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Abstract Sparse tensor product spaces provide an efficient tool to discretize higher
dimensional operator equations. The direct Galerkin method in such ansatz spaces
may employ hierarchical bases, interpolets, wavelets or multilevel frames. Besides,
an alternative approach is provided by the so-called combination technique. It prop-
erly combines the Galerkin solutions of the underlying problem on certain full (but
small) tensor product spaces. So far, however, the combination technique has been
analyzed only for special model problems. In the present paper, we provide now the
analysis of the combination technique for quite general operator equations in sparse
tensor product spaces. We prove that the combination technique produces the same
order of convergence as the Galerkin approximation with respect to the sparse ten-
sor product space. Furthermore, the order of the cost complexity is the same as for
the Galerkin approach in the sparse tensor product space. Our theoretical findings
are validated by numerical experiments.

1 Introduction

The discretization in sparse tensor product spaces yields efficient numerical methods
to solve higher dimensional operator equations. Nevertheless, a Galerkin discretiza-
tion in these sparse tensor product spaces requires hierarchical bases, interpolets,
wavelets, multilevel frames, or other types of multilevel systems [9, 12, 18] which
make a direct Galerkin discretization in sparse tensor product spaces quite involved
and cumbersome in practical applications. To avoid these issues of the Galerkin dis-
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cretization, thecombination techniquehas been introduced in [14]. There, only the
Galerkin discretizations and solutions in appropriately chosen, full, but small, tensor
product spaces need to be computed and combined.

In [8, 16, 19], it has been shown that, in the special case of operator equations
which involve a tensor product operator, the approximationproduced by the combi-
nation technique indeed coincides exactly with the Galerkin solution in the sparse
tensor product space. However, for non-tensor product operators, this is no longer
the case. Nevertheless, it is observed in practice that the same order of approxi-
mation error is achieved. But theoretical convergence results are only available for
specific applications, see for example [3, 14, 21, 22, 23, 25]. Moreover, a general
proof of convergence is so far still missing for the combination technique.

In the present paper, we prove optimal convergence rates of the combination
technique for elliptic operators acting on arbitrary Gelfant triples. The convergence
analysis is based on two compact lemmas (Lemma 1 and Lemma 2) which have
basically been proven in [22, 25]. In contrast to these papers, besides consider-
ing abstract Gelfant triples, we deal here with the combination technique for the
so-calledgeneralized sparse tensor product spaceswhich have been introduced in
[10]. Lemma 1 involves a special stability condition for theGalerkin projection (cf.
(18)) which, however, holds for certain regularity assumptions on the operator under
consideration (see Remark 1).

To keep the notation and the proofs simple, we restrict ourselves to the case
of operator equations which are defined on a two-fold productdomainΩ1 ×Ω2.
However, we allow the domainsΩ1 ⊂ R

n1 andΩ2 ⊂ R
n2 to be of different spatial

dimensions. Our proofs can be generalized without further difficulties to arbitrary
L-fold product domainsΩ1×Ω2×·· ·×ΩL by employing the techniques from [11]
and [25].

The remainder of this paper is organized as follows. We first present the operator
equations under consideration in Section 2. Then, in Section 3, we specify the re-
quirements of the multiscale hierarchies on each individual subdomain. In Section 4,
we define the generalized sparse tensor product spaces and recall their basic prop-
erties. The combination technique is introduced in Section5 and its convergence
is proven in Section 6. Section 7 is dedicated to numerical experiments. They are
in good agreement with the presented theory. Finally, in Section 8, we give some
concluding remarks.

Throughout this paper, the notion “essential” in the context of complexity es-
timates means “up to logarithmic terms”. Moreover, to avoidthe repeated use of
generic but unspecified constants, we signify byC. D thatC is bounded by a mul-
tiple of D independently of parameters whichC andD may depend on. Obviously,
C& D is defined asD .C, andC∼ D asC. D andC& D.
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2 Operator equations

We consider two sufficiently smooth, bounded domainsΩ1 ∈ R
n1 andΩ2 ∈ R

n2,
wheren1,n2 ∈ N. Moreover, on the product domainΩ1×Ω2, let the Hilbert space
H be given such that

H ⊂ L2(Ω1×Ω2)⊂ H
′

forms a Gelfand triple. Thus, the inner product

(u,v)L2(Ω1×Ω2)
:=

∫

Ω1

∫

Ω2

u(x,y)v(x,y)dxdy

in L2(Ω1×Ω2) can continuously be extended toH ×H ′. For sake of simplicity
of presentation, we write(u,v)L2(Ω1×Ω2)

also in the caseu∈ H andv∈ H ′.
Now, letA : H → H ′ denote a differential or pseudo-differential operator. Itis

assumed that it maps the Hilbert spaceH continuously and bijectively onto its dual
H ′, i.e.,

‖Au‖H ′ ∼ ‖u‖H for all u∈ H .

The Hilbert spaceH is thus theenergy spaceof the operator under consideration.
For the sake of simplicity, we further assume thatA is H -elliptic. Consequently,
the resulting bilinear form

a(u,v) := (Au,v)L2(Ω1×Ω2)
: H ×H → R

is continuous
a(u,v). ‖u‖H ‖v‖H for all u,v∈ H

and elliptic
a(u,u)& ‖u‖2

H for all u∈ H .

In the following, for given f ∈ H ′, we want to efficiently solve the operator
equationAu= f or, equivalently, the variational formulation:

find u∈ H such thata(u,v) = ( f ,v)L2(Ω1×Ω2)
for all v∈ H . (1)

Of course, since we like to focus on conformal Galerkin discretizations, we should
tacitly assume that, for allj1, j2 ≥ 0, the tensor productV(1)

j1
⊗V(2)

j2
of the ansatz

spacesV(1)
j1

andV(2)
j2

is contained in the energy spaceH . Moreover, for the solution
u∈ H of (1), we will need a stronger regularity to hold for obtaining decent con-
vergence rates. Therefore, fors1,s2 ≥ 0, we introduce the following Sobolev spaces
of dominant mixed derivatives with respect to the underlying spaceH

H
s1,s2

mix :=

{
f ∈ H :

∥∥∥∥
∂ α+β

∂ α
x ∂ β

y

f

∥∥∥∥
H

< ∞ for all |α| ≤ s1 and|β | ≤ s2

}
.

We shall illustrate our setting by the following specific examples.
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Example 1.A first simple example is the operatorA : L2(Ω1×Ω2)→ L2(Ω1×Ω2)
which underlies the bilinear form

a(u,v) =
∫

Ω1

∫

Ω2

α(x,y)u(x,y)v(x,y)dxdy,

where the coefficient functionα satisfies

0< α ≤ α(x,y)≤ α for all (x,y) ∈ Ω1×Ω2. (2)

Here, it holdsH = L2(Ω1×Ω2). Moreover, our spacesH s1,s2
mix of assumed stronger

regularity coincide with the standard Sobolev spaces of dominant mixed derivatives,
i.e.,

H
s1,s2

mix = Hs1,s2
mix (Ω1×Ω2) := Hs1(Ω1)⊗Hs2(Ω2).

Example 2.Stationary heat conduction in the product domainΩ1 ×Ω2 yields the
bilinear form

a(u,v) =
∫

Ω1

∫

Ω2

α(x,y){∇xu(x,y)∇xv(x,y)+∇yu(x,y)∇yv(x,y)}dxdy.

If the coefficientα satisfies (2), then the associated operatorA is known to be
continuous and elliptic with respect to the spaceH = H1

0(Ω1 ×Ω2). Moreover,
our spacesH s1,s2

mix of assumed stronger regularity now coincide withH
s1,s2

mix =

H1
0(Ω1×Ω2)∩Hs1+1,s2

mix (Ω1×Ω2)∩Hs1,s2+1
mix (Ω1×Ω2).

Example 3.Another example appears in two-scale homogenization. Unfolding ([4])
gives raise to the product of the macroscopic physical domain Ω1 and the periodic
microscopic domainΩ2 of the cell problem, see [20]. Then, for the first order cor-
rector, one arrives at the bilinear form

a(u,v) =
∫

Ω1

∫

Ω2

α(x,y)∇yu(x,y)∇yv(x,y)dxdy.

The underlying operatorA is continuous and elliptic as a operator in the related
energy spaceH = L2(Ω1)⊗H1

0(Ω2) provided that the coefficientα satisfies again
(2). Furthermore, our spacesH s1,s2

mix of assumed stronger regularity coincide with

H
s1,s2

mix =
(
L2(Ω1)⊗H1

0(Ω2)
)
∩Hs1,s2+1

mix (Ω1×Ω2).

3 Approximation on the individual subdomains

On each domainΩi , we consider a nested sequence

V(i)
0 ⊂V(i)

1 ⊂ ·· · ⊂V(i)
j ⊂ ·· · ⊂ L2(Ωi) (3)

of finite dimensional spaces
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V(i)
j = span{ϕ(i)

j ,k : k∈ ∆ (i)
j }

(the set∆ (i)
j denotes a suitable index set) of piecewise polynomial ansatz functions,

such that dimV(i)
j ∼ 2 jni and

L2(Ωi) =
⋃

j∈N0

V(i)
j .

We will use the spacesV(i)
j for the approximation of functions. To this end, we

assume that the approximation property

inf
vj∈V(i)

j

‖u− v j‖Hq(Ωi) . hs−q
j ‖u‖Hs(Ωi), u∈ Hs(Ωi), (4)

holds forq< γi , q≤ s≤ r i uniformly in j. Here we seth j := 2− j , i.e.,h j corresponds

to the width of the mesh associated with the subspaceV(i)
j on Ωi . The parameter

γi > 0 refers to theregularityof the functions which are contained inV(i)
j , i.e.,

γi := sup{s∈ R : V(i)
j ⊂ Hs(Ωi)}.

The integerr i > 0 refers to thepolynomial exactness, that is the maximal order of

polynomials which are locally contained in the spaceV(i)
j .

Now, let Q(i)
j : L2(Ωi) → V(i)

j denote theL2(Ωi)-orthogonal projection onto the

finite element spaceV(i)
j . Due to the orthogonality, we have

(
Q(i)

j

)⋆
= Q(i)

j . More-

over, our regularity assumptions on the ansatz spacesV(i)
j imply the continuity of

the related projections relative to the Sobolev spaceHq(Ωi) for all |q| < γi , i.e., it
holds ∥∥Q(i)

j u
∥∥

Hq(Ωi)
. ‖u‖Hq(Ωi), |q|< γi , (5)

uniformly in j ≥ 0 provided thatu∈ Hq(Ωi).

By settingQ(i)
−1 := 0, we can define for allj ≥ 0 the complementary spaces

W(i)
j :=

(
Q(i)

j −Q(i)
j−1

)
L2(Ωi)⊂V(i)

j .

They satisfy

V(i)
j =V(i)

j−1⊕W(i)
j , V(i)

j−1∩W(i)
j = {0},

which recursively yields

V(i)
J =

J⊕

j=0

W(i)
j . (6)

A given function f ∈ Hq(Ωi), where|q| < γi , admits the unique multiscale de-
composition
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f =
∞

∑
j=0

f j with f j :=
(
Q(i)

j −Q(i)
j−1

)
f ∈W(i)

j .

One now has the well-known norm equivalence

‖ f‖2
Hq(Ωi)

∼
∞

∑
j=0

22 jq
∥∥(Q(i)

j −Q(i)
j−1

)
f
∥∥2

L2(Ωi)
, |q|< γi ,

see [5]. Finally, for anyf ∈ Hs(Ωi) and |q| < γi , the approximation property (4)
induces the estimate

∥∥(Q(i)
j −Q(i)

j−1

)
f
∥∥

Hq(Ωi)
. 2− j(s−q)‖ f‖Hs(Ωi), q< s≤ r i .

4 Generalized sparse tensor product spaces

The canonical approximation method in the Hilbert spaceH is the approximation
in full tensor product spaces1

V(1)
J/σ ⊗V(2)

Jσ =
⊕

j1σ≤J
j2/σ≤J

W(1)
j1

⊗W(2)
j2

.

Here,σ > 0 is a given parameter which can be tuned to optimize the cost complexity.

There are 2Jn1/σ ·2Jn2σ degrees of freedom in the spaceV(1)
J/σ ⊗V(2)

Jσ . Moreover, for

f ∈H
s1,0

mix (Ω1×Ω2)∩H
0,s2

mix (Ω1×Ω2) and fJ := (Q(1)
J/σ ⊗Q(2)

Jσ ) f ∈V(1)
J/σ ⊗V(2)

Jσ , an
error estimate of the type

‖ f − fJ‖H . 2−Jmin{s1/σ ,s2σ}‖ f‖
H

s1,0
mix ∩H

0,s2
mix

(7)

holds for all 0< s1 ≤ p1 and 0< s2 ≤ p2. Note that the upper boundsp1 andp2 are
the largest values such thatH

p1,0
mix ⊂Hr1,r2

mix (Ω1×Ω2) andH
0,p2

mix ⊂Hr1,r2
mix (Ω1×Ω2),

respectively.
Alternatively, based on the multiscale decompositions (6)on each individual sub-

domain, one can define the so-calledgeneralized sparse tensor product space, see
[1] and [10],

V̂σ
J :=

⊕

j1σ+ j2/σ≤J

W(1)
j1

⊗W(2)
j2

= ∑
j1σ+ j2/σ=J

V(1)
j1

⊗V(2)
j2

. (8)

Thus, a functionf ∈ H is represented by the Boolean sum

1 Here and in the following, the summation limits are in general no natural numbers and must of
course be rounded properly. We leave this to the reader to avoid cumbersome floor/ceil-notations.
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f̂J := ∑
j1σ+ j2/σ≤J

∆Q
j1, j2

f ∈ V̂σ
J (9)

where, for all j1, j2 ≥ 0, the detail projections∆Q
j1, j2

are given by

∆Q
j1, j2

:= (Q(1)
j1

−Q(1)
j1−1)⊗ (Q(2)

j2
−Q(2)

j2−2). (10)

Here, we use the conventionQ(1)
−1 := 0 andQ(2)

−1 := 0. For further detail on sparse
grids we refer the reader to the survey [1] and the referencestherein.

The dimension of the generalized sparse tensor product space V̂σ
J is essentially

equal to the dimension of the finest univariate finite elementspaces which enter its

construction, i.e., it is essentially equal to the value of max
{

dimV(1)
J/σ ,dimV(2)

Jσ
}

.
Nevertheless, by considering smoothness in terms of mixed Sobolev spaces, its ap-
proximation power is essentially the same as in the full tensor product space. To be
precise, we have

Theorem 1 ([10]). The generalized sparse tensor product spaceV̂σ
J possesses

dimV̂σ
J ∼

{
2Jmax{n1/σ ,n2σ}, if n1/σ 6= n2σ ,

2Jn2σ J, if n1/σ = n2σ ,

degrees of freedom. Moreover, for a given function f∈H
s1,s2

mix and its L2-orthonormal
projection f̂J ∈ V̂σ

J , defined by(9), where0< s1 ≤ p1 and0< s2 ≤ p2, there holds
the error estimate

∥∥ f − f̂J
∥∥

H
.

{
2−Jmin{s1/σ ,s2σ}‖ f‖

H
s1,s2

mix
, if s1/σ 6= s2σ ,

2−Js1/σ√J‖ f‖
H

s1,s2
mix

, if s1/σ = s2σ .

The optimal choice of the parameterσ has been discussed in [10]. It turns out
that the best cost complexity rate among all possible valuesof s1,s2 is obtained
for the choiceσ =

√
n1/n2. This choice induces an equilibration of the degrees of

freedom in the extremal spacesV(1)
J/σ andV(2)

Jσ .
We shall consider the Galerkin discretization of (1) in the generalized sparse

tensor product spacêVσ
J , that is we want to

find uJ ∈ V̂σ
J such thata(uJ,vJ) = ( f ,vJ)L2(Ω1×Ω2)

for all vJ ∈ V̂σ
J . (11)

In view of Theorem 1, we arrive at the following error estimate due to Céa’s lemma.

Corollary 1. The Galerkin solution(11)satisfies the error estimate

‖u−uJ‖H . ‖u− ûJ‖H .

{
2−Jmin{s1/σ ,s2σ}‖u‖

H
s1,s2

mix
, if s1/σ 6= s2σ ,

2−Js1/σ√J‖u‖
H

s1,s2
mix

, if s1/σ = s2σ ,

for all 0< s1 ≤ p1 and0< s2 ≤ p2 provided that u∈ H
s1,s2

mix (Ω1×Ω2).
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Nevertheless, for the discretization of (11), hierarchical bases, interpolets, wavelets,
multilevel frames, or other types of multilevel systems [1,9, 12, 13, 17, 18, 24, 26]
are required which make a direct Galerkin discretization insparse tensor product
spaces quite involved and cumbersome in practical applications.

5 Combination technique

The combination technique is a different approach for the discretization in sparse
tensor product spaces. It avoids the explicit need of hierarchical bases, interpolets,
wavelets or frames for the discretization of (11). In fact, one only has to compute

the Galerkin solutions with respect to certain full tensor product spacesV(1)
j1

⊗V(2)
j2

and to appropriately combine them afterwords. The related Galerkin solutionsu j1, j2
are given by

find u j1, j2 ∈V(1)
j1

⊗V(2)
j2

such that

a(u j1, j2,v j1, j2) = ( f ,v j1, j2)L2(Ω1×Ω2)
for all v j1, j2 ∈V(1)

j1
⊗V(2)

j2
.

This introduces the Galerkin projection

Pj1, j2 : H →V(1)
j1

⊗V(2)
j2

, Pj1, j2u := u j1, j2

which especially satisfies the Galerkin orthogonality

a(u−Pj1, j2u,v j1, j2) = 0 for all v j1, j2 ∈V(1)
j1

⊗V(2)
j2

.

The Galerkin projectionPj1, j2 is well defined for allj1, j2 ≥ 0 due to the elliptic-
ity of the bilinear forma(·, ·). Moreover, as in (7), we conclude the error estimate

‖u−Pj1, j2u‖H . ‖u− (Q(1)
j1
⊗Q(2)

j2
)u‖H . 2−min{ j1s1, j2s2}‖u‖

H
s1,0

mix ∩H
0,s2

mix

for all 0< s1 ≤ p1 and 0< s2 ≤ p2 provided thatu∈ H
s1,0

mix ∩H
0,s2

mix . In particular,
for fixed j1 ≥ 0 and j2 → ∞, we obtain the Galerkin projectionPj1,∞ onto the space

Vj1,∞ := (Q(1)
j1

⊗ I)H ⊂ H . It satisfies the error estimate

‖u−Pj1,∞u‖H . ‖u− (Q(1)
j1
⊗ I)u‖H . 2− j1s1‖u‖

H
s1,0

mix
(12)

for all 0< s1 ≤ p1. Likewise, for fixedj2 ≥ 0 and j1 → ∞, we obtain the Galerkin

projectionP∞, j2 onto the spaceV∞, j2 := (I ⊗Q(2)
j2
)H ⊂ H . Analogously to (12),

we find
‖u−P∞, j2u‖H . ‖u− (I ⊗Q(2)

j2
)u‖H . 2− j2s2‖u‖

H
0,s2

mix
(13)

for all 0< s2 ≤ p2.
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With the help of the Galerkin projections, we can define

∆P
j1, j2u := (Pj1, j2 −Pj1−1, j2 −Pj1, j2−1+Pj1−1, j2−1)u (14)

where we especially setPj1,−1 := 0, P−1, j2 := 0, andP−1,−1 := 0. Then, the combi-
nation technique is expressed as the Boolean sum (cf. [6, 7, 8])

ûJ = ∑
j1σ+ j2/σ≤J

∆P
j1, j2u= u− ∑

j1σ+ j2/σ>J

∆P
j1, j2u. (15)

Straightforward calculation shows

ûJ =
⌈J/σ⌉
∑
j1=0

(Pj1,⌈Jσ− j1σ2⌉−Pj1−1,⌈Jσ− j1σ2⌉)u (16)

if j1 ≤ j2σ2, and

ûJ =
⌈Jσ⌉
∑
j2=0

(P⌈J/σ− j2/σ2⌉, j2 −P⌈J/σ− j2/σ2⌉, j2−1)u (17)

if j1 > j2σ2. A visualization of the formula (17) is found in Fig. 1.

HHHHHHHHHHHHHHHHHHHHHH -

6

j1

j2

Jσ

J/σ
•

• ⊕
⊖ ⊕

⊖ ⊕
⊖ ⊕

⊖ ⊕
⊖ ⊕

⊖ ⊕
Fig. 1 The combination technique in̂Vσ

J combines all the indicated solutionsPj1, j2u with positive
sign (“⊕”) and negative sign (“⊖”).

Our goal is now to show that the error‖u− ûJ‖H converges as good as the error
of the true sparse tensor product Galerkin solution given inCorollary (1).
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6 Proof of Convergence

To prove the desired error estimate for the combination technique (16) and (17),
respectively, we shall prove first the following two helpfullemmata.

Lemma 1. For all 0< s1 ≤ p1 and0< s2 ≤ p2, it holds

‖(Pj1, j2 −Pj1−1, j2)u‖H . 2− j1s1‖u‖
H

s1,0
mix

,

‖(Pj1, j2 −Pj1, j2−1)u‖H . 2− j2s2‖u‖
H

0,s2
mix

,

provided that u is sufficiently smooth and provided that the Galerkin projection sat-
isfies

‖P∞, j2u‖H
s1,0

mix
. ‖u‖

H
s1,0

mix
, ‖Pj1,∞u‖

H
0,s2

mix
. ‖u‖

H
0,s2

mix
. (18)

Proof. We shall prove only the first estimate, the second one followsin complete
analogy. To this end, we split

‖(Pj1, j2 −Pj1−1, j2)u‖H ≤ ‖(Pj1, j2 −P∞, j2)u‖H + ‖(P∞, j2 −Pj1−1, j2)u‖H .

Due toVj1−1, j2,Vj1, j2 ⊂V∞, j2, the associated Galerkin projections satisfy the identi-
tiesPj1, j2 = Pj1, j2P∞, j2 andPj1−1, j2 = Pj1−1, j2P∞, j2. Hence, we obtain

‖(Pj1, j2 −Pj1−1, j2)u‖H ≤ ‖(Pj1, j2 − I)P∞, j2u‖H + ‖(I −Pj1−1, j2)P∞, j2u‖H .

By employing now the fact that the Galerkin projectionsPj1−1, j2u andPj1, j2u are

quasi-optimal, i.e.,‖(I − Pj1, j2)u‖H . ‖(I − Q(1)
j1

⊗ Q(2)
j2
)u‖H and likewise for

Pj1−1, j2u, we arrive at

‖(Pj1, j2 −Pj1−1, j2)u‖H

. ‖(Q(1)
j1

⊗Q(2)
j2

− I)P∞, j2u‖H + ‖(I −Q(1)
j1−1⊗Q(2)

j2
)P∞, j2u‖H .

The combination ofQ(1)
j1

⊗Q(2)
j2

= (Q(1)
j1

⊗ I)(I ⊗Q(2)
j2
) and(I ⊗Q(2)

j2
)P∞, j2 = P∞, j2

yields the operator identity

(Q(1)
j1

⊗Q(2)
j2
)P∞, j2 =

(
Q(1)

j1
⊗ I

)
P∞, j2,

and likewise
(Q(1)

j1−1⊗Q(2)
j2
)P∞, j2 =

(
Q(1)

j1−1⊗ I
)
P∞, j2.

Hence, we conclude

‖(Pj1, j2 −Pj1−1, j2)u‖H

.
∥∥((I −Q(1)

j1
)⊗ I

)
P∞, j2u

∥∥
H

+
∥∥((I −Q(1)

j1−1)⊗ I
)
P∞, j2u

∥∥
H

. 2− j1s1‖P∞, j2u‖H
s1,0

mix
.



A note on the combination technique 11

Using the condition (18) implies finally the desired estimate. �

Remark 1.Condition (18) holds ifA : H → H
′ is also continuous and bijective as

a mappingA : H
s1,0

mix → (H ′)s1,0
mix for all 0< s1 ≤ p1 and also as as a mappingA :

H
0,s2

mix → (H ′)0,s2
mix for all 0< s2 ≤ p2, respectively. Then, in view of the continuity

(5) of the projectionsQ(1)
j1

andQ(2)
j2

, the Galerkin projections

P∞, j2 =
(
(I ⊗Q(2)

j2
)A(I ⊗Q(2)

j2
)
)−1

(I ⊗Q(2)
j2
) : H →V∞, j2 ⊂ H ,

Pj1,∞ =
(
(Q(1)

j1
⊗ I)A(Q(1)

j1
⊗ I)

)−1
(Q(1)

j1
⊗ I) : H →Vj1,∞ ⊂ H ,

are also continuous as mappings

P∞, j2 : H
s2,0

mix →V∞, j2 ⊂ H
s2,0

mix , Pj1,∞ : H
0,s1

mix →Vj1,∞ ⊂ H
0,s1

mix ,

which implies (18).

Lemma 2. If u ∈ H
s1,s2

mix , then it holds

∥∥(∆P
j1, j2 −∆Q

j1, j2
)u
∥∥

H
. 2− j1s1− j2s2‖u‖

H
s1,s2

mix

for all 0< s1 ≤ p1 and0< s2 ≤ p2 where∆Q
j1, j2

is given by(10)and∆P
j1, j2

is given
by (14), respectively.

Proof. Due toPj1, j2(Q
(1)
j1

⊗Q(2)
j2
) = Q(1)

j1
⊗Q(2)

j2
for all j1, j2 ≥ 0, we obtain

∆P
j1, j2 −∆Q

j1, j2
= Pj1, j2(I −Q(1)

j1
⊗Q(2)

j2
)−Pj1−1, j2(I −Q(1)

j1−1⊗Q(2)
j2
)

−Pj1, j2−1(I −Q(1)
j1

⊗Q(2)
j2−1)+Pi−1, j−1(I −Q(1)

j1−1⊗Q(2)
j2−1).

(19)

We shall now make use of the identity

I −Q(1)
j1

⊗Q(2)
j2

= I ⊗ I −Q(1)
j1

⊗Q(2)
j2

= I ⊗ (I −Q(2)
j2
)+ (I −Q(1)

j1
)⊗ I − (I −Q(1)

j1
)⊗ (I −Q(2)

j2
).

Inserting this identity into (19) and reordering the terms yields
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∆P
j1, j2 −∆Q

j1, j2
= (Pj1, j2 −Pj1−1, j2)

(
I ⊗ (I −Q(2)

j2
)
)

− (Pj1, j2−1−Pj1−1, j2−1)
(
I ⊗ (I −Q(2)

j2−1)
)

+(Pj1, j2 −Pj1, j2−1)
(
(I −Q(1)

j1
)⊗ I

)

− (Pj1−1, j2 −Pj1−1, j2−1)
(
(I −Q(1)

j1−1)⊗ I
)

−Pj1, j2

(
(I −Q(1)

j1
)⊗ (I −Q(2)

j2
)
)

+Pj1−1, j2

(
(I −Q(1)

j1−1)⊗ (I −Q(2)
j2
)
)

+Pj1, j2−1
(
(I −Q(1)

j1
)⊗ (I −Q(2)

j2−1)
)

−Pj1−1, j2−1
(
(I −Q(1)

j1−1)⊗ (I −Q(2)
j2−1)

)
.

The combination of the error estimates

‖(Pj1, j2 −Pj1−1, j2)u‖H . 2− j1s1‖u‖
H

s1,0
mix

,

‖(Pj1, j2 −Pj1, j2−1)u‖H . 2− j2s2‖u‖
H

0,s2
mix

,

cf. Lemma 1, and

∥∥(I ⊗ (I −Q(2)
j2
)
)
u
∥∥

H
s1,0

mix
. 2− j2s2‖u‖

H
s1,s2

mix
,

∥∥((I −Q(1)
j1
)⊗ I

)
u
∥∥

H
0,s2

mix
. 2− j1s1‖u‖

H
s1,s2

mix
,

leads to
∥∥(Pj1, j2 −Pj1−1, j2)

(
I ⊗ (I −Q(2)

j2
)
)
u
∥∥

H
. 2− j1s1− j2s2‖u‖

H
s1,s2

mix
,

∥∥(Pj1, j2 −Pj1, j2−1)
(
(I −Q(1)

j1
)⊗ I

)
u
∥∥

H
. 2− j1s1− j2s2‖u‖

H
s1,s2

mix
.

(20)

Similarly, from the continuity

‖Pj1, j2u‖H . ‖u‖H

and
∥∥((I −Q(1)

j1
)⊗ (I −Q(2)

j2
)
)
u
∥∥

H
. 2− j1s1− j2s2‖u‖

H
s1,s2

mix
,

we deduce
∥∥Pj1, j2

(
(I −Q(1)

j1
)⊗ (I −Q(2)

j2
)
)
u
∥∥

H
. 2− j1s1− j2s2‖u‖

H
s1,s2

mix
. (21)

With (20) and (21) at hand, we can estimate each of the eight different terms which
yields the desired error estimate
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∥∥(∆P
j1, j2 −∆Q

j1, j2
)u
∥∥

H
. 2− j1s1− j2s2‖u‖

H
s1,s2

mix
.

�

Now, we arrive at our main result which proves optimal convergence rates.

Theorem 2. The solution(16) and (17), respectively, of the combination technique
satisfies the error estimate

‖u− ûJ‖H .

{
2−Jmin{s1/σ ,s2σ}‖u‖

H
s1,s2

mix
, if s1/σ 6= s2σ ,

2−Js1/σ√J‖u‖
H

s1,s2
mix

, if s1/σ = s2σ ,

for all 0< s1 ≤ p1 and0< s2 ≤ p2 provided that u∈ Hs1,s2
mix (Ω1×Ω2).

Proof. In view of (15), we have

‖u− ûJ‖2
H =

∥∥∥∥∥ ∑
j1σ+ j2/σ>J

∆P
j1, j2u

∥∥∥∥∥

2

H

.

The Galerkin orthogonality implies the relation

∥∥∥∥∥ ∑
j1σ+ j2/σ>J

∆P
j1, j2u

∥∥∥∥∥

2

H

∼ ∑
j1σ+ j2/σ>J

∥∥∆P
j1, j2u

∥∥2
H
.

Thus, we arrive at

‖u− ûJ‖2
H . ∑

j1σ+ j2/σ>J

∥∥∆Q
j1, j2

u
∥∥2

H
+ ∑

j1σ+ j2/σ>J

∥∥(∆P
j1, j2 −∆Q

j1, j2
)u
∥∥2

H
.

We bound the first sum on the right hand side in complete analogy to [10] from
above by

∑
j1σ+ j2/σ>J

∥∥∆Q
j1, j2

u
∥∥2

H
. ∑

j1σ+ j2/σ>J

2−2 j1s1−2 j2s2‖u‖2
H

s1,s2
mix

.





2−2Jmin{s1/σ ,s2σ}‖u‖2
H

s1,s2
mix

, if s1/σ 6= s2σ ,

2−2Js1/σ J‖u‖2
H

s1,s2
mix

, if s1/σ = s2σ .

Likewise, with the help of Lemma 2, the second sum on the righthand side is
bounded from above by

∑
j1σ+ j2/σ>J

∥∥(∆P
j1, j2 −∆Q

j1, j2
)u
∥∥2

H
. ∑

j1σ+ j2/σ>J

2−2 j1s1−2 j2s2‖u‖2
H

s1,s2
mix

.





2−2Jmin{s1/σ ,s2σ}‖u‖2
H

s1,s2
mix

, if s1/σ 6= s2σ ,

2−2Js1/σ J‖u‖2
H

s1,s2
mix

, if s1/σ = s2σ ,



14 Michael Griebel and Helmut Harbrecht

which, altogether, yields the desired error estimate. �

7 Numerical results

We now validate our theoretical findings by numerical experiments. Specifically, we
will apply the combination technique for the three exampleswhich were mentioned
in Section 2. To this end, we consider the most simple case andchooseΩ1 = Ω2 =

(0,1), i.e., n1 = n2 = 1. The ansatz spacesV(1)
j andV(2)

j consist of continuous,
piecewise linear ansatz functions on an equidistant subdivision of the interval(0,1)
into 2j subintervals. This yields the polynomial exactnessesr1 = r2 = 2. For the
sake of notational convenience, we set�= (0,1)× (0,1).

Example 1.First, we solve the variational problem

find u∈ L2(�) such thata(u,v) = ℓ(v) for all v∈ L2(�)

where
a(u,v) =

∫

�
α(x,y)u(x,y)v(x,y)d(x,y)

and
ℓ(v) =

∫

�
f (x,y)v(x,y)d(x,y). (22)

The underlying operatorA is the multiplication operator

(Au)(x,y) = α(x,y)u(x,y)

which is of the order 0. Hence, we have the energy spaceH = L2(�) and the
related spaces of assumed stronger regularity areH

s1,s2
mix = Hs1,s2

mix (�). If the mul-
tiplier α(x,y) is a smooth function, thenA arbitrarily shifts through the Sobolev
scales which implies the condition (18) due to Remark 1.

Let the solutionu be a smooth function such thatu∈ H
s1,s2

mix for givens1,s2 ≥ 0,
which holds if the right hand sidef is sufficiently regular. Then, the best possible
approximation rate for the present discretization with piecewise linear ansatz func-
tions is obtained fors1 = r1 = 2 ands2 = r2 = 2, i.e., forH s1,s2

mix = H2,2
mix(�). Thus,

theregular sparse tensor product space

V̂1
J =

⊕

j1+ j2≤J

W(1)
j1

⊗W(2)
j2

= ∑
j1+ j2=J

V(1)
j1

⊗V(2)
j2

. (23)

(cf. (8)) is optimal for the discretization, see [10] for a detailed derivation. In partic-
ular, with Theorem 2, the combination technique yields the error estimate

‖u− ûJ‖L2(�) . 4−J
√

J‖u‖
H2,2

mix(�)
.

For our numerical tests, we choose
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α(x,y) = 1+(x+ y)2, f (x,y) = α(x,y)u(x,y), u(x,y) = sin(πx)sin(πy).

The resulting convergence history is plotted as the red curve in Fig. 2. As can be
seen there, the convergence rate 4−J

√
J, indicated by the dashed red line, is indeed

obtained in the numerical experiments.
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Example 2: σ2=1

Asymptotics 2−JJ1/2

Fig. 2 Convergence rates in case of the first and second example.

Example 2.This example concerns the stationary heat conduction in thedomain�.
In its weak form, it is given by the variational problem

find u∈ H1
0(�) such thata(u,v) = ℓ(v) for all v∈ H1

0(�)

where

a(u,v) =
∫

�
α(x,y)

{
∂u
∂x

(x,y)
∂v
∂x

(x,y)+
∂u
∂y

(x,y)
∂v
∂y

(x,y)

}
d(x,y)

andℓ(v) as in (22). The underlying operatorA is the elliptic second order differential
operator

(Au)(x,y) =−div(x,y)
(
α(x,y)∇(x,y)u(x,y)

)
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and maps the energy spaceH = H1
0(�) bijectively onto its dualH ′ = H−1(�).

Recall that now the spaces of assumed stronger regularity are H
s1,s2

mix = H1
0(�)∩

Hs1+1,s2
mix (�)∩Hs1,s2+1

mix (�).
Since the domain� is convex, the second order boundary value problem un-

der consideration isH2-regular, which implies thatA : L2(�)→ H1
0(�)∩H2(�) is

also bijective. By interpolation arguments, we thus find that A : H 1,0
mix → (H ′)1,0

mix is
continuous and bijective since

L2(�)⊂ (H ′)1,0
mix ⊂ H−1(�) and H1

0(�)⊂ H
1,0

mix ⊂ H1
0(�)∩H2(�).

Likewise, A : H
0,1

mix → (H ′)0,1
mix is continuous and bijective. Hence, the condition

(18) holds again due to Remark 1 and Lemma 1 applies.
Again, the regular sparse tensor product space (23) is optimal for the present dis-

cretization with piecewise linear ansatz functions. Consequently, Theorem 2 implies
as the best possible convergence estimate

‖u− ûJ‖H1(�) . 2−J
√

J‖u‖
H2,1

mix(�)∩H1,2
mix(�)

provided thatu ∈ H2,1
mix(�)∩H1,2

mix(�). Here, we exploited thatH 1,1
mix = H1

0(�)∩
H2,1

mix(�)∩H1,2
mix(�). Nevertheless, in general, we only haveu∈ H2(�) 6⊂ H2,1

mix(�)∩
H1,2

mix(�). Thus, due toH3/2,1/2
mix (�)∩H1/2,3/2

mix (�)⊂ H2(�), one can only expect the
reduced convergence rate

‖u− ûJ‖H1(�) . 2−J/2
√

J‖u‖H2(�).

In our particular numerical computations, we use

α(x,y) = 1+(x+ y)2, u(x,y) = sin(πx)sin(πy),

f (x,y) =
∂a
∂x

(x,y)
∂u
∂x

(x,y)+
∂a
∂y

(x,y)
∂u
∂y

(x,y)−α(x,y)∆u(x,y).

Therefore, due tou∈ H2,1
mix(�)∩H1,2

mix(�), we should observe the convergence rate
2−J

√
J. The computational approximation errors are plotted as theblue graph in

Figure 2. The dashed blue line corresponds to 2−J
√

J and clearly validates the pre-
dicted convergence rate. We even observe the slighty betterrate 2−J which can be
explained by the fact that the solutionu is even inH2,2

mix(�), see [2] for the details.

Example 3.We shall finally consider the variational problem

find u∈ L2(0,1)⊗H1
0(0,1) such thata(u,v) = ℓ(v) for all v∈ L2(0,1)⊗H1

0(0,1)

where

a(u,v) =
∫

�
α(x,y)

∂u
∂y

(x,y)
∂v
∂y

(x,y)d(x,y)



A note on the combination technique 17

andℓ(v) is again given as in (22). The underlying operatorA is the elliptic differen-
tial operator

(Au)(x,y) =− ∂
∂y

(
α(x,y)

∂
∂y

u(x,y)

)
.

Its energy space isH = L2(0,1)⊗H1
0(0,1)⊂ H0,1

mix(�) with dualH ′ = L2(0,1)⊗
H−1(0,1). Here, the spaces of assumed stronger regularity coincide with H

s1,s2
mix =(

L2(0,1)⊗H1
0(0,1)

)
∩Hs1,s2+1

mix (�).

The operatorA shifts as a operatorH s1,s2+1
mix → (H ′)s1,s2+1

mix for arbitrarys1,s2 ≥
0 provided that the coeffcientα is smooth enough. Thus, Theorem 2 holds and
predicts the best possible convergence estimate for our underlying discretization
with piecewise linear ansatz functions ifu lies in the spaceH2,2

mix(�).
According to the theory presented in [10], the optimal cost complexity with re-

spect to the generalized sparse tensor product spacesV̂σ
J is obtained for the choice

σ ∈
[√

n1

n2
,

√
r1

r2−1

]
= [1,

√
2].

In order to be able to compare the convergence rates instead of the cost complexities
for different choices ofσ , we have to consider the generalized sparse tensor product
spaceŝVσ

J
, whereJ := σJ. Then, for all the above choices ofσ , we essentially

expect the convergence rate

‖u− ûJ‖H0,1
mix(�)

. 2−J/σ‖u‖
H2,2

mix(�)
∼ 2−J‖u‖

H2,2
mix(�)

while the degrees of freedom ofV̂σ
J

essentially scale like 2J/σ ∼ 2J. This setting is
employed in our numerical tests, where we further set

α(x,y) = 1+(x+ y)2, u(x,y) = sin(πx)sin(πy),

f (x,y) =
∂a
∂y

(x,y)
∂u
∂y

(x,y)−α(x,y)
∂ 2u
∂y2 (x,y).

We apply the combination technique for the particular choices

• σ = 1, which yields an equilibration of the unknowns in all the extremal tensor

product spacesW(1)
j1

⊗W(2)
J− j1σ2,

• σ =
√

2, which yields an equilibration of the approximation in allthe extremal

tensor product spacesW(1)
j1

⊗W(2)
J− j1σ2, and

• σ =
√

3/2, which results in anequilibrated cost-benefit rate, see [1, 10] for the
details.

The computed approximation errors are found in Fig. 3, wherethe red curve cor-
responds toσ = 1, the black curve corresponds toσ =

√
2, and the blue curve

corresponds toσ =
√

3/2. In the casesσ = 1 andσ =
√

2, we achieve the pre-
dicted convergence rate 2−J which is indicated by the dashed black line. In the case
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Fig. 3 Convergence rates in case of the third example.

σ =
√

2 the predicted convergence rate is only 2−J
√

J which is also confirmed by
Fig. 3.

8 Conclusion

In the present paper, we proved the convergence of the combination technique in a
rather general set-up. Especially, we considered the combination technique in gen-
eralized sparse tensor product spaces. We restricted ourselves here to the case of
two-fold tensor product domains. Nevertheless, all our results can straightforwardly
be extended to the case of generalizedL-fold sparse tensor product spaces by apply-
ing the techniques from [11] and [25]. Then, of course, the constants hidden by the
“∼” -notation will depend on the given dimensionL.
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