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Rüdiger Schultz†

March 31, 2009

Abstract

Risk-averse optimization has attracted much attention in �nite-dimensional stochastic pro-
gramming. In this paper, we propose a risk-averse approach in the in�nite dimensional context
of shape optimization. We consider elastic materials under stochastic loading. As measures
of risk awareness we investigate the expected excess and the excess probability. The developed
numerical algorithm is based on a regularized gradient ow acting on an implicit description of
the shapes based on level sets. We incorporate topological derivatives to allow for topological
changes in the shape optimization procedure. Numerical results in 2D demonstrate the impact
of the risk-averse modeling on the optimal shapes and on the cost distribution over the set of
scenarios.
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1 Introduction

Shape optimization for elastic bodies under deterministic loading is a well-developed field, which
can be seen as an instance of PDE-constrained infinite-dimensional optimization, see e.g. the books
[45, 13, 2]. In this paper we investigate shape optimization problems where an elastic body O ⊂ R2

is subject to stochastic volume and surface loading. The stochastic load might arise from stochas-
tically varying load configuration in time or from uncertainty in measurements of the forces acting
on the body (cf. [18, 16, 15]). Such type of uncertainty is a prevailing issue in many real-world
shape-optimization problems, in which unlikely but dramatic failures must be appropriately taken
into account. Ignoring this stochasticity might lead to optimal structures that are quite vulnerable
with respect to variations of loadings. This instability is clearly not a failure of the optimization
procedure, but rather a modelling issue: The model should already incorporate uncertain loadings.
There have been several approaches to this problematic, one of them being the robust optimization
approach. For an overview about robust optimization we refer to [12]. This has been applied to
shape optimization problems e.g. in [26, 18, 16, 15].
For each realization of the stochastic loading one evaluates a cost functional depending on the
elastic domain and the elastic displacement field. Decisions on the shape have to be made before
the stochastic forcing is applied. The requirement that the first-stage decision must not depend
on the future observation is referred to as nonanticipativity. Obviously, optimizing the shape for
a single loading pattern corresponding to the expectation value of the stochastic loading does not
properly reflect this nonanticipativity requirement. Rather, one observes a striking similarity with
two-stage stochastic programming, which we will elaborate on in sections 2 and 4 below. In a first
attempt one might ask for shapes which minimize the expected value of the cost functional.
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However, in various practical applications, there are possible realizations of the random variables
that are rather unlikely but which, in case they do occur, have catastrophic consequences. Because
of their low probability such scenarios would not have a significant impact on the expectation
value. This motivates the development of risk-averse optimization models which are more sensitive
against such harmful but unlikely events. The stochastic programming point of view enables us to
investigate such risk averse models. In this paper, we refine the risk measurement and consider the
expectation with respect to suitable nonlinear functions of the cost for each stochastic realization.
In particular, we address the expected excess, which reflects the expectation of the costs exceeding
a given threshold, or the excess probability, which measures the probability of a failure, i. e. of a
realization with a cost value above the threshold value. These models have already been studied
in the context of finite dimensional two–stage stochastic programming.
Before we discuss our model, let us briefly review some more recent approaches in shape opti-
mization which already generalize the single load assumption. In so–called multiload approaches
a fixed (usually small) number of different loading configuration is considered and optimization
refers to this set of configurations, see, e.g., [5, 23, 46] and references therein. In these approaches
each evaluation of the objective functional requires a separate computation for each of the possible
stochastic forces, which renders them infeasible if the set of possible forces is large, as for example
is the case when one aims at approximating a continuous distribution of forces. A more e�cient
method was derived for a truss model in [8], where it is shown that optimization of the expected
compliance is equivalent to a convex problem, and hence e�ciently solvable. This however is based
on additional geometrical assumptions, namely, on considering a fixed ground structure, and leav-
ing only the thickness of the bars to be optimized. Compared to these approaches, which require
an evaluation of the objective function for each realization of the stochastic loading, we confine to
the evaluation of basis modes for the surface and volume loading. Furthermore, in multiload opti-
mization one basically optimizes the average cost functional and not the expectation of nonlinear
risk measures acting on the cost functional. A robust probabilistic approach for the optimization
of simple beam models is discussed in [1], whereas in [28] structural reliability is discussed for
beam geometries with uncertain load magnitude. Worst-case situations in a multiload context
have also been considered, see, e.g., [11]. Structural optimization under incomplete information
is also addressed in [10]. The authors investigate different types of uncertainties and follow a
non-probabilistic, robust worst case approach. They work out effective techniques to transform
optimal design problems with uncertainties into conventional structural optimization problems. In
[36] a worst case analysis for given bounds on uncertain loads has been implemented based on a
boundary element approach. A worst case compliance optimization is investigated in [6] based on
a level set description of shapes and a semi–definite programming approach in the minimization
algorithm.
Our approach on nonlinear risk measures and an effective minimization algorithm builds upon
previous work on an expectation-based model in [17].

The paper is organized as follows. We will review risk measures in the context of finite dimen-
sional stochastic programming in Section 2 to familiarize ourselves with the general concept and
the corresponding two-stage stochastic programming paradigm. In Section 3 we briefly introduce
the elastic state equation and define suitable cost functionals for a fixed realization of the loading.
A general class of risk-averse shape-optimization models, and the examples of expected excess and
excess probability, as well as proper smooth approximations, are presented in Section 4. Section 5
gives a compact description of the level set representation of elastic shapes and the relaxation
scheme via a regularized gradient descent. In particular, we will see how to use basis loads and a
corresponding basis of primal and dual solutions to compute the shape gradient e�ciently even in
the presence of a large number of realizations of the stochastic loading. Furthermore, stochastic
topology optimization is considered in Section 6. Section 7 describes our numerical algorithm. In
Section 8 computational results are presented and we relate qualitative properties of risk averse
optimal shapes to corresponding observation in the context of finite dimensional programming.
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2 Review of risk averse stochastic programming

Two-stage stochastic programming aims at optimizing nonanticipative decisions which arise in a
two-stage scheme of alternating decision and observation. As a paradigmatic example consider the
linear case in finite dimension. Here we have a random optimization problem

min
�
cTx+ qT y : Tx+Wy = z (ω) , x ∈ X, y ∈ Y

	
, (1)

where X,Y are polyhedra in Euclidean space and randomness is indicated by the dependence on
a random outcome ω in a probability space 
. We require that x has to be nonanticipative which
is expressed by the information constraint

decide x 7−! observe ω 7−! decide y = y (x, ω) .

This motivates to rewrite (1) as

min
x

�
cTx+ min

y

�
qT y : Wy = z (ω)− Tx, y ∈ Y

	
: x ∈ X

�
. (2)

While the inner minimization in the above model, to be executed after decision on x and ob-
servation of ω, is well-defined conceptually, the outer is not. Nonanticipativity requires to fix
x before knowing the data ω. Deriving, from this departure point, conceptually sound opti-
mization models is a central issue in (finite dimensional) two-stage stochastic programming. To
this end consider the random variable J(x, ω) which, for given x ∈ X, arises as J(x, ω) :=
cTx + miny

�
qT y : Wy = z (ω)− Tx, y ∈ Y

	
. The outer minimization in (2) now can be seen

as a minimization over the family of random variables {J(x, ω) : x ∈ X} . To accomplish this
minimization the random variables J(x, ω) need to be compared. Most commonly this is done by
applying statistical parameters of which the expectation is the most popular one. This leads to
the well-defined optimization problem

min {E! (J (x, ω)) : x ∈ X} .

The corresponding expectation based shape optimization model has been introduced in [17]. Of
course, this model is risk neutral. Critical realizations of J(x, ω) with little impact on the expected
value are given only little importance. If this is no longer appropriate then a risk averse point
of view can be adopted where random variables are compared by risk measures, i.e., statistical
parameters reflecting dispersion. In the present paper, we consider two such risk measures, namely
the expected excess and the excess probability. These are defined for a preselected threshold η ∈ R
as follows:

� expected excess, i.e. “the expectation of costs exceeding η”:

E (max {J (x, ω)− η, 0}) ,

� excess probability, i.e. “the probability of costs exceeding η”:

P ({ω ∈ 
 : J (x, ω) > η}) .

The resulting risk-averse shape optimization problems are introduced in Section 4.
In recent years, risk averse approaches to (two-stage) stochastic programming have gained

increasing attraction. The monograph [33] offers a broad view into modeling, measuring, and
managing risk in (finite dimensional) optimization context. We also refer to its comprehensive
list of references. Papers dealing with specific risk averse stochastic programming models include
[21, 29, 35, 38], for instance. The conceptual development in the present paper is particularly
inspired by [34, 39, 40]. In these articles, risk averse linear two-stage stochastic programs derived
from (2) were studied. Genuinely finite dimensional solution techniques, such as cutting plane
methods from convex optimization or Lagrangean relaxation of mixed-integer programs, constitute
the algorithmic pillars there.
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3 State equations and cost functionals

Our aim is to optimize the shape of an elastic body O ⊂ Rd (d = 2, 3) subjected to internal and
external forces. We consider admissible shapes O which are subsets of a fixed, bounded working
domain D ⊂ Rd. The boundary @O is assumed to be partitioned into �D,�N , and �0. Here
�D is a fixed Dirichlet boundary of positive capacity, and �N is a fixed Neumann boundary. On
the remaining set �0, which we effectively optimize, we assume homogeneous Neumann boundary
conditions. In order to keep the Dirichlet and Neumann boundaries fixed, we shall choose an open
set O∗ ⊂ D such that �D,�N ⊂ @O∗ \ @D, and restrict the class of admissible shapes to those
open sets O such that O∗ ⊂ O ⊂ D. Then necessarily �D,�N ⊂ @O.

We assume that a random variable ω follows a discrete distribution with scenarios ωi and
probabilities πi with i = 1, . . . , Ns (

PNs

i=1 πi = 1); continuous distributions can be recovered in the
limit Ns !1. For a given admissible shapeO ⊂ R2 the elastic displacement u = u(O, ω) : O ! Rd

is assumed to minimize the functional

E (O, u, ω) :=
1
2
A (O, u, u)− l (O, u, ω) , (3)

with A (O,  , θ) :=
R
O Aijkleij( )ekl(θ) dx and l (O, #, ω) :=

R
O f(ω) � # dx +

R
�N

g(ω) � # dHd−1,
among all u ∈ H1

�D

(
O; Rd

)
:=

�
u ∈ H1

(
O; Rd

)
: u = 0 on �D

	
. Note that we implicitly sum

over repeated indices. Here e(u) = 1
2

(
ru+ruT

)
denotes the linearized strain tensor, and A =

(Aijkl)ijkl the elasticity tensor, e. g. for an isotropic material Aijkl = 2µ�ik�jl +λ�ij�kl with Lam�e
coe�cients λ, µ > 0. Furthermore, we suppose for the volume force f(ω) ∈ L2

(
D; Rd

)
and for

the surface load g(ω) ∈ L2
(
�N ; Rd

)
. For fixed realization ω, the minimization of the energy is

equivalent to the solution of −div (Ae(u)) = f(ω) with appropriate boundary conditions involving
g(ω).
For the shape optimization we consider a general objective functional J which depends on both
the shape O and the resulting elastic displacement u(O), and is given by

J (O) := J (O, u (O)) =
Z
O
j (u (O)) dx+

Z
@O

k (u (O)) dHd−1 . (4)

For a later e�cient numerical realization in case of a high number of stochastic realizations of
the loading we restrict here to linear or quadratic functions j(.) and k(.). In the deterministic
case of a single realization of the loading we consider min {J (O) : O ∈ Uad} on a set of admissible
shapes Uad. As particular instances of the general objective functional (4), we take into account
the compliance

J1 (O) := l(O, u(O)) =
Z
O
f � u(O) dx+

Z
�N

g � u(O) dHd−1 , (5)

and the least square error compared to a target displacement u0

J2 (O) :=
1
2

Z
O
ju− u0j2 dx . (6)

In both cases we usually include an penalty for the object volume α
R
O dx with α � 0.

The shape derivative [19] of the objective functional J in the direction v initially takes the
form J′(O)(v) = J;O(O, u(O))(v) + J;u(O, u(O))(u′(O)(v)). To avoid an evaluation of u′(O)(v)
for any test vector field v, one introduces the dual or adjoint problem. In fact, the dual solution
p = p(O, ωi) ∈ H1

�D

(
O; Rd

)
is defined as the minimizer of the dual functional

Edual (O, p) :=
1
2
A (O, p, p) + ldual (O, p) ,

with ldual(O, p) =
R
O j

′(u)p dx +
R

@O k
′(u)p dHd−1. For the compliance objective (5) we observe

that p = −u. Given p for fixed u and O we can evaluate the shape derivative of the deterministic
cost functional as follows:

J′(O)(v) = J;O(O, u(O))(v)− l;O(O, p(O))(v) +A;O(O, u(O), p(O))(v) (7)

4



 0

 0.25

 0.5

 0.75

 1

 0.4  0.6  0.8  1  1.2  1.4  1.6
 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Figure 1: The profiles of qε with � = 0.01 (left) and Hε for � = 0.25 for η = 1.0 as they are used in the
applications in Section 8 below.

=
Z

@O
(v � n)

�
j(u(O))−(f+g h+@ng) p(O)+Aijkleij(u(O))ekl(p(O))

�
dHd−1 .

where h denotes the mean curvature of @O. For further details we refer to [19, 45] and in case of
the particular application to [17].

4 Risk averse shape optimization models

We replace a minimization of the expectation of the objective function by a minimization of the
expectation of a nonlinear monotone increasing function of the objective function. This reflects
a refined measurement of the effective risk. Indeed it permits to increase the relative weight of
unlikely but large values of the objective function. We shall in particular focus the expected
excess and the excess probability as risk measures (cf. Section 2) and investigate suitable smooth
approximations of the latter. Thus, we ask for shapes O which minimize

Q(O) := E (q(J(O, ω))) =
Ns∑
i=1

πiq(J(O, ωi)) (8)

where q : R ! R is a monotone function. For q(t) = t this reduces again to a minimization of the
expected value.

Expected Excess. In analogy to finite dimensional stochastic programming (cf. Section 2), we
define here a stochastic shape-optimization problem using the expected excess risk measure. Given
a preselected tolerance level η ∈ R, and using the weight function q(t) = max{t− η, 0}, we obtain
the expected excess:

QEEη (O) := E (max{J(O, ω)− η, 0}) .

For practical convenience we will replace the max-function by a smooth approximation

Qε
EEη

(O) = E (qε(J(O, ω)))

where qε(t) := 1
2

�p
(t− η)2 + ε+ (t− η)

�
(cf. Fig. 1).

Excess Probability. Correspondingly, if we model the risk measure of excess probability for a
preselected tolerance level η ∈ R now using the weight function q(t) = H(t− η) where H denotes
the Heaviside function with H(t) = 1 for t > 0 and 0 otherwise, we get the excess probability:

QEPη
(O) := E (H (J(O, ω)− η)) .

A suitable smooth approximation is given by

Qε
EPη

(O) = E (Hε(J(O, ω)))
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for Hε(t) :=
1

1 + e−
2t
�

(cf. Fig. 1).

5 Level set based gradient descent

In this section we discuss the representation via a level set function φ of the shape O undergoing
the optimization procedure. We in particular discuss a spatially continuous descent strategy for
a given risk measure, and a particular cost functional based on a regularized gradient descent for
this level-set representation. This requires in particular to specify the shape derivative of the risk
measure.

Level set description of shapes. We identify the shape O ⊂ D with a level set function φ
on the underlying computational domain D as follows. The shape O itself consists of the set of
points x ∈ D with φ(x) < 0, the shape contour is the zero level set of φ, and finally φ(x) > 0
corresponds to the complement of �O on the computational domain D. The well-known level set
equation [31, 30] can be interpreted as relation between variations s of the level set function φ and
normal variations (v � n)n of the underlying shape given by s = −jrφjv. Here, n := r�

jr�j denotes
the outward pointing normal vector field to @O = φ−1(0). Given this identification, we can rewrite
the cost functional J in a straightforward manner in terms of the level set function φ. Hence, we
define J (φ, ωi) := J ({φ < 0} , ωi) and obtain J ′ (φ, ωi) (s) = J′ ({φ < 0} , ωi)

�
−sjrφj−1

n
�

for
the shape derivative of J . Thus, for our general objective functional (4) we deduce from (8) that

J ′ (φ, ωi) (s) = −
Z

@O

s

jrφj
�
j(u(O, ωi))− (fi + gi h+ @ngi) p(O, ωi)

+Aijkleij(u(O, ωi))ekl(p(O, ωi))
�

dHd−1 , (9)

where h denotes the mean curvature, given by h = div
�
r�
jr�j

�
.

Shape derivatives of the risk measures. In our risk averse optimization context the cost
functional acts as the argument of the nonlinear risk measure function q (cf. Section 4). By the
chain rule, we next compute the shape derivative of the stochastic risk measure Q(φ) defined, in
analogy to (8), by Q(φ) := E (q(J (φ, ω))), and obtain

Q′(φ)(s) =
Ns∑
i=1

πi q
′(J (φ, ωi))J ′ (φ, ωi) (s) . (10)

Let us denote by Qε
EEη

(φ) = Qε
EEη

(O) and Qε
EPη

(φ) = Qε
EPη

(O) the approximated expected
excess and excess probability, respectively, acting on a level set function φ. Then we obtain for
these risk measures:�

Qε
EEη

�′
(φ) (s) =

Ns∑
i=1

πi

2
J ′ (φ;ωi)(s)

0@ J (φ, ωi)− ηq
(J (φ, ωi)− η)2 + ε

+ 1

1A ,

�
Qε

EPη

�′
(φ) (s) =

Ns∑
i=1

2
ε
πiJ ′ (φ, ωi)(s) e−

2
� (J (�;!i)−�)

�
1 + e−

2
� (J (�;!i)−�)

�−2

.

Evaluation of the variation of the cost functional. So far, it seems that for every realization
one has to compute a primal solution u(O, ωi) and a dual solution p(O, ωi). Under our assumption
that j(�) and k(�) are linear or quadratic functions, there is a significant algorithm shortcut at
our disposal for Ns � 1, which we will recall here. For details we refer to [17]. Let us assume
that there is a small number of (deterministic) basis volume forces f1, . . . , fK1 ∈ L2

(
D; R2

)
,

and of (deterministic) basis surface loads g1, . . . , gK2 ∈ H1
(
D; R2

)
. Then, the actual loads f(ω)

and g(ω), respectively, are given as linear combinations of these deterministic basis loads f(ω) =PK1
i=1 c

f
i (ω)fi and g(ω) =

PK2
j=1 c

g
j (ω)gj , with the uncertain coe�cients cfi (ω) ∈ R, i = 1, . . . ,K1,
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and cgj (ω) ∈ R, j = 1, . . . ,K2. The advantage of this approach is that we only need to solve as
many elasticity PDEs as there are scenarios in order to evaluate the objective functional for a
given shape O. This will reduce the computing cost significantly in case Ns � K1 +K2. Suppose
u(i;0) is the elastic displacement for given volume force f := fi and surface load g := 0, for all
i = 1, . . . ,K1. Similarly, let u(0;j) be the displacement corresponding to the volume force f := 0
and the surface load g := gj , for all j = 1, . . . ,K2. Then,

�u (O;ω) :=
K1∑
i=1

cfi (ω)u(i;0) +
K2∑
j=1

cgj (ω)u(0;j) (11)

is the minimizer of (3) with volume force f := f(ω), and surface load g := g(ω). A similar relation
holds for the adjoint state �p (O;ω) in scenario ω, if we additionally assume that

PK1
i=1 c

f
i (ω) +PK2

j=1 c
g
j (ω) = 1, which can always be achieved by choosing the basis forces appropriately. In that

case, and if we denote the adjoint states for the individual basis forces by p(i;0) and p(0;j), one can
see that

�p (O;ω) :=
K1∑
i=1

cfi (ω)p(i;0) +
K2∑
j=1

cgj (ω)p(0;j) (12)

is the adjoint state belonging to the state �u (O;ω). Here, we also used the fact that the cost
functional J (O, �) is a quadratic polynomial.

Regularized grad ows. In order to minimize a particular risk measure Q, we consider a
gradient descent

_φ(t) = − gradG Q (φ)

with respect to the regularizing metric G (�, �) =
R

D
�� + �2

2 r� � r� dx, which leads to a smooth
extension of the shape gradient onto the vicinity of the shape boundary @O. Indeed, it corresponds
to the application of the inverse of a linear Helmholtz operator to the shape gradient.

6 Topological derivative for risk averse models

A descent procedure based on the shape derivative alone is not, in general, capable of changing the
topology of the shape. In some cases the resulting optimal shape strongly depends on this choice
of the initial topology (cf. [4, 7, 17]). Although a level-set description of the optimal shape entails
no restriction on the topology, the evolution of a level set based on a gradient flow is only able
to merging existing holes together, and not capable of creating new holes. The so-called “bubble
method” or topological sensitivity is based on the idea of testing the target functional with small
holes of prescribed shape and computing an asymptotic expansion depending on the radius ρ. It
has been introduced by Schumacher [41] for the case of compliance minimization. The method
was generalized to a wider class of shape functionals by Soko lowski and _Zokowski [42] and applied
to 3D elasticity in [43]. In [44], the approach is extended to the case of finitely many circular
holes, combining topology variations with boundary variations simultaneously. Using an adjoint
method and a truncation technique, Garreau et al. [22] computed the topological sensitivity for
general objective functionals and arbitrarily-shaped holes. The topological derivative has been
incorporated into the level set method, e.g. in [14], and also combined with the shape derivative
in that context (cf. e.g. [4, 9, 25]). Notice that even including the topological derivative the
optimization remains local, hence the numerical solution can only be expected to converge to a
local minimum, which is not necessarily a global one (cf. Figures 2 and 7). However, we know that
these shapes are local minima with respect to a wider class of perturbations, which also include
the creation of holes.
To apply this method in the context of risk averse shape optimization and to start the optimization
process with a solid structure we define a stochastic topological gradient based on a weighted sum
of topological gradients for the different scenarios. For the single scenario case we follow Garreau
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et al. [22]. Suppose we aim at minimizing the functional J (O). Let Oρ := O \
(
x+ ρM

)
be

the perforated domain obtained removing a small part Mρ := x + ρM from O for a fixed open
bounded set M ⊂ R2. Then, under appropriate smoothness assumptions one obtains an asymptotic
expansion of J:

J (Oρ) = J (O) + f (ρ) DtopoJ (x) + o (f(ρ)) ,

where f is a smooth function with limρ→0 f(ρ) = 0, and f(ρ) > 0. The quantity DtopoJ (x) is
called topological gradient at the point x ∈ O. It is here important that the objective function
J (Oρ) is computed with the elastic displacement uρ which minimizes the elasticity problem (3)
on the domain Oρ. Thus, the topological derivative DtopoQ of the objective function Q(φ) =
E (q(J(O, ω))) at a point x ∈ O provides information about the effect of creating a small hole
located at x, and can thus be used like a descent direction in the optimization process. From now
on, we take M to be the unit ball. For any x ∈ O, the topological derivative of the risk averse
cost functional is computed by the chain rule as

DtopoQ(x) =
Ns∑
i=1

πi q
′(J(x, ωi))DtopoJ(x, ωi)

where DtopoJ is the slope of the cost in case of a hole drilling for a single realization. Then, the
topological derivative for the compliance J1 (O) defined in (5) and the quadratic functional J2 (O)
defined in (6) for right hand side f = 0 are given as follows [43, 22]:

DtopoJ1(x, ωi) =
π (λ+ 2µ)
2µ (λ+ µ)

{4µAe(ui) : e(ui) + (λ− µ) tr (Ae(ui)) tr (e(ui))} (x),

and the topological derivative of J2 is given by

DtopoJ2(x, ωi) =− π

2
(ui(x)− u0(x))2

− π (λ+ 2µ)
4µ (λ+ µ)

{4µAe(ui) : e(pi) + (λ− µ) tr (Ae(ui)) tr (e(pi))} (x).

For an effective topology selection in the algorithm we use the topological derivative every ntopth
step, apply a usual thresholding strategy substracting all points x with DtopoQ(x) above the thresh-
old θmaxy∈O DtopoQ(y) from the shape domain. Fig. 2 illustrates the effectivity but also the sen-
sitivity of the topological derivative. In a cantilever type configuration (a rectangle whose left-hand
side is kept fixed, with a tangential force acting on the central part of the right-hand side), where
we start with a solid initial shape. Here, we set α = 0.4 and used a grid with 513 × 513 nodes.
It is seen that the parameters for the algorithm have to be chosen with care. Inclusion of the
topological derivative enhances the algorithm, without, of course, guaranteeing a global optimal
solution.

Figure 2: Computational results based on the combined shape derivative and topological derivative approach
are depicted for a cantilever problem with deterministic loading. We choose ntop = 15, θ = 0.9 (left),
ntop = 5 , θ = 0.9 (middle), and ntop = 15 , θ = 0.95 (right). The resulting shape color coded by the von
Mises stress as and a plot of the objective function (blue, top), the enclosed volume (green, middle),
and the compliance functional (red, bottom) over the iterations of the algorithm are shown. The middle
shape has the slightly better objective value 0.111 than the left one with 0.117. The third shape, which
already looks strikingly different has the (worst) objective value 0.129
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7 Numerical algorithm

In this section we detail the concrete numerical algorithm in two space dimensions (d = 2) and
discuss our finite element approach for the representation of the level set function on the working
domain D, and suitable finite elements spaces for the primal and the dual solutions. Furthermore,
we show how to combine the topological derivative and the regularized gradient descent approaches
in a robust discrete-energy minimization.

Finite element discretization. For the ease of implementation we restrict ourselves to the
working domain D = [0, 1]2. We suppose that the usual dyadic grid hierarchy consisting of squares
is generated, each of these squares is supposed to be divided along one of the diagonals into two
triangles. On each of these triangular grids we consider the space Vh of piecewise a�ne, continuous
functions, where h = 2l denotes the grid size on level l of the grid hierarchy. A discrete level set
function � ∈ Vh identifies a discrete, polygonally bounded elastic body Oh = {x ∈ D : �(x) < 0}.
Here, we explicitly work with a void phase D \ O and, at variance with [4, 3], we do not consider
a softer elastic material outside of the actual elastic body O to be optimized. Thus, we have to
define suitable finite element spaces on the discrete elastic domain Oh. To avoid a complicated
regular remeshing of the boundary @Oh [20, 32] we resort to composite finite elements. They
have been introduced by Hackbusch and Sauter [24] and allow for e�cient multigrid solvers for
elliptic problems on complicated domains. In fact, given a basis function �i ∈ Vh whose support
intersects the discrete elastic domain Oh, we define the corresponding vector-valued composite
finite element basis function �cfe

ij (x) = ej �Oh
(x) �i(x), where e1 = (1, 0), e2 = (0, 1), and �Oh

denotes the characteristic function of the discrete domain Oh. Collecting all those basis functions
which vanish on the Dirichlet boundary we obtain the composite finite element space Vcfe

h . Notice
that to conserve the Dirichlet boundary condition we furthermore freeze the level set function � on
the set O∗, which can be interpreted as a small neighbourhood of the Dirichlet boundary �D and
the Neumann boundary �N on which the surface load is applied (see discussion at the beginning of
Section sec:statecost). Hence, in this region the body still behaves elastically, but does not undergo
any optimization.

Discrete primal and dual solutions. For a given basis load the discrete primal solution is
defined as the finite element function U i;j ∈ Vcfe

h solving A(Oh, U
i;j ,�) = li;j(Oh,�) for all � ∈

Vcfe
h , where li;0(Oh,�):=

R
Oh

fi � � dx and l0;j(Oh,�):=
R

@Oh
gj � � dHd−1 for 1 ≤ i ≤ K1 and

1 ≤ j ≤ K2. The corresponding set of dual solutions are those functions P i;j ∈ Vcfe
h , for which

A(Oh,�, P i;j) = −J;u(Oh, U
i;j)(�). for all � ∈ Vcfe

h . Due to the assumption on J(O, �) the
integrand is at most quadratic and can be integrated exactly using a Gauss quadrature rule.
Finally, for loads f(ωi) and g(ωi) take into account the linear factors of the different basis loads
and compute �U(Oh, ωi), �U(Oh, ωi) for i = 1, . . . , NS according to the discrete analog of (11) and
(12), respectively. For further details on the primal and dual solutions we refer to [17] and for the
composite finite element approach in the context of domains described via level sets we refer to
[27].

Discrete gradient descent algorithm. The numerical relaxation of the shape functional is
based on the time discretized, regularized gradient descent scheme given in (13) combined with
intermediate topology optimization steps and applied to the spatially discrete stochastic shape
functional

Q(�) := E (q(J (�, ω))) =
Ns∑
i=1

πiq(J (�, ωi)) .

The regularized gradient descent scheme computes for an initial discrete level set function �0 ∈ Vh

a sequence of level set functions (�k)k=1;::: based on

G(�k+1 − �k, S) = −τQ′(�k, ω)(S) (13)
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for given time step τ and all S ∈ Vh. Hence, the vector

Q′(�k, ω)(S) =
Ns∑
i=1

πi q
′(J (O, ωi))J ′ (�k, ωi

)
(S)

of variations of the risk measure Q with respect to all basis functions S ∈ Vh has to be computed.
Here, we evaluate J ′ (�k, ωi

)
(S) in analogy to the continuous case in (9). Furthermore, one

has to solve the linear system of equations resulting from a standard finite element discretization
of G. The time step τ is chosen according to a simple variant of the Armijo step size control.
Indeed, given a constant β∗ ∈ (0, 1) we accept a timestep τ if the condition Q(�k+1)−Q(�k+1) ≤
−�∗

� G(�k+1 − �k,�k+1 − �k) is satisfied, otherwise the timestep is reduced. If the opposite
inequality holds for β∗ being replaced by some β∗ > β∗ we try to widen the timestep.

Intermediate discrete topology optimization. The evolution of the level-set function auto-
matically allows for union of existing holes. The creation of new holes, i.e., the increase in the
topological complexity, is instead dealt with through the topological derivative, as discussed in
Section 6. Every ntop steps we compute the topological derivative DtopoQ(�k), and modify the
domain according to its value. In general this procedure does not correspond to creating the in-
finitesimal holes discussed in Section 6, but rather to creating finite-size holes, which can be well
resolved by our grid, and which cover the entire region in which infinitesimal holes would have
been convenient. Therefore the usage of the topological derivative should be seen as a quantitative
heuristic tool to choose the location and the shape of possible holes; the long-term evolution of
those holes is then optimized by the shape derivatives.

Algorithm. Let us collect the ingredients of the fully practical computational scheme in the
following sketch of the resulting algorithm.

RiskAverseShapeOpt
�

(fj , c
f
j (ωi)Ns

i=1)K1
j=1, (gj , c

g
j (ωi)Ns

i=1)K2
j=1, (πi)Ns

i=1

�
{

initialize �i in accordance to the boundary conditions on �N , �D;
k = 1; initialize time step τ ;
do {

if (k mod ntop = 0) {
compute pointwise topological derivative DtopoQ;
�k = signdist

(
@

(
[�k < 0] \ [DtopoQ(x) < θmaxy∈O DtopoQ(y)] [ O∗

))
;

Compute �U([�k < 0], ωi), �P ([�k < 0], ωi) for i = 1, . . . , Ns by (11), (12);
Compute Q′(�k, ω)(S) by (10);
solve the following linear system of equations for �k+1:

G(�k+1 − �k, S) = −τQ′(�k, ω)(S) 8S ∈ Vh

if
�
Q(�k+1)−Q(�k) � −�∗

� G(�k+1 − �k,�k+1 − �k)
�
{

τ = �
2 ; SUCCESS = FALSE

}
else {

SUCCESS = TRUE; k = k + 1;
if

�
Q(�k+1)−Q(�k) ≤ −�∗

� G(�k+1 − �k,�k+1 − �k)
�

τ = 2τ
}

} while(: SUCCESS or j�k − �k−1j1 > Threshold)
}

For the initial shape represented by �0 a very coarse approximation turns out to be e�cient. It
should already reflect the boundaries �D and �N including the neighbourhood of �D, which are
not effected by the shape optimization. In our applications it turned out that already the first
topology optimization step su�ciently adapts the this implicit shape description.
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Figure 3: Two different deterministic loading configurations are investigated: vertical loading on the two
bearings (left) leads to two disconnected vertical trusses (second left), whereas two non–vertical loads (second
right) lead to a Y–shaped truss construction underneath the bearings (right).
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Figure 4: A symmetric stochastic load configuration (left) leads to symmetric support jibs (second left),
whereas a nonsymmetric stochastic loading (second right) favors a correspondingly nonsymmetric truss
construction.

8 Applications of risk averse shape optimization

In what follows we will discuss two applications. The first one consists of two fixed rectangular
bearings, loaded in different directions from the top and we ask for the optical construction of
trusses underneath these bearings given a compliance cost functional. In the second example is a
cantilever construction, in which we minimize the deflection of a loaded horizontal beam, in the
presence of a fixed vertical beam.

All computations are performed on a
(
28 + 1

)
×

(
28 + 1

)
grid overlayed the ambient domain

D = [0, 1]2. Thus, the grid size is h = 2−8. The initial time step for the gradient descent scheme
is chosen as τ = h and the parameters for the adaptive time stepping are β∗ = 0.5 and β∗ = 0.1.
Every ntop = 5 iterations a topology optimization step is performed with θ = 0.9. Furthermore, we
have chosen ε = 0.01 in the expected excess objective, and ε = 0.25 in the excess probability objec-
tive. The corresponding regularized max and heaviside functions are depicted in Fig. 1. Finally,
for the volume penalty parameter we have chosen α = 0.5, and σ = 4h in the regularizing metric G.

Trusses underneath two fixed bearings. Before investigating stochastic loading and risk
averse shape optimization we consider two different deterministic load configurations: two vertical
loads and two oblique loads with vertical average. Fig. 3 shows the corresponding optimal shapes.
For each case we report the initial geometry together with the loading configuration and the
resulting optimal shape. In the first case the resulting shape is clearly tuned to this specific loading,
and would have a very weak response to transversal loadings. Also in the second application,
the resulting optimal Y–shape would be far from optimal in a situation with a significant total
horizontal force.

We now pass to a stochastic generalization of the same situation, using the expected value
objective. In Fig. 4 there are two instances shown, each with 10 scenarios. In the first instance
(plotted on the left) all scenarios have identical probabilities and all scenario loads are equally
strong. In the second instance (plotted on the right) loads acting on the left bearing are twice
as strong as those acting on the right bearing. But the left loads each acts with probability 0.01
while each of the right onces appears with probability 0.19. Hence, the forces on the left play, on
average, a minor role. Both configurations require 4 basis forces: two of them have their support
only on top of the left bearing, whereas the other two are supported on top of the right bearing.
Computational parameters are as above, except that we have set α = 1. In Fig. 4 we compare
the shapes which minimize the expected value of the compliance cost functional in both cases. As
expected the symmetric load configuration leads to a symmetric truss construction, whereas for
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Figure 5: A sequence of results for the optimization with respect to the expected excess for η = 0.1, 0.2,
0.3, 0.4, 0.6, 0.8, 1.0. , 1.5. The underlying loading is shown in Fig. 4 (second right).

η = 0.1

η = 0.6

η = 1.0

Figure 6: The von Mises stress distributions for the individual scenarios in the optimal shapes with respect
to expected excess for different η are colorcoded as . The stochastic loading is as in Fig. 4 (second
right) and the set of realizations is taken from Figure 7. The η values are shown on the left.

nonsymmetric loading nonsymmetric outriggers minimize the expected value of the cost.
Next, we investigate risk averse shape optimization for the second (nonsymmetric) load config-

uration. In Fig. 5 a family of optimal shapes minimizing the expected excess for varying excess
parameter η is depicted. We observe a continuous evolution of the geometry with η, even though
each of the computations has been restarted from scratch on the solid bulk domain O∗ = D. Due
to the nonanticipativity of our stochastic shape optimization model, the actual loading on an op-
timal shape, but not the shape itself, depends on the load scenario. In Fig. 6 the von Mises stress
distribution is colorcoded on the optimal shapes for three different values of η. One clearly sees
the significant stresses caused by the strong loading on the left bearing. For the expected excess,
scenarios ω for which J(O, ω) ≤ η are irrelevant. In fact, in the regularized formulation of the
stochastic cost functional Qε

EEη
these scenarios are still taken into account but with very small

weights. Therefore, the optimization aims at shapes O “pushing the objective J(O, ω) below η”
for the “expensive” scenarios ω, i.e., for the high-probability scenarios acting on the right bearing.
This is nicely seen in Fig. 6 where the von Mises stresses always are comparably small for the last
five scenarios, i.e., those acting on the right bearing. For growing η value, less and less effort is
needed for keeping the objective below η. Therefore less and less material is needed on the right,
leaving room for improving the situation on the low-probability scenarios with a strong loading on
the left bearing.
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Figure 7: In the optimization of the excess probability for η = 0.4 decreasingly thin trusses are realized
on the intermediate grey shape on the left until the left bearing is completely truncated via a topology
optimization step (cf. Fig. 4 for the load configuration). The final result is shown on the right.

A strikingly different picture is obtained from the optimization of the excess probability. In
this case one observes a complete “mass shift” towards the right bearing. Indeed, since the extent
of excess is irrelevant, huge compliances are accepted for the five (low-probability) scenarios on the
left as long as it is only possible to keep the objective below η for the (high-probability) scenarios
on the right bearing (cf. Fig. 8 for the corresponding cost diagram). As a consequence, no truss
construction is needed anymore for the left bearing –correspondingly the numerical relaxation
algorithm leads to decreasingly thin connecting trusses. Fig. 7 illustrates the crucial moment
in the iterative minimization when the narrow trusses between the bearings are removed via a
topology optimization step in order to continue.
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Figure 8: Objective values for each of the 10 scenarios are rendered with bar charts for the optimal shapes
corresponding to the stochastic cost functionals QEV, Qε

EEη
, Qε

EPη
(from left to the right) for η = 0.4. The

second row shows a zoom into the diagrams. The bar thickness is chosen proportional to the probability.

Figure 8 shows the quantitative difference in the cost distribution over the ensemble of loading
scenarios for the different risk averse measures. For the expected value a weighted sum over all
single-scenario objectives is minimized. Therefore, the optimization reduces as much as possible
the objective values for high-probability scenarios; in contrast for the low-probability scenarios
fairly big, but not excessive, values are acceptable. For the expected excess, there is no incentive
in optimizing further the scenarios which have an objective value below the threshold, it is instead
convenient to use the arising flexibility for decreasing objective values of scenarios above η. For
the excess probability it only matters whether the objective value exceeds η or not. This leads
to an excessive growth of objective values for scenarios significantly above the threshold, which
are expected to be “lost” anyway. In the concrete example, there is no incentive to hold the left
bearing, hence it is left floating, sending the corresponding objective value to infinity.

The gained flexibility is now used to push maximal (weighted) scenarios with a cost moderately
exceeding η below this threshold. Due to the built–in regularization in Qε

EEη
, Qε

EPη
the threshold

behavior at η is smeared out (cf. Fig. 1 for the actually applied regularization). Thus, cost
reduction of single scenarios in the vicinity of the threshold is advantageous with respect to the
final regularized expected excess and excess probability.
We finally report the values of the different stochastic cost functionals QEV, Qε

EEη
, and Qε

EPη
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Figure 9: On the initial domain the geometrically fixed lower beam and the vertical beam attaching the
cantilever to the wall on the left is displayed on the top left. Underneath the 5 basis loads are depicted and
on the right the scenarios of the two different loads are rendered in columns with probabilities associated to
each scenario.

on the computed set of optimal shapes OEEη
(with respect to the expected value), OEEη

(with
respect to the expected excess), and OEPη

(with respect to the excess probability), respectively, in
the following table:

QEV Qε
EEη

Qε
EPη

OEV 0.293 0.041 0.072
OEEη 0.368 0.024 0.278
OEPη ∞ ∞ 0.068.

Cantilever with geometrically preset, loaded lower beam. The second example is
concerned with the optimization of a cantilever construction carrying a horizontal beam, on which
vertical surface loads with a random spatial distribution are applied. In fact, we take into account
5 basis loads and two different random loading schemes, each instantiated via 10 different scenarios
of varying probability. Fig. 9 depicts the solid block–type initial domain O∗, the basis loads and
the scenario ensemble. The expected value of the load is the same in the two loading schemes,
as illustrated in the last row of Fig. 9. The cantilever is fixed at a Dirichlet boundary on the
left; the thin hedged, vertical layer as well as the hedged horizontal beam are not modified by the
shape optimization. For this example we chose as objective functional the squared displacement
on the lower beam, which is a measure of the beam deflection. Indeed, we put j(u) = u2 + α.
Furthermore, we have α = 4; η = 1 in both configurations. As before we adopt a regularization
parameter ε = 0.01 for the expected excess applications. For the excess probability the value of ε
is initially set to 0.5 and then decreased over 0.25 to 0.1 during the optimization procedure.

In this application, a robust relaxation of the risk averse stochastic cost functionals turns out
to be much more subtle. Due to the lack of a clear spatial separation of the loading - which
appears to be the main difference to our first example - the energy landscape of the stochastic
cost functionals is characterized by many local minima. At the same time the structure of the
risk functionals generates significant flat regions. We first present our results and then discuss the
observed di�culties in more detail. The overall complication is indeed not surprising given the
experience in finite dimensional stochastic programming, as we will annotate below. The main
differences of the load configurations are as follows:

1. The first loading configuration is characterized by a single, high probability load scenario on
the right end of the lower beam.
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OEV OEEη
OEPη

load 1

load 2

Figure 10: Optimal shapes for the risk averse cost functionals QEV, Qε
EEη

, and Qε
EPη

are rendered for the
two different random loads (cf. Figure 9).

2. The second configuration has an equal distribution of loads at the right end and a single,
high probability load scenario acting on the left half of the lower beam.

The computed optimal shapes for the stochastic cost functionals are shown in Fig. 10, whereas in
Fig. 11 we again render the cost distribution onto the different scenarios as bar charts.
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Figure 11: Bar charts render the objective values for the 10 scenarios for the stochastic cost functionals
QEV, Qε

EEη
, Qε

EPη
and the different random loads. The bar thickness corresponds to the probability of the

corresponding scenario.

In the first load configuration, we observe thicker trusses on the right in case of Qε
EEη

com-
pared to QEV. For Qε

EEη
the construction in the middle is thicker to deal with the load scenarios

characterized by strong concentration in this region. The best shape for Qε
EEη

differs from that
for QEV by a reduced objective value of the high-probability scenario 10 while, at the same time,
the values for scenarios 4 to 8 are increased but kept below the threshold of η = 1. The best shape
for Qε

EPη
, compared to that for QEV, permits increase in the value for scenario 10, which is lost

anyway, with the benefit of keeping scenario 9 below the threshold.
For the second load configuration, the best shapes for the different stochastic cost functionals differ
only little. We will come back to this phenomenon when discussing the di�culties we encountered
when running our descent algorithm.
A cross check of the obtained results is compiled in the following tables which list values for the
stochastic cost functionals on the set of optimal domains for each of the two different loadings:
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1. QEV Qε
EEη

Qε
EPη

OEV 1.215 0.341 0.511
OEEη 1.240 0.322 0.538
OEPη 1.233 0.361 0.509

2. QEV Qε
EEη

Qε
EPη

OEV 1.021 0.150 0.419
OEEη 1.022 0.149 0.419
OEPη 1.021 0.225 0.418

As we already have mentioned above, the energy landscape both of the expected excess func-
tional QEEη

and the excess probability functional QEPη
is characterized by flat regions. For QEEη

these are associated with the scenarios for which J < η. For QEPη
the energy landscape is

completely flat, except on the singular set, where J = η holds for one of the scenarios. By the
regularization built into Qε

EEη
and Qε

EPη
we theoretically get rid of these degeneracies. As we

have seen in the first example this enables a robust and reliable minimization in case of clusters of
well separated loads with each load in a cluster of similar impact on the shape. In the cantilever
example with its constant expected value of a smoothly distributed stochastic loading, this renders
the robust minimization much more di�cult.
In particular the usual application of the topological derivative as a marking strategy for regions to
be extracted from the current shape - which is obviously a slight abuse of its analytical definition -
seems to suffer substantially from the above observations. Indeed, a straightforward minimization
of the stochastic cost functionals starting from the initial domain O∗ - as we have successfully
performed in the first example - is falling short to fulfill the basic cross check of stochastic cost
function values reported in the above tables. For example, in the optimization from scratch for
the second stochastic loading case we obtained for the local minimizer OEPη

the following values
for the stochastic cost functionals: QEV = 1.413, Qε

EEη
= 0.526, and Qε

EPη
= 0.465. Obviously,

this renders the optimal shapes both with respect to the expected value and the expected excess
as candidates with lower risk averse stochastic cost than the actually computed local minimizer of
the cost functional Qε

EPη
. Thus, in such a case of failure, we have restarted the computation and

relaxed the shape for the corresponding cost functional with the shape with the so far lowest cost.
Furthermore, the basins of attraction of local minima appear to be small and close by each other.
Thus the obtained (local) minimizer of the different stochastic cost functionals vary only slightly.

Related observations in finite dimensional stochastic programming. In two-stage
models of finite dimensional stochastic programming, see [37] for a comprehensive reference, the
counterparts to the present J(x, ω) arise as value functions of parametric optimization problems,
mostly of parametric linear or mixed-integer linear programs. Then, under mild assumptions,
J(., ω) is convex in the linear case, which clearly extends to the QEV counterpart. In the mixed-
integer case convexity is lost.
In risk averse optimization, the setting may be quite comfortable if a convexity preserving risk
measure, such as the expected excess, is applied to a convex cost function. It is less comfortable
for the excess probability which is not convexity preserving and, on finite probability spaces for
instance, induces Boolean model variables for the calculation of discrete probabilities.
Finite dimensional counterparts to the stochastic cost functionals QEV,QEEη , and QEPη thus are
not always well suited to descent methods. While the linear case may benefit from the mentioned
convexity, although nonsmoothness remains, the practically much more relevant mixed-integer lin-
ear case is inherently nonconvex, yet discontinuous.
Algorithmic treatment in finite dimension is mainly inspired by block structured large-scale equiv-
alent model reformulations as linear or mixed-integer linear programs. These models become
tractable by combining decomposition approaches with advanced mixed-integer linear program-
ming methodology. Decomposition is driven by convex duality. The mixed-integer techniques rely
on implicit enumeration (branch-and-bound), essentially avoiding complete enumeration. These
alternatives, in contrast to pure descent methods, allow for the computation of provably globally
optimal solutions.
In the infinite dimensional setting of the present paper, various complicating features are becoming
algorithmically relevant. When formulating large-scale equivalents for minimizing (8), there are
no obvious departure points for decomposition in analogy to finite dimension: The shape space
lacks linear structure, such that the usual convexity and derived duality lack foundation. With
Boolean variables, as for the excess probability for instance, one ends up with mixed-integer PDE
constrained optimization. It is completely open how to handle this for the problem class at hand
without resorting to complete enumeration.
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These deficiencies leave a descent approach as conceptual alternative, with shortcomings of course.
The empirical observation that already J(x, ω) may oscillate heavily endangers the iteration to
get stuck at local optima. Cut-off effects by the excess probability or the expected excess create
“flat regions” of the objective where the descent tends to come to a standstill, although there
could be progress “nearby”. The smooth approximation of the excess probability functional only
seemingly removes the combinatorial complexity. If the approximation is very precise, then the
mentioned standstill is more likely, leading to re-starts and de facto complete enumeration. If the
approximation is less precise, then the tendency to descend from plateaus is promoted, but the
approximate might have too little to do with the original objective. In our computations we aimed
at striking a proper compromise here.
Summing up, a descent approach, as taken in this paper, clearly would be inferior in finite di-
mension. In infinite dimension, to our best knowledge, it so far is the only numerically viable
alternative.
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