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Single crystals of magnetic shape-memory materials
display a large spontaneous deformation in response
to an applied magnetic field. In polycrystalline ma-
terial samples the effect is frequently inhibited by in-
compatibilities at grain boundaries. This motivates
technological interest in textured polycrystals and
composites of single-crystal magnetic shape-memory
particles embedded in a soft polymer matrix. We use
a continuum model based on elasticity and micro-
magnetism to study the induced macroscopic mate-
rial behavior in dependence of such mesoscopic struc-
tures via numerical simulation in two dimensions.
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1 Introduction

Ferromagnetic shape-memory materials exhibit com-
parably large strains in response to an applied mag-
netic field. For single crystals one can achieve strains
of order of magnitude 10% [1, 2, 3, 4]. In the search
for applicable devices, polycrystal samples have been
explored, mainly due to their much easier production.
In polycrystals the effectivity drops significantly, as
a consequence of the rigidity of interacting grains.
The same difficulty is present in shape-memory ma-
terials, such as InTl or NiTi. In many cases, the
shape-memory effect disappears due to blocking at
grain boundaries, this typically being the case when
a small number of variants is present. In magnetic
shape-memory (MSM) materials the number of vari-
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ants is typically very low. In particular, NiMnGa has
a cubic-to-tetragonal transformation, with only three
variants. Furthermore, compatibility conditions for
the magnetization at grain boundaries are also rele-
vant. The role of texturing has been, to some extent,
investigated experimentally [5, 6], showing that ori-
enting the grains has a strong impact on the macro-
scopic MSM properties. Here we investigate the role
of misalignment numerically and quantify its impact
on the effective spontaneous strain.

A recently-proposed alternative for shape mem-
ory devices is to embed small single-crystal shape-
memory particles in a soft polymer matrix [7, 8]. This
approach gives a large freedom in the material de-
velopment, which includes the type of polymer, the
density of particles, their shape, and their orientation
[9]. In the case of classical magnetostrictive materi-
als, such as Terfenol-D, experiments have shown that
using elongated particles, and orienting them via a
bias field during solidification of the polymer, leads
to a much larger magnetostriction of the composite
[10, 11]. We exemplarily demonstrate the potential
of this approach and show that a significant percent-
age of the single-crystal spontaneous strain can be
realized in polymer composites.

2 Micromagnetic-elastic model

We briefly present our model in a geometrically linear
setting; for more details and a full nonlinear discus-
sion see [12]. We work on a domain Ω ⊂ R2 occupied
by a polycrystal, which consists of grains ωi, each
of which is a single crystal. In the case of polymer
composites, the ωi denote the particles in a polymer
matrix Ω \ ω. In both cases, ω = ∪ωi.

Kinematics. Let u : Ω → R2 be the elastic dis-
placement, p : ω → {1, 2} be the phase index, which
is supposed to be constant on each grain (each par-
ticle, in the case of composites), and M : R2 → R2

the magnetization. Notice that v and p are defined
on the reference configuration, whereas M is defined
on the deformed configuration.

Elasticity. We assume the elastic deformation
v(x) = x + u(x) to be injective on Ω. We use linear
elasticity throughout. The particles have two energy-
minimizing phases, which are distinguished by the
phase parameter p, and are elastically anisotropic.
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Figure 1: Top line: Reference configuration (left) and
deformed configuration (right) for a periodic poly-
crystal, containing grains with seven different orien-
tations. Bottom line: the same for a composite. For
illustrative purposes, a finite portion of a periodic
sample is plotted, with the computational cell in the
center. The checkerboard pattern in the grains (par-
ticles) illustrates the lattice orientation (it is not re-
lated to a numerical mesh), and the shading (coloring
in the case of polymer composite) shows the elastic
energy density.

Their elastic energy is

Eelast =
∫

ω
W ((∇v(x))Q(x)− εp(x)) dx . (2.1)

Here Q : ω → SO(2) represents the crystal lattice
orientation in the reference configuration, εp is the
eigenstrain of phase p, say,

ε1 =
(
−ε0 0
0 ε0

)
, ε2 =

(
ε0 0
0 −ε0

)
, (2.2)

and the energy density W (F ) penalizes deviations
from a preferred, phase-dependent, strain. We
parametrize it with the cubic elastic constants C11,
C12 and C44. Notice that we only linearize the de-
formation, and that the lattice rotation is inserted
explicitly and nonlinearly through Q(x).

In composites we additionally have the elastic en-
ergy of the polymer matrix, which is assumed to be
an isotropic, linearly elastic material.

Micromagnetism. Let M = Msm be the magne-
tization, where Ms denotes the saturation magneti-
zation. The vector field m : R2 → R2 has unit length
on the deformed domain v(ω), i.e., on the grains (par-
ticles), and vanishes elsewhere. The magnetic energy

is given by the coupling to the external field Hext,
the demagnetization term, and the phase-dependent
anisotropy term:

Em =
∫

R2

1
2

M2
s

µ0
|Hd|2 −

Ms

µ0
Hext ·m dy

+Ku

∫
v(ω)

ϕp(v−1(y))

(
(R∇v◦v−1Q(y))T m

)
dy .

The field Hd : R2 → R2 is the projection of m onto
curl-free fields. Furthermore, ϕ2(m) = m2

1
|m|2 , ϕ1(m) =

m2
2

|m|2 are the two magnetic anisotropy functions re-
flecting the phase-dependent easy axis, and Ku is the
uniaxial anisotropy constant. The matrix R∇v(x) ∈
SO(2) is the rotation associated with the elastic de-
formation v at a reference point x. Explicitly, we
consider R ≈ Id + 1

2(∇v − (∇v)T ).

Homogenization and numerical methods. In
the spirit of the theory of homogenization [13], we
study periodic configurations, where each periodic
cell contains a small number of particles, as illus-
trated in Figure 1. We use boundary elements [14]
to express both the elastic and the magnetic problem
in the full space in terms of the deformation and the
magnetization on the boundary of each grain (parti-
cle). Details are given in [12].

Material parameters. We use parameters for
NiMnGa, precisely: Ms

µ0
' 0.50 MPa

T [15], Ku '
0.13 M Pa [4], ε0 ∼ 0.058, C11 = 160 G Pa, C44 =
40 G Pa, C11−C12 = 4 GPa [16] For the polymer we
take λ ∼ 20 G Pa, µ ∼ 1 G Pa.

3 Polycrystals

We investigate magnetostriction in a periodic poly-
crystal. For better comparison, we keep the grain
geometry fixed, and vary only the lattice orientation
in the grains. This means that the ωi are fixed, and
the Qi are varied. Figure 2 shows the results for three
different choices of the orientation, ranging from al-
most oriented to completely random. Whereas an
orientation mismatch of about 2◦ does not substan-
tially reduce the magnetostriction with respect to a
single crystal, already with an average mismatch of
8◦ the effect is reduced by almost 30%. In the un-
structured case only one-quarter of the single-crystal
spontaneous strain survives.
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Figure 2: Spontaneous deformation of a polycrystal
with different texturing. Only one unit cell is plot-
ted. With fixed grain geometry, we vary the amount
of misorientation. The average orientation mismatch
at grain boundaries is 2◦ (first line) and 8◦ (second
line). The third line depicts a configuration with
completely random lattice orientation (i.e. average
mismatch close to 22.5◦). The first column shows
the reference configuration, the second one the de-
formed state at the spontaneous deformation, with
an applied horizontal external field Hext = 1T . The
spontaneous strain is 5.6%, 4.2%, and 1.6% in the
three cases. For comparison, the value for a single
crystal is 5.8%.

4 Composites

As a second case we consider polymer composites.
Again, we keep the shape and size of the particles

Figure 3: Spontaneous deformation of a composite
with different texturing. The volume fraction of the
particles is about 50%. Only one unit cell is plotted.
With fixed particle geometry, we vary the amount
of misorientation between the particles. The aver-
age orientation mismatch is 2◦ (first line), 8◦ (second
line), and completely random (third line). Again, the
first column shows the reference configuration, the
second one the deformed state at the spontaneous de-
formation, with an applied horizontal external field
Hext = 1T . The spontaneous strain is 3.7%, 3.9%
and 2.9% in the three cases, compared to the 5.8% in
case of a single crystal.

fixed, and vary their orientation (and consequently
their spatial arrangement). We assume that the vol-
ume fraction of the active material is 50%. Fig-
ure 3 shows that the dependence of the macroscopic
magnetostriction on the orientation is much smaller
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than for polycrystals. In particular, misorientations
of 2◦ and 8◦ give almost exactly the same magne-
tostriction, which in turn is comparable to the one
of the polycrystal at 8◦ misorientation. (Indeed, in
this range the spontaneous strain also depends sig-
nificantly on the details of the geometry. For a sym-
metric arrangement of particles one actually observes
monotonicity of the spontaneous strain with respect
to the lattice alignment. Here, we refer to Fig. 12 in
[12].) Even in the non-oriented case the composite
recovers almost one-half of the single-crystal magne-
tostriction.
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