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Composites of small magnetic-shape-memory (MSM) particles em-
bedded in a polymer matrix have been proposed as an energy damp-
ing mechanism and as actuators. Compared to a single crystal bulk
material, the production is simpler and more flexible, as both type of
the polymer and geometry of the microstructure can be tuned. Com-
pared to polycrystals, in composites the soft polymer matrix permits
the active grains to deform to some extent independently; in particu-
lar the rigidity of grain boundaries arising from incompatible orienta-
tion is reduced. We study the magnetic-field-induced deformation of
composites, on the basis of a continuous model incorporating elastic-
ity and micromagnetism, in a reduced two-dimensional, plane strain
setting. The aim is to give conceptual guidance for the design of
composite materials independent of the concrete macroscopic device.
Thus on the background of homogenization theory, we determine the
macroscopic behaviour by studying an affine-periodic cell problem.
An energy descent algorithm is developed, whose main ingredients
are a boundary element method for the computation of the elastic
and magnetic field energies; and a combinatorial component reflect-
ing the phase transition in the individual particles, which are assumed
to be of single–domain type. Our numerical results demonstrate the
behavior of the macroscopic material properties for different possi-
ble microstructures, and give suggestions for the optimization of the
composite.

1 Introduction

Ferromagnetic shape-memory materials exhibit comparably large strains in
response to an applied magnetic field. For single crystals one can achieve
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strains of order of magnitude 10% [41, 39, 27, 38]. In polycrystals the ef-
fectivity drops significantly, as a consequence of the rigidity of interacting
grains [1, 40].

A recently-proposed alternative for shape memory devices is to embed
small single-crystal shape-memory particles in a soft polymer matrix [16, 17].
This approach gives a large freedom in the material development, which in-
cludes the type of polymer, the density of particles, their shape, their ori-
entation [36]. In the case of classical magnetostrictive materials, such as
Terfenol-D, experiments have shown that using elongated particles, and ori-
enting them via a bias field during solidification of the polymer, leads to
a much larger magnetostriction of the composite [35, 31]. Some analytical
models have been proposed to estimate the effect of the geometric configura-
tion, focussing in the dilute limit and with simple geometries of the particles:
Feng, Fang and Hwang developed a Green’s function approach for dilute
magnetostrictive composites containing ellipsoidal particles [15]; and Liu,
James and Leo studied a similar geometry with MSM particles, that were
treated with a constrained theory [24]. Quantitative predictions for generic
geometries are, however, still missing. A first numerical analysis based on an
interface-enriched reproducing kernel method was presented in [42].

We present here a systematic approach to the quantitative determination
of macroscopic material properties of magnetostrictive–polymer composites.
In Section 2 we develop a general continuous model, which incorporates elas-
ticity and micromagnetism. We consider a soft elastic polymer with small
embedded magnetic shape-memory (MSM) particles. The latter have two
phases, indexed by a discrete parameter, with different spontaneous defor-
mations and different magnetic anisotropies; the phase index is assumed
constant inside each particle. Both eigenstrain and anisotropy have an ori-
entation which depends on the local crystal lattice orientation. The particles
interact with the external magnetic field via a Zeeman term, and with each
other via the demagnetization field, as well as via the elastic deformation of
the polymer matrix. In Section 3 we discuss homogenization of the model,
based on results from homogenization theory [43, 30, 6, 9]. Assuming that the
particles are much smaller than the sample size, and that the microstructure
is periodic, the problem effectively decouples in a macroscopic part, which
depends on the sample geometry and the spatial variation of the applied field,
and a microscopic part, which depends on the microstructure. We focus here
on the latter, and show how its numerical solution permits to obtain the
effective macroscopic energy density, which enters the macroscopic problem.
This way we can understand how one can tune the effective material proper-
ties by varying the microstructure. In turn, the macroscopic problem can be
solved analytically in simple geometries. A future goal is to base macroscopic
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Figure 1: Reference configuration (a) and deformed configuration (b) for a
periodic composite, containing particles with four different orientations. For
illustrative purposes, a finite portion of a periodic lattice is plotted, with the
computational cell in the center. The checkerboard pattern illustrates the
elastic deformation, the color coding the strain in the matrix. A detailed
description can be found in Section 6 below.

device simulations on material properties derived on the microscale.
Our algorithm and the numerical simulations are based on periodic cell

problems in a plane strain, two–dimensional setting; each particle is assumed
to have a uniform magnetization and strain, see Figure 1 for an illustration.
The numerical computations are performed with linear elasticity, which is
admissible since the expected material deformation is in the range of some
percent. Beyond that, it enables a treatment by a boundary element method.
Based on combinatorial testing, we then minimize over all possible values of
the phase index. We investigate the macroscopic material behavior depend-
ing on the volume fraction of MSM particles in the polymer lattice, the
distribution of their orientations, the aspectratio of particle shapes, and the
elastic moduli of the polymer.

Previous theoretical modeling of single-crystal magnetic-shape-memory
and magnetostrictive single-crystals, on which the model presented in Section
2 is partially based, can be found in [13, 19, 29, 39, 23, 14]. For a more
detailed explanation of the elastic modeling of phase-transforming materials
we refer to [4]. For simplicity we only discuss the model in two dimensions,
the extension to three dimensions is straightforward. The model considered
here can be extended to polycrystals (seen as a limit where the particles fill
all space), see [11].

3



2 Micromagnetic-elastic model

Let Ω ⊂ R2 be the domain occupied by the composite, and let ω ⊂ Ω denote
the part occupied by the active material. From an elastic viewpoint, Ω \ ω
is occupied by a purely elastic, isotropic material, and ω represents a shape-
memory material, which has two phases (called 1 and 2 below) with different
eigenstrains (see (2.2) below). Furthermore, the material in ω is magnetic,
with different preferred anisotropies in the two phases. The kinematic vari-
ables and the terms composing the energy are illustrated below.

Kinematics. Let v : Ω → R2 be the elastic deformation, p : ω → {1, 2}
be the phase index, which is supposed to be constant on each single particle,
and M : R2 → R2 the magnetization. Notice that v and p are defined on the
reference configuration, whereas M is defined on the deformed configuration
(i.e., v and p are material fields, M is a spatial field). Precisely, a material
point x ∈ Ω is mapped to the point v(x) ∈ R2 under the deformation, its
phase is p(x), and its magnetization is M(v(x)). We assume v to be injective
on Ω, which in particular corresponds to a non-interpenetration condition for
the MSM particles. Since the polymer matrix is not magnetic, we suppose
M to vanish outside the particles, i.e., suppM = v(ω).

Elasticity. The elastic energy of the polymer matrix takes the general
form

Eelast
matr[v] =

∫
Ω\ω

Wmatr(∇v(x)) dx ,

where Wmatr : R2×2 → [0,∞] is the stored energy density of the matrix.
The particles have two energy-minimizing phases, which are distinguished
by the phase parameter p, and are elastically anisotropic. Thus, we write
their elastic energy as

Eelast
part [v, p] =

∫
ω

Wpart((∇v(x))Q(x), p(x)) dx . (2.1)

Here Q : ω → SO(2) represents the crystal lattice orientation in the reference
configuration, and the energy density Wpart(F, p) penalizes deviations from
a preferred, phase-dependent, strain. Qualitatively,

Wpart(F, p) ' dist 2 (F, SO(2) (Id + εp)) ,

where εp is the eigenstrain of phase p, say,

ε1 =

(
−ε0 0
0 ε0

)
, ε2 =

(
ε0 0
0 −ε0

)
. (2.2)
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A precise expression for Wpart, incorporating appropriate elastic constants,
will be given below. Notice that the lattice rotation is inserted explicitly
through Q, hence Wpart(F, p) is taken with respect to a canonical lattice
orientation, i.e., it is the same function for all particles.

Micromagnetism. Let M = Msm be the magnetization, where Ms

denotes the saturation magnetization. The vector field m : R2 → R2 satisfies

|m|(y) =

{
1 if y ∈ v(ω) ,

0 else.
(2.3)

We stress that the magnetization is defined on the deformed configuration,
which is the one where Maxwell’s equations hold; to make the distinction
clear we use y as an independent variable on the deformed configuration.
Since v is injective on ω, instead of m as in (2.3) we can equivalently consider
a unit length vector field m̃ on ω and set m = m̃◦v−1; for simplicity we shall
stick to the first formulation. Thus, the admissible values of m depend on
the deformed configuration and thus on the deformation; we express this fact
by making all components of the magnetic energy depend on v.

The magnetic energy is given by the coupling to the external field Hext,

Eext[v,m] = −Ms

µ0

∫
R2

Hext ·mdy ,

µ0 being the vacuum permeability constant, and the demagnetization term

Edemag[v,m] =
M2

s

µ0

∫
R2

1

2
|Hd|2dy ,

see, e.g., [3, 18]. The field Hd : R2 → R2 is the projection of m onto curl-free
fields, i.e., Hd = ∇ψ, where ψ : R2 → R2 is the solution of

∆ψ = divm (2.4)

in a distributional sense. Corresponding to the two different eigenstrains,
the two phases of the shape-memory material are assumed to have different
magnetic anisotropies, and the easy axis is in both cases oriented along the
compressive direction of the eigenstrain. Precisely, we take into account

Eanis[v,m, p] = Ku

∫
v(ω)

ϕp(v−1(y))

(
(R∇v◦v−1Q(y))Tm

)
dy .

Here, ϕ2(m) =
m2

1

|m|2 , ϕ1(m) =
m2

2

|m|2 are the two magnetic anisotropy functions
reflecting the phase–dependent easy axis, Q and p are the lattice orientation
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and the phase field, as in (2.1), and Ku is the uniaxial anisotropy constant,
with dimensions of energy per unit volume. The matrix R∇v(x) ∈ SO(2) is
the rotation associated with the elastic deformation v at a reference point x.
It is defined via the polar decomposition, i.e.,

RF = F (F TF )−1/2 . (2.5)

Since m is a spatial field, the combination RTm is frame indifferent. The full
expression QTRTm gives the pull-back of the direction of m to a lattice with
the reference orientation, under the action of the rotational part alone of the
deformation gradient.

Finally, the exchange energy takes the form

Eexch[v,m] =
1

2
d2

∫
v(ω)

|∇m|2dy .

Here d is the exchange length, i.e., the length scale below which the exchange
effects modeled by Eexch become relevant. In the limit of small particles,
where we assume constant magnetization on single particles and thus∇m = 0
on ω, the exchange energy vanishes.

Combining the different energy contributions we obtain the full model in
the general case:

E[v,m, p] = Eelast
matr[v] + Eelast

part [v, p] + Eext[v,m]

+Edemag[v,m] + Eanis[v,m, p] + Eexch[v,m] .

3 Homogenization

In the case relevant for the applications the number of particles is very large,
and each particle is very small. Thus, a direct simulation of larger scale par-
ticle ensembles is not feasible. In the spirit of the theory of homogenization
[43, 30, 6, 9, 26], we study periodic configurations, where each periodic cell
contains a small number of particles, as illustrated in Figure 1. We assume
the microstructure to be periodic, and obtained by downscaling a fixed mi-
crostructure defined on the unit square Q = (0, 1)2, assuming for simplicity
that the MSM particles do not intersect the boundary, i.e., ω = ∪ωi ⊂ Q
(see Fig. 1). From now on ω denotes only the part of magnetic material
inside the unit cell. Let ε be the scale of the microstructure. We consider the
family of problems defined on a fixed domain Ω ⊂ R2, where the magnetic
particles cover

ωε =
{
x ∈ Ω :

x

ε
∈ ω + Z2

}
,
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and the polymer the complement, Ω \ ωε. The full problem involves min-
imizing the full energy E over fields v : Ω → R2, and m : R2 → R2 with
|m| = 1 on v(ωε) (as above, we tacitly assume v to be invertible). The theory
of homogenization is based on the idea of separating in the limit ε → 0 the
microscopic scale, which resolves the microstructure, from the macroscopic
one, which resolves the shape of Ω and the spatial variation of the applied
field Hext.

Consider a sequence (family) ε→ 0, and the corresponding fields vε, mε,
and ψε. Since the discrete phase variable p can be minimized out locally, we
do not explicitly consider it in this discussion. We instead keep the potential
of the demagnetization field ψε explicit, since its treatment is subtle. For
the macroscopic problem, ψε is defined as the solution of (2.4) with zero
boundary data at infinity, i.e., such that ∇ψε is the L2(R2; R2)-projection of
mε onto gradient fields. Clearly the sequence mε is bounded in L∞(R2; R2),
hence it has a subsequence which converges weakly-* in L∞(R2; R2) to some
limit m0. If the energy is bounded along the sequence, then ∇uε and ∇ψε

are also bounded in L2, and hence - upon taking a further subsequence -
have weak limits (in L2(Ω; R2) and L2(R2; R2), respectively), call them v0,
ψ0. Those limits are the fields corresponding to the macroscopic problem.
Taking the weak limit of (2.4) we see that ∆ψ0 = divm0 (distributionally).

The key point is to understand which variational problem permits to
determine v0, m0 (and ψ0) without computing vε, mε (and ψε) first. While a
precise derivation of a homogenization result for the model considered here
is still missing, knowledge obtained for many related problems motivate a
very natural expectation. We expect a macroscopic variational problem of
the form∫

Ω

W eff(m0 ◦ v0,∇v0)dx+

∫
R2

M2
s

2µ0

|∇ψ0|2 −
Ms

µ0

Hext ·m0 dy (3.1)

plus appropriate boundary data on v0. Here W eff would be an effective en-
ergy density, which should be determined solving a microscopic cell problem.
Notice that the integral of Hext ·mε, being linear, converges to the integral
of Hext ·m0; in general however lim

∫
|∇ψε|2 ≥

∫
|∇ψ0|2.

For convex problems it is known that the only length scale entering the
cell problem is that of the microstructure, and hence W eff can be determined
by solving cell problems of the size of the period of the microstructure. For
nonconvex problems, such as the one considered here, additional length scales
can be spontaneously generated by the solution, and one needs to include the
possibility for solutions to be periodic on an (arbitrary) integer multiple of the
lengthscale of the microstructure, see [5, 28], or [6, Chap. 14]. An additional

7



source of nonconvexity is the composition of m0 with v0, which however on
the microscale (and for smooth v0) is merely an affine change of variables.

For any material point z ∈ Ω in the macroscopic problem, we need
to solve a microscopic problem for given macroscopic deformation gradient
F0 = ∇v0(z), average magnetization M0 = m0(z), and average demagneti-
zation field H0 = ∇ψ0(z) (these quantities are treated as parameters, not as
functions, in the discussion of the local problem). We consider a cell problem
on the domain (0, k)2, where k ∈ N represents the ratio between the length
scale on which the microscopic solution is periodic, and the one on which
the microstructure is periodic; one should take the infimum over all k, or,
equivalently, the lim inf as k → ∞. [In practice, for any fixed k in the next
sections it will be convenient to rescale to the fixed domain (0, 1)2, and let
the microstructure have a scale 1/k; in the numerical simulations we shall
only consider k = 1 or 2]. A case where k = 1 seems to be sufficient is
illustrated in Figure 4, a case where for small applied external magnetic field
it is not sufficient to consider only k = 1 is illustrated in Figure 13. On this
domain, we seek the microscopic correctors to v0, ψ0, m0. Precisely, we seek

v : (0, k)2 → R2 , m : v((0, k)2) → R2 , ψ : v((0, k)2) → R .

The deformation field v should obey affine-periodic boundary conditions,
where the affine part has a gradient given by the macroscopic deformation
gradient F0. This means that

v(x+ kei) = v(x) + F0kei for x, x+ kei ∈ ∂(0, k)2 , i = 1, 2 . (3.2)

The magnetization should have average M0, and obey the kinematic con-
straint. We require

|m|(y) =

{
1 if y ∈ {v(ω + Z2)} ,
0 otherwise,

(3.3)

and
1

k2

∫
(0,k)2

m(y) dy = M0 . (3.4)

The latter condition will be enforced through a Lagrange multiplier.
For the demagnetization potential, one natural option would be to define

it as the solution ψ′ to (2.4) which obeys affine-periodic boundary conditions:

ψ′(v(x+ kei)) = ψ′(v(x)) +H0kei for x, x+ kei ∈ ∂(0, k)2 , i = 1, 2 .

The full demagnetization field would then be ∇ψ′, and the demagnetization
energy would be its L2 norm (with the appropriate dimensional factor). This
would be consistent with the treatment of polarization fields in [43, 34, 26].
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We instead prefer to define the field ψ as the solution of (2.4) which obeys
periodic boundary conditions,

ψ(v(x+ kei)) = ψ(v(x)) for x, x+ kei ∈ ∂(0, k)2 , i = 1, 2 .

This choice turns out to be more convenient, for a reason we now explain.
We first observe that, since ∆ψ = ∆ψ′, one has ψ′(y) = ψ(y) +H0 · y (up to
an irrelevant additive constant). Therefore the full demagnetization energy
decouples into∫

(0,k)2
|∇ψ′|2 dy =

∫
(0,k)2

|∇ψ +H0|2 dy =

∫
(0,k)2

|∇ψ|2 + |H0|2 dy , (3.5)

since by the periodicity of ψ the mixed product 2∇ψ ·H0 averages to zero on
(0, k)2. This decoupling is instrumental in separating the macroscopic part of
the demagnetization energy |H0|2 = |∇ψ0|2, which we have already included
in (3.1), from the microscopic one, |∇ψ|2, which needs to be included in the
cell problem. The advantage using ψ instead of ψ′ is that the cell problem
does not depend on the macroscopic H0, but only on the macroscopic aver-
age magnetization M0. The macroscopic demagnetization field H0, which is
determined from M0 solving Laplace’s equation on the macroscopic domain,
only enters the macroscopic problem (3.1).

Finally, it remains to enforce the condition (3.4) on the magnetization.
This is done via a Lagrange multiplier, which - being the variable conjugate
to a magnetization - is naturally interpreted as an effective applied magnetic
field, and is denoted by hext. This field is not, however, to be identified with
the magnetic field applied on the entire experimental probe: it is instead the
effective field applied on the cell problem, which includes contributions from
the rest of the sample. The microscopic problem in the upscaled domain
(0, k)2 therefore takes the form

Emicro(F0, hext) =
1

k2
inf

{
Eelast

matr[v] + Edemag[v,m] +

minp

[
Eelast

part [v, p] + Eanis[v,m, p]
]
− Ms

µ0

∫
(0,k)2

hext ·m
}
,

where v and m are subject to (3.2) and (3.3). We stress that the final
term coincides with Eext, after replacing the Lagrange multiplier hext for the
external fieldHext. At fixed F0, the energy Emicro is a concave function of hext,
being the infimum of a family of affine functions. The microscopic potential
entering (3.1) can then be obtained by duality,

W eff(F0,M0) = sup
hext∈R2

{
Ms

µ0

hext ·M0 + Emicro[F0, hext]

}
. (3.6)
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To illustrate the significance of this decoupling, we discuss a case where a
simple geometry permits to solve the macroscopic problem (3.1) analytically,
namely, the case that Ω is a circle of radius R (similar arguments would
work for the case of ellipses and ellipsoids, a fact already known to Maxwell
[25], see [32]). It is known that application of a uniform magnetic field, say
Hext = h̄ ∈ R2, to a paramagnetic circle (or ellipse) results in a constant
magnetization m0 = M0 ∈ R2. Equivalently, a uniformly magnetized sphere
(circle, ellipse, ellipsoid) generates a uniform demagnetization field in its
interior. Therefore the problem (3.1) has a stationary point with uniform m0

and ∇v0. The demagnetization field can also be computed analytically, and
results in

ψ0(x) =

{
m̄x1/2 if |x| < R ,

m̄x1R
2/(2|x|2) else,

where for notational simplicity we assumed M0 = m̄e1. The demagnetiza-
tion energy can be computed explicitly, and the macroscopic problem (3.1)
reduces to

Emacro = πR2W eff(M0, F̄ ) +
M2

s

2µ0

πR2|M0|2

2
− Ms

µ0

πR2Hext ·M0 . (3.7)

Minimizing in M0 gives

∇M0W
eff(M0, F̄ ) +

M2
s

2µ0

M0 −
Ms

µ0

Hext = 0 .

In turn, from (3.6) we get

∇M0W
eff(M0, F̄ ) =

Ms

µ0

hext .

Hence the effective field acting on the microscopic problem is related to the
external field, in this particular geometry, by

hext = Hext −
Ms

2
M0 , (3.8)

the factor 1/2 being the demagnetization factor of the circle. In the case
of an infinite slab (a domain of the kind (0, 1) × R), the factor would be
0 for tangential fields, and 1 for normal fields. The same computation can
be done for ellipses. In practice, if the reference configuration is a circle,
under application of a magnetic field the MSM composite will deform to an
ellipse, with eccentricity of a few percent. This results in a correction of
a few percent to the demagnetization factor (which is 1/2 for the circle, in
(3.8)); for simplicity we shall ignore this difference in the illustrative example
in Section 6.3.
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4 Rigid particles and linear elastic response

We are interested in the case where the active particles are small, and signifi-
cantly harder than the polymer matrix; we can therefore assume their elastic
deformation to be affine. The deformation gradient is then determined by
energy minimization, and not constrained to coincide with the spontaneous
strain. Let ω be the union of disjoint sets ωi for i = 1, . . . , N represent-
ing the particles. Furthermore, we assume them to be single crystals, which
magnetically behave as single domains. Precisely, we assume that on each ωi

the crystal orientation Q, the deformation gradient ∇v, and the phase index
p are constant, and let Qi, Fi, pi denote the corresponding values; we as-
sume that on each v(ωi) the magnetization m is constant, and let mi denote
its value. Since we are working in a linearized setting, we assume that the
deformation v is close enough to the identity and thus injective.

We use linear elasticity, both for the matrix and the particles. Note,
however, that we only linearize the deformation, not the lattice rotations
Q(x). In particular, we set u(x) = v(x) − x, and consider the quadratic
elastic energy density for the polymer matrix

Wmatr(∇v) = Wmatr(Id +∇u) ' W lin
matr(ε(∇u)) , ε(G) =

1

2
(G+GT ) .

Here W lin
matr is a quadratic form on symmetric 2 × 2 matrices, which can in

the usual way be written in terms of the elasticity tensor Cmatr [8]. We treat
the polymer as an isotropic material, and write

W lin
matr(ε) =

1

2
Cmatrε : ε =

1

2
λ(Tr ε)2 + µ|ε|2 .

The corresponding energy is

Elin
matr[u] =

∫
Ω\ω

W lin
matr(ε(∇u)) dx .

Notice that the displacement u has to satisfy the boundary condition

u(x+ ei) = u(x) +G0ei for x, x+ ei ∈ ∂Ω , i = 1, 2 ,

where G0 = F0 − Id is the macroscopic displacement gradient corresponding
to the linear part of the cell deformation. Analogously, in the MSM particles
for small strains F we have

Wpart(Id +G, p) ' W lin
part(ε(G)− εp) ,
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where the phase-dependent eigenstrains are as given in (2.2), and

W lin
part(ε) =

1

2
Cpartε : ε =

1

2
C11(Tr ε)2 + (C12 − C11)ε11ε22 + 2C44ε

2
12 .

Here C11, C12 and C44 are the elastic constants in the elasticity tensor for the
particles Cpart under the assumption of cubic symmetry. Since we consider
elastic deformations which are affine in each particle, we have

u(x) = Gi(x− xi) + bi for x ∈ ωi .

Here Gi = Fi − Id ∈ R2×2 is the displacement gradient in each particle, xi

the center of mass of the particle, and bi ∈ R2 a shift.
The elastic energy of the particles from (2.1) can be written as

Wpart(FQ, p) = Wpart(Q
TFQ, p) = Wpart(Id +QT (F − Id)Q, p) ,

and expanding to leading order we obtain

Eelast
part [(Gi)i, (pi)i] =

N∑
i=1

|ωi|W lin
part

(
QT

i ε(Gi)Qi − εpi

)
.

As already discussed, we assume a uniform magnetization inside each parti-
cle,

m(y) =

{
mi if y ∈ v(ωi) ,

0 else.

The interaction with the effective field can be written as

Eext[(Gi)i, (mi)i] = −Ms

µ0

∫
R2

hext ·mdy

= −Ms

µ0

N∑
i=1

| det(Id +Gi)| |ωi|hext ·mi .

The computation of the demagnetization energy requires the solution of a
Poisson problem, as specified in (2.4). Finally, the anisotropy term reduces
to

Eanis[(Gi)i, (bi)i, (mi)i, (pi)i] = Ku

∑
i

| det(Id +Gi)| |ωi|ϕpi
((RiQi)

Tmi) .

Here Ri is obtained by the linearization of (2.5), namely,

Ri ≈ Id +
1

2
(Gi −GT

i ) .

12



The exchange energy is identically zero in this reduction of the model.

Material parameters and units. We use MKSA, and measure en-
ergy densities in M Pa = 106 J/ m3. Length is considered to be dimen-
sionless, or equivalently measured in fractions of the side length of the unit
box (0, 1)2. This way we obtain directly energy densities that can be scaled
to any macroscopic volume. The effective field hext is measured in Tesla;
the practically used fields are of the order of 0.5 to 1 T [22, 38]. The con-
stant entering Eext is Ms

µ0
' 0.50 MPa

T
, where we used typical measured val-

ues for NiMnGa [22]. Correspondingly, the constant entering Edemag is ex-

pressed in terms of the first one via M2
s

µ0
= µ0

(
Ms

µ0

)2

, where µ0 = 4π
10

T2

MPa

(in practice, M2
s /µ0 ' 0.31 M Pa). The anisotropy coefficient is approxi-

mately Ku ' 0.13 M Pa [29, 38]. For the spontaneous strain in NiMnGa we
take ε0 ∼ 0.058 and the elastic constants in NiMnGa are C11 = 160 G Pa,
C44 = 40 G Pa, C11 − C12 = 4 G Pa [37, 12] (see also [33]). The elastic
modulus of the polymer matrix depends strongly on the type of polymer,
typical values are of the order of a few G Pa [21]. We take λ ∼ 50 G Pa,
µ ∼ 2 G Pa, which are representative for epoxy and in what follows we fix
the ratio between µ and λ.

5 Numerical Simulation

In this section we outline how we discretize the global energy and how we
compute discrete minimizers numerically. The degrees of freedom in the
simplified model derived in Section 4 are the linear partG0 of the macroscopic
deformation gradient, the elastic displacement u on the polymer matrix Ω \
ω, and for each particle i the displacement gradient Gi, the translation bi
acting on it, its phase parameter pi, and its magnetization mi. The only
remaining continuous degree of freedom in our model is the displacement u.
Besides that, we have to evaluate the magnetic potential ψ appearing in the
demagnetization energy. All other quantities are discrete matrices, vectors,
or scalar quantities. To eliminate the two continuous fields, we proceed as
follows.

Discretization of the domain. First we discretize the domain and
represent ∂Ω and ∂ωi by polygons. In the applications below, we always
consider identical shapes for the particles ωi and correspondingly identical
polygonal approximations ωh

i . Here, h denotes the maximal distance between
two consecutive points on the polygonal outline of a particle. In addition the
distance between discretization nodes on ∂Ω is ensured to be bounded by h
as well.
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Polymer elasticity. For given Gi and bi, and for a given macroscopic
displacement gradient G0, the displacement u is the solution of the linear
elastic problem

divCmatrε(∇u) = 0 , in Ω \ ω ,
u = Gi(· − xi) + bi , on ∂ωi for i = 1, . . . , N ,

u(·+ ei) = u+G0ei , on ∂Ω .

For the discretization a collocation boundary element method [2, 10] with
affine ansatz functions is applied. We use a direct approach based on Greens
formula that relates the values of the displacement u and the normal stress
Cmatrε(∇u)ν on the boundary by an integral equation. Here, ν is the outer
normal on ∂(Ω\ω). As actual degrees of freedom we consider these boundary
values at vertices on ∂Ω and on ∂ωh

i .
Due to periodicity, only one half of the displacement and stress values on

the boundary of Ω are actual degrees of freedom. In fact, one has to pay close
attention to the handling of the stress values in the corners: We approximate
the normal stress by piecewise affine, continuous functions along the faces of
Ω. In the corners continuity is required for the full stress matrix. As the
faces of Ω are straight, this is equivalent to requiring the normal-stress to be
(one-dimensionally) periodic along those faces.

Given the numerical solution in terms of these degrees of freedom, the
elastic energy on the polymer matrix can be evaluated using the discrete
analog of the following continuous integral representation:

Ematr
elast [v] =

∫
Ω\ω

1

2
Cmatrε : ε dx =

∫
Ω\ω

1

2
Cmatrε : ∇u dx

=− 1

2

∫
Ω\ω

divCmatrε · u dx+
1

2

∫
∂Ω∪∂ω

(Cmatrεν) · u dsx

=−
∑
i=1,2

1

2

∫
Ei

(Cmatrεν) · (G0ei) dsx +
1

2

∫
∂ω

(Cmatrεν) · u dsx .

Here, dsx denotes the length element in the reference configuration. Due to
the affine periodicity of u, we only need evaluate the difference of u along
the two faces Ei = {x|x, x+ ei ∈ ∂Ω} of the outer boundary.

Demagnetization. For given magnetization (mi)i and deformation v =
Id + u on the polymer matrix the potential ψ (required for the evaluation of
the demagnetization energy) is given as the solution of (2.4), i.e.,

∆ψ = 0 , in v(Ω \ ∂ω) ,

[∇ψ · ν] = m · ν , on v(∂ω) ,

ψ(·+ F0 ei) = ψ , on ∂v(Ω) ,
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where ν is the outer normal on the deformed particle boundary v(∂ωi), m
the magnetization of the particle, and [·] is the corresponding jump operator
on this set. We fix the arbitrary additive constant by setting

∫
∂ω
ψ = 0.

For the numerical solution, we again apply a collocation boundary element
method with piecewise constant ansatz functions. As above, the evaluation
of the energy can be based solely on the computation of boundary integrals.
Indeed, we obtain

Edemag[v,m] =
M2

s

µ0

∫
v(Ω)

1

2
|Hd|2 dy =

M2
s

µ0

∫
v(Ω)

1

2
|∇ψ|2 dy

=
1

2

M2
s

µ0

(
−

∫
v(Ω\ω)

∆ψψ dy +

∫
v(∂Ω)

(∇ψ · ν)ψ dsy

+

∫
v(∂ω)

[∇ψ · ν]ψ dsy

)
=

1

2

M2
s

µ0

∫
v(∂ω)

(m · ν)ψ dsy ,

where dsy denotes the length element in the deformed configuration.

Numerical Relaxation. So far we have discussed how to compute
numerical approximations for the elastic displacement u and the magnetic
potential ψ. Now, we confine to the following set of degrees of freedom
(G0, (Gi)i, (mi)i, (pi)i) ∈ R4+4N+2N+N and suppose u[G0, (Gi)i] to be the min-
imizing displacement in the polymer matrix for given linear component G0

of the global cell displacement and given distinct particle displacements Gi.
This allows us to redefine the global energy, now solely depending on the
above set of degrees of freedom. In fact, for each evaluation of the energy
we have to solve a linear elastic problem in the polymer phase and a demag-
netization problem as described above. For the minimization of the energy
over the remaining set of parameters in R7N+4 we apply a gradient descent
method. The gradient is calculated using central difference quotients with a
step size δ. The control of the time step size τ in the actual descent algo-
rithm is based on the Armijo rule. The spatial step size δ is adjusted to the
temporal step size τ if indicated by the step size control.

Validation. We first compute the different energy terms fixing all vari-
ables. In Figure 2 we report the energy as a function of magnetization direc-
tion, with no elastic deformation of the matrix. The switching between the
two phases is apparent from the behavior of the anisotropy energy.

In order to test the correct implementation of the affine-periodic bound-
ary conditions we compared results for a single particle in a square box,
with four particles in a box four times larger (which, after periodic contin-

15



-0.05

-0.025

 0

 0.025

 0.05

 0.075

-90  0  90  180

E
n

er
g

y
 i

n
 M

P
a

Magnetization Angle

demag
ext

anis
total

Hext

m1 = (cosθ, sinθ)

Figure 2: Energy landscape as a function of m, for fixed deformation.
We consider one elliptical, horizontally (i.e., along e1) elongated particle,
prescribe zero elastic displacement G0 = G1 = 0, and prescribe the magneti-
zation, m1 = (cos θ, sin θ). The figure shows Edemag (red, full), Eext (green,
long-dashed) Eanis (blue, short-dashed), and their sum (magenta, dotted),
as functions of θ. The global minimum is achieved at θ = 180◦, the figure is
360◦-periodic, the figure plots one period. Here, we take a relatively small ex-
ternal field Hext = 0.1 T in direction −e1, volume fraction 40%, aspectratio
1.6:1, and the other parameters as in Section 4.

uation, amounts to exactly the same global configuration). For a circular
particle of radius 0.4, in a box of side length 1, discretized with 32 points, we
compute the spontaneous strain of 0.0735537 and the energy per unit vol-
ume of 2.91812 M Pa. The computation with four particles gave a strain of
0.0735533 and an energy density of 2.91845 M Pa, which is the same within
numerical accuracy.

To check dependence on the grid size, we computed the energy diagrams
for different number of discretization points, see Figure 3. For a fixed strain,
the energy converges quadratically in the grid size, as can be seen from

the estimated order of convergence eoc(E)(N) := log(
EN/4−ENmax

EN−ENmax
)/ log(4)

reported in Table 1. The convergence in the position of the minimum, i.e.,
on the spontaneous strain is even faster, see Table 2.

6 Results

For any given set of material parameters and geometry, and fixed external
field, we compute the energy as a function of external field and macroscopic
deformation, E[F0]. The spontaneous deformation F̄0 is then determined
as the matrix which minimizes E[F0]; since the phase transition occurs at
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Figure 3: Elastic energy of polymer (a) and demagnetization energy (b) ,
as functions of a small particle rotation. In the same setting as in Figure
2, we now fix m and change the skew-symmetric part of G1. The figure
shows the graph of energy over rotation ((G1)12− (G1)21)/2 for a number of
sequentially refined discretizations. The symmetric part is kept fixed at the
value G1 = (−0.04, 0.04).

N eoc(Eelast
matr) eoc(Edemag) eoc(E) E in M Pa

32 1.69 0.68 1.71 89.8175
128 2.13 1.99 2.12 91.3056
512 2.13 2.26 2.24 91.3850

1024 91.3888

Table 1: Estimated order of convergence for the energy components whose
computation involves BEM. The configuration is the same as above, where
the energy is evaluated in some deformed configuration (still significantly
away from the minimum). The energy in the finest computation (that was
used as a point of reference for the eoc) was 91.3888.

constant volume, the determinant of F0 turns out to be always very close to
unity. We report in the following the spontaneous deviatoric strain, i.e.,

(λ2 − λ1)(F̄0) ,

λi(F ) being the ordered singular values of F (i.e., the eigenvalues of (F TF )1/2).
In all deformation figures we plot first the reference configuration, corre-
sponding to u = 0 and F0 = Id, and then the deformed one at the sponta-
neous macroscopic deformation, where F0 = F̄0. For simplicity of illustration,
in the whole section we consider particles with lattice orientation along the
orientation of the symmetry axis of their shape.

17



N λ2 − λ1 minE
32 0.0197835 3.20766
64 0.0198949 3.21424

128 0.0198934 3.21583

Table 2: Convergence for the position and value of the minimum. We
consider one circular particle of volume fraction 20%, µ = 2 G Pa and
Hext = 1 T. We compute the difference of the two eigenvalues of G0 (which
is diagonal due to the symmetry of the configuration).

(a) (b)

Figure 4: Deformation of four (nearly) exactly oriented particles, with to-
tal volume fraction of 29.1%. (a): Reference configuration, (b): Deformed
configuration. The macroscopic strain is 4.8%. In comparison, the maximal
strain of NiMnGa single-crystals is 11.6%. The checkerboard pattern illus-
trates the elastic deformation (it is not related to a numerical mesh), the
color coding represents the strain in the matrix visually (yellow=low strain,
red=high strain; as strain measure we use the elastic energy density W lin

matr,
the scale ranges from 0 to 5 M Pa). The checkerboard in the particle domain
indicates the crystal orientation.

6.1 Four aligned vs. four misaligned particles

In Figure 4 we consider four particles with (almost) the same orientation, in
the presence of an external field. Even with a rather small volume fraction
the spontaneous strain is only one-half of the one of a single crystal. The
stress in the polymer concentrates in the small regions between the particles.
The entire configuration is almost completely rotation-free.

If the orientation of the particles is instead very different, see Figure 5,
then the macroscopic spontaneous strain, for exactly the same particles, sinks
by a factor of 5. Each particle still transforms as in the previous case; the
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(a) (b)

(c) (d)

Figure 5: Deformation of four severely misoriented particles. (a): Reference
configuration; (b): Deformed configuration. The macroscopic strain is 0.9%.
On the bottom we show the same computation for a polymer that is softer (c)
or harder (d) by a factor of 2, exhibiting a strain of 1.4% or 0.5% respectively.

eigenstrains of the particles are

ε(i) = Qiε1Q
T
i , Qi =

(
cos θ ± sin θ
∓ sin θ cos θ

)
,

where θ = 36◦. Here ε1 was defined in (2.2). The (tensorial) average of
these eigenstrain is 〈ε(i)〉 = cos θε1, therefore it is about 20% smaller than
the one pertaining to the oriented configuration in Figure 4. The reduction
in macroscopic deformation is, however, much larger. This is due to the fact
that the eigenstrains are incompatible, and that this incompatibility has to be
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(a) (b)

(c) (d)

Figure 6: Two different random configurations. (a) and (c): Reference
configuration; (b) and (d): Deformed configuration. The macroscopic strain
is 2.8% in the first and 3.7% in the second case.

accommodated by the polymer. The resulting polymer deformation around
each particle reduces the macroscopic effect of the eigenstrain, and indeed
the polymer is almost completely under significant strain. If one considers
softer polymers, then accommodation of strain is easier, and the spontaneous
strain increases, as the lower part of the figure shows. For very soft polymers
one can easily get large spontaneous shears, but the work output will be
extremely small, see also the discussion below.

Finally, Figure 6 shows for comparison two different random distribu-
tions of the particles, which results in intermediate values of the spontaneous
strain.
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Figure 7: Effect of volume fraction. For a particle with aspectratio 1, we
change the volume. Parameters as above. (a): Resulting strain (λ2−λ1)(F0)
as a function of volume. (b): Work output, as a function of volume.

6.2 Systematic investigation of individual parameters

We now turn to a more systematic investigation of the effect of changing
individual parameters. The quality of the material is determined in terms of
the spontaneous strain, defined above, and the work output, defined as

Work output = (Energy at F0 = Id)−
(
Energy at F0 = F̄0

)
.

All energies are evaluated per unit volume, and measured in M Pa.
We start from the simplest parameter, namely, the volume fraction. Fig-

ure 7 shows the spontaneous strain and the work output for circular particles
of different volume, and lattice rotations Qi = Id. We compare the numeri-
cal results with the two simple approximations used in the homogenization
literature, namely, uniform strain and the uniform stress.

The uniform-strain model, in the present setting, amounts to the assump-
tion that Gi = ∇u(x) = G0 for all i and all x. The elastic energy then takes
the form

Eu.strain[G0] = |Ω \ ω|W lin
matr(G0) +

∑
i

|ωi|W lin
part(Q

T
i G0Qi − εpi

) . (6.1)

The geometry of the microstructure has completely disappeared from the
picture. The coupling to the magnetic field is in turn – up to a very small
influence of G0 on the demagnetization energy – reduced to the value of pi.
Therefore a simple minimization of the quadratic expression in (6.1) gives
the optimal value for F0 = G0 + Id.

In the uniform stress approximation one instead assumes the stress to be
constant and equal to the macroscopic value, which is zero for the equilibrium
state. Correspondingly, the deformation gradient vanishes in the matrix,
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Figure 8: Effect of aspectratio. Particle and parameters as described above.
(a): Energy as a function of strain, for different aspectratios. (b): Deformed
configurations, for the same three values of the aspectratio. (c): Spontaneous
stretch and work output as a function of aspectratio. Additionally, the green
curves in (c) also plot the functions for a polymer that is five times softer
than our standard configuration.

and coincides with the spontaneous strain in the particles. The spontaneous
macroscopic deformation gradient is

Ḡ0 =
∑

i

|ωi|QT
i εpi

Qi . (6.2)

Variants of these approximations have been used in the literature on magne-
toelastic composites, see, e.g., [7, 20]. Figure 7 shows that for the specific pa-
rameters used here the two approaches give the same result, which describes
the increase in spontaneous strain with volume fraction in a qualitatively
correct manner.

Next we consider the effect of the aspectratio of the particles, keeping
the volume constant. In Figure 8 we show that the extreme values of the
aspectratio give both a higher work output, and a higher spontaneous strain.

Figure 9 illustrates the effect of the elastic modulus of the polymer. We
first scale the Young modulus keeping the Poisson’s ratio constant, which
corresponds to multiplying λ and µ by the same factor. As expected, soft
polymers lead to large spontaneous deformation, and small work output.

22



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1000  5000  25000

S
tr

ai
n

Polymer Elastic Modulus in MPa

1:1
2:1
3:1
4:1

 0.2

 0.4

 0.6

 0.8

 1

 1000  5000  25000

W
o

rk
 O

u
tp

u
t 

in
 M

P
a

Polymer Elastic Modulus in MPa

1:1
2:1
3:1
4:1

(a) (b)

Figure 9: Effect of polymer elastic moduli. Volume fraction 15%, aspec-
tratios 4:1, 3:1, 2:1, and 1:1, other parameters as above. (a): Strain as a
function of polymer elastic modulus E = µ(3λ + 2µ)/(λ + µ). (b): Work
output as a function of polymer elastic modulus (where ν = 0.48, so that the
ratio λ/µ remains constant). The scale for E is logarithmic.
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Figure 10: Effect of polymer elastic moduli. Volume fraction 15%, aspec-
tratio 3:1, Poisson ratios 0.49, 0.48, 0.45, 0.4, and 0.25. (a): Strain as a
function of polymer elastic modulus E. (b): Work output as a function of
polymer elastic modulus, as in Figure 9.

These quantitative computations show that the maximum work output is
achieved for polymers significantly softer than the particles, in particular for
large aspectratio.

Figure 10 shows that varying Poisson’s ratio does not have a major influ-
ence on those results.

We finally come back to the oriented particles of Figure 4, and consider
the effect of loss of structure. First, we consider particles which still all have
almost exactly the same orientation, but which are not aligned. We show in
Figure 11 that even strongly misaligned, but oriented, particles lead to large
spontaneous deformations.
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Figure 11: Effect of polymer shear modulus for oriented, non-aligned par-
ticles. Volume fraction 14%, aspectratio 4:1 with 4 particles in the unit box.
We plot the effect of the polymer elasticity for different degrees of misalign-
ment, where particles in one row are shifted with respect to particles in the
other row; 100% signifies the maximal misalignment. (a): Configuration for
50% offset. (b): Strain as a function of polymer elastic modulus. (c): Work
output as a function of polymer elastic modulus. Here the Poisson’s ratio ν
is kept constant, the scale for E is logarithmic.
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Figure 12: Effect of orientation. Two elongated particles. Volume frac-
tion 22%, aspectratio 3:1. We vary the misorientation angle, i.e., the angle
between the axis of the two particles. Other parameters as above. (a): Ge-
ometry. (b): Strain as a function of the angle between particle axis and e2.
(c): Work output.

In Figure 12 we consider the effect of orientation. The curves show the
dramatic effect of particle orientation on both spontaneous shear and work
output. We stress that capturing this geometric effect requires resolution of
the elastic deformation of the polymer, and that both simple models men-
tioned above would not detect any effect of aspectratio, alignment and ori-
entation.
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6.3 Role of the demagnetization field

We first observe that the effects discussed are almost totally the consequence
of the phase transition, and that the deformation arising from the dipole-
dipole magnetic force acting on the magnetized particles is negligible. In the
configuration of Figure 5, for example, the rotation of the particles coming
from the magnetic force is not more than 10−3 degrees (barely resolved by our
numerics), and the contribution to the total strain is somewhat smaller. Even
making the polymer 100 times softer, the strain arising from the magnetic
force remains less than 10−3. In the configuration of Figure 4 this effect
vanishes completely by symmetry. This applies taking as a representative
case hext = 1 T. In experiment one usually considers external fields Hext of
order 1 T, motivated by the effects such as metastable states, barriers, and
disorder. In practice, for an applied field isHext = 1 T, the local effective field
hext will be slightly different. In what follows, we argue that this difference
is negligible in this parameter range.

The difference between the macroscopic and the microscopic field is ex-
pressed for a simple geometry in (3.8). At least for this case, it is easy to see
that the difference is not very large. Indeed, since |M0| is less than or equal
to the volume fraction of the active material, and Ms ∼ 0.6 T, the term
MsM0/2 is, with our material parameters and our typical volume fraction
0.15, of order 0.05 T. This is much smaller than the value of Hext = 1 T.
The correction becomes of course important for very weak applied fields (or
in special geometries).

Let us make this analysis more precise with a quantitative computation on
a circular domain Ω, for which the macroscopic demagnetization field can be
computed analytically as discussed in Section 3. We consider a microstruc-
ture of aligned, elongated particles with a large volume fraction (to enhance
M0) and compare the case where all particles are magnetized in the same
direction (which is favored by the interaction with the external field) with
the case where neighboring particles are magnetized in opposite directions
(which is favored by the macroscopic demagnetization energy), see Figure 13,
which shows energy graphs of the different magnetization configurations for
varying external field. The same figure also provides an example where the
periodicity of the solution is a nontrivial multiple of the periodicity of the
microstructure; we work therefore with four or sixteen periods in the unit
cell.

If neighboring particles are magnetized in opposite directions (see (a) in
Figure 13), the macroscopic magnetization m0 vanishes, and the only con-
tribution to the demagnetization field is from the microscopic part. Quan-
titatively, it turns out to be 5.8 k Pa. If all particles are magnetized in the
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same direction (see (c) in Figure 13), then the macroscopic magnetization
m0 equals the microscopic one, times the volume fraction. The microscopic
part of the demagnetization field contributes 12 k Pa, while we get a contri-
bution from the macro-scale of 19 k Pa per unit volume (the entire contribu-
tion from the demagnetization field scales as volume). The interaction with
the external field subtracts 250 k Pa per Tesla (since the volume fraction is
about 50%). We conclude that the fully magnetized state (c) is energetically
favourable over the fully demagnetized state (a) for applied fields larger than
about 100 m T.

In fact, a full analysis of the four-period cell shows that in between these
two situations there is another regime, where only one of the four particles in
the computational cell is magnetized in the direction opposite to the external
field (see (b) in Figure 13). All other states are never energetically optimal.
An external magnetic field of less than 200 m T is sufficient to switch from
oscillating to uniform magnetization of particles in this setting.

As we discussed in Section 3, increasing the size of the computational
cell increases the number of possible states, and – since the problem con-
sidered here is not convex – in general one expects that energetically more
convenient states are found that way. We display this exemplarily in the
right-hand column of Figure 13, considering three of the 216 − 24 = 65520
new states arising in a cell with double side length. One has only a single par-
ticle directed against the field (f). This head-head configuration has a rather
large microscopic demagnetization field, and turns out never to be optimal.
Another has two particles, in a head-tail configuration, directed against the
field (e) and is the obvious generalization to a higher period of the configu-
ration (b) discussed above; this indeed turns out to have lower energy than
all other considered states in some interval of applied fields (see Figure 13).
A similar configuration of six particles in three lines (d) turns up between
the states (a) and (b). Extension for even larger size of the computational
cell are of course possible, but numerically they become exponentially more
and more expensive.

6.4 Comparison with Ref. [24]

Our numerical results are in good qualitative agreement with analytical re-
sults obtained for ellipsoidal particles in the dilute limit [24]. At a quan-
titative level, however, some differences are apparent. In particular, the
optimal value of the matrix elastic modulus we predict is at least an order of
magnitude larger than the one predicted in [24] (compare Figure 9(b) with
[24, Figure 7]). Among the many effects which contribute to this difference
(dimensionality, volume fraction, validity of the dilute limit and of the con-
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Figure 13: Effect of the macroscopic part of demagnetization, for a unit
cell containing four identical elongated particles. The aspectratio of each
particle is 7:2, the volume fraction 50%, the macroscopic demagnetization
field for a circular macroscopic domain is included via (3.7). The graph
shows the total energy as a function of the external magnetic field Hext

and the three microscopic magnetization patterns (a) – (c) in the unit cell
which are optimal in a part of the considered range of Hext. It is natural
to expect that simulations with more particles in the computational cell will
give a richer phase diagram: For example, in a computational cell four times
as large, we additionally considered the states (d) – (f) displayed on the
right-hand side of the total of 216 possibilities for the magnetization of each
particle. The state (f) has only one of the 16 particles directed against the
magnetic field and turns out never to be optimal. The states (d) and (e) are
additional ground states in intermediate ranges of the magnetic field between
the patterns (a), (b) and (b), (c), respectively.

strained elasticity used in [24], etc.) we believe that the main discrepancy
lies in the modeling of the particles. We have focused here on small particles,
which are not only single crystalline, but also magnetically behave as mon-
odomain. In [24] the particles are instead considered to be large (on the scale
of the size of magnetic domains), and the overall behavior of any single par-
ticle is determined by averaging over all possible domain structures, without
any nucleation barrier, and any energetic cost for domain boundaries. This
renders the MSM particles effectively much softer, and makes it much eas-
ier for the polymer to inhibit the transformation: therefore one needs softer
polymers in this model. An improved model should take care of the fact that
the two length scales may well be comparable, in particular since the size of
domains in the MSM particles will be, in turn, influenced by the polymer,
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and can therefore only be determined a posteriori. If the possibility of mul-
tidomain structures in the particles is considered, and domain boundaries are
penalized via the exchange energy, one will obtain scale-dependent results,
which are expected to interpolate between the two mentioned extrema.

7 Conclusions

In summary, we presented a model to study the microstructure of compos-
ites of magnetic-shape-memory particles in a polymer matrix. We developed
a numerical method to solve the model efficiently, in two dimensions and
within a geometrically linear setting, on the basis of the boundary-element
method. Our results underline the importance of orienting the particles in
the composite, and show that alignment is instead a much less critical as-
pect. We recall that application of a magnetic field during solidification is
a simple and known method to force orientation, but does not permit to
control alignment. Furthermore, we have shown that a polymer somewhat
softer than the particles gives the optimal work output, and that elongated
particles have much better properties than circular ones.
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