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1 Introduction

Magnetic shape memory (MSM) materials are characterized by two coupled phase transitions, in

which a ferromagnetic order parameter (the magnetization) and a ferroelastic one (the elastic strain)

interact with each other. The coupling leads to very large spontaneous strains, of the order of 10%,

but also generates strong impediments to the transformation, including in particular the di�culty

of forming interfaces between domains with di�erent values of the order parameters. [1] Indeed, for

each of the two order parameters low-energy interfaces are only possible with speci�c orientations

(for example, the normal component of the magnetization should not jump across interfaces). For
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this reason the transformation and the spontaneous strain are strongly suppressed in polycrystals.

However, large single crystals are brittle and di�cult to produce.

Magnetic shape memory (MSM) particles embedded in a polymer matrix have been proposed as

a practical way of obtaining large samples with a spontaneous transformation. [2,3] Single-crystalline

particles are easier to produce than large single-crystalline samples, for example by appropriately

breaking up a polycrystal. Many parameters of the material, such as the size and shape of the parti-

cles, the volume fraction and the geometry of the microstructure can be at least partially controlled

during the production of the composite. The elasticity constants of the matrix can be varied over

several orders of magnitude (typical materials are epoxy, polyester resin and polyurethane). For the

development of good composites it is important to understand the dependence of the macroscopic

material properties on the microstructural parameters.

A variational model for the elastic and magnetic properties of such composites was proposed in [4]

and used to study the case of composites with small MSM particles. [4,5] The model builds upon

nonlinear elasticity and micromagnetism, the analysis was based on the theory of homogenization

and on a numerical solution of the cell problem via the boundary-element method. The assumption

of the smallness of the MSM particles leads to a crucial simpli�cation. Small particles can be assumed

to be in a single phase; in each particle the magnetization is either �up� or �down�, no mixture is

possible. Recent experiments used particles with size of the order of a hundred µm. [3] This is large

compared to the typical size of the magnetic domains, and also compared to the typical scale of the

elastic domains. Therefore we focus here on the opposite limit, in which the particles are still single

crystals, but much larger than the scale of the domains.

In this paper we propose a new approach for the modeling of large MSM particles embedded in a

polymer matrix, which is based on the theory of relaxation. The mathematical theory of relaxation

permits to replace a complicated functional, which resolves each single domain in the microstructure,

by a simpler functional, which only resolves the average material behavior of large particles and in

thus better suited to numerical simulations. [6,7] The details of the microstructure are not any more

explicitly resolved in the kinematics, but still correctly accounted for in the energetics; the new

functional deals only with the macroscopic degrees of freedom, at a length scale much larger than

the one of the microstructure.

Similar approaches have been used for a number of di�erent physical problems, including the case

of a purely magnetic phase transition and of a purely elastic phase transition. To the best of our

knowledge this is the �rst application to a joint magnetoelastic problem. In particular, in [8] it was

2



shown that magnetic materials which are much larger than the characteristic length scales of the

magnetic domains (the Bloch wall width, the exchange length etc.) are appropriately described by

a relaxed functional in which the exchange energy does not appear, the e�ective magnetization may

be shorter than the saturation magnetization, and the anisotropy energy is replaced by its convex

envelope. Corresponding theories are much more subtle for the case of elasticity, due to the tensorial

nature of the order parameter (the elastic strain). The general theory builds upon the concept of

quasiconvexity, which is however very di�cult to apply in practice. Indeed, up to now only in very

few cases with special symmetries the relaxation was determined explicitly, see for example. [9,10] Here

we build upon this general framework but approximate the quasiconvex envelope with the convex

one, which is easier to compute.

The present paper is completely restricted to the two-dimensional case. Extension of the same

approach to three dimensions is in principle straightforward but in practice rather cumbersome, both

in the explicit computation of the convex envelope and in the numerical simulation with boundary

elements. Our approach is also in many other respects only an approximation, and it is by no

means clear that the restriction to two spatial dimensions is the leading error term. For the sake

of simplicity we do not discuss the three-dimensional case further. It remains an open problem

to compute the appropriate convex envelope in three dimensions and investigate numerically the

in�uence of dimensionality.

We present in Section 2 the model, in Section 3 the large-particle limit, and in Section 4 we discuss

our results in relation to recent experiments from. [3]

2 Micromagnetic-Elastic Model

The starting point of our analysis is the variational model from, [4] which combines elasticity and

magnetism. We brie�y review it here, referring to [4] for a thorough discussion of the di�erent terms.

We work here with geometrically linear elasticity in two dimensions. We denote by Ω ⊂ R2 the

domain occupied by the composite, and by ω ⊂ Ω the part which is occupied by the particles,

ω = ∪iωi.

The elasticity is described through the elastic displacement �eld u : Ω→ R2, magnetism through

the magnetization M : R2 → R2 (we set M = 0 outside the volume occupied by the particles,

i.e., both in the polymer and in vacuum). The position of the material point x in the deformed

con�guration is then given by the deformation �eld v(x) = x+u(x), which we assume to be injective
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on Ω. Additionally we introduce a phase variable, p : ω → {0, 1}, which characterizes the two phases

of the material. The variables u, v and p are de�ned on the reference con�guration, whereas M is

de�ned on the deformed con�guration.

The elastic energy is written separately in the MSM particles and in the polymer and takes the

form

Eelast =

∫
ω

WMSM((∇u(x))Q(x)− εp(x)) dx+

∫
Ω\ω

Wpol(∇u(x)) dx , (1)

where Q : ω → SO(2) represents the crystal lattice orientation in the reference con�guration (con-

stant in each particle) and εp is the spontaneous strain in phase p,

ε0 =

−ε 0

0 ε

 , ε1 =

ε 0

0 −ε

 . (2)

The energy density WMSM penalizes deviations of the strain from εp, and is here parametrized with

the cubic elastic constants C11, C12 and C44. The polymer matrix is assumed to be an isotropic,

linearly elastic material and its energy density Wpol is parametrized by the elastic modulus E and

Poisson's ratio ν.

The magnetic energy depends on the magnetization �eldM : R2 → R2, which has length |M | = Ms

on the deformed particles, i.e., on v(ω), and vanishes elsewhere. Here Ms denotes the saturation

magnetization. As usual in micromagnetism we include a coupling to the external �eld Hext, the

demagnetization term, and the phase-dependent anisotropy term:

Emag =

∫
R2

1

2

1

µ0

|Hd|2 −
1

µ0

Hext ·M dy +Ku

∫
v(ω)

ϕp(v−1(y))

(
(Q(v−1(y)))TM

)
dy . (3)

Notice that we neglect the exchange term
∫
|DM |2dy, this is appropriate for the case of particles

much larger than the domains we are interested in. The �eld Hd : R2 → R2 is the projection of M

onto curl-free �elds, i.e., it solves divHd = divM and curlHd = 0. The distinction between the two

phases enters via the anisotropy, which in the model takes the form ϕ0(M) =
M2

2

|M |2 , ϕ1(M) =
M2

1

|M |2 .

Further, Ku is the uniaxial anisotropy constant, and working in a linearized setting we ignore the

rotation associated with the elastic deformation v inside the anisotropy term.

We use parameters for NiMnGa, precisely: Ms

µ0
' 0.50 M Pa

T
, [11] Ku ' 0.13 M Pa , [12] ε ∼ 0.058,

C11 = 160 G Pa, C44 = 40 G Pa, C11 −C12 = 4 G Pa. [13] For the polymer we �x ν = 0.4 and vary E.

4



3 Large-Particle Model

The particles used in the experiments are much larger than the typical domain size. [3] Numerically

resolving each domain becomes very di�cult, but a substantial simpli�cation of the model can be

achieved by an analytical treatment of the domain structure. [8] In particular, we assume that in

each particle a �ne mixture of di�erent domains may appear, on a scale which is much smaller than

the size of the particles. Our aim is to characterize the behavior of the entire particle in terms of

average variables, namely, the average magnetization in the particle and a continuous phase variable

describing the volume fraction of the two phases.

Consider a particle ωi which is entirely in one phase, say p = 1. The magnetization is a vector �eld

M : v(ωi) → R2, with constant length Ms. If M oscillates on a very �ne scale between two values,

say (Ms, 0) and (0,Ms), and each of them is taken on half of the volume of the particle, the average

magnetization will be 1
2
(Ms, 0)+ 1

2
(0,Ms) = (Ms

2
, Ms

2
), a vector whose lengthMs/

√
2 ∼ 0.71Ms is less

than Ms. By similar constructions all vectors with length less than or equal to Ms can be generated

as average magnetization of the particle. Mathematically, this transforms the non-convex constraint

|M | = Ms for the magnetization M into the convex constraint |M | ≤Ms. The macroscopic analysis

will then focus on the average magnetization, which obeys the convex constraint, and ignore the �ne-

scale oscillations. If the energy is replaced by the appropriate macroscopic e�ective energy this leads

to a substantial simpli�cation of the variational problem without major changes in the predictions,

see. [6,7,14] Similar ideas have been exploited successfully to study magnetization patterns in magnetic

thin �lms, for example in, [15] and elastic microstructures in liquid crystal elastomers, for example

in. [10] Here the situation is however more complex, since we have both a magnetization and a phase

parameter which couples to the elastic degrees of freedom. In both the purely magnetic and the purely

elastic example, a proper mathematical treatment shows that continuity of the deformation at the

interface and the energetic cost of a nonzero divergence of the magnetization lead to constraints on the

geometry of the possible microstructure, which in�uence the precise form of the e�ective energy. [10,15]

For the sake of simplicity we ignore here these e�ects and use the convex envelope instead of the

quasiconvex envelope of the energy density (see [6,7] for precise de�nitions). This is clearly only an

approximation, we shall however see that it su�ces to obtain qualitatively correct results.

We rewrite the anisotropy energy ϕ entering the last term in (3) as a function γ of the phase
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parameter p ∈ {0, 1} and the scaled magnetization m = M/Ms,

γ(p,m) =


m2

2 for p = 0 and |m| = 1 ,

m2
1 for p = 1 and |m| = 1 .

(4)

Optimizing over all possible microstructures which generate a given average phase p ∈ [0, 1] and

magnetization m, |m| ≤ 1, corresponds to replacing γ by its convex envelope γconv, which is the

largest convex function which is nowhere larger than γ.

We start from the case p = 0. Consider an average magnetization m with |m| ≤ 1. Then there are

two admissible microscopic magnetizations m+, m− which have weighted average m and the same

second component as m. Equivalently, m+ and m− are two vectors which obey |m+| = |m−| = 1,

m = λm+ + (1 − λ)m− for some λ ∈ [0, 1] and m2 = m+
2 = m−2 ; one can see that the pair

m± = (±
√

1−m2
2,m2) with λ = (m1 +

√
1−m2

2)/(2
√

1−m2
2) will do. If the magnetization

oscillates on a �ne scale between the two values m+ and m−, one achieves the required average

magnetization m with average energy density given by γ(0,m+) = γ(0,m−) = m2
2 (see Figure 1(a)

for an illustration). The convexity of this expression shows that the microstructure constructed is

optimal, in the sense that no other admissible construction has lower average energy. Therefore we

conclude that γconv(0,m) = m2
2. Analogously, one sees that γ

conv(1,m) = m2
1.

We pass now to the situation in which the two phases are mixed. Consider a pair (p,m), with

|m| ≤ 1 and 0 < p < 1. A volume fraction p of the particle will be in phase 1, we denote by a the

average magnetization of this part. Analogously, b denotes the average magnetization of the rest,

which is in phase 0 and corresponds to a volume fraction 1 − p. Since the average magnetization

equals m, and a, b must be achievable as average magnetizations, necessarily

pa+ (1− p)b = m, |a| ≤ 1 , |b| ≤ 1 . (5)

The precise choice of a and b will be dictated by minimization of the average energy, which takes the

form

pγ(0, a) + (1− p)γ(1, b) = pa2
1 + (1− p)b2

2 . (6)

Practically, one seeks of a and b subject to the constraints (5) which minimize (6). This can be done by

the standard method of Lagrange multipliers, leading to a somewhat cumbersome but straightforward

computation (cf. Appendix). In order to illustrate the result, we discuss the di�erent regimes which
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play a role in the minimization (see Figure 1(b) for an illustration).

Case I: For some values of (p,m) one can achieve zero energy. This occurs when there are admissible

choices of a and b with a1 = b2 = 0. Hence we need to take pa2 = m2 and (1− p)b1 = m1; this choice

is admissible for all (p,m) such that |m1| ≤ 1 − p and |m2| ≤ p. This set is the tetrahedron with

vertices (0, 0, 1), (0, 0,−1), (1, 1, 0), (1,−1, 0).

Case II: If (p,m) is outside the tetrahedron, but |m1| ≤
√

(1− |m2|)(1 + |m2| − 2p), then the

optimal choice is a = (0,±1) (depending on the sign of m2) and b = (b1, (m2 ∓ p)/(1− p)) for some

b1; the resulting energy is (1− p)b2
2 = (m2∓ p)2/(1− p) = (|m2|− p)2/(1− p). The condition for |m1|

follows from the constraint |b| ≤ 1. Analogously there is a regime in which b = (±1, 0) and a1 6= 0.

This corresponds to one of the two terms in (6) vanishing.

Case III: both terms in (6) contribute to the energy, and |a| = |b| = 1. Solving pa+ (1− p)b = m

for a or b, respectively, and inserting this into |a| = |b| = 1 yields

m · a =
|m|2 + p2 − (1− p)2

2p
, m · b =

|m|2 + (1− p)2 − p2

2(1− p)
.

From these one can compute the angles between m and a or b, respectively, and get

γIII(p,m) =p sin2

(
sin−1 |m1|

|m|
− cos−1 |m|2 − 1 + 2p

2p|m|

)
+ (1− p) cos2

(
cos−1 |m2|

|m|
+ cos−1 |m|2 + 1− 2p

2(1− p)|m|

)
. (7)

The �nal result is

γconv(p,m) =



0 if |m1| ≤ 1− p and |m2| ≤ p ,

(|m2| − p)2

1− p
if |m1| ≤

√
(1− |m2|)(1 + |m2| − 2p) ,

(|m1| − 1 + p)2

p
if |m2| ≤

√
(1− |m1|)(2p+ |m1| − 1) ,

γIII(p,m) otherwise.

Therefore in the large-particle limit the magnetic energy (3) is approximated by

Erelax
mag =

∫
R2

1

2

1

µ0

|Hd|2 −
1

µ0

Hext ·M dy +Ku

∫
v(ω)

γconv(p(v−1(y)),
(
(Q(v−1(y)))TM

)
dy (8)
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p=0 p=0.3

(a) (b)

Figure 1: Sketch of the microstructures used in the relaxation of the anisotropy energy. Left panel:
construction for p = 0. One keeps the m2 component constant, and lets the m1 component
oscillate in order to generate the appropriate average. Right panel: Construction for the
intermediate value p = 0.3, illustrating the three cases discussed in the text.

Figure 2: Magnetic domain patterns for di�erent applied �elds perpendicular to the easy axis. The
sketches represent the direction of the magnetization in the di�erent domains, to be com-
pared with the patterns used in the relaxation illustrated in Figure 1. Reprinted with
permission from. [16] Copyright 2007, American Institute of Physics.

and the eigenstrains (2) entering the elastic energy are replaced by the appropriate weighted average,

εp = (1− p)ε0 + pε1 =

(2p− 1)ε 0

0 (1− 2p)ε

 . (9)

As noted above, replacing the anisotropy energy by its convex envelope is an underestimate of

the true energy, since the additional stray �eld and the additional elastic tensions generated by the

�inner� interfaces are neglected. As discussed above, a �ner analysis is beyond the scope of this work.

4 Results on the macroscopic behavior of composites

In order to obtain quantitative predictions on the properties of the composite material from our

model one also needs to account for the second level of structure present on a mesoscale in the

sample, which is given by the geometry of the particle-polymer mixture and describes the interaction

between the MSM particles and the matrix. As in the case of small particles [4] we work within the

theory of homogenization [14] assuming that the microstructure is periodic and that each periodic cell

contains a small number of particles. We use boundary elements [17] to express both the elastic and

the magnetic problem in the full space in terms of the deformation and the magnetization on the
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(a) (b)

Figure 3: Left panel: experimental measurements of the total magnetization as a function of ap-
plied magnetic �eld with two di�erent orientations, reprinted from, [3] copyright 2007, with
permission from Elsevier. Right panel: corresponding simulation.

boundary of each particle, and a gradient descent approach to minimize the energy. Details are given

in. [4]

In order to validate our approach we compare our simulation results in Figure 3 with experimental

measurements from. [3] In the experiments a partial orientation of the particles had been obtained

via a careful curing process under an applied magnetic �eld in the Z direction, we simulate that

by imposing minor variations of the crystal orientation Q among the four particles included in the

unit cell. For a speci�c geometry of the composite, which has been chosen to match qualitatively

the samples used in the experiments, we compute the total magnetization for di�erent values of

the external �eld, in two di�erent orientations (which are not equivalent due to the mentioned

orientational ordering). The volume fraction of MSM particles is approximately 1/4. The qualitative

behavior with a gradual switching is in good agreement with experiment, and also the amount of

magnetic �eld needed to reach saturation is reproduced well.

As a next step, we use the current model to guide future experiments and to understand the depen-

dence of the macroscopic behavior of the composite on the parameter describing the microstructure.

The key variables which are experimentally accessible are the volume fraction of MSM particles, the

type of polymer and the amount of alignment obtained during curing. We work with the same four

round grains in the unit cell as in Figure 3, parametrize the polymers by Young's elastic modulus,

and the alignment by the average orientational di�erence of the four grains from the magnetization

direction. One parameter of interest is the total macroscopic strain which is achieved under trans-

formation, this is illustrated in Figure 4. Clearly the strain is maximal when the polymer is very

soft, because the transformation of the grains is not hindered. However, the very softness of the
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Experiment

Figure 4: Expected macroscopic strain as a function of Young's modulus of the polymer matrix for
di�erent microstructures. The geometry of the sample is the same as in Figure 3. The
di�erent curves correspond to di�erent volume fractions of MSM material and di�erent
misalignment angles. Additionally, three curves in which only some of the MSM particles
are active are included.

polymer makes the transmitted force very small, and in the limit of very soft polymers the material

is unusable. Therefore we focus on the work output, which measures the amount of energy stored in

the material when it is not permitted to elongate, and therefore characterizes the amount of work

that the material can perform when used as an actuator. Figure 5 shows that Young's moduli of

the polymer of the order of 1 to 10 MPa deliver the optimal work output, depending on the other

microstructural parameters. This is close to the value of the matrix used in, [3] and substantially

smaller than the elastic modulus of the previously used Epoxy.

5 Concluding remarks

We presented a model for studying MSM-polymer composites with particles which are much larger

than the domain size, in two spatial dimensions. The subgrain microstructure is treated by replac-

ing the spontaneous strain and the anisotropy by their convex envelopes; this has the advantage of

delivering explicit formulas but comes at the cost of ignoring the additional magnetic and elastic

energy coming from incompatibility at the interfaces. We used the model to simulate numerically

the behavior of speci�c composites, obtained good agreement with experimental results and pro-

vided indications on the in�uence that various microstructural parameters have on the macroscopic

material properties, in particular on the spontaneous strain and the work output. Interesting pos-
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sible developments include the treatment of incompatibilities at the interfaces and the extension to

a time-dependent setting, for example via a model which includes rate-independent motion of the

interfaces.
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6 Appendix

In order to carry out the minimization of (6) under the constraints (5) we set d = a − b, which

together with the �rst constraint allows to write a = m+ (1− p)d and b = m− pd. Inserting a and

b into the energy (6) the remaining degrees of freedom are just d1 and d2, and the constraints are

|a|, |b| ≤ 1.

To derive necessary conditions, we formulate the Lagrange function in terms of d1, d2 with Lagrange
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multipliers λ1, λ2 for the two constraints

L(d1, d2, λ1, λ2) :=f(d1, d2) + λ1g1(d1, d2) + λ2g2(d1, d2), where

f(d1, d2) :=p
(
m1 + (1− p)d1

)2
+ (1− p)

(
m2 − pd2

)2
,

g1(d1, d2) :=
(
m1 + (1− p)d1

)2
+
(
m2 + (1− p)d2

)2 − 1,

g2(d1, d2) :=
(
m1 − pd1

)2
+
(
m2 − pd2

)2 − 1,

and compute the Karush�Kuhn�Tucker conditions

∂

∂d1

L(d1, d2, λ1, λ2) = 0,
∂

∂d2

L(d1, d2, λ1, λ2) = 0, (10)

λ1g1(d1, d2) = 0, λ2g2(d1, d2) = 0, (11)

λ1 ≥ 0, λ2 ≥ 0, (12)

g1(d1, d2) ≤ 0, g2(d1, d2) ≤ 0. (13)

We �rst compute (10):

2p(1− p)(m1 + (1− p)d1) + 2λ1(1− p)(m1 + (1− p)d1)− 2λ2p(m1 − pd1) = 0 (14)

−2p(1− p)(m2 − pd2) + 2λ1(1− p)(m2 + (1− p)d2)− 2λ2p(m2 − pd2) = 0 (15)

Condition (11) allows to distinguish four cases:

a) λ1 = λ2 = 0. Then (14),(15) give m1 + (1− p)d1 = m2 − pd2 = 0, or equivalently a1 = b2 = 0.

Thus we are in case I discussed above.

b) λ1 > 0, λ2 = 0. On the one hand, g1(d1, d2) = 0, which means |a| = 1. On the other hand, from

(14) one derives 2(1 − p)(p + λ1)(m1 + (1 − p)d1) = 0, which means m1 + (1 − p)d1 = a1 = 0 (case

II). The case λ1 = 0, λ2 > 0 behaves analogously.

c) λ1 > 0 and λ2 > 0. Thus, g1(d1, d2) = g2(d1, d2) = 0. This means |a| = |b| = 1, which is case

III.
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