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Abstract

We propose a method to explore invariant measures of dynamical systems.
The method is based on numerical tools which directly compute invariant sets
using a subdivision technique, and invariant measures by a discretization of
the Frobenius-Perron operator. Appropriate visualization tools help to analyze
the numerical results and to understand important aspects of the underlying
dynamics. This will be illustrated for examples provided by the Lorenz system.
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1 Introduction

Let a certain dynamical system — in form of an ordinary or partial differential
equation, say — be given. Suppose that this system has the potential to exhibit
very complicated dynamical behavior, and that one wants to study this behavior
numerically. Then, typically, one would choose some initial condition and integrate
the system for a long period of time to extract the desired information out of the
data provided by this single trajectory.

However, important aspects of long term dynamical behavior are characterized
by two mathematical objects: an invariant set and a corresponding (natural) invari-
ant measure supported on this set. From this point of view it seems more adequate
to approximate these two objects directly rather than to compute single trajecto-
ries. Indeed, it is easy to construct situations in which the computation of a single
trajectory may be misleading in the sense that the results do not reflect correctly
the real dynamical behavior.

To simplify the statements we consider discrete dynamical systems,

xj-f—l:f(xj)a j:OalaQa"'a

where f : R" — R" is a diffeomorphism. Recall that a set A C R" is invariant
if f(A) = A. The simplest example of an invariant set is a fixed point of f. An
invariant measure p is a probability measure on the Borel o-algebra B(R"™) such
that

w(B) = u(f Y(B)) for all B € B(R"). (1.1)

For instance, the Dirac measure supported on a fixed point of the diffeomorphism f
is an invariant measure.

In this paper we approximate both invariant sets and invariant measures directly,
that is, we do not compute single trajectories for a long period of time. Rather we
use the following two methods:

1. A subdivision algorithm for the outer approximation of an invariant set A by a
box covering as recently developed in [1]. The underlying idea for this method
is to construct a sequence of box coverings By, shrinking down to the invariant
set for k — oo.

2. A discretization of the Frobenius-Perron operator for the approximation of
the natural invariant measure on A. The idea is to view invariant measures
as fixed points of this operator, and in the numerical treatment one has to
solve a corresponding eigenvalue problem. The convergence of this method



is guaranteed for so-called expanding maps which possess absolutely continu-
ous invariant measures (see [13]). More recently it has been shown that also
SBR-measures can be approximated via certain random perturbations of the
underlying system (see [11, 3]).

However, once the invariant measure has been computed (up to a certain accuracy),
the question arises how to make use of the enormous amount of data. Perhaps the
most appealing way is to visualize the information, and, in fact, the main purpose
of this paper is to propose a method for the visualization of invariant measures
based on the two numerical techniques mentioned above. In particular, we do not
present the mathematical details which are needed to prove convergence of the two
algorithms. But we will sketch some qualitative aspects and conjectures underlined
by corresponding visual insights.

Three different types of graphical representations of the invariant sets and mea-
sures will be presented. These methods make use of the hierarchical structure of
the data already produced in the numerical computation. This allows a flexible and
— depending on the chosen level of interest from the hierarchy of data — interactive
impression of the characteristics of the dynamical behavior on a graphic workstation.

A more detailed outline of the paper is as follows. In Sec. 2 we briefly summarize
the subdivision algorithm as developed in [1]. The discretization of the Frobenius-
Perron operator is discussed in Sec. 3, and Sec. 4 contains aspects concerning the
visualization. Finally, in Sec. 5, we illustrate the visualization by several examples
using the well known Lorenz system.

2 The Subdivision Algorithm

In order to make this paper self-contained we describe the numerical method that
we use for the approximation of the invariant sets under consideration. The reader
is refered to [1] for a more detailed description.

Description of the Algorithm

The central object which is approximated by the subdivision algorithm is the so-
called relative global attractor:

DEFINITION 2.1 Let Q C R™ be a compact set. We define the global attractor
relative to () by

Ag = Q). (2.1)

J=0



Observe that f~'(Ag) C Ag, but Ag is not necessarily an invariant set. But, by
construction, Ay always contains all the attracting sets which are inside ). In
particular, if () contains the global attractor A of f then Ay = A.

The subdivision algorithm for the computation of relative global attractors gen-

erates a sequence By, Bi, Bs, ... of finite collections of compact subsets of R" with
the property that for all integers k the set
Q= U B
BEBy,

is a covering of the relative global attractor under consideration. Moreover the
sequence of coverings is constructed in such a way that the diameter

diam(By) = max diam(B)

o BeBg,

converges to zero for k — oc.
Let us be more precise. Given an initial collection By, one inductively obtains
By from By_; for £k =1,2,... in two steps.

1. Subdivision: Construct a new collection By such that

UB= U B

BEBAk BEBIC—I

and
diam(By,) < 6 diam(By_)

for some 0 < 6 < 1.

2. Selection: Define the new collection By, by

Bkz{Bel’;’k:f’l(B)ﬂB;ﬁ@ for some Beék}.

We now formulate the result which establishes the convergence of the algorithm
to the relative global attractor (for a proof see [1]).

PROPOSITION 2.2 Let Ag be the global attractor relative to the compact set ), and
let By be a finite collection of closed subsets with Qo = Upep, B = @. Then

Jim £ (A, @x) =0,

where we denote by h(B,C) the usual Hausdorff distance between two compact sub-
sets B,C' C R".
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Figure 1: A typical sequence of coverings of a relative global attractor.

As a consequence of Proposition 2.2 we may in principle approximate any relative
global attractor up to a prescribed accuracy. The speed of convergence depends on
the rate of attractivity. See again [1] for error estimates based on the existence of a
hyperbolic structure on Ag. In the realizaton of the algorithm we have to work with
a certain type of sets B € By, and a specific subdivision strategy. It turns out to be
particularly useful to work with generalized rectangles R in R", i.e. hexaeder in R3.
A typical sequence of coverings obtained by the subdivision algorithm is shown in
Figure 1.

REMARK 2.3 Based on the subdivision algorithm a continuation method has been
developed in [2] which allows to approximate directly invariant manifolds. We will
use this method in Sec. 5 to obtain a covering of the closure of an unstable manifold
in the Lorenz system.

Storage of the Boxes

The efficiency of the subdivision algorithm and the visualization techniques signif-
icantly depends on the specific storage scheme for the boxes R € Bj used in our
implementation. This scheme leads to sparse storage requirements in particular for
very large box collections which give a suitable fine approximation of the considered
invariant sets. Therefore let us now describe the corresponding data structure in
more detail.

The closed subsets constituting the collections By are generalized rectangles of
the form

Re,r)={yeR":|ly;—¢| <mrfori=1,... ,n},



where ¢,r € R", r; > 0 for i = 1,... ,n, are the center and the radius respectively.

We start the subdivision algorithm with a single rectangle By = {R}. In the k-th
subdivision step we subdivide each rectangle R(c,r) € By of the current collection
by bisection with respect to the j-th coordinate, where j is varied cyclically, that is,
j = ((k—=1) mod n)+ 1. This division leads to two rectangles

R_(c7,7) and Ry (c',7), (2.2)
where
72':{ r; fori#j i:{ ci fori # j
! r;/2 fori=j5 " 7 citr/2 fori=7j °

The collections By can easily be stored in a binary tree. Figure 2 shows the
representation of three subdivision steps in three-dimensional space (n = 3) to-
gether with the corresponding sets Qx, £ = 0,1,2,3. Note that each By and the
corresponding covering () are completely determined by the tree structure, and the
initial box R(c,r). Using this scheme, the memory requirements grow only linear in
the dimension n of the problem.
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Figure 2: Storage scheme for the collections By, k = 0,1, 2, 3.

Furthermore, the tree structure makes it easy to retrieve adjacency information
needed in the visualization. For R € By, let F; . (R) denote the faces
E,i(R) = {y €ER : Y; = G :|:7"1}

(cf. Figure 3) and let N,;,(R) be the adjacent box of R in By at face F;,(R) for
oc€{+,—}andi=1,--- ,n. For a box R € By we are then able to express adjacent
boxes of its children R,, R_ in terms of children of adjacent boxes of R as follows
(UaT S {+’ _}):
R_, if i=((k—1) modn)+1 and o#7
Nis(R:) =4 (Nig(R)) . if i=(k—1) modn)+1 and o=7
(Nio(R)), if i#((k—=1) modn)+1

(see also (2.2)). This allows us to track the adjacency information procedurally in

the tree structure during runtime and hence we do not need to store it.
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Figure 3: A single box R for n = 3 and its faces Fj,, i =1,2,3,0 € {+,—}.

3 Approximation of the invariant measure

Now we briefly describe the numerical method that we have used for the approxi-
mation of invariant measures.

Frobenius-Perron Operator

In the following we denote by B(R™) the Borel o-algebra of R" and by M the space
of probability measures on R".

DEFINITION 3.1 The operator P : M — M defined by
(Pu)(B) = u(f~Y(B)) for all B € B(R") (3.1)
is called the Frobenius-Perron operator.

Observe that it immediately follows from the definitions that an invariant measure
1 is a fixed point of the Frobenius-Perron operator P, that is,

Py = p for all invariant measures p € M. (3.2)

More precisely the calculation of invariant measures is equivalent to the calculation
of fixed points of P.

Numerical Approximation of P

To discretize the Frobenius-Perron operator P : M — M we have to project M
onto some set M, which can be dealt with numerically. The “stepsize” h should be
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interpreted as a measure for the approximation quality which is supposed to increase
for decreasing h.

Let B, € Bg, i = 1,..., N, denote the boxes in the covering obtained after &
steps in the subdivision algorithm and let A be the diameter of B;. We choose My,
to be the set of density functions which are constant on each B;, i =1,..., N, that
is,

N
Mh:{ueRN:uiEO and Zuizl}.
i=1
Then the discretized Frobenius-Perron operator P, : M), — M, is given by
_ . N om(f~Y(B;) N B))
v=Pu, v;= Z m(B;) uj,

=1

1=1 N

where m denotes the Lebesgue measure. Correspondingly we have the matrix rep-
resentation
m(f'(B;) N B;)

Py, = (pij), where p;; = m(B,) for 1 <4,5 < N. (3.3)

By (3.2), an approximation yy, of the density of an invariant measure y is represented
by a normalized eigenvector u, € M), of P, associated with the eigenvalue one.

The crucial point in the computation of the discretized Frobenius-Perron opera-
tor is the efficient computation of the transition probabilities p;;. The denominator
poses no problem since we have chosen the B;’s to be generalized rectangles. Hence
we just have to approximate the Lebesgue measure of f(B;) N Bj, that is, the
measure of the subset of B; that is mapped into B;. In the computations we have
used the Monte Carlo approach as described in [10]. We view m(f~'(B;) N B;) as
the integral

m(fBINBy) = [ Xpamy dm,

and approximate it by a finite sum

1 1 X 1 K
_ gy dm & — 1R = — .
m(Bj) LJ_ Xf-1(B;) am K kngf 1(31)('7;19) K ’;XBl(f(xk))a

where the z;’s are selected at random in B; from a uniform distribution. Evaluation
of xg,(f(zx)) only means that we have to check whether or not the point f(xy) is
contained in B;.

REMARK 3.2 (a) Results on the convergence properties of the discretization tech-
nique described above can be found in e.g. [13, 5, 10] for the case where the
underlying measure is absolutely continuous with respect to Lebesgue measure.



(b)

But also in the situation where the underlying dynamical system has a hy-
perbolic invariant set supporting an SBR-measure one can obtain convergence
results: the idea is to use the concept of small random perturbations of dis-
crete dynamical systems which allows to work within the simpler framework
of stochastic dynamical systems (see [3, 11]).

We remark that there is also a deterministic exhaustion technique to approx-
imate Pp,. This method has been developed in [9].

The Complete Algorithm

The strategy for the approximation of an invariant measure supported on a relative

global attractor can now be formulated as follows:

1.

Approximate a relative global attractor Ag by the subdivision algorithm to
obtain a covering by the set of boxes { By, B, ..., By}.

. Use this collection of boxes to compute the discretized Frobenius-Perron op-

erator Py, by (3.3).

Compute the eigenvector u; corresponding to the eigenvalue 1 of P, to obtain
an approximation sy, of the natural invariant measure p on Ag (see (3.2)).
We remark that P, is represented by a stochastic matrix and therefore always
possesses the eigenvalue one. Moreover, the corresponding eigenspace is one-
dimensional if P, is irreducible.

REMARKS 3.3 (a) The methods used so far for the computation of invariant mea-

sures by means of the Frobenius-Perron operator work with a covering of the
whole set @@ C R" (see e.g. [9, 10]). Obviously, the number of boxes N in our
covering By of the attractor is in general at least an order of magnitude smaller
in comparison to a covering of () of the same fineness. Thus, we end up with
a much smaller eigenvalue problem for the approximate invariant measure. In
fact, the size of the eigenvalue problem depends on the size of the attractor,
that is, on the complexity of the dynamics, and not on the size of () or the
dimension of phase space. This allows us to compute invariant measures for
complicated attractors with higher accuracy.

The algorithm described above is integrated into the C++ code GAIO (Global
Analysis of Invariant Objects). A link to a detailed description of GAIO can
be found on the homepages of part of the authors:

http://www.uni-bayreuth.de/departments/math/ “mdellnitz
http://www.uni-bayreuth.de/departments/math/~ojunge



4 Visualization Techniques

Tree—type representations of large volume data sets have been discussed in a differ-
ent visualization context by several authors [4, 6, 16]. They particularly focus on the
storage benefits of tree encoded objects and on the hierarchical searching for inter-
sections e. g. with isosurfaces. In addition, we here discuss further advantages which
significantly help to speed up image generation. The hierarchical structures used for
storing By, which are introduced in Sec. 2 are also well suited to set up hierarchical
visualization procedures for different types of efficient and flexible post processing.
To enlighten geometrical aspects of the invariant set and the corresponding discrete
measure under consideration three major display methods have turned out to be
very useful.

(i) With the first method the geometry of the approximate invariant sets is visu-
alized. Here we simply pick up the hull of Bj.

(ii) The second technique allows to extract the intersection of By with an arbitrary
plane. Additionally we map the measure onto the intersection surface using
some color shading.

(iii) Finally a transparent volume rendering gives a global impression of the col-
lection By and, at the same time, of the approximate invariant measure py,
where the color and transparency of every box R € By depends on the value
of up on R.

All these methods can be implemented in terms of a recursive traversal of the sparse
tree representation of By. Traversing the tree structure and implementing these
techniques several algorithmical aspects are of particular interest.

Hierarchical Searching

First of all it is obvious that the search for an intersection plane can easily be guided
by an appropriate tree traversal, where R, and R_ are only visited for boxes R which
are intersected by the currently selected plane. The searching algorithm is similar
to the binary search necessary to identify a box containing preimages f~'(z) for x
in some box B € By, which is already used in the selection step of the subdivision
algorithm (cf. Sec. 2).

Depth Sorting of the Boxes

For the volume rendering it is essential to order the rendered boxes depending on
their distance from the user in the viewing direction [12]. A partial ordering will
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be sufficient, which guarantees that successors in the traversal will not be hidden
by previously traversed boxes. We immediately see that an ordering of the child
boxes solely depends on the viewing direction and the type of refinement, i.e. the
coordinate direction in which the current box gets splitted up. Let us introduce
o(j) € {+,—} such that R,;y > R_,(;) where “>” denotes the ordering relation in
the viewing direction and j = ((k—1) mod n)+1 is the direction of bisection in the
k-th subdivision step. That is Ry(; is closer to the viewer than R_,). Since the
o(7) do not depend on a specific box one can compute them in advance. A recursive
traversal of the tree structure for display purposes with respect to this ordering is
sketched by the following C-type pseudo code:

Display(R, 1) {
j=((l—-1) modn)+1;
if (I1<k){
if R 4 € Bit1
Display(R_(j), | +1);
if Ra(j) € BH—l
Display(R,(;), [ 4+ 1);
}
else RenderBox(R, [);

The traversal is started on the single box R € By on level [ = 0 calling the
recursive procedure Display(R, ). On some level of interest & — or at least on leaf
nodes — we finally call a rendering procedure RenderBox(). This could then be the
display of the polygonal hull of Bj or a volume rendering of the invariant measure
on By (cf. Fig. 4). Displaying the hull consists of drawing illuminated patches for
the faces of the considered box. Out of the six bounding faces {F},}, j = 1,2,3,
o € {+,—} of R (cf. Fig. 3) only those faces Fj ;) are actually rendered for which
no neighboring box N; ;(;)(R) exists. All the others are definitely invisible. There-
fore tracking the adjacency information and simultaneously excluding the interior
faces of the set collection By, considerably reduces the remaining rendering cost. As
already sketched above the adjacency relation N;,(R) can procedurally be tracked
during the tree traversal. Furthermore, o(j) already used for a straightforward and
inexpensive ordering supports easy backface culling, that is, not to draw patches for
the faces F;_,(;) which are pointing away from the viewer. This again reduces the
amount of patches to be considered.
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R_ Ry
R- 4+ Ry +
o(l)=+1
o(2)=-1
R_ _ Ry —
viewing
direction

Figure 4: A three level box hierarchy in 2D, which is traversed depending on the
viewing direction. The procedure is called on the different boxes in the order:
R,, R,+, R——a R-f—a R++a R-f-*'

Color and Transparency Representing Measure Density

For transparent volume rendering purposes we draw colored and transparent splats,
which are collections of several patches for each box R € B,. With this we also
get insight into interior parts of the box collection, where thick areas appear less
transparent than thin ones. In particular the whole collection By is visible. Here we
suppose that the addressed graphics library correctly handles transparent patches,
if they are processed depth first corresponding to the viewing direction. But this
has actually been done by our type of traversal. For each box R € By we compute

REB M(R)

(R) — log ming . w(R)

log u(R) — log min

AR) =

log Maxg s M

Then max{A(R)diam(R),e} for a small € is a suitable choice for an opacity
factor. This ensures that regions with low measure will be more transparent than
those with high measure. The e guarantees that the whole set collection By is
visible. In addition we assume the color of the transparent patches also to depend
on the values A(R) on R. Let us denote by v, for a = [a',a?, a3] the common
edge of the faces Fj ,is(;). Then for +,— indicating solely positive or negative index
components, v, and v_ are a possibly non-unique foremost vertex, and an invisible
vertex, respectively. We obtain a reasonable approximation for a single transparent

box drawing the following six transparent triangles A indexed by their vertices:

A

V+,Va,0p

where the o and 3 have at least one positive and one negative entry and differ only
in one component (cf. Fig. 5).
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Figure 5: A box R and its vertices indexed according to the current viewing direction.

Graphic Environment: The visualization is embedded in the concept of ar-
bitrary meshes [14] implemented on the object oriented software platform GRAPE
[7, 15], which allows an interactive exploration of such hierarchical data. In particu-
lar, the calculation of the intersection plane is immediately available on our type of
data by inheritance. The volume rendering is adapted to the specific tree structure
discussed here. All parameters, such as the level of interest in the hierarchy, the
intersection plane and color shading parameters, the viewing direction etc. can be
controlled interactively.

5 Example
As an example we visualize invariant sets and invariant measures for the Lorenz
System
i = o(y—ux)
Yy = pr—y—a2
z = —PBz4xy.
We set

c=10 and p=28

and approximate the closure of the twodimensional unstable manifold of the steady
state solution

0= (VB =1),\/8=1),0- 1)

for the six parameter values § € {0.4,0.8,1.2,1.6,2.0,8/3} by a continuation tech-
nique based on the subdivision algorithm (see [2]). The results are visualized in
Figures 6-8 using the three different visualization techniques introduced in Sec. 4.
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In Figure 6 the shape of the closure of the unstable manifold is visualized. The
six results illustrate that essentially only the “spiraling behavior” of the relative
global attractor around the z-axis changes while 3 is varied: for 8 = 0.4 we can see
that part of the unstable manifold is winding around the z-axis whereas for § = 8/3
this behavior has disappeared.

In Figure 7 this unwinding behavior becomes even more transparent. Moreover,
the color shading in the intersection planes shows that for small values of 3 the
dynamical behavior stays close to the z-axis for relatively long periods of time which
is not the case for larger values of .

Finally, in Figure 8 we visualize the invariant measures on the relative global
attractors. These results indicate that, in contrast to the geometric shape, the
invariant measures change drastically while § is varied. First we observe that for
small values of 3 there are big regions of low density on the invariant set. In fact, for
B = 0.4 a direct numerical simulation indicates that there exists a stable periodic
solution inside the yellow area in subfigure (a). Moreover, the steady state solution
g itself is apparently not contained in the support of the invariant measure on Ag
for 5 € [0.4,2.0]. (Observe that the nonzero steady states of the Lorenz system lie
inside the blue “islands” close to the center of the objects in Figure 8.) Finally, it
appears that for 3 = 8/3 the Lorenz attractor Ag is equal to the support of the
measure which is computed.

Acknowledgments. Research of MD and OJ is partly supported by the Deutsche
Forschungsgemeinschaft under Grant De 448/5-1. MD additionally acknowledges
support by the Konrad-Zuse-Zentrum fiir Informationstechnik Berlin. The visual-
ization platform GRAPE has been developed at the SFB 256 at the University of
Bonn and at the Institute for Applied Mathematics at the University of Freiburg.
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(e) B =2.0 (f) B = 2.6666

Figure 6: Six coverings of the unstable manifold of the steady state ¢ using 24 steps
in the subdivision algorithm.
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(e) B =20 (f) B = 2.6666

Figure 7: The intersection planes for different values of 3. The color shading indi-
cates the different levels of the density on the boxes. (The density ranges from pink
(low density) — blue — green — yellow — orange (high density).)
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(f) B = 2.6666

Figure 8: Approximations of the invariant measure on Bog. (The density ranges
from blue (low density) — pink — green — red — yellow (high density).)
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