Shape optimization and shape analysis for elastic solids via level
set methods has been investigated by various authors [9, 23, 36, 51]. In particular Allaire and co–
workers [3, 5, 6, 9] have extensively studied a level set modeling of shapes in two- and three-dimensional
structural optimization and compared and combined this approach with homogenization methods. In
[8] they recently investigated topological optimization in the context of minimizing the expected elastic
stress.
Interface propagation based on level sets was first introduced by Osher and Sethian [42] and since then
attracted very much attention due to their enormous flexibility. For a general overview we refer to
[41, 50]. If a domain boundary ∂O propagates with speed v, the evolution of the corresponding level set
function φ is given by the level set equation ∂tφ+ |∇φ| v · n = 0, where n = ∇φ

|∇φ| is the field of outer
normals on the level sets. In fact, the level set equation identifies variations s = ∂tφ of the level set
function with variations v · n of the level sets in direction of the normal n. Even though hypersurfaces
are described in the level-set context by functions on the whole domain, suitable implementations lead
to efficient numerical algorithms as well [1, 34, 56]. Fairly general shapes can be effectively described
and modeled with level sets [38]. Shape sensitive analysis as introduced by Sokolowski and Zolesio [52]
can be phrased elegantly in terms of level sets. Let us rewrite the objective functional J(O) in terms of
a level set function φ and define

J (φ) := J({φ < 0}) (1.15)

Due to the above identification we obtain for the shape derivative of J (φ) with respect to a variation s
of φ (again, working for the moment on smooth domains and away from degeneracies and topological
changes)

J ′(φ)(s) = J′({φ < 0})(−s |∇φ|−1n) . (1.16)

For the relaxation of the shape functional we now consider a gradient descent

∂tφ(t) = −gradGJ (φ)

with respect to a metric G on the space of variations of the level set function φ (cf. [44]). This metric
ensures smoothness of the descent path and is expected to approximate a regular minimizers from the
set of all minimizers. For an overview on optimal design based on level sets and suitable energy descent
methods we refer to a recent survey by Burger and Osher [18]. From (1.14) we learn that the support of
J′(O)(·) is contained in ∂O \ ΓD. Thus, we take into account a regularized gradient descent, based on
the metric

G(ζ, ξ) =
∫

D

ζξ +
ρ2

2
∇ζ · ∇ξ dx , (1.17)
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which is related to a Gaussian filter with width ρ. For the time discretization, we consider Armijo rule
as a step size control and starting with an initial level set function φ0 we iteratively compute a sequence
of level set functions (φk)k=1,··· given by

G(φk+1 − φk, ξ) = −τJ ′(φk)(ξ) (1.18)

for all test functions ξ and a sequence of time steps (τk)k=1,···. In each time step a linear elliptic
problem of the type (Id − ρ2

2 ∆)φ = r has to be solved. Alternatively, one might consider a relaxation
of shapes described via an evolution of signed distance functions [21, 28]. For the spatial discretization
we consider piecewise affine continuous finite element functions on the working domain D. Shape
relaxations tend to create fine scale structures and complicated domains O. To evaluate the objective
functional itself and the shape derivative the elastic displacement u on O has to be computed solving
the Euler Lagrange equations (1.1) of the inner, elastic minimization subproblem. Here, we apply
multilevel composite finite elements introduced by Hackbusch and Sauter [31, 49]. They incorporate
the characteristic behavior of the solution on fine scales into the coarse scale shape functions without,
necessarily, adding degrees of freedom.

1.2. Two stage stochastic programming revisited. Before we apply two stage stochastic pro-
gramming to our shape optimization problem, let us recall the basic concepts from finite-dimensional
stochastic optimization. Consider the random linear program

min{c>x+ q>y : Tx+Wy = z(ω), x ∈ X, y ∈ Y } (1.19)

for finite dimensional polyhedra X and Y in Euclidean space together with the information constraint

decide x 7→ observe ω 7→ decide y = y(x, ω).

We assume that the minimum exists; possibly making the spaces larger we can also without loss of
generality replace the condition y ∈ Y by y ≥ 0 (that is, yi ≥ 0 for all i). We also remark that given x
and z(ω) there are multiple solutions y from which we have to select one.
Let us emphasize the two stage characteristic of this optimization problem. Indeed, rewriting (1.19)
yields

min
x

{
c>x+ min

y
{q>y : Wy = z(ω)− Tx, y ∈ Y } : x ∈ X

}
= min{c>x+ Φ(z(ω)− Tx) : x ∈ X} , (1.20)

where Φ(v) := min{q>y : Wy = v, y ∈ Y } is the value function of a linear program with parameters
on the right-hand side. The cost functional we aim to minimize is j(x, ω) := c>x+Φ(z(ω)−Tx). The
representation (1.20) gives rise to understanding the search for a “best” nonanticipative decision x in
the initial random optimization problem as the search for a “minimal” member in the family of random
variables {j(x, ω) : x ∈ X} where x is seen as an “index” varying in the set X . In a risk-neutral
setting, these random variables are ranked by their expectations, leading to the (nonlinear) optimization
problem

min{QIE(x) := IEω (j(x, ω)) : x ∈ X}. (1.21)

The straightforward but crucial idea is to detect structural properties and algorithmic possibilities in
(1.21) by resorting to the dual of the linear program with value function Φ(·). Indeed, one observes

Φ(v) = min{q>y : Wy = v, y ≥ 0} = max{v>y : W>y ≤ q} = max
l=1,··· ,L

d>l v , (1.22)

where {dl}l=1,··· ,L denotes the set of vertices of the dual polyhedron {y : W>y ≤ q}, which is
assumed compact, and v = z(ω)− Tx. Recalling the cost functional j(x, ω), we can rewrite (1.21) and
obtain

min
{
c>x+

S∑
σ=1

πσ max
l=1,...,L

d>l (zσ − Tx) : x ∈ X
}

(1.23)
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in case of a discrete probability distribution with realizations zσ and probabilities πσ for σ = 1, . . . , S.
Here S is the total number of scenarios. Thus minimizingQIE amounts to minimizing a piecewise linear
convex function over a polyhedron. Let us emphasize that in our concrete setup, the functional to be
minimized in (1.23) depends linearly on the random variable z, which can be exploited further in the
actual numerical minimization.
Algorithmically, two aspects are important: By its very definition, computing QIE(x) in (1.21) would
amount to solving min{q>y : Wy = zσ − Tx, y ≥ 0} for all scenarios zσ with σ = 1, . . . , S, and
this again at any new iteration point x. In (1.23) this is prevented by using dual information. Here, the
situation is particularly comfortable since cutting planes generated in adaptations of bundle methods, see
e.g. [47, 53], capture (at least approximately) information on the objective also locally around iteration
points. The second aspect is that (sub)gradient information on QIE is made available by the help of the
dual, cf. (1.23).
The facts reviewed above form our guideline for treating shape optimization under uncertainty: Depart-
ing from the outlined two-stage model with shape decisions in the first stage and displacements in the
second we will formulate an (infinite dimensional) counterpart to the expectation problem (1.21). The
variational formulation of the elasticity system will provide an inner optimization problem in the spirit
of (1.20). As in (1.22) a duality argument will provide information for the shape derivative. In what
follows, the domain O replaces the variable x, the elastic deformation u(O, ω) the optimal solution y
being a minimizer of the above Φ(v), where v depends on x and z(ω). Finally, as a counterpart to
the cost functional j(x, ω) we consider the objective functional J(O, ω). Moreover, as above, in each
iteration of a descent method linearity of the elasticity PDE will avoid the solution of as many related
PDEs as there are scenarios.

2. Two-Stage Stochastic Programming Formulation of Shape Optimization. We now present
our stochastic shape-optimization scheme, which incorporates the techniques from deterministic shape-
optimization discussed in Section 1.1 and the two-stage stochastic programming reviewed in Section 1.2.
In our setting, the second stage optimization problem is the variational problem of linearized elasticity,
where for a fixed elastic domainO and random state ω one seeks a displacement u which minimizes the
energy E(O, u, ω) defined in (1.2). In turn, the objective functional can be computed from the domain
O and the displacement u, and hence can be seen as a function ofO and the random state ω. We observe
the following information constraints:

decide O 7→ observe ω 7→ compute u = u(O, ω) .

In other words, one first selects a domain O (like in Section 1.2 one decided for some x), then random
volume and boundary forces f(ω) and g(ω) are applied (the counterpart of the right hand side z(ω)
in (1.19)), and only at this point the elastic displacement u (the counterpart of the degree of freedom
y in (1.19)) and hence the objective functional can be computed. Thus, in analogy to (1.20) we can
reformulate the random shape optimization problem in a two-stage optimization manner as follows:

min
{
J(O, ω) : u(O, ω) = argminu∈H1

ΓD
(O;Rd)E(O, u, ω)

}
.

As mentioned above,O has the role of the first-stage and u(O, ω) of the second-stage decisions. Finally,
the stochastic program

min
{
QIE(O) := IEω (J(O, ω)) : O ∈ Uad

}
, (2.1)

arises as the ”natural” counterpart to (1.21). Replacing the variational problem in (2.1) by its Euler
equation enables us to introduce the (dual or) adjoint system needed to effectively compute gradients of
the stochastic objective functional.

2.1. Stochastic primal and dual problem. We start from the analysis of the second-stage prob-
lem. As illustrated in Section 1.2, in order to determine the shape derivative of the objective function it
is convenient to solve both the primal and the dual elastic problem as a counterpart of (1.22) in two stage
stochastic programming. Precisely, given O and ω we seek a primal solution u(O, ω) ∈ H1

ΓD
(D; Rd)

and a dual solution p(O, ω) ∈ H1
ΓD

(D; Rd), such that

A(O, u(O, ω), ϑ) = l(O, ϑ, ω) , (2.2)
A(O, ϑ, p(O, ω)) = −J,u(O, u(O, ω))(ϑ) (2.3)
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for all ϑ ∈ H1
ΓD

(D; Rd). The function u(O, ω) entering the dual problem is the solution to the primal
problem. Let us emphasize that as in (1.22) both the primal and the dual state solve variational problems,
in fact (1.2) and (1.13), respectively.
A key simplification in the solution of these equations arises from the general fact that the solution of a
linear problem depends linearly on the data. We phrase this fact first in general terms, and then discuss
the implications in our setting. Let AO : H1

ΓD
→ H−1

ΓD
(D; Rd) be the elliptic operator induced by the

quadratic form A(O, ·, ·), in fact AO(u)(ϑ) = A(O, u, ϑ). By the positivity of the elastic coefficients,
for any Lipschitz, connected domain O, and under the assumption that ΓD ⊂ ∂O has positive (d− 1)-
dimensional measure, the operator AO is bounded and coercive on the Hilbert space H1

ΓD
(D; Rd), and

therefore invertible. This implies that for any l ∈ H−1
ΓD

(D; Rd) one can find a unique solution u to
AO(u, ϑ) = l(ϑ), namely, u = A−1

O l. Therefore both (2.2) and (2.3) have a unique solution, which
depends linearly on the right-hand side.
We now consider the specific case of interest here, namely, the dependence of u and p on ω. The crucial
point is that the left-hand side of both equations, i.e., the quadratic form A(O, ·, ·), does not depend
on ω. The right-hand side depends on ω only through f , g and u, and this dependence is linear. Here
it is important that the integrand j entering the objective function is linear or quadratic. We shall now
exploit this fact in order to obtain an efficient algorithm, which does not require to solve (2.2) and (2.3)
for every ω, but only for a representative subset (a “basis”).
We start from the primal problem (2.2). Since the right-hand side is linear in the forces f and g, and A
does not depend on ω, the solution u depends linearly on the forces f and g. In order to make this more
explicit, assume that f and g are random combinations of finitely many forces f1, . . . , fK ∈ L2(D; Rd)
and g1, . . . , gM ∈ H1(D; Rd), respectively, i.e.,

f(ω) =
K∑

k=1

αk(ω)fk, g(ω) =
M∑

m=1

βm(ω)gm.

Here the αk(ω) and βm(ω) are stochastic coefficients. For later convenience we assume the normal-
ization condition

∑K
k=1 αk(ω) =

∑M
m=1 βk(ω) = 1 (this can always be achieved by rescaling the fk’s

and gm’s). We assume that ω follows a discrete distribution with scenarios ωσ and probabilities πσ with
σ = 1, . . . , S (

∑S
σ=1 πσ = 1); continuous distributions can be recovered in the limit S →∞. For any

pair (k,m) ∈ {1, . . . ,K} × {1, . . . ,M} let ukm(O) be the solution to the elasticity system (1.1)km,
which is (1.1) with right-hand sides fk, gm. Then, for any σ = 1, . . . , S,

ū(O, ωσ) :=
K∑

k=1

M∑
m=1

αk(ωσ)βm(ωσ)ukm(O) (2.4)

solves (1.1) for ω = ωσ . This is a substantial algorithmic shortcut, in the case that the discretization
parameter of the probability measure S is larger than the product KM of the numbers of base forces.
An analogous argument applies to the dual problem (2.3). We first determine, for each pair (k,m) ∈
{1, . . . ,K} × {1, . . . ,M}, the solution pkm(O) of the basis problem

A(O, ϑ, pkm(O)) = −J,u(O, ukm(O))(ϑ) , for all ϑ ∈ H1
ΓD

(D; Rd) . (2.5)

Since j depends linearly or quadratically on u, the dependence of j,u on u is linear (possibly trivial).
Therefore (2.4) implies

J,u(O, ū(O, ωσ))(ϑ) =
K∑

k=1

M∑
m=1

αk(ωσ)βm(ωσ)J,u(O, ukm(O))(ϑ)

and linearity of the inverse operator A−1
O gives

p̄(O, ωσ) =
K∑

k=1

M∑
m=1

αk(ωσ)βm(ωσ)pkm(O) . (2.6)

Obviously, p̄(O, ωσ) is the weak solution p̄ of −div (Ae(p̄)) = −j′(ū(O, ωσ)) on the domain O with
p̄ = 0 on ΓD and Ae(p̄) · n = 0 on ∂O \ ΓD.

7



2.2. Shape gradient in the stochastic optimization problem. Now, with the primal solution
ū(O, ωσ) for a particular realization ωσ at hand, the stochastic program (2.1) can be rewritten as follows

min
{
γ

∫
∂O

dHd−1 +
S∑

σ=1

πσ

∫
O
j(ū(O, ωσ)) dx :

ū(O, ωσ) :=
K∑

k=1

M∑
m=1

αk(ωσ)βm(ωσ)ukm(O), σ = 1, . . . , S
}
. (2.7)

Using the primal solution for the elastic deformation ū(O, ωσ) and the dual solution p̄(O, ωσ) for any
realization ωσ we deduce the stochastic shape derivative (1.7) of the objective functional J(O, ωσ) and
achieve, from (1.14),

J′(O, ωσ)(v) = J,O(O, ū(O, ωσ))(v)− l,O(O, p̄(O, ωσ))(v)
+A,O(O, ū(O, ωσ), p̄(O, ωσ))(v)

=
∫

∂O
(v · n)

(
j(ū(O, ωσ)) + γ h− (fi(ωσ) + gi(ωσ)h+ ∂ngi) p̄i(O, ωσ)

+Aijkleij(ū(O, ωσ))ekl(p̄(O, ωσ))
)

dHd−1 . (2.8)

Finally, the shape derivative of our actual stochastic cost functional, namely of the expectation of the
cost QIE(O) in case of S scenarios (ωσ)σ=1,··· ,S , is given by

Q′IE(O)(v) = IEω (J′(O, ω)(v)) =
S∑

σ=1

πσJ
′(O;ωσ)(v) . (2.9)

In the algorithm this shape derivative can be used as a descent direction. Thereby, first the KM primal
and dual base states are computed. These allow the efficient evaluation of the effective deformations
ū(O, ωσ) and the effective dual states p̄(O, ωσ) for a set of S scenarios ωσ with S usually much larger
than KM .

3. Multiscale finite element implementation. In this section we detail the concrete numerical
algorithm and consider a finite element approach for the representation of the level set function φ on
the working domain D, which implicitly describes the discrete elastic domain O as the sublevel set of
the discrete level set function. The elastic state equations for ukm and the corresponding set of dual
problems for pkm are discretized as well with finite elements. Here, we pick up the composite finite
element approach originally proposed by [31] and investigated in the level set context for complicated
3D geometries in [35]. Finally, we will discuss the time step control used in our descent scheme.

3.1. Finite element spaces. Without any restriction we suppose our working domain D to be a
hexahedron (d = 3) or a rectangle (d = 2), respectively. In a first step, a hierarchical grid is generated
based on successive subdivision of hexahedrons (rectangles) into 8 (4) equally sized child hexahedrons
(rectangles). Next, each cell of the resulting fine grid is split into 6 tetrahedra (2 triangles) such that
a regular simplicial grid Th of the domain D is obtained. We denote the simplicial elements of this
grid by T ∈ Th, and the set of nodes of by Nh = {Xi}i∈Ih

with a corresponding index set Ih. Let
us emphasize that we do not represent this simplicial grid explicitly. Instead access to element data is
implicitly encoded in look up tables. Here, h indicates the grid size. Let Vh be the space of continuous,
piecewise affine functions on Th with the canonical basis {Φi}i∈Ih

, given by Θi(Xj) = δij . In the
sequel, discrete variables will always be capitalized whereas continuous ones will be lowercase. Now,
we consider a discrete level set function Φ(x) =

∑
i∈Ih

ΦiΘi(x). As a consequence, the discrete
domain Oh = {x ∈ D |Φ(x) < 0} is polygonal. This algorithmic advantage justifies the use of a
tetrahedral grid. A solution of the state equation (2.2) and the dual problem (2.3) is defined on the
elastic domain only. Here, we explicitly work with a void phase D \ O and, at variance with [4, 10],
we do not consider a softer elastic material outside of actual elastic body O to be optimized. Thus, we
have to define suitable finite element spaces on the discrete elastic domain Oh implicitly described by a
level set function Φ ∈ Vh. A straightforward mesh generation based on a marching cube type algorithm
[37, 55] leads to badly shaped tetrahedra with a significant impact on the condition number of the linear
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systems to be solved. Explicit grid generation would require a regular remeshing of the boundary ∂Oh

followed by the actual meshing algorithm inOh ⊂ Rd [24, 43]. Both steps are fairly complicated in case
of general elastic domains and result in non hierarchical, unstructured meshes which do not allow for a
multilevel algorithm for the discrete PDE problems. To avoid these drawbacks we construct a suitable
composite finite element space. In contrast to explicit meshing approaches, the geometry is encoded in
the design of the basis functions which still correspond to grid nodes of the regular underlying grid. In
fact, given a basis function Θi ∈ Vh whose support intersects the discrete elastic domain Oh, we define
the corresponding composite finite element basis function Θcfe

i (x) = χOh
(x)Θi(x) selecting the part of

the old basis function contained in the elastic domain [31]. Here χOh
denotes the characteristic function

of the discrete domain Oh. Let us remark that there are also degrees of freedom at nodes outside the
actual domain as long as the support of the corresponding basis function interests Oh. Collecting all
these basis functions we obtain the composite finite element space

V cfe
h := {Θcfe

i (x) = χOh
(x)Θi(x) | suppΘi ∩ Oh 6= ∅}

and the resulting nodal index set I cfe
h is a subset of the index set Ih. Hence, far from the domain boundary

the basis functions coincide with the standard basis functions, whereas in the vicinity of the boundary,
the standard basis is modified to resolve the domain geometry. Finally, let us incorporate boundary
data and define V cfe

h,ΓD
= (V cfe

h )3 ∩H1
ΓD

(D; Rd) as the space of discrete vector valued functions which
vanish on the Dirichlet boundary ΓD. For the sake of simplicity, we assume here ΓD to be resolved
on the underlying regular grid. Thus, no special treatment of the Dirichlet boundary condition in the
construction of the composite finite elements [32] is required. Indeed, to conserve the Dirichlet boundary
condition we furthermore freeze the level set function φ in a small neighbourhood of the Dirichlet
boundary ΓD and the Neumann boundary ΓN on which the surface load is applied. Hence, in this
region the body still behaves elastic but does not undergo any optimization. As basis functions for the
vector valued problem we consider Θcfe

i ej with i ∈ I cfe
h and 1 ≤ j ≤ d.

3.2. Discrete primal and dual solutions. Given the composite finite element space V cfe
h,ΓD

we can
solve the primal and the dual problem numerically. Explicitly, the discrete primal solutions are defined
as the finite element functions Ukm ∈ V cfe

h,ΓD
solving

A(Oh, U
km,Θ) = lkm(Oh,Θ) (3.1)

for all Θ ∈ V cfe
h,ΓD

, where lkm(Oh,Θ) :=
∫
Oh

fk
i Θi dx +

∫
∂Oh

gm
i Θi dHd−1 for 1 ≤ k ≤ K and

1 ≤ m ≤M . The corresponding set of dual solutions are those functions P km ∈ V cfe
h,ΓD

, for which

A(Oh,Θ, P km) = −J,u(Oh, U
km)(Θ) (3.2)

for all Θ ∈ V cfe
h,ΓD

. For the variation of the cost functional J with respect to the discrete elastic dis-
placement U we obtain J,u(Oh, U

km)(Θ) =
∫
Oh

j,u(Ukm)(Θ) dx. Due to assumption that j(·) is
a linear or quadratic polynomial, the resulting integrant is at most quadratic and can be integrated
exactly using a Gauss quadrature rule. In case of the compliance cost functional J(O, u(O, ω)) =
lkm(O, ukm, ω)+γ

∫
∂O dHd−1, we derive as usual from (3.1) the representation J,u(Oh, U

km)(Θ) =
A(Oh, U

km,Θ) =
∫
Oh

Aijkleij(Ukm)ekl(Θ) dx. The numerical solution of (3.1) and (3.2) both re-
quire numerical quadrature for the assembly of the stiffness matrix (A(Oh,Θiej ,Θres))i,r∈Icfe

h ,1≤j,s≤d

and the right hand side vectors (lkm(Oh,Θres))r∈Icfe
h ,1≤s≤d and (−J,u(Oh, U

km)(Θres))r∈Icfe
h ,1≤s≤d,

respectively. For this purpose, on simplices of the original mesh which are intersected by the domain
boundary ∂Oh a local, virtual grid is generated. Based on a look up table the cells generated by the
marching cube type method in the construction of the composite finite elements are subdivided into
simplices. On these simplices and on the simplices within Oh not intersected by the domain bound-
ary a one point, center of mass quadrature rule is applied. The evaluation of the boundary integral∫

∂Oh
gm

s Θr dHd−1 is treated analogously.
As long as the discrete domain Oh is connected in the following discrete sense: for every node Xi with
i ∈ I cfe

h there is a chain of nodes (Xj)j=0,··· ,n with j ∈ I cfe
h such that [Xj , Xj+1] is an edge of Th,

X0 = Xi and Xn is a node on ΓD we easily verify that there exist unique solutions Ukm and P km

of (3.1) and (3.2), respectively. The resulting symmetric linear systems of equations are solved with a
9



conjugate gradient method for d = 2 and with a multigrid method for d = 3. In general a still high
condition number for the corresponding linear system of equations on the finest grid level will reflect
the badly shaped support of single composite basis functions. Here, in particular the multigrid method
leads to convergence rates which are independent of the grid size h and - for a wide range of problems -
the geometric complexity of the domain. For the multigrid solver, we first recursively construct coarse
grid matrices and right hand sides. Here, the underlying hierarchical grid induces a canonical projection
operator for any grid level to the next finer one generated by the cell subdivision. Let us emphasize that
this applies not only for the hierarchical hexahedral grid but analogously for the associated simplicial
mesh as well. Based on the projection operator a standard Galerkin projection [30] is applied both for
the matrices and the right hand sides. We then use a multigrid method with V cycles and symmetric
Block-Gauß-Seidel iterations as a smoother. Thereby, we gather the 3 spatial components of the solution
at a grid node and apply the Gauß-Seidel iterations on the resulting 3 × 3 blocks. In the applications
considered here, 3 pre- and post-smoothing steps in the V cycle turned out to be a reasonable choice.
For details on the composite finite element approach and the multigrid method we refer to [35].

3.3. Discrete gradient descent algorithm. The numerical relaxation of the shape functional is
based on the time discretized, regularized gradient descent scheme given in (1.18) and applied to the
spatially discrete stochastic shape functional

QIE,h(Oh) := IEω (J (Φ, ω)) =
S∑

σ=1

πσJ (Φ, ωσ) (3.3)

where the shape functional J for a discrete level set function Φ is defined in straightforward way by
J (Φ, ωσ) := J({Φ < 0}, ωσ) for any realization ωσ . Here, for the ease of presentation we notationally
do not distinguish continuous and discrete shape functionals, in fact in what follows discrete shape
functionals always involve the corresponding discrete solution of the state equation. For an initial level
set function Φ0 ∈ Vh we iteratively compute a sequence of level set functions (Φk)k=1,··· given by

G(Φk+1 − Φk,Ξ) = −τIEω

(
J ′(Φk, ω)(Ξ)

)
(3.4)

for all Ξ ∈ Vh. Hence, in every time step the vector
(
IEω

(
J ′(Φk, ω)(Ψi)

))
i∈Ih

of variations of the
expectation of the objective functional J in all basis directions Ψi for i ∈ Ih has to be evaluated.
Furthermore, one has to solve the linear system of equations resulting from a standard finite element
discretization of G. As already discussed the time step τ is chosen according to a simple variant of the
Armijo step size control. Indeed, given a constant β ∈ (0, 1) we accept a timestep τ if the condition

IEω

(
J (Φk+1, ω)

)
− IEω

(
J (Φk, ω)

)
≤ −βG(Φk+1 − Φk,Φk+1 − Φk)

is satisfied, otherwise the timestep is reduced.
Let us now detail the evaluation of J ′(Φ)(Ξ) in the spatially discrete setting. For any scenario of the
stochastic loading ωσ with σ = 1, . . . , S we obtain a discrete effective displacement Ū(Oh, ωσ) ∈
V cfe

h,ΓD
and a effective dual solution P̄ (Oh, ωσ) ∈ V cfe

h,ΓD
as the following linear combinations of Ukm

and P km (cf. (2.4), (2.6)), respectively:

Ū(Oh, ωσ) =
K∑

k=1

M∑
m=1

αk(ωσ)βm(ωσ)Ukm(Oh) ,

P̄ (Oh, ωσ) =
K∑

k=1

M∑
m=1

αk(ωσ)βm(ωσ)P km(Oh) .

Given the discrete primal solution Ū(Oh, ωσ) the variation of the objective functional (cf. (1.5))

J (Φ, ωσ) =
∫
Oh

j(Ū(Oh, ωσ)) dx+ γ

∫
∂Oh

dHd−1

for a particular realization ωσ of the stochastic loading and a shape domainOh implicitly defined by the
10



discrete level set function Φ (that is, Oh = {Φ < 0}) can be computed as follows (cf. (1.16) and (2.8)):

J ′(Φ, ωσ)(Ξ) = J′(Oh, ωσ)(−Ξ |∇Φ|−1N)

=
∫

∂Oh

(−Ξ|∇Φ|−1)
(
j(Ū(Oh, ωσ)) + γ H

− (fi(ωσ) + gi(ωσ)H + ∂Ngi(ωσ)) P̄i(Oh, ωσ)

+Aijkleij(Ū(Oh, ωσ))ekl(P̄ (Oh, ωσ))
)

dHd−1 . (3.5)

Here, N denotes the outer normal on ∂Oh and H a discrete mean curvature function on ∂Oh. As a
suitable approximation we consider N , H to be piecewise affine on ∂Oh and on each vertex X on ∂Oh

the discrete mean curvature vector H N is defined as the gradient vector of the area functional with
respect to the position of the vertex (cf. [25] for the resulting formula and the relation to the continuous
mean curvature). For the numerical integration we apply a Gauss quadrature of degree 4. Hence, the
integration is exact as long as f and g are (piecewise) affine functions on Rd. Finally, the discrete
counterpart of the shape derivative of our actual stochastic cost functional, namely the expectation of
the discrete cost functional QIE,h(Oh) in case of S scenarios (ωσ)σ=1,··· ,S (cf. (3.3)) is given by

Q′IE,h(Oh)(V ) = IEω (J ′(Φ, ω)(Ξ)) =
S∑

σ=1

πσJ ′(Φ, ωσ)(Ξ) , (3.6)

where V = −Ξ|∇Φ|−1N is the normal variation corresponding to the variation Ξ of the level set
function Φ. In the algorithm this shape derivative can be used as a descent direction. In any step of the
considered time-discrete gradient descent (3.4) one has to compute for the current discrete domain Oh

once the KM discrete primal base deformations Ukm(Oh) and the corresponding discrete dual base
states P km(Oh). From these, we can efficiently compute the effective deformations Ū(O, ωσ) and the
effective dual states P̄ (O, ωσ) for a possibly very large set of scenarios {ωσ |σ = 1, · · · , S}, and using
(3.5) and (3.6) we then evaluate the stochastic descent direction.

4. Computational Results. As discussed above the major characteristic of two stage stochastic
shape optimization investigated here is that one first decides the domain O and then the stochastic
loading is observed. Hence, we expect the resulting optimal shapes to differ significantly from those
obtained in case of an optimization for the load straightforwardly computed as the expected value of
the stochastic loads. In what follows we consider shape optimization applications in two and three
dimensions which in particular reflect this consideration. Let us assume a vanishing volume load f(ω)
and Neumann boundary conditions g(ω) with support ΓN . As explained above, we assume neither
ΓD nor Γ′N not to be modified in the actual shape optimization. Indeed, we choose 7h as the size of
this neighborhood of ΓD and ΓN , where the level set function is kept fixed. As objective function, we
take into account a sum of the expectation of the compliance load

∫
ΓN

g(ω) · u(O, ω) dHd−1 and the
weighted volume η

∫
∂O dHd−1 of the structure, where η is a positive constant.

The first application in 2D is a carrier plate, where we optimize the shape of the carrier construction
between a floor slap, whose lower boundary is assumed to be the Dirichlet boundary, and the upper
plate, on which the loading is applied. Fig. 4.1 depicts the initial shape and a sketch of a particular
instance of the stochastic loading on the upper plate. Figures 4.2, 4.3, and 4.4 show results obtained by
the stochastic optimization algorithm presented here. Each realization of the stochastic load is spatially
uniform on the upper plate, realizations only differ by the direction of the force. Hence, two base loads
g1 and g2 are required to span a load space containing all realizations of the stochastic load. Hence
m = 2, whereas S ranges from 2 in Fig. 4.2 to 20 in Fig. 4.3 and 21 in Fig. 4.4. In Fig. 4.3 a slightly non
symmetric set of stochastic scenarios is taken into account, whereas the stochastic load configuration in
Fig. 4.4 is symmetric. The resulting optimal domains reflect this break of symmetry. Both figures show
on the single stochastically optimal shape the von Mises stress distribution for different load scenarios.
The second application deals with shape optimization of a 2D cantilever. The initial domain and the
optimal shape in case of deterministic loading are shown in Fig. 4.5. Here the cantilever is fixed on the
left side and a downward pointing force is applied on the right. A stochastic counterpart is presented
in Fig. 4.6 with 21 different scenarios pulling in different directions. Again the realizations of the
stochastic load on the smaller plate on the right are spatially uniform. Thus, the space of realization is
two dimensional and we can choose m = 2.
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FIG. 4.1. The initial domain considered in the computation of the optimal shapes in Fig. 4.2 and Fig. 4.3 is depicted on the
left. On the right the different contributions to the objective function are plotted over the number of iterations. The upper curve
shows the robust decay of the objective functional, whereas the lower curve and the middle curve display the evolution and the
interplay of the compliance functional and the enclosed volume term, respectively.

FIG. 4.2. A direct comparision of two scale stochastic optimization and deterministic optimization for an averaged load is
shown. On the right, a stochastically optimal shape is rendered together with the two underlying load scenarios ω1 and ω2 on
the upper plate, with surface loads g(ω1) and g(ω2) both with probability 1

2
. On the left the optimal shape colorcoded with the

von Mises stress is drawn for a deterministic load 1
2
g(ω1) + 1

2
g(ω2).

The subset of the domain Ω, which does not undergo an optimization but is still treated as elastic material
is indicated by the hatched box texture in Fig. 4.1 and Fig.4.5. The diameter of the initial domain is 0.9
and the Lamé coefficients in all instances are λ = 40 and µ = 40. For the parameters in the objective
functional we choose η = 8 in the application in figures 4.2, 4.3, and 4.4, whereas η = 0.3 in the case of
Fig. 4.5. Here, instead of a regularizing surface area term we consider an iterative regularization strategy
based on a weaker morphological operator applied during the gradient descent. In all 2D computations
the underlying grid is a uniform grid with 257× 257 nodes, the discrete primal and dual state equation
are solved using a conjugate gradient approach. Furthermore, we take into account β = 0.2 for the
parameter in the Armijo rule and halfen the step size as required. Finally, we set ρ = 6h for the
computations in Figures 4.3 and 4.4 and ρ = 4h in Figures 4.2 and 4.5, where ρ is the filter parameter
in the regularized gradient descent. As mentioned above, we regularize the discrete shape boundary
after a couple of iterations applying the morphological operator D(s)E(2s)D(s), where D(·) and E(·)
are discrete Dilation and Erosion operators, respectively. These operators are implemented via a fast
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1

10

20

FIG. 4.3. Stochastic shape optimization based on 20 scenarios is depicted. On the left the different loads g(ωσ) with
probabilities πσ are sketched. Each arrow represents one scenario where the arrow length is determined by the corresponding
force intensity weighted with the probability πσ of the corresponding scenario. On the right the von Mises stress distribution is
color coded on the optimal shape for 10 out of the 20 realization of the stochastic loading. Due to the non symmetric loading
configuration the resulting shape is non symmetric as well. In particular the right carrier is significantly thicker than the left one,
whereas the connecting diagonal stray pointing up right is thinner than the one point down left.

1

10

FIG. 4.4. Results for a symmetric load configuration with 21 scenarios, to be contrasted with those reported with an
non symmetric configuration in Fig. 4.3. Again on the left the configuration is sketched and on the right the von Mises stress
distribution in plotted in case of the first 10 scenarios.

marching method [50]. We set s = 0.5h for the width parameter of these operators. Starting from the
initial configuration, the decay of the different energy contributions is plotted already on the right hand
side in Fig. 4.1. The underlying stochastic scenario is shown in Fig.4.4.

Finally, we consider a 3D cantilever, as a generalization of the problem considered in the first example
in 2D. On one side a disk shaped plate is fixed on a wall prescribing zero Dirichlet conditions. On the
other side a small rectangular plate opposite to the center of the disk is considered as Neumann boundary
loaded with different deterministic and stochastic boundary forces. Fig. 4.7 shows the optimal designs
in case of a single deterministic load, and for four and eight stochastic loading scenarios. Furthermore,
the energy decay during the numerical relaxation of the shape functional is depicted. As initial shape we
have considered a 3D version of the initial 2D shape shown in Fig. 4.1. Fig. 4.8 displays a color coding
of the von Mises stress distribution on the optimal shape in the stochastic setting with eight equally
probable and equally distributed loads scenarios.

Here, we choose η = 1 for the volume penalization parameter and the elastic behaviour is described
by the Lame coefficients λ = 40 and µ = 40 for a structure diameter of the order 1. The parameters
involved in the Armijo step control are the same as those in the 2D applications. The underlying grid is a
regular grid with 1283 nodes. The shape optimization is first performed on a 643 grid. Then the level set
function is prolongated to the next finer grid level. Before the gradient descent of the shape functional
is released a morphological smoothing operator D(s)E(2s)D(s) is applied. Here, as in the 2D case
D(s) and E(s) represent discrete dilation and erosion operators, implemented based in a fast marching
algorithm in 3D. As width parameter we select s = 0.45h. The filter parameter in the regularized
gradient descent is ρ = 2.5h. A multigrid method for the numerical solution of the discrete primal and
dual problem is applied.
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FIG. 4.5. The initial domain for the computation in case of a cantilever geometry is rendered on the left. The left boundary
is a Dirichlet boundary where the cantilever is attached to a vertical wall. The center part of the right boundary is the support ΓN

of the a boundary force, which is a deterministic downward-pointing force in this sketch. The resulting optimal shape computed by
the proposed level-set algorithm is plotted on the right and color coded with the von Mises stress. The corresponding stochastic
case is reported in Fig. 4.6.

1

10

21

FIG. 4.6. Stochastic shape optimization in the cantilever case with 21 scenarios. The different loads g(ωσ) with probabili-
ties πσ are sketched on the left. The von Mises stress distribution is color coded on the stochastically optimal shape for 10 out of
the 21 scenarios.
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FIG. 4.7. From left to right the optimal shapes in the determistic approach and the stochastic optimization approach for 1,
4, and 8 scenarios are shown. The arrows represent the different involved loads g(ωσ) for varying scenario indices σ. On the
right the energy decay is shown for the 8 scenario configuration. Again the upper curve represents the total value of the objective
functional, the middle one the enclosed volume term and the lower one the compliance functional.

FIG. 4.8. The optimal design in the case of stochastic shape optimization for the cantilever problem with 8 scenerios is
depicted. From left to right 4 scenerios are color coded with the von Mises stress in a consecutive clockwise ordering with respect
to the sketch of the loads in Fig. 4.7. The upper and the lower row show the shape geometry under different perspectives.
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[48] A. RUSZCZYŃSKI AND A. SHAPIRO, eds., Handbooks in Operations Research and Management

16



Sciences, 10: Stochastic Programming, Elsevier, Amsterdam, 2003.
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