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Single crystals of magnetic shape-memory materials
display a large spontaneous deformation in response
to an applied magnetic field. In polycrystalline ma-
terial samples the effect is frequently inhibited by in-
compatibilities at grain boundaries. This motivates
technological interest in textured polycrystals and
composites of single-crystal magnetic shape-memory
particles embedded in a soft polymer matrix. We use
a continuum model based on elasticity and micro-
magnetism to study the induced macroscopic mate-
rial behavior in dependence of such mesoscopic struc-
tures via numerical simulation in two dimensions.
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1 Introduction

Ferromagnetic shape-memory materials exhibit com-
parably large strains in response to an applied mag-
netic field. For single crystals one can achieve strains
of order of magnitude 10% [1, 2, 3, 4]. In the search
for applicable devices, polycrystal samples have been
explored, mainly due to their much easier production.
In polycrystals the effectivity drops significantly, as
a consequence of the rigidity of interacting grains.
The same difficulty is present in shape-memory ma-
terials, such as InTl or NiTi. In many cases, the
shape-memory effect disappears due to blocking at
grain boundaries, this typically being the case when
a small number of variants is present. In magnetic
shape-memory (MSM) materials the number of vari-
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ants is typically very low. In particular, NiMnGa has
a cubic-to-tetragonal transformation, with only three
variants. Furthermore, compatibility conditions for
the magnetization at grain boundaries are also rele-
vant. The role of texturing has been, to some extent,
investigated experimentally [5, 6], showing that ori-
enting the grains has a strong impact on the macro-
scopic MSM properties. Here we investigate the role
of misalignment numerically and quantify its impact
on the effective spontaneous strain.

A recently-proposed alternative for shape mem-
ory devices is to embed small single-crystal shape-
memory particles in a soft polymer matrix [7, 8]. This
approach gives a large freedom in the material de-
velopment, which includes the type of polymer, the
density of particles, their shape, and their orientation
[9]. In the case of classical magnetostrictive materi-
als, such as Terfenol-D, experiments have shown that
using elongated particles, and orienting them via a
bias field during solidification of the polymer, leads
to a much larger magnetostriction of the composite
[10, 11]. We exemplarily demonstrate the potential
of this approach and show that a significant percent-
age of the single-crystal spontaneous strain can be
realized in polymer composites.

2 Micromagnetic-elastic model

We briefly present our model in a geometrically linear
setting; for more details and a full nonlinear discus-
sion see [12]. We work on a domain Q C R? occupied
by a polycrystal, which consists of grains w;, each
of which is a single crystal. In the case of polymer
composites, the w; denote the particles in a polymer
matrix 2\ w. In both cases, w = Uw;.

Kinematics. Let u : Q — R? be the elastic dis-
placement, p : w — {1,2} be the phase index, which
is supposed to be constant on each grain (each par-
ticle, in the case of composites), and M : R? — R?
the magnetization. Notice that v and p are defined
on the reference configuration, whereas M is defined
on the deformed configuration.

Elasticity. We assume the elastic deformation
v(z) = x 4+ u(z) to be injective on 2. We use linear
elasticity throughout. The particles have two energy-
minimizing phases, which are distinguished by the
phase parameter p, and are elastically anisotropic.



Figure 1: Top line: Reference configuration (left) and
deformed configuration (right) for a periodic poly-
crystal, containing grains with seven different orien-
tations. Bottom line: the same for a composite. For
illustrative purposes, a finite portion of a periodic
sample is plotted, with the computational cell in the
center. The checkerboard pattern in the grains (par-
ticles) illustrates the lattice orientation (it is not re-
lated to a numerical mesh), and the shading (coloring
in the case of polymer composite) shows the elastic
energy density.

Their elastic energy is

Eaw = | W(Vo(@)QUa) ~ ) da. (21)
w

Here @ : w — SO(2) represents the crystal lattice

orientation in the reference configuration, ¢, is the

eigenstrain of phase p, say,

&1 = < 50 €00> > g = <600 —(i:(]> 5 (2.2)
and the energy density W (F') penalizes deviations
from a preferred, phase-dependent, strain. We
parametrize it with the cubic elastic constants C1,
C12 and Cyy. Notice that we only linearize the de-
formation, and that the lattice rotation is inserted
explicitly and nonlinearly through Q(x).

In composites we additionally have the elastic en-
ergy of the polymer matrix, which is assumed to be
an isotropic, linearly elastic material.

Micromagnetism. Let M = M m be the magne-
tization, where M, denotes the saturation magneti-
zation. The vector field m : R? — R? has unit length
on the deformed domain v(w), i.e., on the grains (par-
ticles), and vanishes elsewhere. The magnetic energy

is given by the coupling to the external field Heyg,
the demagnetization term, and the phase-dependent
anisotropy term:
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The field Hy : R? — R? is the projection of m onto

curl-free fields. Furthermore, @o(m) = % ,o1(m) =
m3

m 2

I"le‘cting the phase-dependent easy axis, and K, is the
uniaxial anisotropy constant. The matrix Ry,) €
SO(2) is the rotation associated with the elastic de-
formation v at a reference point z. Explicitly, we
consider R ~ Id + (Vv — (Vou)T).

are the two magnetic anisotropy functions re-

Homogenization and numerical methods. In
the spirit of the theory of homogenization [13], we
study periodic configurations, where each periodic
cell contains a small number of particles, as illus-
trated in Figure 1. We use boundary elements [14]
to express both the elastic and the magnetic problem
in the full space in terms of the deformation and the
magnetization on the boundary of each grain (parti-
cle). Details are given in [12].

Material parameters. We use parameters for
NiMnGa, precisely: % ~ 0.50% [15], K, =~
0.13 M Pa [4], Ep 0.058, 011 = 160 GPa, C44 =
40 G Pa, C1; — C12 = 4 G Pa [16] For the polymer we
take A ~ 20 GPa, u ~ 1 GPa.

3 Polycrystals

We investigate magnetostriction in a periodic poly-
crystal. For better comparison, we keep the grain
geometry fixed, and vary only the lattice orientation
in the grains. This means that the w; are fixed, and
the @); are varied. Figure 2 shows the results for three
different choices of the orientation, ranging from al-
most oriented to completely random. Whereas an
orientation mismatch of about 2° does not substan-
tially reduce the magnetostriction with respect to a
single crystal, already with an average mismatch of
8° the effect is reduced by almost 30%. In the un-
structured case only one-quarter of the single-crystal
spontaneous strain survives.



Figure 2: Spontaneous deformation of a polycrystal
with different texturing. Only one unit cell is plot-
ted. With fixed grain geometry, we vary the amount
of misorientation. The average orientation mismatch
at grain boundaries is 2° (first line) and 8° (second

line). The third line depicts a configuration with
completely random lattice orientation (i.e. average
mismatch close to 22.5°). The first column shows
the reference configuration, the second one the de-
formed state at the spontaneous deformation, with
an applied horizontal external field Heyy = 17T. The
spontaneous strain is 5.6%, 4.2%, and 1.6% in the
three cases. For comparison, the value for a single
crystal is 5.8%.

4 Composites

As a second case we consider polymer composites.
Again, we keep the shape and size of the particles

Figure 3: Spontaneous deformation of a composite
with different texturing. The volume fraction of the
particles is about 50%. Only one unit cell is plotted.
With fixed particle geometry, we vary the amount
of misorientation between the particles. The aver-
age orientation mismatch is 2° (first line), 8° (second
line), and completely random (third line). Again, the
first column shows the reference configuration, the
second one the deformed state at the spontaneous de-
formation, with an applied horizontal external field
H. = 1T. The spontaneous strain is 3.7%, 3.9%
and 2.9% in the three cases, compared to the 5.8% in
case of a single crystal.

fixed, and vary their orientation (and consequently
their spatial arrangement). We assume that the vol-
ume fraction of the active material is 50%. Fig-
ure 3 shows that the dependence of the macroscopic
magnetostriction on the orientation is much smaller



than for polycrystals. In particular, misorientations
of 2° and 8° give almost exactly the same magne-
tostriction, which in turn is comparable to the one
of the polycrystal at 8° misorientation. (Indeed, in
this range the spontaneous strain also depends sig-
nificantly on the details of the geometry. For a sym-
metric arrangement of particles one actually observes
monotonicity of the spontaneous strain with respect
to the lattice alignment. Here, we refer to Fig. 12 in
[12].) Even in the non-oriented case the composite
recovers almost one-half of the single-crystal magne-
tostriction.
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