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Zusammenfassung

Das
”
random cluster“-Modell ist ein zentrales statistisches Modell mit Anwendun-

gen in der Physik, der Wahrscheinlichkeitstheorie und der Graphentheorie. Für einen
Graphen G = (V,E) betrachtet man eine Wahrscheinlichkeitsverteilung auf Teilkan-
tenmengen A ⊆ E gegeben durch

µ(A) = Z−1p|A|(1− p)|E\A|qc(A)

mit Parametern p ∈ (0, 1) und q ∈ (0,∞). Hierbei ist c(A) ∈ N die Anzahl der
Zusammenhangskomponenten des Teilgraphen (V,A) (die sogenannten

”
cluster“),

und Z ist eine Normalisierungskonstante gegeben durch

Z =
∑
A⊆E

p|A|(1− p)|E\A|qc(A) .

Bei diesem Modell ist der Phasenübergang für bestimmte Graphen besonders inter-
essant: Bei kleinem p befindet sich das Modell in der subkritischen Phase, charak-
terisiert durch eine hohe Zahl von Zusammenhangskomponenten mit geringer Aus-
dehnung. Bei großem p befindet sich das Modell in der superkritischen Phase, hier
ist die Existenz einer globalen, den ganzen Graphen durchdringenden Komponente
bezeichnend. Die Phasen sind getrennt durch einen kritischen Punkt pc = pc(q,G),
und die Eigenschaften des Modells an diesem kritischen Punkt sind Gegenstand in-
tensiver Forschung.

Ein effektives Instrument zur Untersuchung solcher Modelle sind Markov-Ketten,
die gegen die gewünschte Wahrscheinlichkeitsverteilung konvergieren. Diese werden
unter anderem benötigt, um praktische Simulationen des Modells durchzuführen, da
es normalerweise nicht möglich ist, Zustände gemäß der gewünschten Verteilung di-
rekt zu erzeugen. In dieser Arbeit befassen wir uns mit verschiedenen Markov-Ketten
für das

”
random cluster“-Modell mit besonderem Augenmerk auf der Konvergenz-

geschwindigkeit, in Abhängigkeit von der vorherrschenden Phase des Modells.

Hierfür werden zunächst grundlegende Techniken im Zusammenhang mit Markov-
Ketten zusammengetragen. Wir leiten Kenngrößen für die Konvergenzgeschwindig-
keit von Markov-Ketten und Varianzabschätzungen für Markov-Chain-Monte-Carlo-
Verfahren her, und bringen diese in Zusammenhang mit der Kopplung von Markov-
Ketten.

Danach folgt eine umfassende Einführung in das
”
random cluster“-Modell und ver-

wandte klassische Modelle. Wir betrachten Monotonie-Eigenschaften des Modells
auf endlichen und unendlichen Graphen. Für den Z2-Gittergraphen tragen wir die
wichtigsten Resultate über den Phasenübergang des Modells zusammen. Hierbei
sind die Konsequenzen für rechteckige Teilgraphen von Z2 für das weiterführende
Vorgehen von besonderer Bedeutung.



Nach einer Erörterung der für uns interessanten Markov-Ketten betrachten wir Be-
weistechniken für monotone und lokale Markov-Ketten. Diese sind vor allem in der
subkritischen Phase anwendbar und führen zu optimalen Konvergenz-Resultaten.
Zudem leiten wir eine Technik her, die es mit Hilfe von

”
speed of disagreement

percolation“-Resultaten erlaubt, von beliebig polynomieller auf optimale Konver-
genzgeschwindigkeit zu schließen. Die

”
speed of disagreement percolation“-Resultate

sind kombinatorischer Natur und deren Herleitung hängt oft nicht mit der Phase
des Modells zusammen. In der superkritischen Phase sind lokale Markov-Ketten
oft ineffektiv. Wir zeigen, dass man die Techniken und Konvergenzresultate auf die
superkritische Phase verallgemeinern kann, wenn man sich darauf beschränkt, die
Markov-Kette in der Nähe der Zielverteilung starten zu lassen.

Im nächsten Kapitel führen wir das
”
down-up“-Modell ein. Dieses neue Modell ist

eng mit dem
”
random cluster“-Modell verwandt und kann als eine nichtlokale Ver-

allgemeinerung des Ising-Modells angesehen werden. Wir zeigen, dass dieses Modell
eine starke monotone Struktur hat und nutzen die Nähe zum

”
random cluster“-

Modell um Phaseneigenschaften herzuleiten. Zudem führen wir monotone Markov-
Ketten für dieses Modell ein und zeigen exemplarisch für die

”
monotone down-up

dynamics“-Markov-Kette, dass sich die Techniken aus dem vorherigen Kapitel hier-
auf übertragen lassen.

Zum Schluss betrachten wir die Swendsen-Wang-Markov-Kette für das
”
random

cluster“-Modell. Diese ist weder lokal noch monoton, deshalb lassen sich die Tech-
niken aus den vorherigen Kapiteln nicht übertragen. Bezüglich der subkritischen
Phase sind in den letzten Jahren dennoch Fortschritte erzielt worden. Wir tragen
Konvergenzresultate für diese Phase zusammen und richten danach unser Augen-
merk auf die noch offene Frage nach der Konvergenzgeschwindigkeit in der super-
kritischen Phase. Hierzu führen wir eine zum Teil neue Kopplung der Markov-Kette
ein und zeigen mit numerischen Simulationen, dass diese optimale Konvergenzge-
schwindigkeit nahelegt. Zudem belegen wir numerisch, dass die Kopplung eine Lo-
kalitätseigenschaft besitzt. Dazu leiten wir ein

”
speed of disagreement percolation“-

Resultat her, diesmal allerdings in Abhängigkeit von der superkritischen Phase.
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1 Introduction

Statistical mechanics is a field of research which has gained increasing importance
over the course of the last 150 years. Originally introduced by James Clerk Maxwell
[Max60] and Ludwig Boltzmann [Bol96] to explain kinetic properties of gas, the con-
cepts were generalized by J. Williard Gibbs [Gib02] for general mechanical systems.
Today, the application fields include high energy physics, weather forecasting, bio-
informatics and game theory. It is effective in dealing with models that have a very
large amount of microscopic agents from which macroscopic features emerge, e.g.
gas particles. To track the motion of such particles in a deterministic way quickly
becomes unfeasible for increasing system sizes, even with current technology. In-
stead, the state of a given system is postulated to be a random variable X, with an
associated probability measure

µ(X) =
1

Z
exp(−βS(X))

which is called Boltzmann distribution. The action term S(X) describes the energy
of a given state, and the parameter β acts as an inverse temperature, i.e. at high β
(low temperature) the variation of the model is reduced. The normalization constant

Z =
∑
X

exp(−βS(X))

is called partition function. This model is motivated by the simple assumptions
that the probability of a given state entirely depends on its energy, and that the
probability ratio of two states

µ(X)
µ(Y ) = exp(−β(S(X)− S(Y )))

only depends on the difference of their energies. States with high energy terms are
less probable, the system tries to minimize its energy in a probabilistic manner.
This is in accordance to the ”least action principle” in physics which is often used
to derive the deterministic equations for an evolving system.
Even though the model is probabilistic in nature, it is still possible to make predic-
tive statements using analytic tools and numerical simulations. The main interests
typically can be formulated as questions like ”What is the probability of event A?”
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2 CHAPTER 1. INTRODUCTION

or ”What is the expected value of quantity f?”, which leads to the calculation

E[f ] =
∑
X

f(X)µ(X) ,

with f being called observable. On one hand, this sum has a lot in common with
the partition function, and often it is possible to gain insights into the model if the
partition function is well-understood analytically. On the other hand, numerical
approximations using Monte-Carlo integration methods are possible under certain
circumstances.

From the Ising model...

In 1924 the mathematician and physicist Ernst Ising attained his Ph.D. solving the
what is now called 1D-Ising model [Isi25], laying the ground work for one of the most
famous models of statistical mechanics. In an attempt to understand ferromagnetic
interaction of particles, he assigned to each integer k ∈ {1, . . . , N} a spin variable
x(k) ∈ {−1,+1} together with an action term

S(x) = −
N−1∑
k=1

Jkx(k)x(k + 1)

that favors alignment of spins. The positive weights Jk represent the bond strength
of the ferromagnetic interaction between the k-th and (k + 1)-th particle. Ising
showed that the resulting long-distance interaction of particles decays exponentially
fast with increasing distance, for all inverse temperatures β > 0 and increasing
system size N . The model therefore has only one phase, i.e. a definite characteris-
tic behavior. From these considerations, Ising incorrectly concluded that the Ising
model must have this property for all dimensions.
In 1936, Rudolf Peierls proved in [Pei36] that the 2-dimensional Ising model under-
goes a phase transition between an ordered and a disordered phase. For small β,
the long range interaction between spins decays exponentially fast with increasing
distance, which results in a disordered state resembling white noise. For large β,
long range interactions do not decay to zero, resulting in an ordered state where
most spins point in the same direction. These phases are strictly separated by the
critical inverse temperature βc. The striking feature of the model is given by the
fact that it accurately predicts the behavior of ferromagnetic materials under varying
temperature. When heated to high temperatures, magnets lose their macroscopic
magnetic properties due to the dominating kinetic energy of the particles. When
cooled down, at a certain critical point the particles realign into a specific direction,
a phenomenon called spontaneous magnetization.
In 1944, Lars Onsager [Ons44] solved the 2-dimensional Ising model on a discrete
torus grid without external field, giving formulas for correlation functions and the
free energy. In 1949, he announced the formula for the spontaneous magnetization
without proof, which was delivered by Chen-Ning Yang [Yan52] and Gábor Szegő
[Sze52] two years later.
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Figure 1.1: Random cluster model simulations on a 16× 16 grid with q = 2 and p =
pc−0.2 (left), p = pc (middle) and p = pc+0.35 (right). The cluster structure (black)
shows the typical behavior of the model for the different phases. In the subcritical
phase clusters are small, while in the supercritical phase there is a dominating global
cluster.

...to the random cluster model

In 1969, Kees Fortuin and Piet Kasteleyn [FK72] introduced the random cluster
model to study combinatorial structures and electrical networks. This model can be
thought of as a unification of the percolation model, Ising model and Potts model.
Let G = (V,E) be an undirected, finite and connected graph. The set of possible
states X = {A ⊆ E} is given as the set of all subsets of E. For such a state A, we
say that an edge e ∈ E is open if e ∈ A, otherwise it is closed. Moreover, let c(A) be
the number of connected components of A, also called (open) clusters. The random
cluster measure on X with edge parameter p ∈ [0, 1] and cluster weight q ∈ (0,∞)
is then given by

µ(A) = µG,p,q(A) = Z−1
G,p,q p

|A| (1− p)|E\A| qc(A) ,

where the partition function Z = ZG,p,q is chosen such that µ is a probability
measure. It is easy to see that for q = 1, this model reduces to edge percolation
on G and one has ZG,p,1 = 1. For q ∈ {2, 3, . . .}, this model is closely related
to the q-state Potts model, with the special case of q = 2 being the Ising model.
Due to the explicit nature of Onsager’s proofs for the Ising model, many questions
pertaining the random cluster model could not be answered in a satisfying way until
recently. One of the main problems was the rigorous definition of the occurring phase
transition of the 2-dimensional random cluster model, and the particular behavior
of the model at its critical point, see Figure 1.1.
This field of research retained its popularity into the present day, as can be seen
from the sheer number of publications on the topic each year. The breakthrough
came in 2010 with the work of Vincent Beffara and Hugo Duminil Copin [BDC12]
showing that the model has a sharp phase transition at the critical point, and that
the subcritical phase has the ’exponential decay of correlations’ property. In the
same year, Stanislaw Smirnov was awarded the Fields medal ”for the proof of con-
formal invariance of percolation and the planar Ising model in statistical physics”,
establishing a beautiful link between critical statistical mechanics and conformal
invariance, a property that is conjectured to hold for a variety of statistical model.
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Markov chain Monte-Carlo integration

Often, it is not possible to solve statistical models analytically. This stems from the
fact that for a model with microscopic entities, the system size has to be very large
to observe emerging macroscopic properties, vastly increasing the computational
complexity. For instance, the 16x16 grid graph from Figure 1.1 has 480 edges,
which is a very small number of variables for typical applications. This however
already results in a state space X with 2480 elements, relinquishing all hope to make
accurate computations. Moreover, simulating the distribution directly fails for the
same reasons.
The state of the art method to approximate observables in this case is given by the
Markov chain Monte-Carlo method. Introducing a Markov chain (At)t∈N which has
µ as stationary distribution is often possible, and this allows us to generate samples
from µ in a dynamic way. The main questions in this regard are:

• How fast does (At)t≥0 approach to equilibrium?

• How big is the correlation between subsequent samples At and At+k for k ∈ N?

The answers to these questions can be given in terms of the mixing time and spectral
gap of the Markov chain. If we say that for the initial state A0 the random variable
At has distribution µt, the mixing time is defined as

τ(ε) = min

{
t : sup

A0

‖µ− µt‖TV ≤ ε
}
,

i.e. it is given by the minimal time t at which the distribution of At is close to
equilibrium regardless of initial value, measured in total variation distance. The
spectral gap of a Markov chain is given by

(1− |λ2|)−1 ,

where λ2 is the Eigenvalue of the Markov chain that has the biggest absolute value
aside from 1. It can be shown that variance estimates concerning the Markov chain
Monte-Carlo integration method are directly affected by the spectral gap.
For statistical models, it is important to characterize the dependence of these quan-
tities on the system size. If we consider the random cluster model for instance, the
mixing time of a Markov chain might grow exponentially fast with respect to the
number of edges of the graph G. The task of generating samples close to equilib-
rium will be unfeasible for already moderate system sizes in this case. The study of
Markov chains as well as corresponding mixing times and spectral gaps is therefore
vital to the field of statistical mechanics.
A famous example has been introduced by Robert Swendsen and Jian-Sheng Wang
[SW87] in 1987. The now called Swendsen-Wang algorithm exploits the connection
between the random cluster model and the corresponding Potts model, creating a
Markov chain that switches between both representations in a computationally con-
venient way. In contrast to local Markov chains that attempt to evolve variables
one at a time, the Swendsen-Wang Markov chain changes the given state in a global
way, which seems to be one reason for its good scaling properties with respect to
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the system size. The algorithm has been studied extensively in the last few decades,
because it is a major hope to many other fields dealing with statistical mechanics
that up to this day lack a convenient way to compute large-scale simulations.
The main effort of this thesis is to understand Markov chains in the random cluster
model setting, particularly in the 2-dimensional case. The publication [BDC12] gave
the ground work for many results to follow during the last 10 years, mainly concern-
ing the subcritical phase of the model. For the Swendsen-Wang algorithm, many
questions still remain unanswered, and this thesis will contribute to its investigation
both in theory and with numerical experiments.

Outline of this thesis

The remainder of this thesis is organized as follows:

• In the second chapter, we derive basic tools needed to understand Markov
chains and Markov chain Monte-Carlo methods. Key characteristics like the
spectral gap and mixing time are introduced, and put into context with various
coupling techniques such as the ’coupling from the past’ method and the path
coupling theorem.

• Chapter 3 gives a thorough introduction to the random cluster model. We
deduce monotonicity properties of the model on finite and infinite graphs, using
Glauber dynamics arguments. Recent results concerning the phase transition
of the model in 2 dimensions are stated. We elaborate on the connection to
percolation, the Ising model and the Potts model.

• In Chapter 4, we summarize the Markov chains that are interesting in the con-
text of the random cluster model. These include Glauber dynamics, heatbath
dynamics, alternate scan dynamics and the Swendsen-Wang dynamics as well
as its monotone version.

• Chapter 5 reviews recent results and proof techniques for a variety of the
just mentioned Markov chains, mainly using the monotonicity property of the
model together with exponential decay of correlations in the subcritical phase.
We introduce ’speed of disagreement percolation’ estimates for coupled Markov
chains and show that a bootstrap argument can often give optimal mixing time
results for Markov chains with polynomial mixing time. Moreover, some of the
techniques can be used in the supercritical phase as well, leading to new results
for monotone dynamics in this case.

• As an application, we introduce a new model in Chapter 6 and apply the
methods from Chapter 5 to derive model properties such as local SSM and a
local to global coupling result. This down-up model is closely related to the
random cluster model and therefore has potential to deliver new insights. We
show that the model has a rich partial order structure, and investigate mono-
tone Markov chains for this model, including a generalization of the monotone
Swendsen-Wang dynamics. For this Markov chain we expemplary show mixing
time results in the subcritical and supercritical phase.
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• The original Swendsen-Wang dynamics Markov chain does not exhibit the
monotonicity property, therefore we review it separately in Chapter 7. We
state recent results concerning the mixing time of this Markov chain, as well
as coupling results obtained from a grand coupling argument. In the supercrit-
ical phase, the theoretical results are not optimal, and we investigate certain
couplings that are promising in this regard. We show a typical ’speed of
disagreement percolation’ bound for a Swendsen-Wang dynamics coupling in
the supercritical phase. Moreover, we provide extensive numerical evidence
that the discussed couplings perform exceedingly well, in accordance to the
conjecture about the mixing time of the Swendsen-Wang dynamics in the su-
percritical phase.

• We conclude the thesis with a summary and an outlook regarding possible
extensions of this work in Chapter 8.



2 Markov Chain
Monte-Carlo Methods

In this chapter we will introduce the Markov chain Monte-Carlo method and related
notions, see for instance [LP17]. Throughout the chapter, we will consider a finite
set X called state space, together with a probability mass function µ : X → (0, 1]
such that ∑

X∈X
µ(X) = 1 .

We call a function f : X → R an observable and our main goal is to compute the
expected value of an observable:

E[f ] =
∑
X∈X

f(X)µ(X) .

We will focus on probabilistic methods to obtain an approximation of this quantity.

2.1 Monte-Carlo integration

The easiest method one can think of would be the standard Monte-Carlo estimator

1

N

N∑
i=1

f(Xi) ,

where the Xi’s are independent samples drawn according to µ. It is easy to see that
this estimator is unbiased, i.e. the expected value is exactly E[f ]. The quality of
this estimator can be measured by its variance

E

(E[f ]− 1

N

N∑
i=1

f(Xi)

)2
 .

Normally one lacks the possibility to simulate µ directly like this, but for the sake
of completeness we include

7



8 CHAPTER 2. MARKOV CHAIN MONTE-CARLO METHODS

Theorem 2.1 (Monte-Carlo integration). For independent and identically dis-
tributed random variables Xi ∼ µ, i = 1, . . . , N it holds

E

(E[f ]− 1

N

N∑
i=1

f(Xi)

)2
 =

1

N
Var[f ] ,

with Var[f ] = E
[
(E[f ]− f)2

]
.

Proof. We write E[f ] = 1
N

∑N
i=1 E[f ] and rearrange:

E

(E[f ]− 1

N

N∑
i=1

f(Xi)

)2
 =

1

N2
E

( N∑
i=1

(E[f ]− f(Xi))

)2
 .

This expression is the variance applied to the sum of independent identically dis-
tributed random variables with mean zero, therefore we get

E

(E[f ]− 1

N

N∑
i=1

f(Xi)

)2
 =

1

N
E
[
(E[f ]− f)2

]
=

1

N
Var[f ] .

We see that the variance of the Monte-Carlo estimator does neither depend on
smoothness properties of f , nor on the dimensionality of the underlying space X.
This is especially useful for high-dimensional integration problems, as is often the
case in statistical physics. The rate at which the variance decreases is rather slow,
however in most cases one cannot hope to perform better.

2.2 Perturbed Monte-Carlo integration

We turn to the case where it is not possible to simulate µ in practice. Let us
assume that we can draw samples from an approximation µε of µ. How does the
corresponding estimator behave? Let us first take a look at the expectation. For
X ∼ µ and Y ∼ µε, one has

|E[f(X)]− E[f(Y )]| ≤ E [|f(X)− f(Y )|] ≤ P[X 6= Y ] sup
W,Z∈X

|f(W )− f(Z)| .

Because we have defined X and Y only up to their respective distribution, the
quantity

P[X 6= Y ]

does not make any sense right now. If we however consider (X,Y ) as a random
variable with joint distribution ν such that X ∼ µ and Y ∼ µε, we can compute

P[X 6= Y ] =
∑

X,Y ∈X
ν(X,Y )1[X 6= Y ] .
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Such a pair (X,Y ) is called coupling of X and Y . Our above calculation holds for
all possible couplings of X and Y , so it is natural to ask which coupling minimizes
P[X 6= Y ]. First, it is easy to see that for any event A ⊆ X, one has

P[X 6= Y ] ≥ P[X ∈ A, Y /∈ A] ≥ P[X ∈ A]− P[Y ∈ A] = µ[A]− µε[A] ,

which gives
P[X 6= Y ] ≥ max

A⊆X
(µ[A]− µε[A]) = ‖µ− µε‖TV .

So we have a lower bound which is exactly the total variation distance between µ
and µε. But can we realize this lower bound with a coupling? The answer is yes,
and it is constructive. Let A be the set of states such that

Z ∈ A ⇔ µ(Z) ≤ µε(Z) .

Additionally define a probability measure ν+ on A which is proportional to µε − µ
on A, and a probability measure ν− on X \ A proportional to µ− µε. Then we can
define a coupling procedure as follows:

• Pick a random number p ∈ [0, 1], uniformly distributed.

• If p ≤ µ[A], sample X from µ(· | X ∈ A) and set Y = X.

• If µ[A] < p < µε[A], sample X from ν− and Y from ν+.

• If µε[A] ≤ p, sample Y from µε(· | Y /∈ A) and set X = Y .

It is easy to see that for this coupling, one has

P[X 6= Y ] = µε[A]− µ[A] ≤ ‖µ− µε‖TV .

The distribution of X is given as follows: for Z ∈ A, one has

P[X = Z] = µ[A]µ(Z | Z ∈ A) = µ(Z) .

For Z /∈ A, one has

P[X = Z] = (µε[A]− µ[A])ν−(Z) + (1− µε[A])µε(Z | Z /∈ A)

= (µε[A]− µ[A])
µ(Z)− µε(Z)

µ[X \ A]− µε[X \ A]
+ µε(Z)

= µ(Z)− µε(Z) + µε(Z)

= µ(Z) .

So we have X ∼ µ, and a similar computation gives Y ∼ µε. We have shown that

max
A⊆X

(µ[A]− µε[A]) = min
(X,Y )

P[X 6= Y | X ∼ µ, Y ∼ µε] ,

where the minimum on the right hand side is over all couplings of X and Y . Using
these notions, we can prove a variance estimate for the estimator which uses the
perturbed measure µε.
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Theorem 2.2 (Perturbed Monte-Carlo integration). Let µ, µε be probability mea-
sures on X. For i = 1, . . . , N , let Yi be i.i.d. random variables with law µε, and let
X be a random variable with law µ. Then one has√

E
[(

E[f(X)]− 1
N

∑N
i=1 f(Yi)

)2
]

≤ 1√
N

√
Var[f ] +

(√
‖µ−µε‖TV

N + ‖µ− µε‖TV
)

supW,Z∈X |f(W )− f(Z)| .

Proof. For i = 1, . . . , N let Xi be random variables with law µ and couple (Xi, Yi)
such that P[Xi 6= Yi] = ‖µ − µε‖TV . By considering the unbiased estimator
1
N

∑
f(Xi), we can estimate

√
E
[(

E[f(X)]− 1
N

∑N
i=1 f(Yi)

)2
]

=

√
E
[(

E[f(X)]− 1
N

∑N
i=1 f(Xi) + 1

N

∑N
i=1 f(Xi)− 1

N

∑N
i=1 f(Yi)

)2
]

≤ 1√
N

√
Var[f ] +

√
E
[(

1
N

∑N
i=1 f(Xi)− 1

N

∑N
i=1 f(Yi)

)2
]

= 1√
N

√
Var[f ] + 1

N

√
E
[(∑N

i=1[f(Xi)− f(Yi)]
)2
]
.

Here we used the triangle inequality together with Theorem 2.1. In the second
summand, the terms f(Xi) − f(Yi) are random variables which are independent,
and each of them has probability p = ‖µ−µε‖TV to be non-zero. Therefore, we can
treat this term similar to a binomial distribution, where each non-zero contribution
can be estimated by supW,Z∈X |f(W )− f(Z)|. We get

E

( N∑
i=1

[f(Xi)− f(Yi)]

)2


≤
N∑
i=0

(
N

i

)
pi(1− p)N−i

(
i · sup

W,Z∈X
|f(W )− f(Z)|

)2

=

(
sup

W,Z∈X
|f(W )− f(Z)|

)2 N∑
i=0

(
N

i

)
pi(1− p)N−ii2

=

(
sup

W,Z∈X
|f(W )− f(Z)|

)2

(Np+N(N − 1)p2) .
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Combining this with the upper calculation gives√
E
[(

E[f(X)]− 1
N

∑N
i=1 f(Yi)

)2
]

≤
√

Var[f ]
N +

(√
‖µ−µε‖TV

N + ‖µ− µε‖TV
)

supW,Z∈X |f(W )− f(Z)| .

We see that this estimate reduces to the estimate from Theorem 2.1 in the case
µ = µε. Moreover, for N →∞ we get the remainder

‖µ− µε‖TV sup
W,Z∈X

|f(W )− f(Z)|

which is a reasonable bound in this situation.

2.3 Markov chain Monte-Carlo integration

We turn our attention to estimators which are based on Markov chains. Let

P : X× X→ [0, 1]

be a probability matrix. We can define a discrete-time Markov chain with initial
value X0 ∈ X via

Xt ∼ P (Xt−1, ·) for t ∈ N .

We say that the Markov chain (Xt)t≥0 (or P ) is reversible with respect to µ if P
satisfies

µ(X)P (X,Y ) = µ(Y )P (Y,X)

for all X,Y ∈ X. It is easy to see that µP = µ in this case (if we interpret µ
as a row vector) and that P t is also reversible with respect to µ for any t ∈ N.
Moreover, reversible Markov chains are easy to analyze because the corresponding
linear operator

f 7→ Pf =
∑
X∈X

P (·, X)f(X)

is self-adjoint with respect to µ:

(Pf, g)µ =
∑
X∈X

Pf(X)g(X)µ(X) =
∑
X∈X

∑
Y ∈X

P (X,Y )f(Y ) g(X)µ(X)

=
∑
X∈X

∑
Y ∈X

P (Y,X)f(Y ) g(X)µ(Y ) =
∑
Y ∈X

f(Y )Pg(Y )µ(Y ) = (f, Pg)µ .

This means that we can find an orthogonal basis v1, v2, . . . , vk of {f : X → R} such
that

(P tvi, vj)µ =

{
λti(vi, vi)µ i = j

0 i 6= j
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with real Eigenvalues λi for i = 1, . . . , k. Without loss of generality we can choose
v1 defined via v1(X) = 1 for all X ∈ X, with λ1 = 1 as is common for stochastic
matrices. The Eigenvalues λi of P moreover satisfy |λi| ≤ 1 due to the Gerschgorin
circle theorem. We assume without loss of generality that |λi| ≥ |λj | for i ≥ j. All
of this will play a crucial role for the next estimator.

Theorem 2.3 (Idealized Markov chain Monte-Carlo integration). Let X,X0 ∼ µ
and Xt ∼ P (Xt−1, ·) for t ∈ N, where P is a probability matrix on X that is reversible
with respect to µ. Assume that |λ2| < 1. Then we have

E

(E[f(X)]− 1

N

N−1∑
t=0

f(Xt)

)2
 ≤ 1

N
Var[f ]

(
1 +

2

1− |λ2|

)
.

Proof. As in Theorem 2.1 we expand E[f(X)] = 1
N

∑N−1
t=0 E[f(X)] and get

E

(E[f(X)]− 1

N

N−1∑
t=0

f(Xt)

)2


=
1

N2
E

(N−1∑
t=0

[E[f(X)]− f(Xt)]

)2


=
1

N2

N−1∑
s,t=0

E
[
(E[f(X)]− f(Xs))(E[f(X)]− f(Xt))

]
=

1

N
Var[f ] +

2

N2

N−1∑
s=0

N−1∑
t=s+1

E
[
(E[f(X)]− f(Xs))(E[f(X)]− f(Xt))

]
.

Here, Xs and Xt are not independent, we have that Xs ∼ µP s = µ and Xt ∼
P t−s(Xs, ·). This means that the dependence between Xs and Xt is the same as
the dependence between X0 and Xt−s. Therefore, we can write

2

N2

N−1∑
s=0

N−1∑
t=s+1

E
[
(E[f(X)]− f(Xs))(E[f(X)]− f(Xt))

]
=

2

N2

N−1∑
s=0

N−1∑
t=s+1

E
[
(E[f(X)]− f(X0))(E[f(X)]− f(Xt−s))

]
=

2

N2

N−1∑
t=1

(N − t)E
[
(E[f(X)]− f(X0))(E[f(X)]− f(Xt))

]
.

Fix t ∈ N, write E[f(X)] = M and consider the covariance term

E
[
(M − f(X0))(M − f(Xt))

]
.
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We know that Xt ∼ P t(X0, ·), and therefore this expression becomes∑
X,Y ∈X

P[X0 = X and Xt = Y ](M − f(X))(M − f(Y ))

=
∑

X,Y ∈X
µ(X)P t(X,Y )(M − f(X))(M − f(Y ))

= (P t(M − f)(·), (M − f)(·))µ .

We can decompose the function (M − f)(·) with the Eigenbasis v1, . . . , vk

(M − f)(·) =

k∑
i=1

((M − f)(·), vi)µ
(vi, vi)µ

vi

and see that the first term of this sum is zero:

((M − f)(·), v1)µ =
∑
X∈X

(M − f(X))µ(X) = M −M = 0 .

Using the orthogonality of the Eigenvectors gives

(P t(M − f)(·), (M − f)(·))µ =
k∑
i=2

λti
((M − f)(·), vi)2

µ

(vi, vi)µ

≤ |λ2|t
k∑
i=2

((M − f)(·), vi)2
µ

(vi, vi)µ

= |λ2|t((M − f)(·), (M − f)(·))µ
= |λ2|tVar[f ] .

Plugging in this result, we get

E

(E[f(X)]− 1

N

N−1∑
t=0

f(Xt)

)2
 ≤ 1

N
Var[f ] +

2

N2
Var[f ]

N−1∑
t=1

(N − t)|λ2|t

=
1

N
Var[f ]

(
1 + 2

N−1∑
t=1

(
1− t

N

)
|λ2|t

)

≤ 1

N
Var[f ]

(
1 + 2

N−1∑
t=1

|λ2|t
)

≤ 1

N
Var[f ]

(
1 +

2

1− |λ2|

)
.

The quantity (1 − |λ2|)−1 is called spectral gap of P . Note that in the above cal-
culation, the case |λ2| = 1 is excluded. The variance of this estimator might not
decrease at all in this case (take for instance P as the identity matrix).
For a fixed s ∈ N, define

d(P s, µ) = sup
X∈X
‖P s(X, ·)− µ‖TV
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as the worst case total variation after s transition steps with respect to the initial
value X. This quantity is decreasing in s provided that |λ2| < 1. To see this,
consider a probability measure ν on X and the probability measure

νP (X) =
∑
Y ∈X

ν(Y )P (X,Y ) .

We know that µP = µ due to the reversibility property, therefore µ is the left
Eigenvector of P with Eigenvalue λ1 = 1 (unique up to scaling). The map ν 7→ νP
is therefore a contraction on the set of probability measures with unique fixpoint.
So far, Theorems 2.1, 2.2 and 2.3 treat situations which are idealized in a certain
way. The next theorem addresses the commonly used estimator.

Theorem 2.4 (Markov chain Monte-Carlo integration). Let X ∼ µ, X0 ∈ X and
Xt ∼ P (Xt−1, ·) for t ∈ N, where P is a probability matrix on X that is reversible
with respect to µ. Assume that |λ2| < 1, and let N = ns with n, s ∈ N such that
d(P s, µ) ≤ 1

6 . Then we have√√√√√E

(E[f(X)]− 1

N

N+s−1∑
t=s

f(Xt)

)2


≤
√

1

N
Var[f ]

(
1 +

2

1− |λ2|

)
+

√
2d(P s, µ)

n
sup

W,Z∈X
|f(W )− f(Z)| .

Proof. For k ∈ {s, 2s, 3s, . . . , ns}, let Y k be a random variable coupled to Xk in the
following way: For k = s, let Y s have law µ and couple (Xs, Y s) such that

P[Xs 6= Y s] ≤ d(P s, µ) .

For k > s, consider two cases. If Xk−s = Y k−s, simply couple Xk = Y k. If not,
assign to Y k the law P (Y k−s, ·) and couple (Xk, Y k) such that

P[Xk 6= Y k] ≤ d(P s, µ) .

We proceed to fill in the gaps for a given k ∈ {s, 2s, 3s, . . . , ns}. Define ran-
dom variables Y k+1, . . . , Y k+s−1 which are coupled to Xk+1, . . . , Xk+s−1 as fol-
lows: If Xk = Y k, set Y k+t = Xk+t for t ∈ {1, . . . , s − 1}. If not, we consider
(Y k+1, . . . , Y k+s−1) as a possible outcome of the Markov chain with transition ma-
trix P conditioned on the fact that it starts in Y k and ends in Y k+s. The set of
random variables (Y t)t≥s forms a Markov chain with transition matrix P and initial
law Y s ∼ µ. Therefore we can use the triangle inequality together with Theorem
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2.3: √√√√√E

(E[f(X)]− 1

N

N+s−1∑
t=s

f(Xt)

)2


≤
√

1

N
Var[f ]

(
1 +

2

1− |λ2|

)
+

√√√√√E

( 1

N

N+s−1∑
t=s

(f(Xt)− f(Y t))

)2
 .

The chain (Y t)t≥s moreover satisfies

Xk = Y k ⇒ Xk+t = Y k+t for t ≥ 0 ,

as well as

P[Xk 6= Y k | Xk−s 6= Y k−s] ≤ d(P s, µ)

for k ∈ {2s, 3s, . . . , ns}. Therefore, we have that

P[Xk 6= Y k] ≤ d(P s, µ)k for k ∈ {s, 2s, 3s, . . . , ns} .

Now we can estimate

E

( 1

N

N+s−1∑
t=s

(f(Xt)− f(Y t))

)2


=
1

N2
E

( n∑
i=1

s−1∑
t=0

(f(Xis+t)− f(Y is+t))

)2


≤ 1

N2

n∑
i=1

P[X(n+1−i)s 6= Y (n+1−i)s]((n+ 1− i)s)2 sup
W,Z∈X

|f(W )− f(Z)|2

≤ 1

N2

n∑
i=1

d(P s, µ)i(is)2 sup
W,Z∈X

|f(W )− f(Z)|2

=
s2 supW,Z∈X |f(W )− f(Z)|2

N2

n∑
i=1

d(P s, µ)ii2

≤ supW,Z∈X |f(W )− f(Z)|2
n2

2d(P s, µ)

for d(P s, µ) small enough. Combining this with the above estimate we get the
result.

We see that the initial bias of the estimator depends on d(P s, µ)1/2 and decays with
1
n . To fully understand this bound, we still need to clarify how d(P s, µ) decays with
respect to s.
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2.4 Mixing time

To see this, we first show an alternative definition of the total variation. For two
probability measures ν, µ on X, it is easy to see that the event A = {X : ν(X) >
µ(X)} maximizes the expression

ν[A]− µ[A] ,

and this can also be written as

ν[A]− µ[A] =
∑
X∈A

(ν(X)− µ(X)) =
∑
X∈A

|ν(X)− µ(X)| .

The dual event B = {X : ν(X) ≤ µ(X)} then satisfies

ν[B]− µ[B] = −
∑
X∈B
|ν(X)− µ(X)| = −

∑
X∈A

|ν(X)− µ(X)|

due to the fact that ν[A] + ν[B]− µ[A]− µ[B] = 0. This implies that

ν[A]− µ[A] =
1

2

∑
X∈X
|ν(X)− µ(X)| = 1

2
‖ν − µ‖1

and therefore

‖ν − µ‖TV =
1

2
‖ν − µ‖1 .

For ν = δZ we can calculate

‖P s(Z, ·)− µ‖1 = ‖νP s − µ‖1 = ‖(ν − µ)P s‖1

=
∑
X∈X

∣∣∣∣∣∑
Y ∈X

(ν(Y )− µ(Y ))P s(Y,X)

∣∣∣∣∣
=

∑
X∈X

∣∣∣∣∣∑
Y ∈X

(
ν(Y )

µ(Y )
− 1

)
µ(Y )P s(Y,X)

∣∣∣∣∣
=

∑
X∈X

∣∣∣∣∣∑
Y ∈X

(
ν(Y )

µ(Y )
− 1

)
µ(X)P s(X,Y )

∣∣∣∣∣
=

∑
X∈X

µ(X)

∣∣∣∣∣∑
Y ∈X

(
ν(Y )

µ(Y )
− 1

)
P s(X,Y )

∣∣∣∣∣
=

∑
X∈X

µ(X)

∣∣∣∣∣∑
Y ∈X

ν(Y )

µ(Y )
P s(X,Y )− 1

∣∣∣∣∣
=

∑
X∈X

µ(X)

∣∣∣∣P s(X,Z)

µ(Z)
− 1

∣∣∣∣ ,
leaving us with the identity

d(P s, µ) =
1

2
sup
Z∈X

{∑
X∈X

µ(X)

∣∣∣∣P s(X,Z)

µ(Z)
− 1

∣∣∣∣
}
.
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Consider the Eigenvalue decomposition of the indicator function

δZ =
k∑
i=1

(δZ , vi)µ
(vi, vi)µ

vi =
k∑
i=1

vi(Z)µ(Z)

(vi, vi)µ
vi .

Using this representation, we can further calculate∣∣∣∣P s(X,Z)

µ(Z)
− 1

∣∣∣∣ =

∣∣∣∣ [P sδZ ](X)

µ(Z)
− 1

∣∣∣∣
=

∣∣∣∣∣∣
∑k

i=1
vi(Z)µ(Z)

(vi,vi)µ
[P svi](X)

µ(Z)
− 1

∣∣∣∣∣∣
=

∣∣∣∣∣
k∑
i=1

vi(Z)

(vi, vi)µ
λsivi(X)− 1

∣∣∣∣∣
and using the fact that the first Eigenvector is a constant vector, we get∣∣∣∣P s(X,Z)

µ(Z)
− 1

∣∣∣∣ =

∣∣∣∣∣
k∑
i=2

vi(X)vi(Z)

(vi, vi)µ
λsi

∣∣∣∣∣ .
From this, it is easy to see that

d(P s, µ) ≤ C|λ2|s

for some constant C depending on µ and X, which means that we have exponential
convergence of d(P s, µ)→ 0 in the asymptotical sense. Precisely, if we assume that
the Eigenfunctions are normalized, we get∣∣∣∑k

i=2 vi(X)vi(Z)λsi

∣∣∣
≤ |λ2|s

∑k
i=2 |vi(X)||vi(Z)|

≤ |λ2|s
(∑k

i=2 vi(X)2
)1/2 (∑k

i=2 vi(Z)2
)1/2

.

Moreover, we can consider

1

µ(X)
=

(δX , δX)µ
µ(X)2

=

(∑k
i=1 µ(X)vi(X)vi,

∑k
i=1 µ(X)vi(X)vi

)
µ

µ(X)2
=

k∑
i=1

vi(X)2

and therefore we finally arrive at

d(P s, µ) ≤ 1

2
|λ2|s sup

Z∈X

∑
X∈X

µ(X)

µ(X)1/2µ(Z)1/2
≤ 1

2
|λ2|s sup

Z∈X

{
µ(Z)−1

}
.

Often, this bound is not helpful because the constant is really large, but it is easy
to see that d(P s, µ) ≤ 1 for all s ∈ N. Instead, we define the mixing time

τmix(P, ε) = min
{
t : d(P t, µ) ≤ ε

}
and we will try to find good bounds for τmix(P, ε). The estimate we have shown just
before implies



18 CHAPTER 2. MARKOV CHAIN MONTE-CARLO METHODS

Lemma 2.5. Let P be a transition matrix that is reversible with respect to µ and
satisfies |λ2| < 1. Let

1

µ∗
= sup

Z∈X

{
µ(Z)−1

}
.

Then

τmix(P, ε) ≤ |log(2εµ∗)|
1− |λ2|

.

Proof. Consider
1

2µ∗
|λ2|s ≤ ε ,

which can be restated as

s ≤ log(2εµ∗)
log(|λ2|)

≤ |log(2εµ∗)|
1− |λ2|

.

On the other hand, we can make a similar statement in the other direction.

Lemma 2.6. Let P be a transition matrix that is reversible with respect to µ and
satisfies 1

2 ≤ |λ2| < 1. Then

1

1− |λ2|
≤ 2τmix(P, ε)

| log(2ε)| .

Proof. Consider v2 : X→ R to be the Eigenfunction of P with

Pv2 = λ2v2 .

Then we have (v1, v2)µ = 0 and

|λs2v2(Z)| = |[P sv2](Z)| =
∣∣∣∣∣∑
X∈X

P s(Z,X)v2(X)− µ(X)v2(X)

∣∣∣∣∣
≤ ‖P s(Z, ·)− µ‖1‖v2‖∞
≤ 2d(P s, µ)‖v2‖∞ .

If we choose Z such that |v2(Z)| = ‖v2‖∞ we get

|λ2|s ≤ 2d(P s, µ)

which implies for the mixing time

τmix(P, ε) log(|λ2|) ≤ log(2ε) .
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Rearranging gives

τmix(P, ε)

| log(2ε)| ≥
1

| log(|λ2|)|
≥ 1

2(1− |λ2|)
.

Note that there is no constant involved in this estimate, making it very useful. All
bounds for the mixing time can be directly transferred to bounds for the spectral
gap in this way.

2.5 Markov chain couplings

Often, the mixing time is not directly accessible, however one can bound it if there
exists an amenable coupling for P . We call a transition matrix Q which acts on
pairs of states (X,Y ) a coupling for P if

Q((X,Y ), (·, Z)) = P (X, ·) for all Y,Z ∈ X ,
Q((X,Y ), (W, ·)) = P (Y, ·) for all X,W ∈ X .

For a Markov chain (Xt, Y t)t≥0 with initial state (X0, Y 0) that satisfies

(Xt+1, Y t+1) ∼ Q((Xt, Y t), ·)
for t ≥ 0, one then has that (Xt)t≥0 and (Y t)t≥0 are Markov chains with transition
matrix P . It is clear that this procedure defines a coupling for the probability
measures δX0P t and δY 0P t, which leads to

P[Xt 6= Y t] ≥ ‖δX0P t − δY 0P t‖TV .
Moreover, one has

‖δX0P t − µ‖TV =

∥∥∥∥∥∑
Y ∈X

µ(Y )(δX0 − δY )P t

∥∥∥∥∥
TV

≤
∑
Y ∈X

µ(Y )‖δX0P t − δY P t‖TV

≤ sup
Y 0∈X

‖δX0P t − δY 0P t‖TV

which implies
d(P t, µ) ≤ sup

X0,Y 0∈X
P[Xt 6= Y t] .

We can define the worst-case coupling time for Q as

τcoup(Q, ε) = inf
{
t : P[Xt 6= Y t] ≤ ε for all X0, Y 0 ∈ X

}
,

which might be infinite, we however have the bound

τmix(P, ε) ≤ τcoup(Q, ε)
for all couplings Q of P . This means that to obtain a mixing time bound for P ,
it suffices to find a coupling time bound for some coupling Q of P which might be
easier for certain Markov chains. Using the coupling idea, we can prove the following
scaling bound for the mixing time.
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Lemma 2.7. Let τ = τmix = τmix(P, ε). Then it holds nτmix ≤ τmix(P, εn).

Proof. Let X0 be an arbitrary initial state, and let Y τ ∼ µ. We know that for any
X0 one has

‖µ− P τ (X0, ·)‖TV ≤ ε ,
so we can find a coupling (Xτ , Y τ ) with

P[Xτ 6= Y τ ] ≤ ε .

Now, we can define couplings doing the following for n ∈ N: If Xnτ = Y nτ , apply
P τ to both such that X(n+1)τ = Y (n+1)τ . If not, draw Y (n+1)τ according to µ and
couple it to X(n+1)τ like in the initial step (applying P τ to Xnτ ). This coupling
satisfies

P[Xnτ 6= Y nτ ] ≤ εn ,
and the existence of this coupling between µ and Pnτ (X0, ·) gives

‖µ− Pnτ (X0, ·)‖TV ≤ εn

for all X0.

Couplings can also be used to define unbiased estimators. For this, we restrict
ourselves to couplings Q of P which do not diverge after meeting once, i.e.

(Y, Z) ∼ Q((X,X), ·)⇒ Y = Z .

Any coupling Q can be modified to satisfy this property by considering

Q∗((X,Y ), (W,Z)) =

{
Q((X,Y ), (W,Z)) X 6= Y

1[W = Z]P (X,W ) X = Y
.

This way, coupled Markov chains (Xt, Y t)t≥0 satisfy

Xs = Y s ⇒ Xt = Y t for all t ≥ s ,

and P[Xt 6= Y t] is monotonically decreasing in t. The following idea is due to
[JOA19]. Let µ′ be a law on X which is easy to simulate, and let X0 ∼ µ′ and
Y −1 ∼ µ′, as well as Y 0 ∼ P (Y −1, ·). From here, we evolve the Markov chain
(Xt, Y t)t≥0 according to Q until Xt = Y t happens. If T = τcoup(Q, ε) is finite, one
has that P[XnT 6= Y nT ] ≤ εn, which means that the meeting time

t∗ = inf{t > 0: Xt = Y t}

is finite with probability 1. The estimator

f(Y −1) +
t∗−1∑
i=0

[f(Y t)− f(Xt)]
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is unbiased under certain regularity conditions. For Y ∼ µ, consider the heuristic
calculation

E[f(Y )] = lim
t→∞

E[f(Y t)]

= E[f(Y −1)] +
∞∑
t=0

(
E[f(Y t)]− E[f(Y t−1)]

)
= E[f(Y −1)] +

∞∑
t=0

(
E[f(Y t)]− E[f(Xt)]

)
=(∗) E

[
f(Y −1) +

∞∑
t=0

(f(Y t)− f(Xt))

]

= E

[
f(Y −1) +

t∗−1∑
t=0

(f(Y t)− f(Xt))

]
.

The marked equation, where an infinite sum and a limit process are interchanged,
has to be justified. Sufficient conditions and variants of the method can be found in
[JOA19].

2.6 Grand couplings

We might even go one step further and consider couplings that attempt to join
Markov chains that start in all states X ∈ X simultaneously. To this end, we
introduce G = {g : X → X} the set of rules (which is finite in our case) and a
discrete probability measure ρ on G such that

g ∼ ρ⇒ g(X) ∼ P (X, ·) .

This means that sampling from P (X, ·) is the same as sampling a rule g with law ρ
and taking g(X) as the sample. Using this formalism, we can define a coupling of
P for an arbitrary number n of initial states (X0

1 , . . . , X
0
n) by

∀t > 0: gt ∼ ρ, (Xt
1, . . . , X

t
n) = (gt(X

t−1
1 ), . . . , gt(X

t−1
n )) .

For this so-called grand coupling of P , one can again ask how fast it couples. Note
that for a subset A ⊆ X, the set g(A) = {g(X) : X ∈ A} satisfies

|A| ≥ |g(A)| for all g ∈ G .

It therefore makes sense to define

τcoup(ρ, ε) = inf {t : P[|gt ◦ . . . ◦ g1(X)| 6= 1] ≤ ε}

and due to a similar argumentation as above one has

τmix(P, ε) ≤ τcoup(ρ, ε)
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for grand couplings ρ of P .
We will now introduce a method called coupling from the past (CFTP) due to Propp
and Wilson [PW96]. For j ∈ Z, let gj ∼ ρ and define

Gt = g0 ◦ g−1 ◦ . . . ◦ g−t+1 for t > 0 .

Then Gt(X) represents all possible outcomes of the Markov chain at time 0, started
with arbitrary initial condition at time −t. This set is monotonically decreasing
with t, i.e. Gt(X) ⊆ Gs(X) for s ≤ t. If we assume that T = τcoup(ρ, ε) is finite, it is
easy to see that

P[|GnT (X)| 6= 1] ≤ εn

and especially one has that

G∞(X) = {X ∈ X : X ∈ Gt(X) for all t > 0}

is a single element with probability 1, and we therefore treat it as a random variable
taking values in X.

Lemma 2.8. Let ρ be a grand coupling of P such that T = τcoup(ρ, ε) is finite. Then
the set G∞(X) contains exactly one element with probability 1, and this element is
distributed according to µ.

Proof. Let X have law µ. Then for all t > 0, one has that Gt(X) has law µ and is
included in Gt(X). Due to the fact that P[|GnT (X)| 6= 1] ≤ εn, we have that

P[GnT (X) 6= G∞(X)] ≤ εn ,

and therefore

t∗ = inf{t > 0: |Gt(X)| = 1}

is finite with probability 1. So it follows

Gt∗(X) = G∞(X) ,

which implies that G∞(X) is distributed according to µ.

Using the coupling from the past procedure, we can simulate the random variable
G∞(X) which has law µ:

1. Set t← 1.

2. Sample g−t+1 from ρ.

3. Compute the set Gt(X).
If it is a single element, it equals G∞(X).
If not, set t← t+ 1 and go to Step 2.



2.7. PATH COUPLING 23

It is important to note that the obtained sample only has law µ if the above algorithm
has no stopping criterion other than finishing at Step 3. If T = τcoup(ρ, ε) is finite,
this algorithm will terminate with probability 1, and the law of the termination time
t∗ can be estimated using

P[|GnT (X)| 6= 1] ≤ εn .
Provided that the computation of the sets Gt(X) is feasible, this procedure allows
us to implement the estimator from Theorem 2.3, with an initial simulation of X0 =
G∞(X).

Theorem 2.9 (CFTP + MCMC). Let P be a transition matrix that is reversible
with respect to µ and has |λ2| < 1. Furthermore, let ρ be a grand coupling of P with
finite coupling time τcoup(ρ, ε). Then the estimator

1

N

N−1∑
t=0

f(Xt)

is unbiased, where X0 is obtained from the CFTP procedure and Xt is simulated
according to the law P (Xt−1, ·). Its variance is the same as in Theorem 2.3.

The ’cost’ t∗ to sample from µ directly which is roughly τcoup(ρ, ε) can be compared
to τmix(P, ε) which essentially dictates the decay of the bias in Theorem 2.4.

2.7 Path coupling

So far, we have seen results for sampling accuracy, based on mixing and coupling
times. One technique to obtain results on the coupling time itself is called path
coupling which was introduced in [BD97]. The idea is to view a coupling for a Markov
chain as a contraction on the configuration space, according to some carefully chosen
metric. A fixpoint argument will then imply that applying the coupling repeatedly
will result in a finite coupling time. We will introduce this method for couplings Q
of P , it however also applies to grand couplings.
Consider X to be the vertex set of a finite graph, and consider some set of unoriented
edges Y ⊆ {{X,X ′} : X,X ′ ∈ X} such that the graph (X,Y) is connected. We call a
finite sequence (X1, . . . , Xn) a path in X if {Xi, Xi+1} ∈ Y for i = 1, . . . n− 1 (with
this definition every element X defines a path with length n = 1). Let d : Y → R+

be a pre-metric, i.e. a map such that every edge is a shortest path:

d({X,Y }) = inf

{
n−1∑
i=1

d({Xi, Xi+1})
∣∣∣ (X = X1, . . . , Xn = Y ) is a path

}

for all {X,Y } ∈ Y. Such a pre-metric can be extended to a metric on X via

d(X,Y ) = inf

{
n−1∑
i=1

d({Xi, Xi+1})
∣∣∣ (X = X1, . . . , Xn = Y ) is a path

}
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that satisfies the usual properties

d(X,X) = 0 for all X ∈ X ,
d(X,Y ) = d(Y,X) for all X,Y ∈ X ,

d(X,Z) ≤ d(X,Y ) + d(Y,Z) for all X,Y, Z ∈ X ,

making (X, d) a metric space. The next theorem shows that a coupling Q of P which
is contractive for the edges in Y is contractive for the whole set X.

Theorem 2.10 (Path coupling, [BD97]). Let (X,Y) be an unoriented, connected
graph and let d : X × X → R+ be a metric which is induced by a pre-metric on Y.
Let Q be a coupling for P that is defined on adjacent states {X,Y } ∈ Y, and denote
with (X ′, Y ′) the random variables distributed according to Q((X,Y ), ·). Assume
that 0 ≤ α < 1 exists such that for all {X,Y } ∈ Y one has

E[d(X ′, Y ′) | X,Y ] ≤ αd(X,Y ) .

Then Q extends to a coupling for arbitrary X,Y ∈ X satisfying the above inequality.

Proof. Let X,Y ∈ X, and consider a shortest path (Z1, . . . , Zn) with X = Z1 and
Z = Xn. We can use the coupling Q on pairs (Zi, Zi+1) to obtain the sequence
Z ′1, . . . , Z

′
n with Z ′1 = X ′ and Z ′n = Y ′, hereby extending the coupling to arbitrary

states X,Y . Then it holds

E
[
d(X ′, Y ′) | X,Y

]
= E

[
inf

{
m−1∑
i=1

d(Wi,Wi+1) | (W1, . . . ,Wm) is a path from X ′ to Y ′
}
| X,Y

]

≤ E

[
n−1∑
i=1

d(Z ′i, Z
′
i+1) | X,Y

]

=

n−1∑
i=1

E[d(Z ′i, Z
′
i+1) | Zi, Zi+1]

≤ α

n−1∑
i=1

d(Zi, Zi+1)

= αd(X,Y ) .

For all cases that we will consider, the metric d(X,Y ) takes values in N0.

Corollary 2.11. Let the prerequisites of Theorem 2.10 hold, and let d(X,Y ) be a
metric that takes values in N0. Let D ∈ N be the maximal distance between two
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elements in X. Then for any X0, Y 0 ∈ X, the Markov chains (Xt)t≥0 and (Y t)t≥0

induced by the coupling Q satisfy

P[Xt 6= Y t] ≤ ε if t ≥ logD| log ε|
| logα| .

In other words, one has

τcoup(Q, ε) ≤
logD| log ε|
| logα| .

Proof. From Theorem 2.10 it follows immediately that

E[d(Xt, Y t)] ≤ Dαt .

Due to the fact that d(·, ·) only takes discrete values, we can choose t such that
Dαt ≤ ε and it follows that

P[d(Xt, Y t) 6= 0] ≤ ε ,

but this is the same as P[Xt 6= Y t] ≤ ε. Rearranging the condition for t gives the
result.

We see that from the contraction property, a coupling time bound immediately
follows. The path coupling theorem is important because in many cases it is easier to
prove the contraction property for adjacent elements in the graph than for arbitrary
elements.
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3
The Fortuin-Kasteleyn

Random Cluster
Model

The random cluster model introduced by Fortuin and Kasteleyn [FK72] has been of
central interest in statistical mechanics for the last few decades. The outline given
here loosely follows [DC17]. See also [Gri02] for an exhaustive treatment.

Let G = (V,E) be an undirected, finite and connected graph. We define the config-
uration space X = {A ⊆ E} as the set of all subsets of E. For an edge configuration
A, we say that an edge e ∈ E is open if e ∈ A, otherwise it is closed, see Figure 3.1.
Moreover, let c(A) be the number of connected components of A, also called (open)
clusters. The random cluster measure on X with edge parameter p ∈ (0, 1) and
cluster weight q ∈ (0,∞) is then given by

µ(A) = µG,p,q(A) = Z−1
G,p,q p

|A| (1− p)|E\A| qc(A) ,

where the partition sum Z = ZG,p,q is chosen such that µ is a probability measure.
This model has a few special cases:

• For q = 1 the model is just Bernoulli percolation and one has ZG,p,1 = 1.

• For integers q ≥ 2, the model has a strong relation to the q-state Potts model.

• Another reformulation for integer q ≥ 2 is given by a closed loop model.

• For p → 0 and q/p → 0, the model converges to the uniform measure on all
spanning trees of G.

During the course of this thesis, we will focus our attention on the integer q ≥ 2
case, with G tending to Z2 (which we will have to define rigorously). However, many
important properties of the model can be stated for q ∈ [1,∞) on arbitrary finite
graphs.

27
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G = (V,E) A ⊆ E

Figure 3.1: A 4× 4 grid graph (left) and a corresponding edge configuration A ⊆ E
(right), drawn with bold edges and vertices to emphasize the cluster structure of A.
In this case, c(A) = 7.

3.1 Monotonicity of the random cluster model

Let us start with the observation that the configuration space X exhibits a natural
partial order given by inclusion:

A ≤ B ⇔ A ⊆ B .

We call a subset A ⊆ X an increasing event if for an element A ∈ A all supersets
of A are also in A. For q ≥ 1, it is easy to see that the random cluster measure is
monotone in p.

Lemma 3.1 (Monotonicity in p). Let G = (V,E) be an undirected, finite and
connected graph. Let q ≥ 1 and 0 < p ≤ p′ < 1. Then the measures µ = µG,p,q
and µ′ = µG,p′,q satisfy

µ[A] ≤ µ′[A]

for all increasing events A ⊆ X.

Moreover, increasing events have a certain positivity property.

Lemma 3.2 (Fortuin-Kasteleyn-Ginibre inequality). Let G = (V,E) be an undi-
rected, finite and connected graph. Let q ≥ 1 and 0 < p < 1, and µ = µG,p,q the
random cluster measure. Then for two increasing events A and B one has

µ[A ∩ B] ≥ µ[A]µ[B] .

Note that the inequality reverses its sign if one of the events is decreasing, i.e.
its complement is increasing. Last but not least, the random cluster measure is
monotone with respect to boundary conditions.
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Lemma 3.3 (Monotonicity with respect to boundary conditions). Let G = (V,E)
be an undirected, finite and connected graph, and F ⊆ E a subset of edges. Let
C ⊆ F be a boundary condition for the measure

µF,C(A) = µG,p,q(A | A ∩ F = C) .

Then for any increasing event A and C ⊆ C ′ ⊆ F one has

µF,C [A] ≤ µF,C′ [A] .

The statements are all about stochastic domination. For two probability distribu-
tions µ and µ′, we write µ ≤ µ′ if

µ[A] ≤ µ′[A]

for all increasing events A ⊆ X. This relation defines a partial order on the set of
probability distributions on X.
To prove these three lemmata, we can use Markov chain techniques. One of the
simplest Markov chains for the random cluster model are the so-called Glauber dy-
namics. In the literature, it is also sometimes called heathbath process, however we
wish to reserve this term for the spin system setting. Given a state A as starting
point, one Glauber dynamics step to obtain B can be described as follows:

1. Choose an edge e ∈ E uniformly at random.

2. Choose B = A \ {e} or B = A ∪ {e}, according to the measure

µG,p,q(B|B \ {e} = A \ {e}) .

We will check the reversibility of this Markov chain with respect to µG,p,q in Chapter
4. The transition probability at Step 2 depends on the cluster structures of A \ {e}
and A ∪ {e}. We call e ∈ E pivotal to A if c(A \ {e}) > c(A ∪ {e}).

Proof of Lemma 3.1. Let X0 = ∅ and Y 0 = E be the starting points of the Markov
chains (Xt)t≥0 and (Y t)t≥0, given by Glauber dynamics with parameter p and p′.
Furthermore, we couple the chains in the following way:

• At time t, the edge e ∈ E chosen in Step 1 is the same for both dynamics.

• The choice Xt+1 = Xt \ {e} or Xt+1 = Xt ∪{e} is determined by a parameter
r ∈ [0, 1] drawn uniformly at random. If

r < µG,p,q[X
t+1 = Xt \ {e}|(Xt \ {e}) ⊆ Xt+1] ,

we set Xt+1 = Xt \ {e}, otherwise Xt+1 = Xt ∪ {e}.

• Y t+1 is determined analogously with respect to the measure µG,p′,q and the
same parameter r.
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Using this coupling, one readily verifies that Xt ⊆ Y t for all t ≥ 0: Let us assume
that Xt−1 ⊆ Y t−1. Then, if e is pivotal to Y t−1, it is also pivotal to Xt−1. So if an
edge e pivotal to Y t−1 is chosen in Step 1 of the Glauber dynamics, we can calculate

P[e /∈ Y t | Y t−1] =
(1− p′)q

p′ + (1− p′)q ≤
(1− p)q

p+ (1− p)q = P[e /∈ Xt | Xt−1] .

This implies Xt ⊆ Y t, because the converse can only happen if e /∈ Y t, but this
implies r < P[e /∈ Y t | Y t−1] ≤ P[e /∈ Xt | Xt−1] and therefore e /∈ Xt. If the edge e
is not pivotal to Y t−1, then

P[e /∈ Y t | Y t−1] = 1− p′ ≤ 1− p ≤ P[e /∈ Xt | Xt−1]

where the last inequality is true whether e is pivotal to Xt−1 or not. So again, we
get Xt ⊆ Y t.
Now, let A be an increasing event. Then we have P[Xt ∈ A] −→ µG,p,q[A] and
P[Y t ∈ A] −→ µG,p′,q[A] because (Xt)t≥0 and (Y t)t≥0 tend to their respective
stationary distributions. Moreover, we know that P[Xt ∈ A] ≤ P[Y t ∈ A] because
Xt ⊆ Y t for all t ≥ 0. Therefore, in the limit we get µG,p,q[A] ≤ µG,p′,q[A].

We can prove the other two lemmata similarly.

Proof of Lemma 3.2. We reformulate the statement as

µ[B] ≤ µ[B | A]

and construct a coupling using Glauber dynamics. Let X0 = Y 0 ∈ A and define
(Xt)t≥0 to be the usual Glauber dynamics with respect to µ. The chain (Y t)t≥0

shall be given by Glauber dynamics with respect to µ(· | A), i.e. at Step 2 of
the usual dynamics the chain cannot leave the increasing set A. The set A is
’simply connected’ by Glauber dynamics steps, as all states can be reached from the
maximal element E ∈ A. We can couple (Xt)t≥0 and (Y t)t≥0 in the same way as
we did in the proof of Lemma 3.1. Using this coupling, we again see that Xt ⊆ Y t

for all t ≥ 0, because (Y t)t≥0 behaves the same as (Xt)t≥0, only with an additional
constraint to not remove an edge sometimes. We have that P[Xt ∈ B] −→ µ[B] and
P[Y t ∈ B] −→ µ[B | A], as well as P[Xt ∈ B] ≤ P[Y t ∈ B] for all t ≥ 0. So in the
limit, we obtain µ[B] ≤ µ[B | A].

Proof of Lemma 3.3. Let X0 = C and Y 0 = C ′ and define (Xt)t≥0 and (Y t)t≥0 via
coupled Glauber dynamics with respect to the measures µF,C and µF,C

′
. This boils

down to the variant where only edges e ∈ E\F are chosen at Step 1. Then as above it
can easily be verified thatXt ⊆ Y t for all t ≥ 0. We have that P[Xt ∈ A] −→ µF,C [A]
and P[Y t ∈ A] −→ µF,C

′
[A], as well as P[Xt ∈ A] ≤ P[Y t ∈ A] for all t ≥ 0. So in

the limit, we obtain µF,C [A] ≤ µF,C′ [A].

Lemma 3.1, 3.2 and 3.3 all use the (grand) monotone coupling for Glauber dynamics
to obtain their respective statements in the limit t → ∞. Using the coupling from
the past (CFTP) procedure (see Chapter 2), we can derive even stronger results.
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Theorem 3.4 (Monotone coupling realization). Let p ≤ p′. Let F ⊆ E be a bound-
ary set and C ⊆ D ⊆ F two boundary conditions. Let A be an increasing event such
that {B : B ∩ F = D,B ∈ A} is nonempty. Let µ = µF,CG,p,q and µ′ = µF,DG,p′,q(· | A).
Then we have

µ ≤ µ′ .
Moreover, there exists a coupling for random variables (A,B) such that

A ∼ µ ,B ∼ µ′ ,P[A ≤ B] = 1 .

Proof. Let

Y = {X ∈ X : X ∩ F = C}, Y′ = {X ∈ X : X ∩ F = D ,X ∈ A}

be the sets we define our Glauber dynamics on. We set up a grand coupling step for
the Glauber dynamics in the usual way, i.e. the edge e chosen in Step 1 (uniformly
from the set E \ F ) is the same for all possible states the Markov chain is in. The
result of the choice in Step 2 depends on a random variable r which is uniformly
distributed on [0, 1], also independent of the state of the chain. This procedure
defines a map (e, r)→ g, where g : Y→ Y is the rule described above for parameter
p and C as boundary condition. Given parameter p′, D as boundary condition,
and the additional constraint that the Markov chain cannot leave A, we call the
obtained rule h : Y′ → Y′. From the previous lemmas we know that for A ≤ B,
A ∈ Y and B ∈ Y′ one has g(A) ≤ h(B). Let us consider the CFTP procedure
for both processes, where we couple g−t and h−t as described. Let G∞(Y) and
H∞(Y′) be the corresponding results obtained from the CFTP procedures. The
pair (G∞(Y), H∞(Y′)) is the coupling we are looking for: G∞(Y) is distributed
according to µ and H∞(Y′) is distributed according to µ′. It remains to show that
the coupling for the rules g−t and h−t implies G∞(Y) ≤ H∞(Y′).
To see this, consider the set

Gt(Y′) = g0 ◦ . . . g−t+1(Y) .

We know that G∞(Y) ∈ Gt(Y) for any t, but from the definition it also follows that
Gt(C) is the lower bound for Gt(Y). In the same way, we have Ht(D∪ (E \F )) ≥ Z
for all Z ∈ Ht(Y′). Moreover, due to the coupling for the rules g and h we have
that Gt(C) ≤ Ht(D ∪ (E \ F )). For t → ∞, we know that Gt(C) → G∞(Y) and
Ht(D∪E \F )→ G∞(Y′). So in the limit, one has G∞(Y) ≤ H∞(Y′). The existence
of this coupling immediately implies µ ≤ µ′.

It is worth noting that this procedure to obtain the coupling is constructive.

3.2 The q-state Potts model

As we have seen, Glauber dynamics are a powerful tool to analyze the random cluster
model. The next Markov chain will make the connection to the q-state Potts model
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Figure 3.2: A visualization of the Swendsen-Wang Markov chain step. For an initial
edge configuration (far left), assign to all clusters a spin (left, here visualized with
q = 3 colors). All edges with aligning spin at the endpoints (right) are eligible for
the resulting edge configuration (far right).

more evident. From now on, we consider q ∈ N. The following procedure is called
Edwards-Sokal coupling or Swendsen-Wang algorithm [SW87] (see Figure 3.2):

1. For a given state A, assign to each open cluster C of A a spin s ∈ {1, . . . , q},
uniformly at random.

2. Assign to each vertex v ∈ V the spin of the open cluster C it belongs to. This
map σ : V → {1, . . . , q} we call spin configuration.

3. For a spin configuration s, obtain the new state B via the rule

P[e ∈ B] =

{
p both endpoints of e have the same spin in σ,

0 else,

considered independently for each e ∈ E.

We will now show the following:

Lemma 3.5. Let G = (V,E) be an undirected, finite and connected graph, and let
q ∈ N and 0 < p < 1. The Edwards-Sokal coupling is ergodic and reversible with
respect to the random cluster measure µ = µG,p,q.

Proof. Let A,B ⊆ E be two edge configurations, and denote with P[A → B] the
probability to go from A to B via an Edwars-Sokal coupling step. The chain is
ergodic because P[A → B] is nonzero; if at Step 1 all clusters get the same color,
and at Step 3 exactly the edges in B are chosen, we obtain any B from any A.
For reversibility we need to show that

µ(A)P[A→ B] = µ(B)P[B → A] .

We calculate
P[A→ B] =

∑
σ

P[A→ σ]P[σ → B]

and consider these probabilities separately. Let A(σ) ⊆ E be the set of edges in E
whose endpoints have the same spin. Then we have

P[A→ σ] = 1[A ⊆ A(σ)]q−c(A) .
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Figure 3.3: Obtaining a spin configuration (q = 3) from an edge configuration via
steps 1 and 2 of the Edwards-Sokal coupling.

On the other hand,

P[σ → B] = 1[B ⊆ A(σ)]p|B|(1− p)|A(σ)\B| ,

so overall we get

µ(A)P[A→ B]

=µ(A)
∑
σ

1[A ∩B ⊆ A(σ)]p|B|(1− p)|A(σ)\B|q−c(A)

=Z−1
∑
σ

(1− p)−|E\A(σ)|1[A ∩B ⊆ A(σ)]p|B|(1− p)|E\B|p|A|(1− p)|E\A| .

This term is symmetric in A and B, so we get reversibility.

This Markov chain is popular due to being easy to implement on one hand, as well as
being a global algorithm on the other hand. It is believed (and this belief is heavily
backed up by experiments) that it converges faster to the stationary distribution
than local algorithms in many cases. However, it is also interesting in the theoretical
context.

Lemma 3.6. Let A ∼ µ. Then the measure ν(σ) which is obtained by applying Step
1 and 2 of the Edwards-Sokal coupling to A is the q-state Potts model distribution
on spin configurations (see Figure 3.3)

ν(σ) = Z−1(1− p)|E\A(σ)| .

Likewise, applying Step 3 to σ ∼ ν results in an edge configuration B ∼ µ.

Note that we employ a different notation of the Potts model in contrast to the usual
literature. It is more convenient for us to stay closer to the random cluster model.
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Proof. We compute

ν(σ) =
∑
A

µ(A)P[A→ σ]

=
∑
A

Z−1p|A|(1− p)|E\A|qc(A)1[A ⊆ A(σ)]q−c(A)

= Z−1
∑
A

p|A|(1− p)|E\A|1[A ⊆ A(σ)]

= Z−1(1− p)|E\A(σ)| .

Applying Step 3 to σ ∼ ν yields the original measure µ:∑
σ

ν(σ)P[σ → B]

=
∑
σ

Z−1(1− p)|E\A(σ)|1[B ⊆ A(σ)]p|A|(1− p)|A(σ)\B|

=Z−1
∑
σ

1[B ⊆ A(σ)]p|B|(1− p)|E\B|

=Z−1p|B|(1− p)|E\B|qc(B) = µ(B)

The Edwards-Sokal coupling alternates between the random cluster model and the
q-state Potts model. This can also be interpreted as a special type of Gibbs sampler.

Corollary 3.7 (Joint model). Consider the Joint model measure

ρ(A, σ) = Z−1p|A|(1− p)|E\A|1[A ⊆ A(σ)] .

Then one has

a) ∑
σ

ρ(A, σ) = µ(A) .

b) ∑
A

ρ(A, σ) = ν(σ) .

c) The Edwards-Sokal coupling applied to A generates σ ∼ ρ(σ | A) and then
B ∼ ρ(B | σ).

3.3 Monotonicity of the Ising model

For q = 2, the q-state Potts model is also called Ising model, named after Ernst Ising
[Isi25]. In this case, the model exhibits another monotonicity structure possible due
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to its binary nature. We define a partial order on spin configurations σ, τ : V → {1, 2}
via

σ ≤ τ ⇔ ∀v ∈ V : σ(v) ≤ τ(v) .

Many of the properties that follow are similar to those of the random cluster model,
however this partial order is fundamentally different due to the spin symmetry of
the Ising model (in the absence of boundary conditions). We will use another type
of Glauber dynamics to prove the fundamental properties. Consider the procedure

1. For a given spin configuration σ, choose a vertex u ∈ V uniformly at random.

2. Draw r ∈ [0, 1] from the uniform distribution and obtain the spin configuration
σ′ given by

σ′(v) =


σ(v) v 6= u

1 v = u, r < ν[σ′(u) = 1 | ∀v 6= u : σ′(v) = σ(v)]

2 else .

This so-called heatbath dynamics is clearly reversible. It is already formulated to
obtain a grand coupling for the Ising model case, namely by choosing u ∈ V in Step
1 and r ∈ [0, 1] in Step 2 independently from σ. It has the additional property of
being completely local, because varying a spin configuration at spin u only has an
influence on edges e ∈ A(σ) if one of the endpoints of e is u. We proceed to prove
an analogue to Theorem 3.4.

Theorem 3.8 (Monotone coupling for the Ising model). Let G = (V,E) be a finite
graph, q = 2 and p ∈ (0, 1). Let W ⊆ V be a boundary set and ψ, χ : W → {1, 2} be
boundary conditions with ψ ≤ χ. Let A be an increasing event from the set of spin
configurations Ω = {σ : V → {1, 2}} with {σ | ∀w ∈ W : σ(w) = χ(w), σ ∈ A} being
nonempty. Consider the conditional Ising model distributions

ν = ν(σ | ∀w ∈W : σ(w) = ψ(w))

and
ν ′ = ν(σ | ∀w ∈W : σ(w) = χ(w), σ ∈ A) .

Then we have
ν ≤ ν ′ ,

and there exists a coupling (σ, τ) with

σ ∼ ν, τ ∼ ν ′, P[σ ≤ τ ] = 1 .

Note that we omit the monotonicity in p, which is not true in this case.

Proof. Let us assume first that the second statement is true. For an increasing event
B ⊆ Ω, we have that

ν[B] = P[σ ∈ B] ≤ P[τ ∈ B] ≤ ν ′[B] ,
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showing that ν ≤ ν ′. To show the existence of the coupling (σ, τ), we proceed as in
Lemma 3.2 and 3.3 to show that the grand coupling is monotone, and then use a
CFTP approach to obtain the result. Let

Y = {σ ∈ Ω | ∀w ∈W : σ(w) = ψ(w)}

and
Y′ = {τ ∈ Ω | ∀w ∈W : τ(w) = χ(w), τ ∈ A}

be the domains of ν and ν ′, respectively. Consider the coupled heatbath process for
σ ∈ Y, τ ∈ Y′ and σ ≤ τ with the additional constraint that at Step 2, the Markov
chain does nothing if the proposed change would result in a configuration σ′ /∈ Y or
τ ′ /∈ Y′. If u ∈ V is also in W , we have σ′ = σ and τ ′ = τ , and therefore σ′ ≤ τ ′.
Let u ∈ V \W and U ⊆ V be the set of vertices that share an edge with u. Then
P[σ′(u) = 2] increases with increasing

|{v ∈ U : σ(v) = 2}| .

Because of σ ≤ τ we get

|{v ∈ U : σ(v) = 2}| ≤ |{v ∈ U : τ(v) = 2}|

and the fact that 1[τ ′ ∈ A] is an increasing function in τ ′(u) overall implies

P[σ′(u) = 2] ≤ P[τ ′(u) = 2] .

Therefore, at Step 2 of the coupled heatbath dynamics, the case σ′(u) = 2, τ ′(u) = 1
cannot happen and we get

σ ≤ τ ⇒ σ′ ≤ τ ′ .
The rest of the proof is completely analogue to Theorem 3.4. The desired coupling
is obtained by coupled CFTP procedures.

3.4 Infinite volume measures

We will now turn towards one of the main features of the model, the phase transition.
For this, we will restrict ourselves to the Z2 grid graph and subgraphs of it. Because
Z2 is an infinite graph, we first need to rigorously introduce the random cluster
measure on this graph. Consider Z2 as a graph embedded in R2, and let En be
the set of edges where both endpoints a, b ∈ R2 satisfy ‖a‖∞, ‖b‖∞ ≤ n, with Vn
being the corresponding vertex set. The subgraph induced by En is a bounded,
rectangular grid graph with side-length 2n (Figure 3.4).

Theorem 3.9 (random cluster model on Z2). Let p, q be fixed and An an event that
only depends on edges in En. Then

µ0[An] = µ0
Z2,p,q[An] := lim

m→∞
µEm,p,q[An]

exists and defines a measure on such events. This measure extends to infinite events
as well.
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(0, 0)

n = 3

Figure 3.4: The graph En (n = 3) embedded in Z2.

The measure µ0 is called infinite-volume random cluster measure with free boundary
conditions. All edges in Z2 \ En can be thought of as closed edges. The measure
µ1, which is obtained if the edges in Z2 \ En are always open, is called infinite-
volume random cluster measure with wired boundary conditions. Although it is not
possible to define boundary conditions on Z2, there is a-priori no reason for these
two measures to be the same, and we will see cases where they in fact differ.

Proof. For now, consider an event An which only depends on edges in En and is
increasing. For m ≥ n, let µm = µEm,p,q. Note that the event An is defined for all
models µm. Let furthermore Fm = Em+1 \Em and Bm(B) = {C ⊆ Em+1 : C∩Fm =
B} for B ⊆ Fm. We have

µm+1[An] =
∑

B⊆Em+1\Em

∑
A⊆Em

1[A ∪B ∈ An]µm+1(A ∪B)

=
∑

B⊆Em+1\Em

∑
A⊆Em

1[A ∈ An]µm+1[Bm(B)]µm+1(A ∪B | Bm(B))

=
∑

B⊆Em+1\Em
µm+1[Bm(B)]

∑
A⊆Em

1[A ∈ An]µFm,Bm (A)

≥
∑

B⊆Em+1\Em
µm+1[Bm(B)]

∑
A⊆Em

1[A ∈ An]µFm,∅m (A)

=
∑

B⊆Em+1\Em
µm+1[Bm(B)]µm[An]

= µm[An] ,

where we used the monotonicity of the model in boundary conditions for increasing
events. This implies that the sequence {µm[An]} converges, so µ0[An] is well-defined
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Figure 3.5: Random cluster model simulations on a 16 × 16 grid with q = 2 and
p = pc − 0.2 (left), p = pc (middle) and p = pc + 0.35 (right). The cluster structure
(black) shows the typical behavior of the model for the different phases.

for increasing events. Next, we show that all finite events An can be constructed
from increasing ones. For any state A ∈ En, we know that {B : A ∩ En ⊆ B ∩ En}
and {B : A∩En ⊆ B ∩En} \ {B : A∩En = B ∩En} are increasing sets. Therefore,
we can define µ0 for the event {B : A ∩ En = B ∩ En} via

µ0[{B : A ∩ En ⊆ B ∩ En}]− µ0[{B : A ∩ En ⊆ B ∩ En} \ {B : A ∩ En = B ∩ En}] .

Any event that depends only on edges in En can be written as the disjoint union of
such events, so we can extend µ0 naturally to arbitrary events depending only on
edges in En.
It remains to show that the measure extends to infinite events. Let X be the
power set of E, where E is the set of edges in Z2, i.e. X is the set of all possible
configurations on the infinite lattice. We define µ0[X] = 1 and µ0[∅] = 0. Let
A ⊆ X be a finite event. Then the event X \A is also a finite event. Moreover, the
union of two finite events is finite. Therefore, the set consisting of finite events, the
empty set and X form an algebra. Our considerations above have shown that µ0 is
a pre-measure on this algebra, and it is of course σ-finite. Therefore, by the Hahn-
Kolmogorov-theorem, it uniquely extends to a measure on the σ-Algebra generated
by finite events, and this measure is also a probability measure.

The model has three distinct phases: the subcritical phase, the critical phase and the
supercritical phase, see Figure 3.5. These can easily be observed while simulating
the model at different parameter sets, and the nature of the phase transition has
been conjectured for a very long time now. We will begin with the observation that
the model is self-dual, which allows us to make a guess for the location of the critical
point.
Let us consider the model µm on the graph Em. This graph is planar, hence there
exists a unique dual graph in the plane, call it Dm. For a configuration A ⊆ Em,
we can define a dual configuration B ⊆ Dm as follows: An edge e ∈ A is open if
and only if its dual edge d(e) ∈ B is not open in the dual model (see Figure 3.6).
Given that A is distributed according to µm, what is the distribution of B? To see
this, we consider the subgraph induced by A = ∅. This graph has |Vm| vertices,
zero edges |A| = 0, one face f(A) = 1, and c(A) = |Vm| open clusters. So we
get |Vm| − c(A) − |A| + f(A) = −1 for A = ∅. This identity actually holds for all
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Figure 3.6: The dual model of the random cluster measure on En (black) is given on a
rectangular graph with wired boundary conditions (white). Primal faces correspond
to dual vertices, and the outer face is represented by the wired component of the
dual graph.

A ⊆ Em, which can be shown by induction. For an arbitrary A, let e /∈ A. If e is
not pivotal to A, then both endpoints of e already belong to the same cluster, so
we have c(A) = c(A ∪ {e}). This means that the face containing e is split into two
faces such that f(A) + 1 = f(A ∪ {e}). Thus, we have that |A| increases by one
and f(A) increases by one, sustaining the identity. If e is pivotal to A, we get that
c(A) = c(A ∪ {e}) + 1. Moreover it is easy to see that the face containing e is not
divided into two faces, such that the identity is also preserved. We have shown

Lemma 3.10. For an edge configuration A of a finite, planar graph G = (V,E),
one has

|V | − |A|+ 1 = c(A)− f(A) ,

where c(A) is the number of open clusters and f(A) is the number of faces of A.

It is easy to see that the faces of A can be identified with the open clusters of B
such that f(A) = c(B), see Figure 3.6. Thus, the expression c(A)− c(B) + |Dm \B|
is constant and we can compute

µm(A) ∝ p|A|(1− p)|Em\A|qc(A)

∝ p|Dm\B|(1− p)|B|qc(B)−|Dm\B|

= (p/q)|Dm\B| (1− p)|B|qc(B)

= (p/q + 1− p)|Dm|
(

(1− p)
p/q + 1− p

)|B|( p

p/q + 1− p

)|Dm\B|
qc(B)

∝ p|B|∗ (1− p∗)|Dm\B|qc(B)
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with p∗ = (1−p)
p/q+1−p . We conclude that the distribution of B is given by the random

cluster model on the dual graph, with same q and dual parameter p∗. How does
the dual graph of Em look like? We get a rectangular graph, where the outermost
vertices are additionally connected to an outer vertex (representing the outer face
of the primal graph). Considering the random cluster model on this graph, it is
equivalent to the model on a graph where the outer edges are fixed to be always
open; the outer open component acts as the outer vertex in this case (see Figure
3.6). From all these considerations, one can infer

Corollary 3.11 (Dual measure). Let G = (V,E) be a finite, planar graph, q ∈ N
and p ∈ (0, 1). Furthermore, let G∗ be the dual graph. An edge configuration A ⊆ E
is distributed according to µ = µG,p,q if and only if the dual configuration B is

distributed according to µ∗ = µG∗,p∗,q where p∗ = (1−p)
p/q+1−p .

For the Z2-graph, it follows that the measure µ0
Z2,p,q has the dual µ1

Z2,p∗,q
.

3.5 The critical point

One can ask what happens if we consider self-dual graphs, in the finite case or for
Z2. In this case, the model should truly be self-dual if p = p∗. Moreover, one can
state the following heuristic argument concerning the phase transition: If the model
only has one critical point, it should be the self-dual point; otherwise the dual point
to a critical point should also be critical in some sense. This was observed first by
Kramers and Wannier [KW41], which stated an equivalent relation for p∗ in the
Ising model setting. Let us compute the self-dual point psd:

p = p∗

⇔ p =
(1− p)

p/q + 1− p

⇔ p =

√
q

√
q + 1

.

For a long time, it was conjectured that the phase transition takes place at the
self-dual point. What does this actually mean? One can observe that the model
exhibits vastly different behavior dependent on which phase it is in, see Figure 3.5.
We will now state the main results for the different phases of the random cluster
model (without proof). In the following, let ’v ↔ w’ denote the event that v and w
belong to the same open cluster in A. We start with the subcritical phase.

Theorem 3.12 (Beffara, Duminil Copin, [BDC12]). Let q ≥ 1 and p < pc = psd.
Then the measures µ0

Z2,p,q and µ1
Z2,p,q are equal and one has

µZ2,p,q [v ↔ w] ≤ C(p, q) exp(−c(p, q)‖v − w‖2)

for some constants c(p, q), C(p, q) > 0 and the euclidean norm ‖ · ‖2.
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Already prior to this, it has been shown by Alexander that exponential decay of
correlations in the infinite setting implies the same for finite sublattices.

Theorem 3.13 (Alexander, [Ale04]). Let q ≥ 1 and p < pc = psd. For n ∈ N,
consider the random cluster model µn on En with any boundary condition. Then

µn [v ↔ w via an open path in En] ≤ C(p, q) exp(−c(p, q)‖v − w‖2) ,

where the constants do not depend on the boundary condition or n.

Theorem 3.13 is interesting for us because we will deal with finite sublattices of Z2

a lot. It is important to note that the result also holds for more general shapes such
as rectangular subgraphs of Z2.

In the supercritical phase, Theorem 3.12 holds for the dual model and has the
following consequence, see for instance [Gri02].

Theorem 3.14 (Unique infinite volume cluster). Let q ≥ 1 and p > pc = psd. Then
the measures µ0

Z2,p,q and µ1
Z2,p,q are equal and one has

µZ2,p,q [∃! unbounded open cluster ] = 1 ,

as well as
µZ2,p,q [v ↔ w] ≥ B(p, q) > 0

for all v, w ∈ Z2.

The recent results for the critical case show that the random cluster model has a
continuous phase transition for q ∈ [1, 4], where the infinite volume measure does
not depend on the boundary conditions. It is discontinuous for q > 4, where care
has to be taken when constructing the infinite volume measure from finite ones with
specific boundary conditions.

Theorem 3.15 (Duminil Copin, Sidoravicius, Tassion [DCST16]). Let 1 ≤ q ≤ 4
and p = pc = psd. Then the measures µ0

Z2,p,q and µ1
Z2,p,q are equal and one has

µZ2,p,q [∃ unbounded open cluster ] = 0 .

The correlation function
µZ2,p,q [v ↔ w]

decays subexponentially with increasing euclidean distance ‖v − w‖2.
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Theorem 3.16 (Duminil Copin, Gagnebin, Harel, Manolescu, Tassion
[DCGH+16]). Let q > 4 and p = pc = psd. Then the measures µ0

Z2,p,q and µ1
Z2,p,q

are not equal. For free boundary conditions, one has

µ0
Z2,p,q [v ↔ w] ≤ C(p, q) exp(−c(p, q)‖v − w‖2)

for some constants c(p, q), C(p, q) > 0 and the euclidean norm ‖ · ‖2. For wired
boundary conditions, one has

µ1
Z2,p,q [∃! unbounded open cluster ] = 1 ,

as well as
µ1
Z2,p,q [v ↔ w] ≥ B(p, q) > 0

for all v, w ∈ Z2. Other infinite volume measures can be constructed using different
boundary conditions.

This has the following consequences for the q-state Potts model: In the critical case
with q ∈ {1, 2, 3, 4}, there is a unique infinite-volume measure ν, there is almost
surely no unbounded cluster with neighboring vertices that all have the same spin,
and ν[σ(v) = σ(w)] tends to 1

q subexponentially fast with increasing distance. For
q > 4, the critical Potts model has many infinite-volume measures with behavior
depending on the underlying boundary conditions.



4
Markov chains for the

Fortuin-Kasteleyn
Random Cluster

Model

Throughout this chapter we will introduce Markov chains for the Fortuin-Kasteleyn
random cluster model and the related q-state Potts model. Of special interest to us
will be their scaling behavior for increasing graph sizes.

4.1 Glauber dynamics

Let G = (V,E) be an undirected, finite and connected graph. We consider the
random cluster probability measure µ = µG,p,q with parameters p ∈ (0, 1) and
q ∈ [1,∞), defined on subsets A ⊆ E given by

µ(A) =
1

Z
p|A| (1− p)|E\A| qc(A)

with partition function Z. We have already seen the Glauber dynamics Markov chain
(also called Sweeny’s algorithm [Swe83]), which can be described via the procedure:

1. Choose an edge e ∈ E uniformly at random.

2. Choose At+1 = At \ {e} or At+1 = At ∪ {e}, according to the measure

µ
(
· | A \ {e} = At \ {e}

)
.

This Markov chain is reversible: consider two states A,B which differ only in one
edge e ∈ E such that the probability to go from A to B and vice versa is not zero.
We define C = A ∩B, and see that the probability to go from A to B is given by

|E|−1 · µ [D = B | D \ {e} = C] .

Moreover, we can write

µ(A) = µ[{D : D \ {e} = C}]µ[D = A | D \ {e} = C]

43
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such that the probability to sample A from µ and then go to B via a Glauber
dynamics step is given by

|E|−1 · µ [D = B | D \ {e} = C]µ[D = A | D \ {e} = C]µ[{D : D \ {e} = C}] .

This expression is symmetric in A and B, which is the definition of reversibility.
We have seen in Lemma 3.1 that this Markov chain naturally preserves the given
partial order A ≤ B ⇔ A ⊆ B, meaning that there exists a (grand) coupling such
that Markov chains with As ≤ Bs satisfy At ≤ Bt for all t ≥ s. This even generalizes
to comparable boundary conditions: If we consider F ⊆ E to be fixed (i.e. at Step
1 of the dynamics, we choose edges from E \ F ), we still get that At ≤ Bt for all
t ≥ s provided that As ≤ Bs (see Lemma 3.3).
Let us consider the realizability of the Glauber dynamics Markov chain. At each
step, one has to decide whether an edge e ∈ E is pivotal or not. This can lead
to the situation that the algorithmic cost of a Gauber dynamics step is not O(1),
but rather depending on the underlying graph G = (V,E). In [EmcW13], many
algorithmic approaches to realize the Glauber dynamics have been analyzed and
compared, coming to the conclusion that for subgraphs of Z2, the complexity can
be controlled. In the subcritical and supercritical phase, the cluster structure of the
underlying states usually allows fast computations in this regard.

4.2 Block dynamics

We can use a similar argumentation for the more general so-called block dynamics.
Consider a probability distribution ω on the subsets of E, and define the procedure

1. Choose a subset T ⊆ E according to the law ω.

2. Choose At+1 according to the measure

µ
(
A | A \ T = At \ T

)
,

in other words resample At on T according to the conditional measure with
fixed values on E \ T .

This Markov chain, call it P , is reversible: For two states A,B the probability to go
from A to B is given by

P[A→ B] =
∑
T⊆E

ω(T )µ (B | B \ T = A \ T ) .

For a given T , if µ (B | B \ T = A \ T ) 6= 0 we can define C = C(T ) = A\T = B\T .
Therefore, we get

ω(T )µ (B | B \ T = A \ T )µ(A)

= ω(T )µ (B | B \ T = C)µ(A)

= ω(T )µ (B | B \ T = C)µ (A | A \ T = C)µ[{D : D \ T = C}] ,

and it follows that the term µ(A)P[A → B] is symmetric in A and B, proving
reversibility.
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Moreover, there exists a monotone grand coupling for this Markov chain. The subset
T chosen in Step 1 can be chosen independently of the state the Markov chain is
in, and for two states A ≤ B, the resampling in Step 2 can be done monotonically
according to Theorem 3.4.
Of course, the block dynamics will behave very different for specific choices of ω.
For instance, if ω chooses the whole set E with probability 1, it reduces to perfect
sampling. Using Glauber dynamics with the CFTP procedure, it is possible to
generate a sample from µ, however the algorithmic cost will depend on the coupling
time for the Glauber dynamics.

4.3 Swendsen-Wang dynamics

The next Markov chain we will consider is the Swendsen-Wang dynamics [SW87].
We have already seen it in Lemma 3.5 and Corollary 3.7, so let us reintroduce it
quickly. We restrict ourselves to integer values of q and define the procedure

1. For a given state A, assign to each open cluster C of A a spin s ∈ {1, . . . , q},
uniformly at random.

2. Assign to each vertex v ∈ V the spin of the open cluster C it belongs to. This
map σ : V → {1, . . . , q} we call spin configuration.

3. For a spin configuration σ, obtain the new state B via the rule

P[e ∈ B] =

{
p both endpoints of e have the same spin in σ,

0 else,

considered independently for each e ∈ E.

From Lemma 3.5 we know that this Markov chain is reversible and ergodic, and
Lemma 3.6 tells us that spin configurations σ obtained from A ∼ µ are distributed
according to the q-state Potts measure

ν(σ) = Z−1(1− p)|E\A(σ)| .

Similarly,we can start with a spin configuration and apply steps 3, 1 and 2 to obtain a
new spin configuration. Both Markov chains are easily realizable, the algorithmically
difficult step is to find the cluster configuration for a given edge configuration, but
this is possible in O(|E|) cost using standard graph search algorithms. For a global
algorithm that potentially changes the whole system, this is acceptable and allows
for an easy comparison to local algorithms.

4.4 Monotone Swendsen-Wang dynamics

In the Ising model case with q = 2 there exists a modification of this procedure that
is monotone, introduced in [BCV18]. The partial order on spin configurations given
by

σ ≤ τ ⇔ σ(v) ≤ τ(v) for all v ∈ V
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makes the configurations σ ≡ 1 and τ ≡ 2 extremal and we have a similar situation
as in the random cluster model case, with a unique minimal and maximal element
being present. The following modification has been called monotone Swendsen-Wang
dynamics:

1. For a spin configuration σ, obtain the edge configuration B via the rule

P[e ∈ B | σ] =

{
p both endpoints of e have the same spin in σ ,

0 else,

considered independently for each e ∈ E.

2. Assign to each vertex v ∈ V a new spin θ(v), chosen uniformly between 1 and
2.

3. Consider each open cluster C of B. If for all v ∈ C the spins θ(v) align, set
σ′(v) = θ(v) for all v ∈ C. Otherwise set σ′(v) = σ(v) for v ∈ C. Then σ′ is
the new spin configuration.

This Markov chain is similar to the usual Swendsen-Wang dynamics, but clusters
have to agree at each vertex on the spin they choose, otherwise there is no change.
Intuition tells us that this Markov Chain should be slower than Swendsen-Wang
dynamics, as clusters will have a decreasing chance of changing their spin with
increasing size.
For reversibility, we need to compute

P[σ → σ′] =
∑
B

P[σ → (σ,B)]P[(σ,B)→ σ′] .

The first probability is given by Step 1 of the dynamics and coincides with the usual
Swendsen-Wang dynamics, namely

P[σ → (σ,B)] = 1[B ⊆ A(σ)]p|B|(1− p)|A(σ)\B| .

The second probability depends on σ, B and σ′. Let D = D(σ, σ′) be the set of
vertices with σ(v) 6= σ′(v). Then we have

P[(σ,B)→ σ′] = 1[B ⊆ A(σ′)]
∏
C

(
1[C ⊆ D]2−|C| + 1[C 6⊆ D]

(
1− 2−|C|

))
,

with the product iterating over all open clusters of B. The first summand of that
product describes the event that change takes place, i.e. all vertices have to agree.
In the second summand, we need the event that at least one of the vertices of C
chooses the old color, such that change is not taking place. The product is already
symmetric in σ and σ′, so we denote it by Π(B, σ, σ′) and conclude

ν(σ)P[σ → σ′] = Z−1
∑
B

1[B ⊆ A(σ)]p|B|(1− p)E\B|1[B ⊆ A(σ′)]Π(B, σ, σ′) .

This term is symmetric in σ and σ′, proving reversibility.
Let us check the monotonicity of this procedure. The grand coupling for this Markov
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Figure 4.1: The situation described for the monotone Swendsen-Wang algorithm.
The yellow spins correspond to v ∈ V with σ(v) = τ(v) = 1, the blue spins cor-
respond to v ∈ V with σ(v) = τ(v) = 2 and the gray spins correspond to v ∈ V
with σ(v) = 1 and τ(v) = 2 such that σ ≤ τ . The highlighted region corresponds
to a B(τ)-cluster that will change to spin 1. All B(σ)-clusters that intersect the
highlighted region will either stay at spin 1 if intersecting the gray region, or change
to spin 1 if contained in the blue region.

chain is straightforward: Choose the same random numbers to decide if an edge is
in A at Step 1, and choose the same proposal spin configuration θ(v) in Step 2. For
spin configurations σ ≤ τ , it is clear that σ′ ≤ τ ′ is satisfied if at Step 1 the same
edge configuration is generated. We therefore have to check how the corresponding
edge configurations B(σ) and B(τ) relate to each other. Consider an open cluster
C in B(τ) which has τ(v) = 2 for all v ∈ C. Assume further that for all v ∈ C, we
have θ(v) = 1 such that τ ′(v) = 1, because otherwise σ′(v) ≤ τ ′(v) for all v ∈ C
immediately follows. We have to show that in this situation, one has σ′(v) = 1 for
all v ∈ C. Due to θ agreeing on C on the spin s = 1, for all sites v ∈ C one has
that σ(v) = 1 implies σ′(v) = 1 because the corresponding B(σ)-cluster of v will
not change spin. For a site v ∈ C with σ(v) = 2, the corresponding B(σ)-cluster is
contained in C: every boundary edge either comes from Step 1, sharing it with C,
or it comes from a spin difference, i.e. a bordering vertex with spin 1. But σ ≤ τ
then implies that the B(σ)-cluster of v is contained in C. Therefore, all spins on
this cluster agree and one has σ′(v) = θ(v) = τ ′(v). A similar argumentation can
be used to show that 1-clusters in B(σ) that change their spin to 2 do not violate
σ′ ≤ τ ′. See Figure 4.1 for an illustration.
The above argumentation moreover holds if we introduce spin boundary conditions
ψ, i.e. assign to some set of vertices a fixed spin. Therefore, this Markov chain
would also allow us to prove Theorem 3.8.
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Figure 4.2: An even/odd partition of a rectangular grid graph.

4.5 Heatbath dynamics

Let us turn back to the q-state Potts model setting. We can again introduce a
Glauber dynamics type of algorithm to obtain σ′ from σ:

1. Choose a vertex v ∈ V uniformly at random.

2. Draw a new spin σ′(v) according to the conditional measure

ν(σ′ | σ(w) = σ′(w) for w 6= v) .

This Markov chain, also called heatbath dynamics, is reversible (like in the Glauber
dynamics case) and has ν as its stationary distribution. To clarify this, consider the
measure ν and its interaction terms. An edge e belongs to A(σ) if and only if both
endpoints have the same spin. Therefore, we can write

(1− p)|E\A(σ)| =
∏
〈v w〉

(1− p)1[σ(v)6=σ(w)] ∝ exp

β∑
〈v w〉

1[σ(v) = σ(w)]


with p = 1− exp(−β), as is more common for the q-state Potts model. The condi-
tional measure at a vertex therefore only depends on the spin values at neighboring
vertices, and Step 2 of the algorithm is easy to implement.
Many variants of this algorithm are used in practice, but we will mainly focus on
the one described just now and the so-called alternate scan dynamics. Here, the
vertices at Step 1 are not chosen randomly but in a fixed order, and the locality of
the conditional measure allows us to do many operations in parallel. Let V1 be a
subset of V such that any v, w ∈ V1 are not connected by an edge. Then, Step 2 of
the Glauber dynamics can be performed simultaneously at all vertices in V1. If we
can partition V =

⋃
Vi into such sets we get the alternate scan dynamics:

1. For i = 1, 2, . . . draw a new spin configuration σ′ according to the conditional
measure

ν(σ′ | σ(w) = σ′(w) for w /∈ Vi) .

For graphs that are subgraphs of Z2, one usually divides the graph into ’even’ and
’odd’ vertices, see Figure 4.2.
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For q = 2, the spin Glauber dynamics and the alternate scan dynamics have a grand
coupling which is monotone with respect to the partial order

σ ≤ τ ⇔ σ(v) ≤ τ(v) ∀v ∈ V ,

which is achieved by taking the same vertices at Step 1 and taking the same random
number at Step 2 to decide the new spin. This has been elaborated in Chapter 3.

4.6 Spin block dynamics

Finally let us also consider a block dynamics variant for the q-state Potts model:

1. Choose a vertex set U ⊆ V according to some measure on vertex subsets.

2. Draw a new spin σ′(v) according to the conditional measure

ν(σ′ | σ(w) = σ′(w) for w /∈ U) .

Reversibility follows exactly as in the block dynamics case. This algorithm is theo-
retically interesting due to its short mixing time in the subcritical regime, but it is
not feasible in general for large ’blocks’ U .
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5 State of the Art
Methods and Results

In this chapter, we discuss several state of the art results concerning the Markov
chains introduced in Chapter 4. Most of the results will be formulated on subgraphs
of Z2, and we begin with deriving necessary tools from Theorem 3.13, see also [Ale04]
and [BS16].

The following lemma should give a good intuition for the proof techniques used
in this section. Roughly it states that in the subcritical phase, the influence of
edge boundary conditions on the marginal measure away from the boundary decays
exponentially.

Lemma 5.1. Let p < pc(q). Consider a lattice Em ⊆ Z2 and its complement Ecm
which contains all edges in Z2 \ Em. Let Ac1 and Ac2 be edge configurations on Ecm.
For n < m, consider the marginal measures on En, conditioned on the boundary
configurations:

µ1 = µ
(
A = A|En | Ac1

)
and µ2 = µ

(
A = A|En | Ac2

)
.

These probability distributions on En satisfy

‖µ1 − µ2‖TV ≤ C exp(−c|m− n|) ,

where the constants C, c > 0 only depend on p, q.

Proof. Let us consider the extremal wired boundary condition first, i.e. Ac2 = Ecm.
Consider a coupling for edge configurations (A1, A2) on Em that satisfies A1 ≤
A2, and Ai is distributed to the random cluster measure on Em with boundary
conditions Aci for i ∈ {1, 2}. Such a coupling can be obtained from coupled Glauber
dynamics, see Theorem 3.4 or [BS16]. We apply a Markov chain step to obtain a
different coupling (B1, B2) in the following way. Let Λ be the set of edges where
both endpoints are not connected to the boundary of Em via open edges in A2. It
is easy to see that all edges with exactly one endpoint in the Λ-graph are closed
in A2, hence also closed in A1. Therefore, we can do a resampling of the edges on
Λ according to the random cluster measure on Λ with free boundary conditions to

51
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Λ

Em

Figure 5.1: An edge configuration on Em withm = 3 and wired boundary conditions.
The subgraph Λ enclosed in red consists of all edges and adjacent vertices that are
not connected to the boundary.

obtain (B1, B2) from (A1, A2) which now agree on edges in Λ, see Figure 5.1.
From this procedure, it follows that B1 ≤ B2 and B1 = B2 on edges in Λ. Moreover
Bi has the same distribution as Ai for i ∈ {1, 2}, because resampling according to
the conditional measure on a fixed edge set is reversible (we elaborate on this fact
after the proof). Using this coupling, we get that

‖µ1 − µ2‖TV ≤ P[B1 6= B2 on En] ≤ P[En 6⊆ Λ] = P[Vn ↔ V c
m via A2] .

We can bound this probability using the exponential decay of connectivities from
Theorem 3.13, using a crude estimate over all boundary nodes of Vn and Vm:

P[Vn ↔ V c
m via A2]

≤
∑

v∈Vm\Vm−1

P[Vn ↔ v via A2]

≤
∑

w∈Vn\Vn−1

∑
v∈Vm\Vm−1

P[w ↔ v via A2]

≤ (4n)(4m)C(p, q) exp(−c(p, q)|m− n|) .

Now, with a slight adjustment of the constants in this estimate one can neglect the
polynomial dependence on n and m to obtain the result.
Finally, for arbitrary boundary conditions Ac3, we get that

‖µ1 − µ3‖TV ≤ ‖µ1 − µ2‖TV + ‖µ2 − µ3‖TV ,

completing the proof with an adjusted constant (multiplied by 2).

The resampling procedure used in the proof is a powerful tool and we will use it
often. The set Λ depends on the state A2 and it is not a-priori clear that B2 therefore
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has the same law as A2, let alone B1 and A1. We make this step rigorous with the
following argument: Let A be distributed according to the random cluster measure µ
on some graph (V,E), according to some boundary conditions. Let ω(Λ | A) be a law
for subsets Λ ⊆ E that depends on A. The procedure that takes A, randomly draws
Λ according to ω(Λ | A) and draws A′ according to the law µ(A′ | A′ = A on Λc)
can be described with the transition probability

P[A→ A′] =
∑

Λ

ω(Λ | A)µ(A′ | A′ = A on Λc) .

If this procedure is reversible with respect to µ, we get that A′ has the same law as
A. First off, for any fixed Λ the resampling is clearly reversible as already seen in
Chapter 4:

µ(A)µ(A′ | A′ = A on Λc) = µ(A′)µ(A | A = A′ on Λc) .

Therefore, if for a pair A,A′ with P[A→ A′] 6= 0 we have that ω(Λ | A) = ω(Λ | A′),
we get reversibility of P . This situation applies to (A2, B2) used in the proof:
ω(Λ|A2) is given by

1[Λ = {e ∈ E : both endpoints are not connected to the boundary via A2}]

and this Λ does not change during A2 → B2. We write Λ = Λ(A2) = Λ(B2). For the
procedure A1 → B1, Λ is given implicitly by the coupling (A1, A2). Let ρ be the law
of this coupling with marginals ρ1(A1) and ρ2(A2) (random cluster measures with
corresponding boundary conditions), then

P[B1] =
∑
A1,A2

ρ(A1, A2)ρ1(B1 | B1 = A1 on Λ(A2)c)

=
∑
A1,A2

ρ(A1 | A2)ρ2(A2)ρ1(B1 | B1 = A1 on Λ(A2)c) .

Now, it is important to note that the rightmost term does not really depend on A1,
it only depends on the fact that A2 induces free boundary conditions on Λ. The
measures ρ1 and ρ2 also are equal for these boundary conditions. Therefore, we can
use the reversibility property to obtain∑

A1,A2

ρ(A1 | A2)ρ2(A2)ρ1(B1 | B1 = A1 on Λ(A2)c)

=
∑
A1,A2

ρ(A1 | A2)ρ1(B1)ρ2[A = A2 on Λ(A2) | A = A2 on Λ(A2)c]

= ρ1(B1)
∑
A2

ρ2[A = A2 on Λ(A2) | A = A2 on Λ(A2)c]

= ρ1(B1) ,

so B1 is distributed as A1.
We will now briefly discuss the consequences for the q-state Potts model with q ∈ N,
using the Edwards-Sokal coupling. This procedure is well-defined for the Z2-lattice,
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and we denote with ν0 = ν0
Z2,p,q the infinite-volume measure obtained from µ0

Z2,p,q,

as well as ν1 = ν1
Z2,p,q obtained from µ1

Z2,p,q. It is easy to see that the event in the
spin system setting corresponding to ’v ↔ w via an open path’ is given by the event
’σ(v) = σ(w)’. From the Edwards-Sokal coupling one can directly compute that for
any underlying graph, one has

ν[σ(v) = σ(w)] = µ[v ↔ w] +
1

q
(1− µ[v ↔ w]) .

It is therefore very easy to derive similar statements to those of the above theorems.
In the subcritical phase, ν[σ(v) = σ(w)] tends to 1/q exponentially fast with increas-
ing distance between v and w, while in the supercritical phase, there is β = β(p, q)
such that ν[σ(v) = σ(w)] ≥ 1

q + β for all v, w ∈ Z2. The measure ν = ν1 is, though

obtained from the unique measure µ = µ1
Z2,p,q, not the only infinite volume measure

in the supercritical Potts model. Indeed, one might consider what happens if in the
spin system setting, one introduces a spin boundary condition where all boundary
spins have a specific spin s ∈ {1, . . . , q}. The resulting infinite-volume measures νs

are all equal in the subcritical phase, but distinct in the supercritical phase. They
can be obtained from µ1 with the Edwards-Sokal coupling if one modifies the pro-
cedure such that the unique unbounded cluster is always assigned the spin s. From
this, it is also clear that

ν =
1

q
(νs=1 + . . .+ νs=q)

in the supercritical phase.
In the subcritical phase, the model has another convenient property due to its local-
ity. For a vertex set U ⊆ Z2, let σ(U) be the spin configuration σ restricted to U .
The conditional measure on U depending on a spin configuration in its complement
U c only depends on the vertices adjacent to U :

ν(σ(U) | σ(U c)) = ν(σ(U) | σ(∂U)) ,

where ∂U is the set of vertices in U c that share an edge with a vertex in U . Consider
the vertex sets Vn and Vm for n ≤ m. Then the marginal measure on Vn conditioned
on spins outside of Vm

ν(σ(Vn) | σ(V c
m))

behaves nicely in the subcritical regime: For two spin configurations σ and σ′ on
the boundary, one has∥∥ν(σ(Vn) | σ(V c

m))− ν(σ′(Vn) | σ′(V c
m))
∥∥
TV
≤ C exp(−c|m− n|)

for some constants C, c > 0. This property is called strong spatial mixing (SSM) and
follows from a similar argument as in Lemma 5.1. To see this, we need to introduce
a modified Edwards-Sokal coupling for fixed spin boundary conditions. Let σ be a
spin configuration on Z2.

1. Obtain the edge configuration B via the rule

P[e ∈ B] =

{
p both endpoints of e have the same spin,

0 else,

considered independently for each e ∈ E.
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Figure 5.2: A spin boundary condition with q = 2 different spins (left) and the

resulting modified graph Eψm+1 (right). The colored edges are fixed to be open. In

this example, Eψm+1 cannot be embedded in Z2.

2. For each open cluster C that is completely contained in Vm, assign a new spin
s, chosen uniformly at random, to each vertex of the cluster C.

It is clear that this Markov chain does not change the spin boundary conditions. For
i ∈ {1, . . . , q} let Vi be the collection of vertices adjacent to Vm with σ(v) = i. The
collection ψ = {V1 . . . , Vq} completely encodes the spin boundary condition induced
by σ, and we write νψ for ν(· | σ(V c

m)). We want to specify the distribution for B on
Em+1 after applying Step 1 of the given Markov chain, therefore we define a modified
graph structure. We add special vertices v1, . . . , vq to the graph Em+1 and add
artificial edges which connect every vertex in Vi to vi for i ∈ {1, . . . , q}, see Figure 5.2.

On the resulting graph Eψm+1, we restrict the added edges to always be open, such

that an edge configuration B ⊆ Eψm+1 has q distinct boundary clusters connecting
to the vertices v1, . . . , vq. We can reformulate the Markov chain as follows:

1. Obtain the edge configuration B ⊆ Eψm+1 via the rule

P[e ∈ B] =


1 one endpoint of e is in {v1, . . . , vq} ,
p both endpoints of e ∈ Em+1 have the same spin,

0 else,

considered independently for each e ∈ Eψm+1.

2. For i ∈ {1, . . . , q} assign the spin i to the cluster containing the vertex vi. For
the remaining clusters, choose a spin uniformly at random and assign it to
every vertex of the given cluster.

One readily verifies that this Markov chain has the same transition probability as
the one given earlier. Let µψ∗ be the distribution of B ∩ Em+1 after applying Step
1 of this Markov chain, and let νψ(τ) ∝ (1 − p)|Em+1\A(τ)| be the q-state Potts
model measure for spin configurations τ : Vm+1 → {1, . . . , q} that align with ψ on
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the outermost vertices. Then we have

µψ∗ (B) =
∑
τ

νψ(τ)p|B|(1− p)|A(τ)\B|1[B ⊆ A(τ)]

∝
∑
τ

(1− p)|Em+1\A(τ)|p|B|(1− p)|A(τ)\B|1[B ⊆ A(τ)]

=
∑
τ

p|B|(1− p)|Em+1\B|1[B ⊆ A(τ)] .

The boundary conditions for ψ and the term 1[B ⊆ A(τ)] result exactly in the event

1[∀i, j : Vi 6↔ Vj via B] ,

and we therefore obtain

µψ∗ (B) ∝ p|B|(1− p)|Em+1\B| qc(B) 1[∀i, j : Vi 6↔ Vj via B]

∝ µψ(B | ∀i, j : Vi 6↔ Vj via B) ,

with µψ actually being the random cluster measure on the graph Eψm+1 with the
boundary condition that all artificial edges are always open. It is easy to see that
applying Step 2 of the Markov chain to this measure recovers νψ. We are now ready
to prove the (SSM) property.

Lemma 5.2 (SSM). Let p < pc(q). Let ψ = {V1, . . . , Vq} and χ = {W1, . . . ,Wq}
be spin boundary conditions on the vertices adjacent to Vm. Let νψ be the q-state
Potts model measure for spin configurations τ : Vm+1 → {1, . . . , q} that align with ψ

on the outermost vertices, analogously νχ. Let νψn , ν
χ
n be the corresponding marginal

measures on Vn for n < m. Then one has

‖νψn − νχn‖TV ≤ C exp(−c|m− n|)

with constants C, c > 0 not depending on ψ, χ,m, n.

Proof. Let µψ and µχ be the random cluster measures on the graphs Eψm+1 and Eχm+1

where edges not in Em+1 are always open. It is important to note that in general,
it is not possible to realize the underlying boundary conditions with a subgraph of
Z2. However, adding open edges between the vertices v1, . . . , vq results in a graph
structure comparable to the Em+1-graph with wired boundary conditions, resulting
in

µψ ≤ µ1
m .

Moreover, the event ’∀i, j : Vi 6↔ Vj via B ’ which we call Aψ is decreasing, therefore
we can use a Glauber dynamics argument similar to that in Lemma 3.1 to obtain

µψ(· | Aψ) ≤ µψ ≤ µ1
m .

Now, as in Lemma 3.2, we can define a coupling (A,B) such that A ∼ µψ(· | Aψ),
B ∼ µ1

m, A ≤ B and A = B on the Λ-subgraph of edges and vertices that are
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not connected to the boundary by open edges in B. To this coupling, we now
apply Step 2 of the modified Edwards-Sokal coupling, where we choose the same
spin for clusters contained in Λ, where A and B coincide. Call the resulting spin
configuration coupling (σ, τ). The configuration σ has law νψ, and coincides with τ
on the subgraph Λ. Therefore, if we denote by ν1

n the marginal law of τ on Vn, we
have

‖νψn − ν1
n‖TV ≤ P[En 6⊆ Λ] .

The rest of the proof is exactly the same as in Lemma 5.1. This probability can be
bounded by an estimate over the outer vertices of Vn and inner vertices of V c

m to
obtain the exponential decay property, and a triangle inequality argument implies

‖νψn − νχn‖TV ≤ C exp(−c|m− n|) .

This Lemma shows that in the subcritical phase, an arbitrary change of spin bound-
ary conditions has little influence on the marginal measure away from the boundary.
However, it is possible to prove an even stronger result, namely that a local change
of the spin boundary conditions will only affect the measure in its vicinity. To show
this, we have to modify the proof of Lemma 5.2.

Lemma 5.3 (local SSM). Let p < pc(q). Consider spin boundary conditions ψ =
{V1, . . . , Vq} and χ = {W1, . . . ,Wq} on the vertices adjacent to Vm that differ only
at one vertex u. For r > 0, let Λr be the subgraph of G = (Vm+1, Em+1) containing
all vertices v with ‖u − v‖2 ≥ r and all edges between such vertices. Let νψ be the
q-state Potts model measure for spin configurations τ : Vm+1 → {1, . . . , q} that align

with ψ on the outermost vertices, analogously νχ. Let νψr , ν
χ
r be the corresponding

marginal measures on Λr for r > 0. Then one has

‖νψr − νχr ‖TV ≤ C exp(−cr)

with constants C, c > 0 not depending on ψ, χ, r,m.

Proof. Let µψ and µχ be the random cluster measures on the graphs Eψm+1 and
Eχm+1 where the artificial edges are always open. The graphs only differ in the edge
connecting the vertex u to one of the vertices v1, . . . , vq. Let Aψ be the event that

vi is not connected to vj via a configuration A on Eψm+1, and define Aχ analogously.
As in the previous proof, we consider the random cluster measure µ1

m on Em+1 with
wired boundary conditions and the coupling

(Aψ, Aχ, A1) with Aψ ∼ µψ(· | Aψ), Aχ ∼ µχ(· | Aχ), A1 ∼ µ1

as well as Aψ, Aχ ≤ A1. Now, let Λ = Λ(A1) be the subgraph induced by the set of
edges in Em+1 where both endpoints are not connected to the vertex u via open edges
in A1. The boundary conditions on Λ induced by ψ are the same as those induced
by χ, therefore we can do a coupled resampling of Aψ and Aχ on Λ according to this
law, conditioned on Aψ to obtain Bψ ∼ µψ(· | Aψ), Bχµχ(· | Aχ) that agree on Λ.
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Doing the coupled spin decision step of the Edwards-Sokal coupling guarantees that
the resulting spin configurations σψ and σχ agree on all vertices v ∈ Λ. Therefore,
we have that

‖νψr − νχr ‖TV ≤ P[Λr 6⊆ Λ] ,

and this probability decreases exponentially in r.

Note that the choice to work with the 2-norm on the lattice is arbitrary. Because we
are working on Z2, all vector norms are equivalent with constants only depending
on the dimension d = 2.

5.1 Spin block dynamics

Using the local SSM property, we can derive a good mixing time bound for the
spin block dynamics. The following presentation follows [BCSV19]. We consider
the graph G = (Vm+1, Em+1) with a spin boundary condition ψ = {V1, . . . , Vq}
on vertices v ∈ Vm+1 \ Vm. The parameter m is considered to be very large, and
the particular choice of ψ will not have any influence on the arguments to follow.
We wish to approximate the q-state Potts model measure νψ using the spin block
dynamics Markov chain:

1. For a given σ : Vm → {1, . . . q}, choose a vertex u ∈ Vm uniformly at random.

2. Let BR(u) be the set of vertices v ∈ Vm that satisfy ‖u − v‖∞ ≤ R, and let

νσ,ψu,R be the spin measure on BR(u) with boundary conditions induced by σ
and ψ. Draw a sample τ from this measure and update σ to align with τ on
BR(u).

The sets BR(u) might be rectangles when u is near the boundary of Vm, though it
is easy to see that the local SSM property also holds in this case.

Theorem 5.4 (Mixing time of spin block dynamics). Let p < pc(q) and ε > 0. The
spin block dynamics Markov chain with parameter R satisfies

τmix(ε) ∈ O
(
(m/R)2 logm

)
for some R = R(p, q).

Proof. We will use a path coupling argument to derive the result. On the spin
configuration space, we define a metric

d(σ, σ′) = |{v ∈ Vm | σ(v) 6= σ′(v)}| ,

i.e. the number of differing spins. With this metric, the maximal distance between
two configurations is |Vm| = (2m+1)2 ∈ O(m2). To use the path coupling argument
from Theorem 2.10, we need to define a coupled version of the spin block dynamics
on adjacent states, i.e. spin configurations σ, σ′ which differ at one specific spin
w ∈ Vm. We do this in the following way: In Step 1, the same vertex u ∈ Vm is
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chosen. In Step 2, we consider the three cases w ∈ BR(u), w ∈ BR+1(u)\BR(u) and

w /∈ BR+1(u). In the first and third case, the measures νσ,ψu,R and νσ
′,ψ

u,R are exactly
the same due to the locality of the model, and we can therefore sample (τ, τ ′) to
be identical. In the second case, w lies on the boundary of BR(u) and influences
the corresponding measures. Let r > 0 and δ = δ(r) > 0 such that the local SSM
property holds with

‖νψr − νχr ‖TV ≤ C exp(−cr) = δ .

This estimate holds independently of m. Thus, we can choose a coupled resampling
(τ, τ ′) such that

P[τ(v) 6= τ ′(v) for some v with ‖v − w‖2 > r] ≤ δ .

Denote with (ω, ω′) the result of this procedure applied to (σ, σ′). We proceed to
estimate the expected distance. The first case w ∈ BR(u) happens with probability
smaller or equal to (2R+ 1)2/(2m+ 1)2 and results in d(ω, ω′) = 0, not contributing
to our estimation. The third case w /∈ BR+1(u) happens with probability smaller
or equal to ((2m + 1)2 − R2)/(2m + 1)2 and results in d(ω, ω′) = 1. The second
case happens with probability smaller or equal to (8R+ 4)/(2m+ 1)2 and results in
d(ω, ω′) ≤ δ(2R+ 1)2 + π

2 (r + 1)2. Combined we get

E
[
d(ω, ω′) | (σ, σ′)

]
≤ (2m+ 1)2 −R2

(2m+ 1)2
+

8R+ 4

(2m+ 1)2

(
δ(2R+ 1)2 +

π

2
(r + 1)2

)
.

Due to the fact that δ = δ(r) is decreasing exponentially in r, we can choose R and
r such that the second term diminishes, leading to the estimate

E
[
d(ω, ω′) | (σ, σ′)

]
≤ 1− α R2

(2m+ 1)2

for all m big enough and for some α slightly less than 1. This is due to the fact
that the probability to erase the distance scales with the area of BR(u), while the
probability to increase the distance by a minor r-dependent term scales with the
perimeter of BR(u). Applying the path coupling theorem gives

τmix(ε) ≤ log((2m− 1)2)
| log(ε)|

| log
(

1− α R2

(2m+1)2

)
|
∈ O

(
(m/R)2 logm

)
.

The R in the asymptotic statement is not necessary, though it aligns intuitively with
a heatbath-type estimate if one thinks of a block dynamics step to have constant
cost. The spin block dynamics would be realizable using a heatbath algorithm on
BR(u) with a stopping time such that the resulting configuration is almost as drawn
from the true measure. This means that using a heatbath algorithm which has a
more elaborate strategy of choosing vertices one can achieve a O

(
m2 logm

)
bound

for the mixing time, though to show this for the general heatbath algorithm is not
so easy.
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5.2 The Ising model case

In the Ising model case with q = 2, we can use the additional property of spin
monotonicity to achieve mixing time bounds. We begin with the following variant
of the heatbath dynamics:

1. Let V be the set of eligible vertices at Step 1 of the heatbath dynamics. Choose
a random enumeration v1, . . . vM of V , with M = |V |.

2. Apply a total of M heatbath steps, where at time t, the vertex vt is chosen at
Step 1.

We call this variant heatbath sweep dynamics and think of it as a global Markov
chain. The grand monotone coupling is evident: Choose the random enumeration at
Step 1 independently of the state of the chain, and do monotone coupled heatbath
steps. The following proof roughly follows the argumentation in Theorem 5.1 of
[BS16]. Also note that the statements derived throughout the rest of this section
are covered by the censoring framework results given in [BCV18].

Theorem 5.5 (Heatbath sweep dynamics for the Ising model). Let q = 2, p < pc(q)
and ε > 0. The heatbath sweep dynamics Markov chain on Vm with an arbitrary
boundary condition ψ on Vm+1 \ Vm satisfies

τmix(ε) ∈ O
(
(logm)2

)
.

Proof. For a fixed boundary condition ψ, we have two extremal states σ0 and τ0

with

∀v ∈ Vm : σ0(v) = 1, τ0(v) = 2.

The heatbath sweep dynamics can be coupled to conserve monotonicity such that
we obtain Markov chains (σt)t≥0 and (τ t)t≥0 with

∀t ≥ 0: σt ≤ τ t .

Let u ∈ Vm be fixed and consider the domain BR(u) for some R > 0. We intro-
duce auxiliary Markov chains (σtu)t≥0 and (τ tu)t≥0 such that σ0

u = σ0, τ0
u = τ0 and

heathbath step updates for these chains only happen if the chosen vertex at Step
1 of the heatbath dynamics is inside BR(u). This means that while σt and τ t are
doing heatbath sweep steps on Vm, the Markov chains σtu and τ tu are doing heatbath
sweep steps on BR(u). If we couple all chains together, we achieve

σtu ≤ σt ≤ τ t ≤ τ tu

for all t ≥ 0. Therefore, σtu(u) = τ tu(u) implies σt(u) = τ t(u). The Markov chains σtu
and τ tu converge to the q-state Potts model measure on BR(u) with corresponding
boundary conditions, and the influence of these boundary conditions will reach the
spin at u with a very low probability. Call these measures νψ,1u,R and νψ,2u,R. Let
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Tu,R = Tu,R(δ) be the mixing time with respect to δ = 1
4 of the heatbath sweep

dynamics on BR(u). For fixed R, the number of shapes and boundary conditions
BR(u) can have is finite and independent of m, so we define

TR = max
u
{Tu,R} .

After t = TR heatbath sweep steps, we have that

P[σt(u) 6= τ t(u)] ≤ P[σtu(u) 6= τ tu(u)]

= P[σtu(u) = 1 and τ tu(u) = 2]

= P[τ tu(u) = 2]− P[σtu(u) = 2]

≤
∣∣∣P[τ tu(u) = 2]− νψ,2u,R [the spin at u is 2]

∣∣∣
+
∣∣∣νψ,2u,R [the spin at u is 2]− νψ,1u,R [the spin at u is 2]

∣∣∣
+
∣∣∣νψ,1u,R [the spin at u is 2]− P[σtu(u) = 2]

∣∣∣ .
The first and third term in the final estimate describe how close the auxiliary dis-
tributions are to equilibrium, and per definition of the mixing time TR they are
bounded by δ = 1

4 . The second term describes the difference of the boundary dis-
tributions at u. For any u, differing boundary vertices have distance at least R to
u, and the number of differing boundary vertices is at most (2R+ 1)2, therefore the
local SSM property together with a crude triangle inequality estimation gives∣∣∣νψ,2u,R [the spin at u is 2]− νψ,1u,R [the spin at u is 2]

∣∣∣ ≤ C(2R+ 1)2 exp(−cR) .

Now, let M = |Vm| = (2m+ 1)2 and R = b log(M) ∈ N with a constant b > 1
c , for a

fixed but large m. Then the above bound reads

C(2b log(M) + 1)2M−bc <
1

6
M−1

for m big enough. Therefore after t = TR steps, we have

P[σt(u) 6= τ t(u)] ≤ 2δ +
1

6
M−1 .

Moreover, we can use Lemma 2.7 and get that the mixing time TR(1
6M

−1) is smaller
or equal to dlog2(6M)eTR. So for t = dlog2(6M)eTR, we get

P[σt(u) 6= τ t(u)] <
1

2M
.

Finally, a union bound over the vertices gives

E[#differing vertex spins of σt and τ t] ≤
∑
u∈Vm

P[σt(u) 6= τ t(u)] <
1

2
.

Due to the fact that σs = τ s implies σt = τ t for t ≥ s, we get that

P[σnt 6= τnt] ≤ 1

2n
≤ ε
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for n big enough, independently of m. Therefore the mixing time of the heatbath
sweep algorithm on Vm is bounded from above by

ndlog2(6M)eTR = nd2 log2(M) + log2(6)eTR .

Now, we can use an induction argument to prove the final estimate. Let φ(R) be
any strictly increasing function in R. We can find a constant a > 0 such that for
all R′ ≤ R, we have have that TR′ ≤ aφ(R′). With R = b log(M) we get that our
mixing time bound becomes

nd2 log2(M) + log2(6)eaφ(b log(M)) .

If it were true that this expression is dominated by aφ(M), an induction argument
implies that the mixing time of the heatbath sweep dynamics is O(φ(M)). One
readily verifies that for m big enough this is true for φ(M) = log(M)2. The result
follows from

log(M) = 2 log(2m+ 1) ≤ 8 logm.

The main tool of this proof is the monotone coupling of the global algorithm to local
versions of itself, and this is also possible for the standard heathbath algorithm. We
have to modify the proof to account for the fact that heatbath dynamics modifies
the configuration in a non-homogeneous way due to its random behavior at Step 1.

Corollary 5.6 (Heatbath dynamics for the Ising model). Let q = 2, p < pc(q)
and ε > 0. The heatbath dynamics Markov chain on Vm with an arbitrary boundary
condition ψ on Vm+1 \ Vm satisfies

τmix(ε) ∈ O
(
m2(logm)2

)
.

Proof. The proof is mostly the same as in the previous theorem. We define (σt)t≥0

to be the heatbath dynamics Markov chain starting in the minimal state σ0 with
ψ boundary conditions, and (τ t)t≥0 to be the heatbath dynamics Markov chain
starting in the maximal state τ0 with ψ boundary conditions. The auxiliary chains
(σtu)t≥0 and (τ tu)t≥0 are defined analogously on BR(u), only realizing an update if
the chosen vertex of the global heatbath dynamics is in BR(u). These chains can
again be coupled together to achieve

σtu ≤ σt ≤ τ t ≤ τ tu
for all t ≥ 0. As above, we can define TR to be the maximal mixing time with respect
to δ = 1

4 of the heatbath dynamics on domains BR(u) with arbitrary boundary
conditions. Let U(u,R, t) be the number of times the heatbath dynamics chooses a
vertex in BR(u) out of t times. Then U(u,R, t) has a binomial distribution B(n, p)
with parameters n = t and p ≥ (R+ 1)2/M . If we take

t = t(R,m) = a log(6M)TRM/(R+ 1)2 ∈ N



5.2. THE ISING MODEL CASE 63

with a > 1, we get

E[U(u,R, t)] ≥ a log(6M)TR .

Therefore a Chernoff bound gives

P[U(u,R, t) < log(6M)TR] ≤ 1

6M
.

We again use the estimate

P[σt(u) 6= τ t(u)] ≤
∣∣∣P[τ tu(u) = 2]− νψ,2u,R [the spin at u is 2]

∣∣∣
+
∣∣∣νψ,2u,R [the spin at u is 2]− νψ,1u,R [the spin at u is 2]

∣∣∣
+
∣∣∣νψ,1u,R [the spin at u is 2]− P[σtu(u) = 2]

∣∣∣
and see that for t = t(R,m) the first and third summand are bound by

1

6M
+ δ′ =

1

3M
,

where we obtain δ′ = 1
6M by using Lemma 2.7 with t = t(R,m). Now, same as in

the above theorem, we take R = b log(M) with b > 1
c to bound the second term by

1
6M for M big enough, and obtain the overall bound

P[σt(u) 6= τ t(u)] <
5

6M
,

and a union bound over the vertices gives

E[#differing vertex spins of σt and τ t] ≤ 5

6
.

This gives

P[σnt 6= τnt] < ε

for some n big enough, independently of m. Therefore we get the mixing time bound

τmix(ε) ≤ na log(6M)TRM/(R+ 1)2 .

Using the same induction argument as above, we consider an increasing function
φ(R) and have that there exists a constant A such that for all R′ ≤ R, we get
TR′ ≤ Aφ(R′). Plugging in R = b log(M), we see that our mixing time is O(φ(M))
if

na log(6M)Aφ(b log(M))
M

b2 log(M)2
≤ Aφ(M)

holds. This is true for φ(M) = M log(M)2 and m big enough, resulting in a mixing
time

τmix(ε) ∈ O
(
m2(logm)2

)
.



64 CHAPTER 5. STATE OF THE ART

The proof is essentially the same, with an additional use of a Chernoff bound to
ensure that enough heatbath updates happen in the subareas BR(u). Let us consider
the heatbath sweep dynamics again. For the proofs of Theorem 5.5 and Corollary
5.6 we used the fact that the global algorithm reduces to local versions of itself on
subdomains. This is also true for the alternate scan dynamics with an even-odd
partition of the vertices, as well as for the systematic scan dynamics where the
vertices are traversed in a fixed order from top-left to bottom-right. We obtain

Corollary 5.7 (Alternate scan and systematic scan dynamics for the Ising model).
Let q = 2, p < pc(q) and ε > 0. The alternate scan dynamics Markov chain on Vm
with an arbitrary boundary condition ψ on Vm+1 \ Vm satisfies

τmix(ε) ∈ O
(
(logm)2

)
.

The same holds for the systematic scan dynamics Markov chain.

We omit the proof here because it is exactly the same as in Theorem 5.5. Last
but not least, the monotone Swendsen-Wang dynamics also allows for a local-global
coupling and the induction argument to obtain

Corollary 5.8 (Monotone Swendsen-Wang for the Ising model). Let q = 2, p <
pc(q) and ε > 0. The monotone Swendsen-Wang Markov chain on Vm with an
arbitrary boundary condition ψ on Vm+1 \ Vm satisfies

τmix(ε) ∈ O
(
(logm)2

)
.

As we have seen, the Ising model at subcritical temperature allows for a thorough
treatment of Markov chains, due to the spin monotonicity property and the local
SSM property. Let us mention that in the above mixing time bounds, the logarithmic
powers are not optimal. Of course one can find more precise asymptotics φ(M) in
the last argument of the proofs, we will see however that the stated bounds are good
enough to use a bootstrap argument, obtaining an even more precise bound. This
argument will not depend on the spin monotonicity property, therefore we introduce
it at a later point.

5.3 The Fortuin-Kasteleyn random cluster setting

We see from the proof for the local SSM property that a change of the spin boundary
condition at one vertex induces an edge boundary condition change which does not
have a long distance effect on the resulting random cluster measure. This is not
always the case. For instance, adding an edge between two special vertices vi and
vj can have an effect at different regions of the boundary. We can make a similar
statement for edge boundary conditions that are realized in Z2. Consider C,D ⊆ Ecm
that differ only at one edge e ∈ Ecm. Then without loss of generality we can say



5.3. THE FORTUIN-KASTELEYN RANDOM CLUSTER SETTING 65

C1

C2

Em

W r
1

W r
1

W r
2

W r
2

Λ, ΛrΛr

Λr Λr

Figure 5.3: The boundary situation for boundary conditions differing at one pivotal
edge. The straight dashed line roughly describes the influence of ∂C1 and ∂C2 on the
distribution, or equivalently the approximate boundary of Λ. The curved dashed
lines describe the approximate boundary of Λr. The set Λr \ Λ decomposes into
disconnected regions with high probability, and these regions connect to either ∂C1

or ∂C2.

C ≤ D and define a coupling (A,B) with A ∼ µE
c
m,C , B ∼ µE

c
m,D and A ≤ B.

We think of A,B as configurations on Em. As above, we can define Λ to be the
subgraph of Em of all edges and vertices that do not connect to e via an open path
in B, and resample A and B on this graph to be equal. However, this will only give
us an estimate as in Lemma 5.2. We need to make an effort to precisely localize the
effect of the differing boundary conditions. First off, µE

c
m,C and µE

c
m,D only differ if

e is pivotal to D and the open clusters in C corresponding to both endpoints of e
connect to at least one vertex on the boundary of Em. Call these clusters C1 and C2,
and define ∂C1 = C1 ∩Em, ∂C2 = C2 ∩Em to be the vertices of Em that belong to
these clusters. For a given r > 0, let W r

1 be the set of vertices w in ∂C1 such that a
vertex v in ∂C2 with ‖w−v‖2 ≤ r exists and define W r

2 analogously. Due to the fact
that C1 and C2 are embedded in Z2 and do not intersect each other, the cardinality
of these sets can be bound independently of m for fixed r, and these vertices will
be around at most two regions of the boundary of Em, see Figure 5.3. Now, let Λr

be the graph of edges and vertices in Em that do not connect to a vertex in W r
1 or

W r
2 via an open path in B. The distribution on Λr is not necessarily independent

of A and B, therefore we cannot do a resampling on Λr. We can however resample
on Λ first, and consider the conditional measures on Λr \ Λ after this resampling.
For p < pc(q), this set should consist of disconnected regions around the boundary
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of Em which are in the vicinity of at most one of the sets W r
1 or W r

2 , and therefore
the distributions on these regions can also be resampled. We arrive at

Lemma 5.9 (Local change for realizable boundary conditions in Z2). Let p < pc(q).
Let C,D ⊆ Ecm ⊆ Z2 be edge boundary conditions that differ at only one edge
e ∈ Ecm. Define W r

1 , W r
2 , Λ and Λr as above. Let Lr ⊆ Em be the set edges where

both endpoints have distance at least r to all vertices in W r
1 and W r

2 . Let µCr be the

marginal measure of µ
C,Ecm
m on Lr, analogously µDr . Then we have

‖µCr − µDr ‖TV ≤ c1 exp(−cr)

with constants c1, c > 0 independent of r, C,D.

Proof. As already seen, we can define a coupling (A,B) with A ∼ µC,E
c
m

m , B ∼ µD,E
c
m

m

and A ≤ B. We can furthermore modify this coupling such that A and B align on
Λ. Now, consider a connected component of Λr \ Λ, and let K be the subgraph of
this component after removing all edges that are closed in B and have one endpoint
in Λ. On the region K we can do a joint resampling of A and B if it connects to at
most one of the sets ∂C1 and ∂C2. Because K does not connect to W r

1 or W r
2 , the

distance between ∂C1 \W r
1 and ∂C2 \W r

2 is at least r though, so this happens with
a probability that decays exponentially in r due to Theorem 3.13. The number of
such components is at most three, see Figure 5.3. Finally, the probability that Lr is
not contained in Λr decays also exponentially in r, so we get a coupling (A,B) that
differs on Lr with a probability that decays exponentially in r:

‖µCr − µDr ‖TV ≤P[A 6= B on Lr]

≤P[Lr 6⊆ Λr or (∂C1 \W r
1 )↔ (∂C2 \W r

2 ) in B]

≤P[Lr 6⊆ Λr] + P[(∂C1 \W r
1 )↔ (∂C2 \W r

2 ) in B]

=P[Lr ↔ (W r
1 ∪W r

2 )] + P[(∂C1 \W r
1 )↔ (∂C2 \W r

2 ) in B]

and as in the proof of Lemma 5.1 we get that both summands are bound by
c1 exp(−cr) for some constants c1, c > 0 independent of A,B,C,D, r.

This result can be compared to the local SSM property in the spin system setting,
with the difference that any differing edge e ∈ Ecm can have an influence on the
resulting marginal measures on Em. We will use this property to prove a mixing
time bound for the block dynamics in the Fortuin-Kasteleyn random cluster setting.
Let us reconfirm the setting: We consider edge configurations A ⊆ Em and some
boundary condition C ⊆ Ecm, together with the model µ = µ

C,Ecm
m . We introduce a

specific instance of the block dynamics on this model:

1. Choose u ∈ Vm uniformly at random.

2. Let ER(u) be the set of edges e ∈ Em such that the endpoints x, y satisfy
‖u− x‖∞ ≤ R, ‖u− y‖∞ ≤ R. Resample the given configuration A on the set
ER(u) with respect to the conditional measure

µu,R = µA∪C,ER(u)c
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that is given by the boundary conditions on ER(u)c induced by A and C. The
resulting configuration A′ aligns with A on Em \ ER(u).

We wish to apply the path coupling theorem, therefore we define the distance func-
tion

d(A,B) = |A ∪B| − |A ∩B|
on edge configurations, which is the number of differing edges between A and B.
Let A ≤ B be edge configurations that differ at exactly one edge e ∈ Em. We define
the following coupled version of the block dynamics:

1. Choose u ∈ Vm uniformly at random.

2. Let ER(u) be the set of edges e ∈ Em such that the endpoints x, y satisfy
‖u− x‖∞ ≤ R, ‖u− y‖∞ ≤ R. If the conditional measures µu,R with respect
to A and B are equal, then do a coupled resampling on ER(u) such that
A′ = B′ on ER(u). If the conditional measures are different, do a coupled
resampling such that

P[A 6= B on Lr = Lr(ER(u), A,B,C)] ≤ C exp(−cr)

and A′ ≤ B′ holds as is possible due to Lemma 5.9.

This coupling for adjacent states A,B is similar to the spin block dynamics coupling
as it restricts the influence of the differing edge in A and B on the resulting states A′

and B′. To apply the path coupling theorem, we need to be in the situation that the
differing edge e needs to be close to ER(u) to have an influence on the conditional
measures. If we assume that p < pc(q) and B has law µC,E

c
m , the exponential decay

of correlations property given by Theorem 3.13 allows us to bound the number of
edges that can have an influence on the conditional measures on ER(u) with high
probability. Note that however, the exponential decay property holds for B′ on the
subset ER(u) without putting any restrictions on B, due to the fact that B′ restricted
to ER(u) follows a random cluster model distribution on ER(u) with some arbitrary
boundary condition. Therefore, after enough block dynamics steps, the exponential
decay of correlations property should hold on Em.

Lemma 5.10. Let p > pc(q). Let B0 ⊆ Em be an initial state to the block dynamics
Markov chain (Bt)t≥0 with parameter R. Assume that at time T , every vertex pair
v, w ∈ Vm with ‖v − w‖2 ≤ R has been contained in BR(u) at least once for some
u ∈ Vm. Then for all v, w ∈ Vm with ‖v − w‖2 ≤ R one has

P
[
v ↔ w via an open path in BT

]
≤ C(p, q) exp(−c(p, q)‖v − w‖2) .

Proof. Let ut be the vertex chosen at time t of the block dynamics, and consider
the marginal distribution of Bt on ER(ut). Then for all v, w ∈ BR(ut) it holds

P
[
v ↔ w via an open path in Bt

]
≤ C(p, q) exp(−c(p, q)‖v − w‖2) ,
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for arbitrary boundary conditions induced by Bt−1. Let D = Em be the maximal
state and let D′ be the resulting state after applying the block dynamics Markov
chain. Due to Bt−1 ≤ D we can couple the block dynamics to ensure Bt ≤ D′ by
choosing the same vertex ut at Step 1 and doing a coupled resampling. Let t1 > t be
the first successive timestep where BR(ut)∩BR(ut1) 6= ∅. We couple D′′ to Bt1 in the
following way: For t < s < t1, apply the block dynamics step to Bs−1 and do nothing
with D′. For s = t1, first resample Bt1−1 on BR(ut1) \ BR(ut) with respect to the
marginal measure with Bt1−1-boundary conditions on BR(ut1). Then, do a coupled
resampling on ER(ut) ∩ ER(ut−1) such that Bt1 ≤ D′′. One readily verifies that
this procedure is a valid coupling that reproduces the distribution of Bt1 correctly.
Moreover, D′′ has the same distribution as D′ and therefore has exponential decay
of correlations on BR(ut). Hence Bt1 also has this property, because Bt1 ≤ D′′. We
have shown that exponential decay of correlations between two vertices v, w, once
established by the block dynamics, is retained for successive iterations. If all vertex
pairs v, w with ‖v − w‖2 ≤ R fall into BR(ut) for some t ≤ T , exponential decay of
correlations holds up to distance R under the law of BT .

We can now show a mixing time bound for the block dynamics, in case of free or
wired boundary conditions.

Theorem 5.11. Consider the random cluster model on Em with free or wired bound-
ary conditions, and let p < pc(q). The block dynamics with parameter R has a mixing
time

τmix(ε) ∈ O
(
(m2/R2) logm

)
for R big enough.

Proof. Let A0 = ∅ and B0 = Em be the extremal states and consider the coupled
block dynamics Markov chain (At, Bt) such that At ≤ Bt for all t ≥ 0. Let ut be
the vertex chosen in Step 1 of the block dynamics at time t. Let v, w ∈ Vm with
‖v − w‖2 ≤ R. Then the probability that both v, w are in BR(ut) during a block
dynamics step is greater or equal to R2/M , with M = |Vm| = (2m + 1)2. After
T = a log(M)M/R2 ∈ N block dynamics steps with a > 2, a Chernoff bound implies
that

P[v, w are not in BR(ut) for any t ≤ T ] ≤ 1

M2
.

The number of such pairs scales linearly in M and R2, therefore we get for M big
enough that after T steps, the law of BT has exponential decay of correlations up to
distance R due to the previous Lemma, with a probability tending to 1 for increasing
M . This property is conserved for t ≥ T , so we may assume that in the following,
we have

P
[
v ↔ w via an open path in Bt

]
≤ C(p, q) exp(−c(p, q)‖v − w‖2) .

Now, assume that C ≤ D ≤ Bt such that C and D differ at one edge e ∈ Em. We
apply the special coupling introduced above to (C,D) and want to show that the
expected distance is smaller than 1. Similar to the spin block dynamics we have to
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consider how the chosen vertex u and e may relate to each other. For wired and free
boundary conditions, a differing edge can only have an influence on the conditional
measures at ER(u) if it is connected to ER(u) via a path in Em. With probability at
most (2R+ 1)2/M , we have e ∈ ER(u) and d(C ′, D′) = 0 follows. With probability
at most

M −R2 − 2(r − 1)R

M
,

the distance of both endpoints of e to all vertices in BR(u) is bigger or equal to r. In
this case, the probability that one endpoint of e connects to BR(u) via an open path
in Bt is smaller than C exp(−cr), and therefore the differing edge will influence the
conditional measures on ER(u) with very low probability. With probability at most
4(r + 1)(2R+ 1 + r)/M one endpoint of e has distance less or equal to r to the set
ER(u). In this case, we get a potential influence of e on the conditional measures
on ER(u), however this influence is bounded due to our choice of the coupling and
Lemma 5.9. In the second or third case, if the edge has influence on the conditional
measures, it is bounded to ER(u) \Lr with high probability, and we roughly bound
the number of edges in this area by 8r2. It follows

E
[
d(C ′, D′) | C,D

]
≤ M −R2 − 2(r − 1)R

M

(
1 + C exp(−cr)

(
8r2 + (2R+ 1)2C exp(−cr)

))
+

4(r + 1)(2R+ 1 + r)

M

(
8r2 + (2R+ 1)2C exp(−cr)

)
.

As in Lemma 5.4, we see that for R big enough and r chosen appropriately (for
instance r = log(6R)/c), we get that

E
[
d(C ′, D′) | C,D

]
≤ M − αR2

M

with some α < 1 and R big enough. This means that the path coupling theorem
applies after a burn-in time of T = a log(M)M/R2 steps, resulting in a mixing time
of

τmix(ε) ∈ O
(
(M/R2) log(M)

)
overall, and translating to m gives

τmix(ε) ∈ O
(
(m2/R2) logm

)
.

Note that it is crucial for this proof that the boundary conditions do not allow
connectivity information to be distributed by the boundary. This kind of proof
also works for side-homogeneous boundary conditions introduced in [BS16], as well
as for boundary conditions drawn according to the infinite-volume measure µ in
the subcritical regime. We proceed to prove a mixing time bound for the Glauber
dynamics, in the case of free or wired boundary conditions. It has been introduced
in [BS16] and we have already seen the proof techniques in Theorem 5.6. We will
however need a small modification to Lemma 5.1 in the case of side-homogeneous
boundary conditions.
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Lemma 5.12. Let p < pc(q) and G = (V,E) be a rectangular subgraph of Z2, and
let C ⊆ D ⊆ Z2 \ E be two boundary conditions that satisfy the following property:
There is exactly one open cluster that contains more than one vertex, and the set
of vertices in V belonging to this cluster constitute a connected component of the
boundary of G, see Figure 5.4. Let ∆ ⊆ V be the set of vertices in V that belong
to the unique open cluster in D, but not in C. Let Lr be the subset of edges in E
where both endpoints v1, v2 satisfy

‖w − vi‖2 > r for all w ∈ ∆ .

For µCr , µDr , which are the marginal random cluster measures on Lr with boundary
condition C or D respectively, one has

‖µCr − µDr ‖TV ≤ C1 exp(−cr)

with constants C1, c > 0 that only depend on p, q.

Proof. We consider a coupling (A,B) of configurations on G that satisfies

A ∼ µC , B ∼ µD, A ≤ B

as is possible due to Theorem 3.4. Let Λ = Λ(B) be the set of edges where both
endpoints are not connected to any vertex in ∆ via B. We can do a coupled resam-
pling on Λ because (A,C) and (B,D) induce the same boundary conditions on Λ.
We get a coupling (A′, B′) with

A′ ∼ µC , B′ ∼ µD, A′ ≤ B′, A′ = B′ on Λ ,

and from this coupling it follows

‖µCr − µDr ‖TV ≤ P[Lr 6⊆ Λ] .

This probability decays exponentially in r.

Theorem 5.13 (Mixing time of the Glauber dynamics for free and wired boundary
conditions). Let p < pc(q). For the random cluster model on Em with free or wired
boundary conditions, the Glauber dynamics Markov chain has mixing time

τmix(ε) ∈ O
(
m2(logm)2

)
.

Proof. Let A0 = ∅ and B0 = Em be the extremal states and let (At, Bt)t≥0 be the
coupled monotone Glauber dynamics process. Let u ∈ Vm be a vertex and consider
the box ER(u) of all edges e ∈ Em with endpoints v that satisfy ‖u − v‖∞ ≤ R.
We introduce auxiliary Markov chains Atu and Bt

u with initial conditions A0
u =

A0 and B0
u = B0, coupled to (At, Bt) as follows: If the edge chosen in Step 1 of



5.3. THE FORTUIN-KASTELEYN RANDOM CLUSTER SETTING 71

Figure 5.4: Realizable boundary conditions in the Fortuin-Kasteleyn random cluster
model. On the left, the prerequisites of Lemma 5.12 are satisfied, but not on the
right.

the Glauber dynamics is in ER(u), perform a coupled Glauber dynamics update,
otherwise do nothing. The auxiliary chains are Glauber dynamics processes on
ER(u) with side-homogeneous boundary conditions, i.e. connectivity information
cannot travel across the boundary of ER(u). Moreover, the coupling implies

Atu ≤ At ≤ Bt ≤ Bt
u

for all t ≥ 0. Let µ0
u,R be the random cluster measure on ER(u) induced by A0 and

µ1
u,R the random cluster measure on ER(u) induced by B0. After t steps, one has

for any edge e ∈ Em

P[e ∈ Bt and e /∈ At]
≤ P[e ∈ Bt

u and e /∈ Atu]

= P[e ∈ Bt
u]− P[e ∈ Atu]

≤
∣∣P[e ∈ Bt

u]− µ1
u,R[e is open]

∣∣
+
∣∣µ1
u,R[e is open]− µ0

u,R[e is open]
∣∣

+
∣∣µ0
u,R[e is open]− P[e ∈ Atu]

∣∣ .
For a given R, let TR be the maximal mixing time (with respect to δ = 1

4) of the
Glauber dynamics on any ER(u) with side-homogeneous boundary conditions. The
box ER(u) contains at least 2(R − 1)2 edges, therefore a Chernoff bound argument
implies that after t = a log(6M)TRM/(2(R−1)2) ∈ N global updates with M = |Em|
and some a > 2, the number of updates in ER(u) is at least log(6M)TR with
probability at least 1

6M . Using this together with Lemma 2.7, we can bound the
first and third term in the above estimate by 1

3M . For the second term, we notice
that µ0

u,R and µ1
u,R satisfy the prerequisites of Lemma 5.12. Set R = b log(M) with

b > 1/c, where c > 0 is the exponential decay constant in Lemma 5.12. Edges e
with u as an endpoint have distance R − 1 to the set ∆ given by the difference of
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the boundary conditions for µ0
u,R and µ1

u,R. Therefore we get∣∣µ1
u,R[e is open]− µ0

u,R[e is open]
∣∣ ≤ C exp(−c(R− 1)) ≤ CM−bc ≤ 1

6
M−1

for m big enough. Overall, we get that for edges e adjacent to u, after t =
a log(6M)TRM/(2(R− 1)2) Glauber dynamics steps, one has

P[e ∈ Bt and e /∈ At] ≤ 1

2M
,

and therefore a union bound over the edges gives

E
[
|Bt \At|

]
≤ 1

2
.

This implies

P[At 6= Bt] ≤ 1

2
,

and the fact that the coupling (At, Bt) is nondiverging implies

P[Ant 6= Bnt] ≤ 1

2n
≤ ε

for some n independent of m. Therefore we have τmix(ε) ≤ nt. The rest follows from
an induction argument. Let φ(R) be a strictly increasing function in R and let a′

be a constant such that for all R′ ≤ R, one has TR′ ≤ a′φ(R′). With R = b log(M)
we get a mixing time bound

a log(6M)M/(2(b log(M)− 1)2)a′φ(b log(M))

and if this expression is dominated by a′φ(M), we get that τmix(ε) ∈ O(φ(M)). This
is true for φ(M) = M log(M)2, and translating this to m we get

τmix(ε) ∈ O
(
(m2/R2)(logm)2

)
.

Note that this result also holds for p > pc(q) because the Glauber dynamics Markov
chain can also be interpreted as Glauber dynamics on the dual model, see [BS16]
for the details.

5.4 Speed of disagreement percolation

Consider the Ising model on some graph G = (V,E) and two configurations σ0 ≤ τ0

that only differ in one vertex v ∈ V . Using a monotone coupled Markov chain, one
can ask for upper bounds on

∣∣{v : σt(v) 6= τ t(v)}
∣∣ that only depend on G and t. Such

bounds are useful as they allow for sharp path coupling arguments. We will improve
some mixing time results of the previous subsections. Note that the final mixing
time results given here are known, see for instance [BCV18]. See also [DSVW02],
which uses the speed of disagreement percolation idea in a very similar way.
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Lemma 5.14 (Speed of disagreement for alternate scan dynamics). Let G = (V,E)
be a graph and d(v, w) = min{n − 1: e1, . . . , en is a path from v to w}. Let σ0 and
τ0 be Ising spin configurations on V that differ at one vertex u ∈ V . Let V1, . . . , Vm
be a partition of V such that the endpoints of any edge e ∈ E are in different sets
Vi. With this partition, the coupled alternate scan dynamics Markov chain (σt, τ t)
satisfies

σt(w) = τ t(w) for all w ∈ V with ‖v − w‖1 > t .

Proof. It is easy to see that the coupled alternate scan dynamics can propagate
disagreement only to vertices adjacent to disagreeing spins in one timestep. The
result follows immediately.

We see that for alternate scan dynamics, the reach of disagreement is at most linear
in the number of timesteps. This result obviously extends to the q-state Potts model
case.

Theorem 5.15 (Mixing time of the alternate scan dynamics II). Let q = 2, p <
pc(q) and consider the graph G = (Vm, Em) with spin boundary conditions ψ on
Vm+1 \ Vm. The alternate scan dynamics with even/odd partition in the Ising model
case has mixing time

τmix(ε) ∈ O(logm) .

Proof. We already know that τmix(ε) ∈ O((logm)2), but for the upcoming argument
it suffices to know that τmix(ε) is polynomial in M = (2m+ 1)2. Let σ0 ≤ τ0 differ
at only one vertex u ∈ Vm, and let (σt, τ t) be the coupled monotone alternate scan
dynamics Markov chain. Let R > 0 and for v ∈ Vm, consider auxiliary Markov
chains (σtv, τ

t
v) given by the alternate scan dynamics on BR(v), starting in in the

extremal states and coupled to (σt, τ t) such that at each timestep t, one has

σtv ≤ σt ≤ τ t ≤ τ tv .

For a given R, let TR = TR(1/4) be the maximal mixing time of the alternate scan
dynamics on BR(v), which is at most polynomial in R by assumption. Let Γ(u, TR)
be the set of vertices w ∈ Vm that satisfy ‖v − w‖1 ≤ TR. Due to Lemma 5.14
we know that |Γ(u, TR)| grows like T 2

R, and therefore also grows polynomially in R.
After t = TR timesteps, the disagreement at u can only travel to vertices in Γ(u, TR),
and we therefore obtain

E
[
|{v ∈ Vm : σt(v) 6= τ t(v)}|

]
≤

∑
w∈Γ(u,TR)

P[σt(w) 6= τ t(w)] .

Furthermore, we can bound

P[σnt(w) 6= τnt(w)] ≤ P[σntw (w) 6= τntw (w)] ≤ 2

4n
+ C(2R+ 1)2 exp(−cR) ,
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where the latter term comes from the local SSM property, see the proof of Theorem
5.5 for details. Therefore we get an overall bound

E
[
|{v ∈ Vm : σnt(v) 6= τnt(v)}|

]
≤ |Γ(u, nTR)|

(
2

4n
+ C(2R+ 1)2 exp(−cR)

)
.

Choosing n = R, we see that this expression is asymptotically

O(exp(−c′R))

for some c′ > 0. Therefore there exists R big enough such that after nt = RTR steps,
the expected disagreement between σnt and τnt is bounded by 1

2 . It is important
to note here that R does not depend on m. Interpreting the alterate scan dynamics
applied nt times as a contractive Markov chain, we get that

τmix(ε) ∈ O(log(M)RTR) = O(logm)

using the path coupling theorem.

We see that this proof crucially depends on the fact that |Γ(u, nTR)| grows poly-
nomially in nTR. For the alternate scan dynamics with even/odd partitioning this
is easy to see. For the upcoming algorithms, we need to bound the reach of dis-
agreement in a probabilistic manner. We continue with the heatbath sweep Markov
chain.

Lemma 5.16 (Speed of disagreement for heatbath sweep dynamics). Let σ0 ≤ τ0

be Ising spin configurations on Z2 that differ in only one vertex u ∈ Vm. Consider
the monotone coupling (σt, τ t) of the heatbath sweep dynamics Markov chain on Vm,
and let

Γ(u, t) =

t⋃
s=0

{v ∈ Vm : σs(v) 6= τ s(v)}

be the set of vertices which are or were disagreeing at some time s ≤ t. Then we
have

E[|Γ(u, t)|] ∈ O(tb)

for all b > 2.

Proof. At time t− 1, consider the states

σ′(v) =

{
σt−1(v) v /∈ Γ(u, t− 1)

1 v ∈ Γ(u, t− 1)
, τ ′(v) =

{
τ t−1(v) v /∈ Γ(u, t− 1)

2 v ∈ Γ(u, t− 1)
.

Then we have σ′ ≤ σt−1 ≤ τ t−1 ≤ τ ′, and if we apply the heatbath sweep coupling
to (σ′, τ ′) to obtain (σ, τ) in a monotone way, we can guarantee

σ ≤ σt ≤ τ t ≤ τ .
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Therefore we have

Γ(u, t) ⊆ Γ := Γ(u, t− 1) ∪ {v ∈ Vm : σ(v) 6= τ(v)} ,

and this implies

P[v ∈ Γ(u, t) | Γ(u, t− 1)] ≤ P[v ∈ Γ | Γ(u, t− 1)] .

Let v1, . . . , vM ∈ Vm be the enumeration of vertices at the t-th timestep that is
generated at Step 1 of the heatbath sweep dynamics. If v ∈ Γ, there exists a (self-
avoiding) path vi(1), . . . , vi(n) of adjacent vertices with

vi(1) is adjacent to Γ(u, t− 1) , vi(n) = v and i(1) < . . . < i(n)

for the disagreement to ’travel’ from Γ(u, t− 1) to v. For any such path, the proba-
bility that vi(1) to vi(n) are chosen in increasing order is given by

1

n
· 1

n− 1
· · · · 1

2
=

1

n!
.

Therefore we can bound

P[v ∈ Γ | Γ(u, t− 1)]

≤P
[
∃vi(1), . . . , vi(n) = v path

]
≤
∑
n≥d

∑
paths of length n

1

n!

≤
∑
n≥d

(2n)23n−1

n!
,

where (2n)2 is a bound for the possible starting positions of paths ending in v, 3n−1

is a crude bound for the number of self-avoiding walks of length n starting in a fixed
vertex, and

d = d(v,Γ(u, t− 1)) = min
w∈Γ(u,t−1)

‖v − w‖1

is the path distance of v to Γ(u, t − 1). We see that for increasing d, P[v ∈ Γ |
Γ(u, t−1)] decays faster than any exponential (in the asymptotical sense). Therefore
we can bound

P[v ∈ Γ | Γ(u, t− 1)] ≤ exp(−cd)

with c > 0 small enough. Now, let ∆(u, t − 1) be the smallest l1-ball around u
containing Γ(u, t− 1), i.e.

R(t− 1) = max
v∈Γ(u,t−1)

‖u− v‖1, ∆(u, t− 1) = {v ∈ Vm : ‖u− v‖1 ≤ R(t− 1)} .

If we assume that Γ(u, t − 1) = ∆(u, t − 1) holds (which is the maximal set under
the condition that R(t− 1) stays fixed), we can bound

P[R(t)−R(t− 1) ≥ r | ∆(u, t− 1)] ≤ min {1, 4(R(t− 1) + r) exp(−cr)} ,
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using the estimate from above and summing over all vertices with distance r from
∆(u, t− 1). Then we consider

E [R(t)−R(t− 1) | R(t− 1)]

≤E [R(t)−R(t− 1) | Γ(u, t− 1) = ∆(u, t− 1)]

≤E

∑
r≥1

1[∃v ∈ Γ(u, t) with d(v,Γ(u, t− 1)) = r
∣∣∣Γ(u, t− 1) = ∆(u, t− 1)]


=
∑
r≥1

P[∃v ∈ Γ(u, t) with d(v,Γ(u, t− 1)) = r | Γ(u, t− 1) = ∆(u, t− 1)]

=
∑
r≥1

P[R(t)−R(t− 1) ≥ r | Γ(u, t− 1) = ∆(u, t− 1)]

≤
∑
r≥1

min {1, 4(R(t− 1) + r) exp(−cr)} .

Simplifying this sum further, we see that∑
r≥1

min {1, 4(R(t− 1) + r) exp(−cr)}

≤ log(4R(t− 1))/c+
∑
s≥1

min

{
1,

4(R(t− 1) + log(4R(t− 1)) + s)

4R(t− 1)
exp(−cs)

}
≤ log(4R(t− 1))/c+

∑
s≥1

min {1, (1 + 1/c+ s) exp(−cs)}

≤ log(4R(t− 1))/c+A

with some constant A independent of R(t− 1). We have shown that

E[R(t) | R(t− 1)] ≤ R(t− 1) + log(4R(t− 1))/c+A ,

which shows that E[R(t)] ∈ O(tb
′
) for all b′ > 1. The estimate |Γ(u, t)| ≤ (2R(t)+1)2

gives the result.

Theorem 5.17 (Mixing time of the heatbath sweep dynamics II). Let q = 2, p <
pc(q) and consider the graph G = (Vm, Em) with spin boundary conditions ψ on
Vm+1 \ Vm. The heatbath sweep dynamics in the Ising model case has mixing time

τmix(ε) ∈ O(logm) .

Proof. Let σ0 ≤ τ0 differ at only one vertex u ∈ Vm, and let (σt, τ t) be the coupled
monotone heatbath sweep dynamics Markov chain. Let R > 0 and for v ∈ Vm,
consider auxiliary Markov chains (σtv, τ

t
v) given by the heatbath sweep dynamics on

BR(v), starting in in the extremal states and coupled to (σt, τ t) such that at each
timestep t, one has

σtv ≤ σt ≤ τ t ≤ τ tv .
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For a given R, let TR = TR(1/4) be the maximal mixing time of the heatbath sweep
dynamics on BR(v), which is at most polynomial in R by Theorem 5.5. Let Γ(u, t)
be defined as in Lemma 5.16. We have

E[|{v ∈ Vm : σnt(v) 6= τnt(v)}|]
≤

∑
v∈Vm

P[σnt(v) 6= τnt(v) | v ∈ Γ(u, nt)]P[v ∈ Γ(u, nt)]

≤
∑
v∈Vm

P[σntv (v) 6= τntv (v) | v ∈ Γ(u, nt)]P[v ∈ Γ(u, nt)]

=
∑
v∈Vm

P[σntv (v) 6= τntv (v)]P[v ∈ Γ(u, nt)]

≤ E[|Γ(u, nt)|] max
v∈Vm

P[σntv (v) 6= τntv (v)] .

The first factor grows polynomially in nt, the second factor can be bounded by
2

4n + C(2R + 1)2 exp(−cR) for t = TR, see the proof of Theorem 5.5 for details.
Choosing n = R and R big enough gives an expected difference less than 1, hence
the path coupling theorem gives the result.

We continue with the heatbath dynamics.

Lemma 5.18 (Speed of disagreement for heatbath dynamics). Let σ0 ≤ τ0 be Ising
spin configurations on Z2 that differ in only one vertex u ∈ Vm. Consider the
monotone coupling (σt, τ t) of the heatbath sweep dynamics Markov chain on Vm,
and let

Γ(u, t) =
t⋃

s=0

{v ∈ Vm : σs(v) 6= τ s(v)}

be the set of vertices which are or were disagreeing at some time s ≤ t. With
M = |Vm| = (2m+ 1)2, we have

E[|Γ(u,Mt)|] ∈ O(tb)

for all b > 2.

Proof. As in the previous lemma, we consider the probability that v ∈ Γ(u,Mt),
conditioned on Γ(u,M(t−1)). Let v1, . . . vM be the chosen vertices of the upcoming
heatbath dynamics. For the disagreement to travel from Γ(u, t−1) to v, there needs
to be a path vi(1), . . . , vi(n) of adjacent vertices with vi(1) adjacent to Γ(u,M(t− 1))
and vi(n) = v, as well as

i(1) < . . . < i(n) .

Consider this path to be fixed and let S = {vi(1), . . . , vi(n)} be the set of path vertices.
Then the probability that disagreement travels along this path can be bounded by

M∑
k=n

P[k draws from S]P[∃increasing complete subsequence | k draws from S] .
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The first factor in this sum comes from the binomial distribution, while the second
factor describes the probability that after k ordered draws from S, there is the
subsequence (vi(1), . . . , vi(n)). The second term can be bounded by(

k

n

)
nk−nn−k =

(
k

n

)
n−n ,

where n−k is the total number of ordered k-draws from S and
(
k
n

)
nk−n describes

the procedure of taking any n out of k positions, assigning to them vi(1), . . . , vi(n) in
increasing order and filling the rest up arbitrarily. We arrive at

M∑
k=n

B(M,n/M, k)

(
k

n

)
n−n ,

with B(M,n/M, k) the binomial distribution with parameters M and p = n/M .
Because M is very large, we approximate with the Poisson distribution P (n, k) =
exp(−n)nk/k!

M∑
k=n

B(M,n/M, k)

(
k

n

)
n−n

≤
M∑
k=n

|B(M,n/M, k)− P (n, k)|
(
k

n

)
n−n +

M∑
k=n

P (n, k)

(
k

n

)
n−n .

For the second sum, we can take M to infinity and obtain

∑
k≥n

P (n, k)

(
k

n

)
n−n =

1

n!
exp(−n)

∑
k≥n

nk−n

(k − n)!
=

1

n!
.

The first sum behaves similar:

M∑
k=n

|B(M,n/M, k)− P (n, k)|
(
k

n

)
n−n

=
M∑
k=n

nk

k!

(
k

n

)
n−n

∣∣∣∣ M !

(M − k)!Mk

(
1− n

M

)M−k
− exp(−n)

∣∣∣∣
≤
∑
k≥n

nk

k!

(
k

n

)
n−n(2e−n)

=
2

n!
,

where the estimate is true for M big enough independently of n. We have shown
that after M heatbath steps, the probability of disagreement traveling along a fixed
path of length n is bounded by 3

n! . The rest of the proof is exactly the same as in
Lemma 5.16.
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Corollary 5.19 (Mixing time for the heatbath dynamics II). Let q = 2, p < pc(q)
and consider the graph G = (Vm, Em) with spin boundary conditions ψ on Vm+1\Vm.
The heatbath dynamics in the Ising model case has mixing time

τmix(ε) ∈ O(M log(M)) = O(m2 logm)

with M = |Vm| = (2m+ 1)2.

Proof. The proof is almost identical to the case of heatbath sweep dynamics. Let
σ0 ≤ τ0 differ at only one vertex u ∈ Vm, and let (σt, τ t) be the coupled monotone
heatbath dynamics Markov chain. Let R > 0 and for v ∈ Vm, consider auxiliary
Markov chains (σtv, τ

t
v) given by the heatbath dynamics on BR(v), starting in in the

extremal states and coupled to (σt, τ t) such that at each timestep t, one has

σtv ≤ σt ≤ τ t ≤ τ tv .

For a given R, let TR = TR(1/4) be the maximal mixing time of the heatbath
dynamics on BR(v), which is at most polynomial in R by Theorem 5.6. Let Γ(u, t)
be defined as in Lemma 5.18. We have

E[|{v ∈ Vm : σnt(v) 6= τnt(v)}|]
≤
∑
v∈Vm

P[σnt(v) 6= τnt(v) | v ∈ Γ(u, nt)]P[v ∈ Γ(u, nt)]

≤
∑
v∈Vm

P[σntv (v) 6= τntv (v) | v ∈ Γ(u, nt)]P[v ∈ Γ(u, nt)]

=
∑
v∈Vm

P[σntv (v) 6= τntv (v)]P[v ∈ Γ(u, nt)]

≤E[|Γ(u, nt)|] max
v∈Vm

P[σntv (v) 6= τntv (v)] .

If we set n = 2RM , we get that the first factor grows polynomially in R. For the
second factor, we see that the expected number of updates in BR(v) at time nt is
given by

2RMTR|BR(v)|/M = 2RTR|BR(v)| .

Therefore a Chernoff bound gives us that the probability of less than RTR updates
happening in |BR(v)| decays exponentially in R. If at least RTR updates do happen
in BR(v) (call this event UR,v), we get the standard bound

P[σntv (v) 6= τntv (v)|UR,v] ≤
2

4R
+ C(2R+ 1)2 exp(−cR) .

Overall, we get that

E[|Γ(u, nt)|] max
v∈Vm

P[σntv (v) 6= τntv (v)]
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decays exponentially in R, implying that for R big enough, the path coupling theo-
rem applies for the heatbath dynamics applied M2RTR times. Here, R is indepen-
dent of M , therefore this results in a mixing time

τmix(ε) ∈ O(M log(M)) = O(m2 logm) .

Finally, we turn to the monotone Swendsen-Wang dynamics Markov chain.

Lemma 5.20 (Speed of disagreement for monotone Swendsen-Wang dynamics). Let
σ0 ≤ τ0 be Ising spin configurations on Z2 that differ in only one vertex u ∈ Vm.
Consider the monotone coupling (σt, τ t) of the monotone Swendsen-Wang dynamics
Markov chain on Vm, and let

Γ(u, t) =
t⋃

s=0

{v ∈ Vm : σs(v) 6= τ s(v)}

be the set of vertices which are or were disagreeing at some time s ≤ t. Then we
have

E[|Γ(u, t)|] ∈ O(tb)

for all b > 2.

Proof. We consider the probability that v ∈ Γ(u, t) conditioned on Γ(u, t− 1). This
can only happen if the connected component C(v) of v after Step 1 of the monotone
Swendsen-Wang dynamics intersects Γ(u, t − 1), and all proposal spins in C(v) \
Γ(u, t− 1) choose the same spin. The probability for this event is less or equal to 1

2d

with d = minw∈Γ(u,t−1) ‖v − w‖1. The rest of the proof follows Lemma 5.16.

We state the implied mixing time result without proof.

Corollary 5.21 (Mixing time for monotone Swendsen-Wang dynamics II). Let q =
2, p < pc(q) and consider the graph G = (Vm, Em) with spin boundary conditions
ψ on Vm+1 \ Vm. The monotone Swendsen-Wang dynamics in the Ising model case
has mixing time

τmix(ε) ∈ O(logm) .

5.5 The supercritical phase

Many of the introduced techniques apply in the supercritical phase as well, though
we have to adjust our understanding of the mixing time a little bit. As an example,
consider the q-state Potts model on G = (Vm, Em) without boundary conditions, i.e.
the edges connecting Vm to Z2 \ Vm are removed. For p > pc(q), the random cluster
model is in the supercritical phase and therefore tends to states where the majority
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of spins have the same color, with a few excitations. Due to the absence of boundary
conditions, every spin color s ∈ {1, . . . , q} has equal probability to be the dominating
one. This results in a probability distribution with mass concentrated around the q
monochromatic states, and local Markov chains like the heatbath dynamics have a
hard time transitioning between these regions. We will show in this section that this
in not the complete picture. In fact, if we restrict ourselves to studying the dynamics
in the vicinity of a single dominating color, mixing takes place at an optimal rate.
Using the techniques of this chapter, we will show that for the Ising model, positive
mixing time results are possible.
We begin with a reformulation of the exponential decay property, suited for the
supercritical case. Let G = (Vm, Em) be the usual rectangular subgraph of Z2, with
a realizable boundary condition. We consider the random cluster model µm on this
graph, with p > pc(q). Then we know that this model is equivalent to a random
cluster model µ′m on the planar dual graph G′, with the same q and parameter
p′ < pc(q). For a configuration A on the primal graph, the dual configuration A′ is
given by

e ∈ A⇔ e′ /∈ A′ ,
where e′ is the dual edge of e. For a dual vertex w′, let C ′(w′) be the set of dual
open edges connected to w′ via the dual configuration A′. If A has distribution µm,
then A′ has distribution µ′m and therefore C ′(w′) should not contain many edges.
We know that for dual vertices u′, v′ one has

P[u′ ↔ v′ via A′] ≤ C exp(−c‖u′ − v′‖2) ,

for some constants C, c > 0 and it follows

P[∃u′ ↔ w′ with ‖u′ − w′‖2 ≥ r] ≤ D′r exp(−cr)

with an adjusted constant D′. To obtain this bound, it suffices to sum over the
connection probabilities of vertices u′ that have distance exactly r to w′, which are
O(r) in number. Now, we can sum over all dual vertices to obtain

P[∃w′ s.t. ∃u′ ↔ w′ with ‖u′ − w′‖2 ≥ r] ≤ |V ′m|D′r exp(−cr)

with |V ′m| ∈ O(m2) being the number of dual vertices. Choosing r = b logm with b
big enough, we see that this probability is diminishing for increasing m.

Lemma 5.22. In the supercritical phase, dual clusters of the form C ′(w′) have
maximal radius r = b logm with probability

P[∃w′ s.t. ∃u′ ↔ w′ with ‖u′ − w′‖2 ≥ r] ∈ O((logm)m2−bc) .

This implies the following for the primal configuration A: with a probability tending
to 1 for increasing m, the configuration A has a unique biggest open cluster, the
so called global cluster. This global cluster contains all open edges which comprise
the boundaries of dual clusters, which only have a certain radius. Therefore, the
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Figure 5.5: A dual configuration on a 4×4 grid with free boundary conditions (left),
as well as the resulting primal configuration (right). The purple edges are always
open, imposing a wired-like boundary condition. The global cluster encloses all dual
clusters.

global cluster permeates the whole configuration A with increasing probability, see
Figure 5.5 for a clarification. Lemma 5.22 is a global property in the sense that it
holds for the whole lattice and not only for a finite number of vertices. An addition
to this law can be given with the following local property. From here on out we
use wired boundary conditions or the dual boundary conditions to free boundary
conditions which are given by wired boundary conditions plus the condition that all
edges between boundary vertices in Vm \ Vm−1 are also always open. In both cases,
we define the global cluster to be the unique cluster connecting to the boundary.

Lemma 5.23 (Exponential decay of non-global connectivity). Let G = (Vm, Em) be
the rectangular subgraph of Z2 and consider the associated random cluster measure
µ1
m with wired-like boundary conditions, as well as p > pc(q). Let N (A, u, v) be the

following event: There exists a path of dual vertices w′1, . . . , w
′
n with w′n = w′1 such

that the connecting edges are open in A′ and both u and v are on the inside of this
loop. In the supercritical phase with A ∼ µ1

m, there exist C, c > 0 such that

P[N (A, u, v)] ≤ C exp(−c‖u− v‖2)

holds for all m and u, v ∈ Vm.

Note that the event N (A, u, v) encompasses the event ’u and v are connected via a
non-global cluster in A’.

Proof. Let u, v ∈ Vm be non-boundary vertices, and assume without loss of gen-
erality that u1 ≤ v1 and u2 ≤ v2 (we can rotate the graph otherwise). Let
u′ = (u1 − 0.5, u2 − 0.5) be the dual vertex that is located at the lower left of
u, and let v′ = (v1 + 0.5, v2 + 0.5) be the dual vertex that is connected at the upper
right of v. We consider the dual vertices u′i = u′ − (0, i) and v′j = v′ + (0, j) that
have ‖·‖∞-norm smaller than m. Notice that the event N (A, u, v) implies that there
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must exist a dual path from a vertex in {u′0, u′1, . . .} to a vertex in {v′0, v′1, . . .}. We
can bound the corresponding probability by

∞∑
i=0

∞∑
j=0

P[u′i ↔ v′j in the dual configuration] ≤
∞∑
i=0

∞∑
j=0

C exp(−c‖u′i − v′j‖2)

because Theorem 3.13 holds for the dual configuration. Moreover, we have

‖u′i − v′j‖2 = ‖v − u+ (1, 1 + i+ j)‖2 ≥
1√
2

(‖u− v‖2 + ‖(1, 1 + i+ j)‖1)

and thus we see

∞∑
i=0

∞∑
j=0

C exp(−c‖u′i − v′j‖2) ≤ C exp(−c′‖u− v‖2)
∞∑
i=0

∞∑
j=0

exp(−c′(i+ j + 2))

with c′ = c/
√

2. The double sum converges and therefore we get the result.

For the rest of this section, we consider the supercritical Ising model with p > pc(2)
on G = (Vm, Em) with monochromatic boundary conditions, i.e. all vertices in
Vm+1 \Vm have color s = 2. We denote the corresponding measure with νm. In this
setting, s = 2 is the dominating color, and we will analyze Markov chain dynamics
P that are close to the monochromatic s = 2 state σ∗. To do this, consider

d∗(νm, P s) = ‖νm − P s(σ∗, ·)‖TV

and the monochromatic mixing time

τ∗mix(P, ε) = min{s : d∗(νm, P s) ≤ ε} .

It is easy to see that this is a weaker concept than the original mixing time, and it
holds

τ∗mix(P, ε) ≤ τmix(P, ε) .

But it is still possible to derive constructive Markov chain Monte-Carlo integra-
tion results from here, because the initial distribution δσ∗ is realizable. Therefore,
error bounds for Markov chain Monte-Carlo simulations that start in σ∗ can be de-
rived like in Chapter 2. It is important to note that Lemma 2.7 holds also for the
monochromatic mixing time.
The next step of our preparations consists of a local to global coupling result. For
a vertex u ∈ Vm, we consider BR(u) = {v ∈ Vm : ‖u − v‖∞ ≤ R} and the Ising
model measure νu on BR(u) with monochromatic s = 2 boundary conditions, i.e.
all vertices adjacent to BR(u) have color s = 2.

Lemma 5.24 (Local to global coupling). Let p > pc(2) and νm be the Ising model
measure on G = (Vm, Em) with monochromatic s = 2 boundary conditions. Let
0 ≤ r ≤ R and let νu be the Ising model measure on BR(u) with monochromatic
s = 2 boundary conditions. Let νrm and νru be the corresponding marginal measures
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on the set W r of vertices that have at least distance r > 0 to vertices in Vm \BR(u).
Then there exist constants C, c > 0 such that

‖νrm − νru‖TV ≤ C exp(−cr)

for all m, r, R and u ∈ Vm.

Proof. As usual, we construct a coupling of νm and νu that agrees with high prob-
ability on W r. Let µm be the random cluster model measure on Em+1 with wired
boundary conditions, and let µu be the random cluster model measure on edges with
both endpoints in BR+1(u) together with wired boundary conditions, where we call
the edge set Eu,R. The partial order in this setting gives us µm ≤ µu, and we can
define a coupling with

A ∼ µm, Au ∼ µu, A ≤ Au

(using for instance the Glauber dynamics Markov chain with a CFTP procedure).
Now, we do a resampling to obtain a different coupling. For a given realization
(A,Au), let V ′ be the set of dual vertices enclosed by BR+1(u) that are connected
to a dual vertex outside of BR+1(u) via open dual edges in A′. This set gives us a
connected boundary given by the edge set F defined via

F̃ = {e ∈ Eu,R : the dual edge e′ has exactly one endpoint in V ′}
∪{e ∈ Eu,R : e is an outermost edge and open in A} ,

F = F̃ \ {e is an outermost edge in Em+1}

that encompasses V ′, see Figure 5.6.

Per definition, all edges e ∈ F are open in A, and these open edges form a set of
disjoint closed loops. Due to monotonicity, this is true for Au as well, and we see
that the conditional measures on the set enclosed by F coincide for both A and Au.
We can do a coupled resampling on

Λ = {e ∈ Eu,R : e′ has no endpoint in V ′}

to obtain a coupling

B ∼ µm, Bu ∼ µu, B ≤ Bu, B = Bu on Λ .

Let W be the set of vertices that are adjacent to an edge in Λ. Using the Edwards-
Sokal coupling step that always assigns s = 2 to the global cluster, we obtain a
coupling of the corresponding spin models

σ ∼ νm, σu ∼ νu,
σ = σu on vertices in W belonging to non-global clusters of Bu ,

σ = σu on vertices belonging to the global cluster of B .
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Eu.R

Ec
m+1 Em+1 \ Eu,RF

Λ

Figure 5.6: The edge sets involved in the proof of Lemma 5.24, here for a set
Eu,R that is aligning with the boundary of Em+1 on the left boundary. The set F
decomposes in components that are loop-like. The red edges mark the connection
of dual vertices in V ′ to the outside of BR+1(u). The edges in F are open in A and
Au, therefore a resampling on Λ is possible.
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This is true because the non-global clusters of W align in B and Bu, and the global
cluster in B automatically is contained in the global cluster of Bu. From this cou-
pling, we get that

‖νrm − νru‖TV ≤ P[σ 6= σu on W r]

≤ P[W r 6⊆W ] + P[W r ⊆W ]P[σ 6= σu on W r |W r ⊆W ] .

However, the construction of W gives us that W r 6⊆ W implies that there exists a
vertex in W r that is enclosed by a dual path connecting to a dual vertex outside
of BR+1(u), and this probability decays exponentially with increasing distance from
W r to Vm \BR(u), which is r. For the second summand, we note that for a vertex
v ∈W r ⊆W we have that

σ(v) 6= σu(v)⇒ v belongs to the global cluster in Bu, but not in B.

In this case, v is connected to a unique component of F via open edges in Λ which
does not belong to the global cluster of B. Therefore it is enclosed by an open dual
component C ′, which connects to a dual vertex outside of BR+1(u) by construction.
Such a dual component contains vertices which have distance bigger than R from
each other, therefore this probability decays exponentially in R. Overall, we get

‖νrm − νru‖TV ≤ P[σ 6= σu on W r]

≤ P[W r 6⊆W ] + P[W r ⊆W ]P[σ 6= σu on W r |W r ⊆W ]

≤ C exp(−cr) +D exp(−dR)

≤ C̃ exp(−c̃r)

for some constants C, c̃ > 0.

From the proof it is clear that a generalization to the q-state Potts model with
monochromatic boundary conditions is possible, as we did not use any monotonicity
in the spin setting. Using this vital property, we proceed with the central theorems
of this section.

Theorem 5.25 (Monochromatic mixing time bound for monotone dynamics with
local/global coupling). Let p > pc(2) and νm be the Ising model measure on
G = (Vm, Em) with monochromatic s = 2 boundary conditions. The alternate scan
dynamics, heatbath sweep dynamics and monotone Swendsen-Wang dynamics have
monochromatic mixing time

τ∗mix(ε) ∈ O(logm) .

Proof. Let (σt)t≥0 be the alternate scan dynamics Markov chain with transition
matrix P and initial state σ0 given by

σ0(v) = 2 ∀v ∈ Vm ,
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i.e. the monochromatic s = 2 state. Moreover, let τ0 ∼ νm and consider the Markov
chain (τ t)t≥0 coupled to (σt)t≥0 using the monotone grand coupling of the alternate
scan dynamics to obtain

τ t ≤ σt

for t ≥ 0. The monochromatic mixing time is then bounded by

τ∗mix(P, ε) = min{t : ‖νm − P t(σ0, ·)‖TV ≤ ε} ≤ min{t : P[τ t 6= σt] ≤ ε} .

Let u ∈ Vm and R > 0 and consider the local version (σtu,R)t≥0 of the alternate scan

dynamics on BR(u), coupled to (τ t)t≥0 and (σt)t≥0 such that

τ t ≤ σt ≤ σtu,R
for t ≥ 0 (also starting in the monochromatic s = 2 state). Denote with νu,R the
stationary distribution of this chain, which is given by the Ising model measure on
BR(u) with s = 2 monochromatic boundary conditions. For any v ∈ BR(u) one has

P[τ t(v) 6= σt(v)] ≤ P[τ t(v) 6= σtu,R(v)] = P[σtu,R(v) = 2]− P[τ t(v) = 2]

due to monotonicity. The Markov chain τ t has been initialized with τ0 ∼ νm,
therefore P[τ t(v) = 2] = P[τ(v) = 2 | τ ∼ νm]. We continue with

P[σtu,R(v) = 2]− P[τ t(v) = 2]

= P[σtu,R(v) = 2]− P[σu,R(v) = 2 | σu,R ∼ νu,R]

+P[σu,R(v) = 2 | σu,R ∼ νu,R]− P[τ(v) = 2 | τ ∼ νm]

and see that the first difference will be small for sufficiently high t, while the second
difference will be small if v is close to u and R is big. More precisely, let C, c > 0
be constants such that Lemma 5.24 holds, and choose R = b logm with b > 2

c . For
any v ∈ Vm, we can find a u such that BR(u) is quadratic and the distance of v to
Vm \BR(u) is at least R+ 1. For such a pair (u, v), Lemma 5.24 applies with r = R
and we get

P[σu,R(v) = 2 | σu,R ∼ νu,R]− P[τ(v) = 2 | τ ∼ νm]

≤ ‖ν0
u,R − ν0

m‖TV ≤ C exp(−cR)

= Cm−bc

with bc > 2. If we choose t = TR = TR(1/4) to be the monochromatic mixing time
of the alternate scan dynamics on BR(u) (for quadratic BR(u)), we get

P[σntu,R(v) = 2]− P[σu,R(v) = 2 | σu,R ∼ νu,R] ≤ 1

4n

for n ∈ N. Choosing n = bc log4(m) results in an overall bound

P[τnt(v) 6= σnt(v)] ≤ (C + 1)m−bc

with bc > 2. For m big enough, we therefore get that

E[|{v : σnt(v) 6= τnt(v)}|] ≤ |Vm|(C + 1)m−bc ≤ 1

4
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and it immediately follows

P[σnt 6= τnt] ≤ 1

4
.

Therefore we get for some m = m0 the monochromatic mixing time bound

τ∗mix(P, 1/4) ≤ nt = bc log4(m)TR ,

where TR however still depends on R = b logm. We now use an induction argument
to obtain a concrete monochromatic mixing time bound. With our notation, we
see that τ∗mix(P, 1/4) = Tm because the graph G = (Vm, Em) with monochromatic
boundary conditions is equivalent to Bm((0, 0)) with the same boundary conditions.
Let a > 0 and φ(R) be an increasing function in R such that Tr ≤ aφ(r) for all
r ≤ R. If

Tm ≤ bc log4(m)φ(R) ≤ aφ(m)

holds, we get τ∗mix(P, 1/4) ∈ O(φ(m)). One readily verifies that the above is true
for φ(m) = (logm)2.
As a final step, we use the speed of disagreement percolation argument to show the
final mixing time bound. We consider the Markov chains (σt)t≥0 and (τ t)t≥0, and
using the grand coupling we can initialize Markov chains (πt)t≥0 for any π0 ≥ τ0

such that
τ t ≤ πt ≤ σt

holds for all t. We take such chains (πt1)t≥0 and (πt2)t≥0 that at time t = 0 differ
exactly at one vertex u ∈ Vm, i.e. π0

1(u) = 1 and π0
2(u) = 2 and elsewhere the initial

states agree. For a given R, we consider the expected difference at time t = RTR:

E[|{v : πt1(v) 6= πt2(v)}|] ≤
∑
v∈Vm

P[v ∈ Γ(u, t)]P[σt(v) 6= τ t(v)] .

The summands here can be bounded using the local chains as above to obtain

E[|{v : πt1(v) 6= πt2(v)}|] ≤ E[|Γ(u, t)|]
(

1

4R
+ C exp(−c(R− 1))

)
,

and we see that this expression is decaying in R due to the polynomial growth of
E[|Γ(u, t)|]. Therefore, for R big enough we have that the Markov chain applied
t = RTR times is contractive:

P[πt1 6= πt2] ≤ 1

2
.

The path coupling theorem implies the monochromatic mixing time

τ∗mix(P, 1/4) ∈ O(logm)

because t = RTR is independent of m.
The properties of the alternate scan dynamics we used in this proof are mainly the
local/global coupling, monotonicity and the polynomial speed of disagreement per-
colation bound. All of these properties also hold for the monotone Swendsen-Wang
dynamics and the heatbath sweep dynamics, implying the same monochromatic
mixing time bound.
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Aside from the speed of disagreement percolation bound, we get that this proof also
works for systematic scan dynamics.

Corollary 5.26. Let p > pc(2) and νm be the Ising model measure on G = (Vm, Em)
with monochromatic s = 2 boundary conditions. The systematic scan dynamics has
monochromatic mixing time

τ∗mix(ε) ∈ O
(
(logm)2

)
.

The proof for the heatbath dynamics needs the same modification like in the sub-
critical case, keeping track of the expected number of updates in small boxes.

Corollary 5.27. Let p > pc(2) and νm be the Ising model measure on G = (Vm, Em)
with monochromatic s = 2 boundary conditions. The heatbath dynamics has
monochromatic mixing time

τ∗mix(ε) ∈ O
(
m2 logm

)
.

Proof. Let (σt)t≥0 be the heatbath dynamics Markov chain with transition matrix P
and initial state σ0 given by the monochromatic s = 2 state. Moreover, let τ0 ∼ νm
and consider the Markov chain (τ t)t≥0 coupled to (σt)t≥0 using the monotone grand
coupling of the heatbath dynamics to obtain

τ t ≤ σt

for t ≥ 0. The monochromatic mixing time is then bounded by

τ∗mix(P, ε) = min{t : ‖νm − P t(σ0, ·)‖TV ≤ ε} ≤ min{t : P[τ t 6= σt] ≤ ε} .

Let u ∈ Vm and R > 0 and consider the local version (σtu,R)t≥0 of the heatbath

dynamics on BR(u), coupled to (τ t)t≥0 and (σt)t≥0 such that

τ t ≤ σt ≤ σtu,R
for t ≥ 0 (also starting in the monochromatic s = 2 state). Denote with νu,R the
stationary distribution of this chain, which is given by the Ising model measure on
BR(u) with s = 2 monochromatic boundary conditions. For any v ∈ BR(u) one has

P[τ t(v) 6= σt(v)] ≤ P[τ t(v) 6= σtu,R(v)] = P[σtu,R(v) = 2]− P[τ t(v) = 2]

due to monotonicity. The Markov chain τ t has been initialized with τ0 ∼ νm,
therefore P[τ t(v) = 2] = P[τ(v) = 2 | τ ∼ νm]. We continue with

P[σtu,R(v) = 2]− P[τ t(v) = 2]

= P[σtu,R(v) = 2]− P[σu,R(v) = 2 | σu,R ∼ νu,R]

+P[σu,R(v) = 2 | σu,R ∼ νu,R]− P[τ(v) = 2 | τ ∼ νm]
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and see that the first difference will be small for sufficiently high t, while the second
difference will be small if v is close to u and R is big. More precisely, let C, c > 0
be constants such that Lemma 5.24 holds, and choose R = b logm with b > 2

c . For
any v ∈ Vm, we can find a u such that BR(u) is quadratic and the distance of v to
Vm \BR(u) is at least R+ 1. For such a pair (u, v), Lemma 5.24 applies with r = R
and we get

P[σu,R(v) = 2 | σu,R ∼ νu,R]− P[τ(v) = 2 | τ ∼ νm]

≤ ‖ν0
u,R − ν0

m‖TV ≤ C exp(−cR)

= Cm−bc

with bc > 2. Let TR = TR(1/4) be the monochromatic mixing time of the heatbath
dynamics on quadratic sets BR(u), and choose

t = aTR log(3M)M/(2R+ 1)2 ∈ N

with 1 ≤ a < 2. After t heatbath steps, the expected number of updates in BR(u)
is given by a log(3M)TR, and a Chernoff bound then implies that

P[less than log(3M)TR updates happen in BR(u)] ≤ 1

3M
.

If at least log(3M)TR updates do happen in BR(u) (call this event U), we get

P[σtu,R(v) = 2 | U ]− P[σu,R(v) = 2 | σu,R ∼ νu,R] ≤ 4− log(3M) ≤ 1

3M
.

Collecting all estimates, we get

P[τ t(v) 6= σt(v)] ≤ 2

3M
+ Cm−bc ≤ 3

4M

with bc > 2 and m big enough. Summing over all vertices, we get

E
[
|{v ∈ Vm : τ t(v) 6= σt(v)}|

]
≤ 3

4

directly implying

P[τ t 6= σt] ≤ 3

4
.

From Lemma 2.7 then it follows that after nt steps with n big enough (independent
of m), we get

P[τnt 6= σnt] ≤ 3n

4n
≤ ε ,

such that the monochromatic mixing time is bounded by

nt = naTR log(3M)M/(2R+ 1)2 ,

however in this bound R is depending on m. The standard induction argument gives
a monochromatic mixing time

τ∗mix(ε) ∈ O
(
m2(logm)2

)
,

and again we can use the speed of disagreement percolation argument to obtain

τ∗mix(ε) ∈ O
(
m2 logm

)
.



6 The Down-Up Model

In this chapter, we introduce a new model closely related to the random cluster
model and apply the ideas gained throughout this thesis. With this model, we gen-
eralize the Ising model to non-integer q ≥ 2 and discover a rich monotone structure.
Moreover, we generalize the monotone Swendsen-Wang dynamics to this model and
prove mixing time results for the subcritical and for the supercritical phase. The
idea for this model is inspired by the splitting procedure for variants of the Chayes-
Machta algorithm, see [GOPS11].

Let G = (V,E) be a finite graph and

µ(A) = µG,p,q(A) = Z−1p|A|(1− p)|E\A|qc(A)

be the standard random cluster model measure on G without boundary conditions,
with parameters p ∈ (0, 1) and q ∈ [2,∞). We introduce two spins {∇,∆} (”down”
and ”up”) and perform the following assignment:

• For a given random cluster configuration A, assign to all clusters of A a spin
s ∈ {∇,∆} with equal probability. This defines a spin configuration

ω : V → {∇,∆} .

It is clear that for q = 2, this is just the usual Edwards-Sokal coupling and ω will be
distributed according to the Ising model measure. In the general case, we see that
with r = q/2 the joint model measure

ρ(A,ω) = Z−1p|A|(1− p)|E\A|qc(A)1[A ⊆ A(ω)]2−c(A)

= Z−1p|A|(1− p)|A(ω)\A|rc(A)1[A ⊆ A(ω)](1− p)|E\A(ω)|

decomposes into a local interaction part (1− p)|E\A(ω)| and a random cluster model
part on the subgraph Gω = (V,A(ω)). The down-up model is then obtained if we
forget the underlying cluster configuration A and only care for ω:

ν(ω) =
∑
A

ρ(A,ω) = Z−1(1− p)|E\A(ω)|Z(ω)

with Z(ω) = ZGω ,p,r being the partition function of the random cluster model on
Gω with parameters p and r. The generalized Edwards-Sokal coupling or Swendsen-
Wang dynamics between these models is then given by

91
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1. For a given random cluster configuration A, assign to all clusters of A a spin
s ∈ {∇,∆} with equal probability. This defines a spin configuration

ω : V → {∇,∆} .

2. For a given spin configuration ω, generate B according to the rule

B ∼ µGω ,p,r .

Both steps can be viewed as a Gibbs sampler on the joint space, holding one of the
variables fixed.

6.1 Monotonicity with respect to boundary conditions

We define the usual partial order induced by ∇ ≤ ∆ on spin configurations:

ω ≤ π ⇔ ω(v) ≤ π(v) for all v ∈ V .

We will show the following

Theorem 6.1 (Monotonicity with respect to boundary conditions). Let ν be the
down-up model measure on G = (V,E) with parameters p ∈ (0, 1) and q ≥ 2. Let
W 1
∇,W

2
∇,W

1
∆,W

2
∆ be subsets of V satisfying

W 1
∇ ∩W 1

∆ = ∅, W 2
∇ ∩W 2

∆ = ∅

and
W 2
∇ ⊆W 1

∇, W 1
∆ ⊆W 2

∆

such that they are compatible boundary conditions. Then the measures

νi(ω) = ν(ω | ω ≡ ∇ on W i
∇ and ω ≡ ∆ on W i

∆)

for i ∈ {1, 2} satisfy
ν1 ≤ ν2 .

But we do not stop at that. The monotonicity in the spin setting actually carries
over to the joint model. For a spin configuration ω, define

A∇(ω) = {e ∈ E : both endpoints v, w of e have spin ω(v) = ω(w) = ∇}
A∆(ω) = {e ∈ E : both endpoints v, w of e have spin ω(v) = ω(w) = ∆}

such that A(ω) decomposes into A∇(ω) and A∆(ω). Moreover, we have that ω ≤ π
implies A∇(π) ⊆ A∇(ω) nad A∆(ω) ⊆ A∆(π). We therefore define the following
partial order on the joint space:

(A,ω) ≤ (B, π) ⇔ ω ≤ π and

A ∩A∆(ω) ⊆ B ∩A∆(ω) and

B ∩A∇(π) ⊆ A ∩A∇(π) .
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In other words, we have (A,ω) ≤ (B, π) if ω ≤ π and A dominates B on the ∇-parts,
as well as B dominates A on the ∆-parts.

Theorem 6.2 (Monotonicity with respect to boundary conditions in the joint
model). Let ρ be the joint model measure on G = (V,E) with parameters p ∈ (0, 1)
and q ≥ 2. Let W 1

∇,W
2
∇,W

1
∆,W

2
∆ be subsets of V satisfying

W 1
∇ ∩W 1

∆ = ∅, W 2
∇ ∩W 2

∆ = ∅

and
W 2
∇ ⊆W 1

∇, W 1
∆ ⊆W 2

∆

such that they are compatible spin boundary conditions. Moreover, let F i∇ be subsets
of edges with both endpoints in W i

∇, and let F i∆ be subsets of edges with both endpoints
in W i

∆ for i ∈ {1, 2}. Consider edge boundary conditions Di
∇ ⊆ F i∇ and Di

∆ ⊆ F i∆
for i ∈ {1, 2} that additionally satisfy

D2
∇ ⊆ D1

∇ , D1
∆ ⊆ D2

∆ ,

F 1
∇ \ F 2

∇ ⊆ D1
∇ , F 2

∆ \ F 1
∆ ⊆ D2

∆ ,

see also Figure 6.1. Then the measures

ρi(A,ω) = ρ

A,ω |

ω ≡ ∇ on W i

∇
ω ≡ ∆ on W i

∆

A ∩ F i∇ = Di
∇

A ∩ F i∆ = Di
∆


for i ∈ {1, 2} satisfy

ρ1 ≤ ρ2

with respect to the partial order on the joint space. Moreover, the marginal measures
νi(ω) =

∑
A ρ

i(A,ω) for i ∈ {1, 2} satisfy

ν1 ≤ ν2

with respect to the partial order for spin configurations.

Before proving these theorems, we elaborate on the spin marginal measures intro-
duced just now. For given compatible spin and edge boundary conditions φ =
(W∇,W∆, F∇, F∆, D∇, D∆), we get the joint measure

ρφ(A,ω) = ρ

A,ω |

ω ≡ ∇ on W∇
ω ≡ ∆ on W∆

A ∩ F∇ = D∇
A ∩ F∆ = D∆


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W∇

F∇ D∇

W∆

F∆

D∆

W 2
∆

W 1
∆

F 2
∆

F 1
∆

D2
∆

D1
∆

Figure 6.1: Compatible boundary conditions. On the left, we see a boundary condi-
tion φ on a subgraph of Z2. On the right, we see comparable boundary conditions
φ1 and φ2 from the setting in Theorem 6.2, to simplify only for the ∆-parts.

and we write (A,ω) ∈ φ if ρφ(A,ω) > 0. From here, we see that

νφ(ω) =
∑
A⊆E

ρφ(A,ω)

∝ 1[ω ≡ ∇ on W∇]1[ω ≡ ∆ on W∆]

·
∑

A⊆A(ω)

1[A ∩ F∆ = D∆]1[A ∩ F∇ = D∇]p|A|(1− p)|E\A|rc(A) .

Furthermore, any A ⊆ A(ω) uniquely decomposes into A∇ ⊆ A∇(ω) and A∆ ⊆
A∆(ω) such that we can write

νφ(ω) ∝ 1[ω ∈ φ](1− p)|E\A(ω)|Zφ∇(ω)Zφ∆(ω) ,

where we abbreviated

ω ∈ φ ⇔
{
ω ≡ ∇ on W∇
ω ≡ ∆ on W∆

and the partition function terms are given by

Zφ∇(ω) = ZD∇,F∇A∇(ω),p,r and

Zφ∆(ω) = ZD∆,F∆

A∆(ω),p,r .

For F∇ = F∆ = ∅, we see that

1[ω ∈ φ]Zφ∇(ω)Zφ∆(ω) ∝ 1[ω ∈ φ]Z(ω)

such that Theorem 6.1 follows from Theorem 6.2. Moreover, we see that the down-
up model measure νφ(ω) does in fact depend on the edge boundary conditions for
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q > 2 because of the partition function terms.
On the other hand, we can consider the marginal measure with respect to edge
configurations

µφ(A) =
∑
ω

ρφ(A,ω) ∝
∑
ω

1[(A,ω) ∈ φ]ρ(A,ω) .

We calculate ∑
ω

1[(A,ω) ∈ φ]ρ(A,ω)

=
∑
ω

1[(A,ω) ∈ φ]Z−1p|A|(1− p)|E\A|rc(A)

∝
∑
ω

1[(A,ω) ∈ φ]p|A|(1− p)|E\A|rcφ(A)rc(A)−cφ(A)

with cφ(A) being the number of open clusters in A that do not connect to W∇∪W∆.
This sum goes over the possible colorings of such clusters, and therefore we get∑

ω

1[(A,ω) ∈ φ]p|A|(1− p)|E\A|rc(A) = 1[A ∈ φ]p|A|(1− p)|E\A|qcφ(A)rc(A)−cφ(A)

where we abbreviated

A ∈ φ ⇔
{
A ∩ (F∇ ∪ F∆) = D∇ ∪D∆

W∇ 6↔W∆ via A .

We see that µφ corresponds to a random cluster model distribution where clusters
connected to W = W∇ ∪ W∆ only get the cluster weight r = q/2, with bound-
ary condition D = D∇ ∪ D∆ ⊆ F∇ ∪ F∆ = F and conditioned on the event
1[W∇ 6↔ W∆ via A]. As the next step, we introduce a generalization of the mono-
tone Swendsen-Wang dynamics for the down-up model. Consider the following pro-
cedure:

1. For ω ∈ φ, generate the joint configuration (A,ω) ∈ φ according to the condi-
tional measure

ρφ,ω
′
(B) = ρφ(B, π | π = ω) = ρ

B, π |

π = ω

B ∩ F∇ = D∇
B ∩ F∆ = D∆

 .

2. For the given joint configuration (A,ω) ∈ φ, assign to all vertices of V a
proposal spin in {∇,∆} with the following probabilities:

P[θ(v) = ∆] =


0 v ∈W∇
1 v ∈W∆

1
2 else ,

creating a proposal spin configuration θ : V → {∇,∆}.
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3. For all open clusters of A, check if all proposal spins on this cluster align. If
yes, assign to all vertices of the given cluster the proposed new spin. If not,
keep the old spins. This creates a new spin configuration ω′ ∈ φ.

For q = 2, the conditional measure for A is given by simple percolation on A(ω) and
we obtain the monotone Swendsen-Wang dynamics. For general q ≥ 2 we call this
procedure monotone down-up dynamics.

Lemma 6.3. Let φ be a compatible boundary condition as in Theorem 6.2. Then
the monotone down-up dynamics P φ are ergodic and reversible with respect to the
down-up model measure νφ, and therefore satisfy

νφP φ = νφ .

Proof. For any ω ∈ φ, we get that the event A = D∇ ∪D∆ at Step 1 has positive
probability. In this case, at Step 2 any possible θ will be accepted such that the
outcome of Step 3 will be ω′ = θ. But the generation rule for θ implies that ω′ ∈ φ,
as well as all possible ω′ can be reached. Therefore, the monotone down-up dynamics
are ergodic.
We proceed to show that the monotone down-up dynamics with transition matrix
P φ is reversible with respect to νφ. Consider the probability to go from ω to ω′

P φ(ω, ω′) =
∑
A

ρφ,ω(A)
∑
θ

P[θ | φ]P[ω′ | A,ω, θ, φ]

with the θ-generation probability

P[θ | φ] = 2−|V \(W∇∪W∆)|1[θ ≡ ∇ on W∇]1[θ ≡ ∆ on W∆]

and the transition probability of Step 3

P[ω′ | A,ω, θ, φ] = 1[A ⊆ A(ω′)]
∏
C⊆V

1[C is a cluster of A]

·
(
1[ω ≡ ω′ on C](1− 2−|C\(W∇∪W∆)|) + 1[ω 6≡ ω′ on C]2−|C\(W∇∪W∆)|

)
.

For reversibility, we need to show that

νφ(ω)P φ(ω, ω′)

is symmetric in ω and ω′. Due to νφ being the marginal of ρφ with respect to the
spin variable, we get

νφ(ω)ρφ,ω(A) = ρφ(A,ω)

and therefore

νφ(ω)P φ(ω, ω′) =
∑
A

ρφ(A,ω)
∑
θ

P[θ | φ]P[ω′ | A,ω, θ, φ] .
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Because of ρφ(A,ω) = 1[A ⊆ A(ω)]ρφ(A,ω), we see that the whole term is symmetric
if for all A with A ⊆ A(ω) and A ⊆ A(ω′) one has

ρφ(A,ω) = ρφ(A,ω′) .

But this is simply true because for fixed A, one has that

ρφ(A,ω) = µφ(A)ρφ,A(ω) = µφ(A)1[A ⊆ A(ω)]2−c
φ(A) ,

with cφ(A) being the number of open clusters of A that do not connect to W∇∪W∆

and

µφ(A) =
∑
ω

ρφ(A,ω)

being the marginal measure with respect to the edge configuration.

Now we prove one of the central statements of this chapter.

Theorem 6.4 (Monotonicity of the dynamics). Consider the setting of Theorem
6.2 and call the respective boundary conditions φ1 and φ2. Let P 1 and P 2 be the
monotone down-up dynamics with respect to the models ν1 and ν2. There exists a
coupling Q of the Markov chains P 1 and P 2 mapping (ω1, ω2) to (π1, π2) such that

ω1 ∈ φ1, ω2 ∈ φ2, ω1 ≤ ω2 ⇒ π1 ∈ φ1, π2 ∈ φ2, π1 ≤ π2 .

Proof. Consider the conditional measures ρi,ω
i
(A) = ρi(A,ω | ω = ωi) for i ∈ {1, 2}.

We calculate using the unique splitting A = (A∇, A∆):

ρi,ω
i
(A) ∝ 1[A ⊆ A(ωi)]1[A ∈ φi]p|A|(1− p)|E\A|rc(A)

= (1− p)|E\A(ωi)|1


A∇ ⊆ A∇(ωi)

A∇ ∩ F i∇ = Di
∇

A∆ ⊆ A∆(ωi)

A∆ ∩ F i∆ = Di
∆

 p|A|(1− p)|A(ωi)\A|rc(A)

∝ µi,ω
i

∇ (A∇)µi,ω
i

∆ (A∆)

with µi,ω
i

∇ being the random cluster measure on A∇(ωi) with boundary condition

Di
∇ ⊆ F i∇ and parameters p and r = q/2, analogously µi,ω

i

∆ . We see that ρi,ω
i
(A) ac-

tually is a product of random cluster measures in the variables (A∇, A∆). Moreover,
for ω1 ≤ ω2 we get that

A∇(ω2) ⊆ A∇(ω1) and A∆(ω1) ⊆ A∆(ω2) .

Due to the compatible edge boundary conditions it follows

µ2,ω2

∇ ≤ µ1,ω1

∇ and µ1,ω1

∆ ≤ µ2,ω2

∆
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with respect to the inclusion partial order on edges. This means that there exists a
coupling (A1, A2) such that

Ai = (Ai∇, A
i
∆) ∼ ρi,ωi for i ∈ {1, 2}, A2

∇ ⊆ A1
∇, A1

∆ ⊆ A2
∆,

which just means that (ω1, A1) ≤ (ω2, A2) in the joint setting. This coupling covers
Step 1 of the monotone down-up dynamics, transferring spin monotonicity to the
joint model.
For Step 2, we couple both dynamics to generate (θ1, θ2) to be maximally aligned

θ1(v) = θ2(v) for all v ∈ V \ (W 1
∇ ∪W 2

∇ ∪W 1
∆ ∪W 2

∆) ,

such that θ1 ≤ θ2 in the spin sense follows.
For Step 3, we see that π1(v) > π2(v) is not possible at vertices v with ω1(v) 6=
ω2(v). This comes from the fact that πi(v) either keeps the old spin or changes
to the proposal θi(v) for i ∈ {1, 2}. We therefore consider vertices v ∈ V with
ω1(v) = ω2(v).

• Assume that ω1(v) = ω2(v) = ∇ and π1(v) = ∆. Let Ci be the Ai∇-Cluster
that contains v for i ∈ {1, 2}. Then we have C2 ⊆ C1 due to the Step
1 coupling. Moreover, v changed spin in the first configuration, therefore
θ1(w) = ∆ for all w ∈ C1. Together with θ1 ≤ θ2 we get that θ2(w) = ∆ for
all w ∈ C2, which implies π2(v) = ∆.

• Assume that ω1(v) = ω2(v) = ∆ and π2(v) = ∇. Let Ci be the Ai∆-Cluster
that contains v for i ∈ {1, 2}. Then we have C1 ⊆ C2 due to the Step 1
coupling. Moreover, v changed spin in the second configuration, therefore
θ2(w) = ∇ for all w ∈ C2. Together with θ1 ≤ θ2 we get that θ1(w) = ∇ for
all w ∈ C1, which implies π1(v) = ∇.

It is easy to see that this property implies Theorem 6.2.

Proof of Theorem 6.2. The statement ν1 ≤ ν2 immediately follows from the exis-
tence of a monotone coupling of Markov chains, as seen for instance in the proofs
of Lemma 3.1 to 3.3. For the statement ρ1 ≤ ρ2, consider the monotone down-up
dynamics starting in a joint configuration and apply Steps 2, 3, and 1 to obtain a
new joint configuration. The considerations of the previous theorem show that such
Markov chains R1 and R2 also have a monotone coupling, and it is clear that their
stationary distributions are given by ρ1 and ρ2.

We conclude this section with showing that for the monotone down-up dynamics
there exists a monotone grand coupling. Consider the class of compatible boundary
conditions

Φ =


φ = (W∇,W∆, F∇, F∆, D∇, D∆) |



W∇ ∩W∆ = ∅
F∇ ⊆ {e : both endpoints in W∇}
F∆ ⊆ {e : both endpoints in W∆}
D∇ ⊆ F∇
D∆ ⊆ F∆


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and define the partial order on compatible boundary conditions φ1, φ2 ∈ Φ via

φ1 ≤ φ2 ⇔
{
W 2
∇ ⊆W 1

∇ D2
∇ ⊆ D1

∇ F 1
∇ \ F 2

∇ ⊆ D1
∇

W 1
∆ ⊆W 2

∆ D1
∆ ⊆ D2

∆ F 2
∆ \ F 1

∆ ⊆ D2
∆

as in Theorem 6.2. Let X = {(ω, φ) | ω ∈ φ} be the set of all compatible boundary
conditions φ and ω that align with φ, and let V = {ω : V → {∇,∆}} be the set of
all spin configurations. We now describe a procedure to create a rule

g : X→ V

with law G satisfying

g ∼ G ⇒
{
g(ω, φ) ∈ φ
g(ω, φ) ∼ P φ(ω, ·)

as well as 

g ∼ G
ω1 ∈ φ1

ω2 ∈ φ2

φ1 ≤ φ2

ω1 ≤ ω2

⇒ g(ω1, φ1) ≤ g(ω2, φ2) .

This rule generation has to cover all steps of the monotone down-up dynamics, and
we start with the vital Step 1. Reformulate it as follows:

1. Generate Glauber dynamics rules g0, g−1, . . . on G = (V,E) with parameters p
and r = q/2. Each of such rules consists of an edge e ∈ E chosen uniformly at
random, and a parameter u ∈ [0, 1] distributed uniformly. For a given (ω, φ) ∈
X, these rules transfer to Glauber dynamics rules on A∇(ω) and A∆(ω), with
boundary conditions (F∇, F∆, D∇, D∆). Obtain the joint configuration (A,ω)
with A being the result of the (CFTP)-procedure with the generated rules.

Due to the monotonicity of the Glauber dynamics for the random cluster model, we
see that the assignment (ω, φ)→ (A,ω, φ) is monotone in the sense that

ω1 ∈ φ1

ω2 ∈ φ2

φ1 ≤ φ2

ω1 ≤ ω2

⇒ (A1, ω1) ≤ (A2, ω2) .

Continuing from here, we reformulate Step 2 as follows:

2. Generate θ : V → {∇,∆} with

P[θ(v) = ∇] = P[θ(v) = ∆] = 1/2

for all vertices v ∈ V . For a given boundary condition φ, we define

θφ(v) =


∇ v ∈W∇,
∆ v ∈W∆,

θ(v) else

and use this proposal spin configuration to proceed.
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For φ1 ≤ φ2 we get θ1 ≤ θ2, such that in Step 3 we have the situation described in
Step 3 of the proof of Lemma 6.4. Step 3 itself does not need a reformulation, as it
only uses information of the state in question. Overall, we get

Theorem 6.5 (Grand coupling of the monotone down-up dynamics). There exists a
monotone grand coupling for the monotone down-up dynamics, with respect to pairs
(ω, φ) ∈ X.
Likewise, the monotone down-up dynamics starting in the joint configuration space
has a monotone grand coupling with respect to tuples (A,ω, φ) with (A,ω) ∈ φ.

6.2 Monotonicity with respect to increasing events

We turn to increasing events in addition to boundary conditions. In order to do
this, we first elaborate on the partial order in the joint setting. For states (A,ω) =
(A∇, A∆, ω) and (B, π) = (B∇, B∆, π) we introduce join and meet operations

(ω ∨ π)(v) = max{ω(v), π(v)}
(ω ∧ π)(v) = min{ω(v), π(v)}

(A,ω) ∨ (B, π) = (A∇ ∩B∇, A∆ ∪B∆, ω ∨ π)

(A,ω) ∧ (B, π) = (A∇ ∪B∇, A∆ ∩B∆, ω ∧ π) .

It is easy to verify that the joint configuration space is a distributive lattice with
these relations, already indicating that FKG-type inequalities hold for the joint
model.
While the monotone down-up dynamics are a fairly fast algorithm in terms of pos-
sible updates happening in one step, to understand increasing event properties we
introduce Glauber dynamics on the joint model.

1. Decide whether to do a spin or an edge update with probability 1/2.

2a. For spin updates, choose a vertex v ∈ V uniformly at random and update the
spin according to the conditional measure, while keeping other spins and all
edges fixed.

2b. For edge updates, choose an edge e ∈ E uniformly at random and update the
edge according to the conditional measure, while keeping other edges and all
spins fixed.

It is easy to see that this procedure has a grand coupling by introducing a param-
eter at Steps 2a and 2b that decides the outcome of the resampling. Moreover,
edge resampling is just Glauber dynamics on a random cluster model and therefore
monotone in the boundary conditions. Spin resampling is only possible if the chosen
spin is not connected to any other vertex, and therefore also easily seen to be mono-
tone in the boundary conditions. Indeed, both steps can be viewed as parts of the
monotone down-up dynamics with respect to boundary conditions on all other edges
and spins. If we condition this process to additionally not leave a given nonempty
increasing event I, we get
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Theorem 6.6 (FKG-type inequality). Consider the setting of Theorem 6.2 and call
the respective boundary conditions φ1 and φ2. Let I be an increasing event for the
joint model such that

φ2 ∩ I = {(A,ω) : (A,ω) ∈ φ2} ∩ I

is nonempty. Then one has
ρ1 ≤ ρ2(· | I) .

Moreover, it holds
ρ2[I ∩ J ] ≥ ρ1[J ]ρ2[I]

for all increasing events I, J , reprocducing the FKG inequality.

Proof. Let (A,ω) be an element of the set φ2∩I. Due to φ1 ≤ φ2 we have (A,ω) ∈ φ1,
such that we can start a coupled monotone Glauber dynamics process with respect to
the measures φ1 and φ2(· | I). The standard Markov chain argument gives the first
statement, and the second statement follows immediately, see the proof of Lemma
3.2.

6.3 Phase properties in the Z2-planar case

In this section, we transfer phase properties from the random cluster model to the
down-up model. For a given boundary condition φ, we have already seen that the
marginal measure with respect to the edge part is given by

µφ(A) ∝
1[A ∩ (F∇ ∪ F∆) = D∇ ∪D∆]1[W∇ 6↔W∆ via A]

· p|A|(1− p)|E\A|qcφ(A)rc(A)−cφ(A)

where the first factor describes an edge boundary condition and the second factor
describes a decreasing event. The exponent cφ(A) is given by the number of clusters
of A that do not connect to W∇ or W∆. If we consider boundary conditions of the
form

D∇ = F∇ = {edges with endpoints in W∇}
D∆ = F∆ = {edges with endpoints in W∆}

we see that

c(A)−cφ(A) = |{clusters of A connecting to W∇ or W∆}| = |{clusters of F∇∪F∆}|

is not depending on A. This gives

µφ(A) ∝
1[F∇ ∪ F∆ ⊆ A]1[W∇ 6↔W∆ via A]

· p|A|(1− p)|E\A|qc(A)

and we recover a proper random cluster model, with boundary conditions and the
decreasing event condition.
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The concrete setting we want to work with now is as follows: Let G = (V,E) be
the Z2-graph, with Vm and Em the usual subsets describing the quadratic subgraph
around the origin. We consider realizable boundary conditions

Φm =

φ ∈ Φ |


W∇ ∪W∆ = V \ Vm
F∇ = A(W∇) = {edges with endpoints in W∇}
F∆ = A(W∆) = {edges with endpoints in W∆}


such that only vertices in Vm and edges in Em are not fixed. Even though the
underlying graph is infinite, the marginal models νφm on Vm (and ρφm on (Vm, Em))
are well-defined because every realizable boundary condition can also be formulated
using a finite graph. In this setting,

φminm =

{
W∇ = V \ Vm
D∇ = F∇

and φmaxm =

{
W∆ = V \ Vm
D∆ = F∆

are the extremal boundary conditions. The induced measures on the edge side are
both given by the pure random cluster model on Em with wired boundary conditions,
such that phase properties can be translated to the down-up model. As an analogue
to Theorem 3.13, in the subcritical phase we get

Theorem 6.7 (Exponential decay of connectivities in the subcritical phase). Let
φ ∈ Φm and p < pc(q). Then there exist constants C, c > 0 such that

ρφ [v ←→ w via A∇] ≤ C exp(−c‖v − w‖)

and
ρφ [v ←→ w via A∆] ≤ C exp(−c‖v − w‖)

for all v, w ∈ Vm.

Proof. The event ’v ←→ w via A∇’ is decreasing, therefore we have

ρφ [v ←→ w via A∇] ≤ ρφminm [v ←→ w via A∇] .

Using the connection to the random cluster model measure µ with wired-like bound-
ary conditions we immediately see that

ρφ
min
m [v ←→ w via A∇] ≤ µ[v ←→ w via A] ,

and this probability decays exponentially due to Theorem 3.13. The second state-
ment is obtained analogously.

In the supercritical phase, consider φ = φmaxm . For a configuration (A,ω) ∈ φ, there
exists a unique A∆-cluster that connects to the boundary, and we call it the global
cluster.
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Theorem 6.8 (Exponential decay of connectivities in the supercritical phase). Let
φ = φmaxm and p > pc(q). Then there exist constants C, c > 0 such that

ρφ [v and w are enclosed by an open loop in the dual of A] ≤ C exp(−c‖v − w‖)

for all m and v, w ∈ Vm.

Proof. This directly follows from Lemma 5.23.

Note that Theorem 6.8 implies that

ρφ[v ←→ w via a non-global cluster of A]

also decays exponentially in ‖v − w‖ due to being a stronger restriction.

6.3.1 Monotone down-up dynamics in the subcritical phase

We first derive an extremal local SSM property for the down-up model similar
to Lemma 5.3. Afterwards, we use the techniques from Chapter 5 to obtain a
O
(
(logm)2

)
bound for the mixing time of the monotone down-up dynamics with

extremal boundary conditions.
Let R > 0 and u ∈ Vm such that BR(u) = {v ∈ V : ‖u−v‖∞ ≤ R} is completely con-
tained in Vm, and let φ = φmaxm be fixed. We consider expansions of φ on Vm \BR(u)
given by

φ1
u,R =


W 1
∇ = Vm \BR(u)

W 1
∆ = V \ Vm

D1
∇ = F 1

∇ = A(W 1
∇)

D1
∆ = F 1

∆ = A(W 1
∆)

and φ2
u,R =


W 2
∇ = ∅

W 2
∆ = V \BR(u)

D2
∆ = F 2

∆ = A(W 2
∆)

such that φ1
u,R ≤ φ ≤ φ2

u,R holds. These boundary conditions naturally come from
the usual local/global procedure we apply to monotone Markov chains. We call νm
the marginal measure on Vm with respect to the boundary conditions φ, and we call
ν1
u,R and ν2

u,R the marginal models on BR(u) with respect to φ1
u,R and φ2

u,R.

Lemma 6.9 (Local SSM for extremal boundary conditions). Let p < pc(q), and
φ = φmaxm . Let R > 0 and u ∈ Vm such that BR(u) = {v ∈ V : ‖u − v‖∞ ≤ R} is
completely contained in Vm. Let Λr be the set of vertices v ∈ BR(u) satisfying

∀w ∈ Vm \BR(u) : ‖v − w‖∞ ≥ r .

For the marginals νm,r, ν
1
u,R,r and ν2

u,R,r on Λr of their respective counterparts νm,

ν1
u,R and ν2

u,R one has

ν1
u,R,r ≤ νm,r ≤ ν2

u,R,r

as well as
‖ν1
u,R,r − ν2

u,R,r‖TV ≤ C exp(−cr)
with constants C, c > 0 independent of R, u, r.
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Proof. The monotonicity of the marginal models directly follows from Theorem 6.1.
For the second statement, consider a coupling (ω1, ω2) satisfying

ω1 ∼ ν1
u,R, ω2 ∼ ν2

u,R .

For such a coupling one has

‖ν1
u,R,r − ν2

u,R,r‖TV ≤ P[ω1 6= ω2 on Λr],

and we construct a coupling with decay properties using the connection to the ran-
dom cluster model. Let φ1 = φ1

u,R and consider the random cluster measure

µ1 = µφ
1 ≤ µ = µφ

2

where µ = µF,D is the random cluster measure with wired-like boundary conditions

D = F = {edges with at least one endpoint in V \BR(u)} .

For a coupling (A1, A) with A1 ∼ µ1, A ∼ µ and A1 ≤ A we consider the set of
edges

Λ = Λ(A) = {edges with both endpoints not connected to Vm \BR(u) via A} .

Leaving edges in E\Λ fixed, we see that we can do an identical resampling of (A1, A)
on Λ because both conditional measures are the same here. Indeed, the condition
1[W 1

∇ 6↔W 1
∆ via A1] is always satisfied for any resampling on Λ, such that we obtain

a coupling (B1, B2) with

B1 ∼ µ1, B2 ∼ µ, B1 ≤ B2, B1 = B2 on Λ .

From here, we do a coupled generalized Edwards-Sokal coupling step in the following
way:

• For i ∈ {1, 2} obtain ωi from Bi by assigning to each open cluster of Bi a spin
from {∇,∆}, and assigning to each vertex of this cluster the given spin.

• This assignment has the following restrictions. If the cluster in question is
connected to W i

∇ of φi, the chosen spin is ∇. Likewise, if it is connected
to W i

∆ of φi, the chosen spin is ∆. If the given cluster is not connected to
either W∇ or W∆, assign the spin with equal probability 1/2, and couple this
assignment for clusters that align in B1 and B2 such that they get the same
spin.

This procedure gives us a coupling (ω1, ω2) with the desired distribution and addi-
tionally

P[ω1 6= ω2 on Λr] ≤ P[Λr 6⊆ Λ] .

This probability decays exponentially in r because of p < pc(q), as already seen in
the proof of Lemma 5.1.
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Due to the down-up symmetry of the model, a similar statement holds for φminm .
For this proof, it was crucial that boundary information on the common boundary
of Vm and BR(u) is not changed via the expansion of boundary conditions. A simi-
lar statement can be derived for boundary conditions with bounded connectivities,
which would be more natural in the subcritical phase. For simplicity, we stick to
extremal boundary conditions.

Theorem 6.10 (Mixing time of the monotone down-up dynamics in the subcritical
phase). We consider the down-up model νφ on (Vm, Em) with the maximal boundary
condition φ = φmaxm . For p > pc(q) and any ε > 0, the monotone down-up dynamics
for this model has a mixing time

τmix(ε) ∈ O
(
(logm)2

)
.

Proof. The proof proceeds exactly the same as in Chapter 5. Let ω0 ≡ ∇ on Vm
be the minimal state and π0 ≡ ∆ on Vm be the maximal state. For a given R > 0
let u, v ∈ Vm be vertices with v arbitrary and u chosen such that BR(u) ⊆ Vm
and ‖v − w‖∞ > R for all w ∈ Vm \ BR(u). We consider the expanded boundary
conditions φ1 = φ1

u,R and φ2 = φ2
u,R such that

φ1 ≤ φ ≤ φ2 .

We now use the monotone grand coupling for monotone down-up dynamics to obtain
Markov chains

ωtu,R ≤ ωt ≤ πt ≤ πtu,R
where (ωtu,R)t≥0 and (πtu,R)t≥0 come from applying the grand coupling to ω0 with

respect to φ1 or to π0 with respect to φ2 boundary conditions. Therefore we have

P[ωt(v) 6= πt(v)] ≤ P[ωtu,R(v) 6= πtu,R(v)] = P[πtu,R(v) = ∆]− P[ωtu,R(v) = ∆]

and furthermore

P[πtu,R(v) = ∆]− P[ωtu,R(v) = ∆] ≤
∣∣∣P[πtu,R(v) = ∆]− νφ2

[spin at v is ∆]
∣∣∣

+
∣∣∣νφ2

[spin at v is ∆]− νφ1
[spin at v is ∆]

∣∣∣
+
∣∣∣νφ1

[spin at v is ∆]− P[ωtu,R(v) = ∆]
∣∣∣ .

The local SSM property from Lemma 6.9 implies that the second term can be
bounded by C exp(−cR). If we choose R = b logm with bc > 2, this bound be-
comes ∣∣∣νφ2

[spin at v is ∆]− νφ1
[spin at v is ∆]

∣∣∣ < 1

6
(2m+ 1)−2

for m big enough. For the first and third term, we consider t = TR with TR =
TR(1/4) being the maximal mixing time of the monotone down-up dynamics on
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boxes BR(u) with the expanded boundary conditions. For t = bcTR logm, the
scaling Lemma 2.7 implies∣∣∣P[πtu,R(v) = ∆]− νφ2

[spin at v is ∆]
∣∣∣ < 1

6
(2m+ 1)−2

for m big enough. The same holds for the third term, and overall we get

P[ωt(v) 6= πt(v)] <
1

2
(2m+ 1)−2 =

1

2
|Vm|−1 .

Summing over all vertices v ∈ Vm, we get

E
[
|{v ∈ Vm | ωt(v) 6= πt(v)}|

]
≤ 1

2

which implies

P[ωt 6= πt] ≤ 1

2
.

Therefore we have the mixing time bound

τmix(1/2) ≤ bcTR logm,

where TR still depends on m via R = bc logm. The standard induction argument
gives a mixing time (see for instance Theorem 5.5)

τmix(1/2) ∈ O
(
(logm)2

)
,

and the same holds for any fixed ε > 0 due to the scaling Lemma 2.7.

For the optimal mixing time bound of order O(logm), a speed of disagreement
percolation bound would be helpful. In the down-up dynamics case though, it is
not immediately clear how to prove this because the model is non-local, and Step 1
of the monotone down-up dynamics is non-local as well. The censoring framework
from [BCV18] could also be helpful.

6.3.2 Monotone down-up dynamics in the supercritical phase

We first state the corresponding local to global coupling result similar to Lemma
5.24, which will be used to obtain a O

(
(logm)2

)
bound on the monochromatic mix-

ing time of the monotone down-up dynamics.

Lemma 6.11 (Local to global coupling). Let p > pc(q) and φ1 = φmaxm . For u ∈ Vm
and R > 0 such that BR(u) ⊆ Vm, let φ2 = φ2

u,R such that

φ1 ≤ φ2 and ν1 ≤ ν2

holds for the models ν1 = νφ
1

and ν2 = νφ
2
. Let Wr be the set of vertices v ∈ Vm

that have at least distance r to Vm \BR(u). Then the marginal models ν1
r and ν2

r on
Wr satisfy

‖ν1
r − ν2

r‖TV ≤ C exp(−cr)
with constants C, c > 0 that are independent from u,R, r,m.
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Proof. Let µ1 and µ2 be the corresponding random cluster model measures, which
are pure models with wired-like boundary conditions on (Vm, Em) and (BR(u), Eu,R)
respectively. Here, Eu,R is the set of edges with one endpoint inBR(u). These models
satisfy µ1 ≤ µ2 with respect to the partial order in the edge setting, and the rest of
the proof is analogous to the proof of Lemma 5.24.

We define the monochromatic mixing time for the down-up model and a Markov
chain P to be

τ∗mix(P, ε) = min{t : ‖νφ − P t(ω∗, ·)‖TV ≤ ε}
with ω∗ ≡ ∆ on Vm being the maximal state.

Theorem 6.12 (Monochromatic mixing time bound for the monotone down-up
dynamics). Let φ = φmaxm and p > pc(q). The monotone down-up dynamics has
monochromatic mixing time

τ∗mix(ε) ∈ O
(
(logm)2

)
.

Proof. The proof proceeds exactly the same as in Theorem 5.25, up to the point
where speed of disagreement percolation results are needed. Let (ωt)t≥0 be the
monotone down-up dynamics Markov chain with transition matrix P and initial
state ω0 given by

ω0(v) = ∆ ∀v ∈ Vm ,
i.e. the monochromatic ∆-state. Moreover, let π0 ∼ νφ and consider the Markov
chain (πt)t≥0 coupled to (ωt)t≥0 using the monotone grand coupling of the monotone
down-up dynamics to obtain

πt ≤ ωt

for t ≥ 0. The monochromatic mixing time is then bounded by

τ∗mix(P, ε) = min{t : ‖νφ − P t(ω0, ·)‖TV ≤ ε} ≤ min{t : P[πt 6= ωt] ≤ ε} .
Let u ∈ Vm, R > 0 and consider the local version (ωtu,R)t≥0 of the monotone down-up

dynamics on BR(u), coupled to (πt)t≥0 and (ωt)t≥0 such that

πt ≤ ωt ≤ ωtu,R
for t ≥ 0 (also starting in the monochromatic ∆-state). Here, we use extremal

boundary conditions φ2
u,R such that νu,R = νφ

2
u,R is the stationary distribution of

this chain. For any v ∈ BR(u) one has

P[πt(v) 6= ωt(v)] ≤ P[πt(v) 6= ωtu,R(v)] = P[ωtu,R(v) = ∆]− P[πt(v) = ∆]

due to monotonicity. The Markov chain πt has been initialized with π0 ∼ νφ,
therefore P[πt(v) = ∆] = P[π(v) = ∆ | π ∼ νφ]. We continue with

P[ωtu,R(v) = ∆]− P[πt(v) = ∆]

= P[ωtu,R(v) = ∆]− P[ωu,R(v) = ∆ | ωu,R ∼ νu,R]

+P[ωu,R(v) = ∆ | ωu,R ∼ νu,R]− P[π(v) = ∆ | π ∼ νφ]
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and see that the first difference will be small for sufficiently high t, while the second
difference will be small if v is close to u and R is large. More precisely, let C, c > 0
be constants such that Lemma 5.24 holds, and choose R = b logm with b > 2

c . For
any v ∈ Vm, we can find a u ∈ Vm such that BR(u) ⊆ Vm is quadratic and the
distance of v to Vm \ BR(u) is at least R + 1. For such a pair (u, v), Lemma 6.11
applies with r = R and we get

P[ωu,R(v) = ∆ | ωu,R ∼ νu,R]− P[π(v) = ∆ | π ∼ νφ]

≤ ‖ν0
u,R − (νφ)0‖TV

≤ C exp(−cR)

= Cm−bc

with bc > 2. If we choose t = TR = TR(1/4) to be the monochromatic mixing time
of the monotone down-up dynamics on BR(u) (for quadratic BR(u)), we get

P[ωntu,R(v) = ∆]− P[ωu,R(v) = ∆ | ωu,R ∼ νu,R] ≤ 1

4n

for n ∈ N. Choosing n = bc log4(m) results in an overall bound

P[πnt(v) 6= ωnt(v)] ≤ (C + 1)m−bc

with bc > 2. For m big enough, we therefore get that

E[|{v : ωnt(v) 6= πnt(v)}|] ≤ |Vm|(C + 1)m−bc ≤ 1

4

and it immediately follows

P[ωnt 6= πnt] ≤ 1

4
.

Therefore we get for some m = m0 the monochromatic mixing time bound

τ∗mix(P, 1/4) ≤ nt = bc log4(m)TR ,

where TR however still depends on R = b logm. The standard induction argument
then gives a monochromatic mixing time bound

τ∗mix(P, 1/4) ∈ O
(
(logm)2

)
,

and the same holds for all ε > 0 due to the scaling Lemma 2.7.



7
Couplings for the

Swendsen-Wang
Dynamics

In this chapter we will focus on results for the mixing time of the Swendsen-Wang
dynamics Markov chain in the special case of rectangular subgraphs G = (Vm, Em)
of Z2. We then continue to provide simulation results on couplings for the Swendsen-
Wang dynamics in the supercritical phase, suggesting that the existing bounds are
not optimal.

7.1 Grand coupling

Let G = (V,E) be a finite graph and F ⊆ E a boundary set with boundary condition
D ⊆ F . Let µ = µF,DG,p,q be the associated random cluster model with q ∈ N and
p ∈ (0, 1). We can formulate a general grand coupling A → A′ for the Swendsen-
Wang dynamics in the following way:

1. Generate a random variable x ∈ X, according to some fixed law.

2. For a given configuration A ⊆ E, assign to each open cluster C of A a spin
s = f(x,C,A) ∈ {1, . . . , q}.

3. For e ∈ F , set e ∈ A′ if and only if e ∈ D. For e /∈ F , draw re ∈ [0, 1] uniformly
at random and perform the assignment{

e /∈ A′ both endpoints have differing spin or re > p ,

e ∈ A′ else .

The function f(x,C,A) has to be chosen such that for all (C,A), each spin s = s(C)
has a uniform distribution and is independent of the spins at other clusters. This
grand coupling is in general not monotone, and therefore many of the introduced
techniques do not apply here. The mechanism with x and f is usually chosen such
that a local agreement of states A and B most likely is conserved. We will consider
a specific version now.
Let X be the set of pairs (σ, i), where σ : V → {1, . . . , q} is a spin configuration and
i = (v1, . . . , vM ) is a random enumeration of V . The law of x = (σ, i) is given by

109
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the respective uniform distributions. Then, we can define f(x,C,A) = f(x,C) to
be the spin σ(vj) with

j = min{k : vk ∈ C} .
In other words, the spin s(C) is given by the spin at the vertex v ∈ C which appears
first in the random enumeration i. We call this coupling H. For this grand coupling
ρ, the following result has been shown in [Hub03].

Theorem 7.1 (Coupling time for the Swendsen-Wang dynamics [Hub03]). Let F =
∅ and ∆ be a bound for the degree of each vertex. If

γ = p

(
∆− 2

1− p(∆− 1)
+ 2

)
is less than one, it holds

τcoup(ρ, 1/2) ≤ − logγ(2|E|) .

Note that this result holds independently of q. If we apply this result to the case
where G = (Vm, Em) is the usual subgraph of Z2, we get ∆ = 4 and therefore

γ < 1 ⇔ p <
1

6
.

This value is far from the critical threshold pc =
√
q/(
√
q + 1), this result however

is still noteworthy as it shows that coupling arguments are possible without using
monotonicity properties of the model. In the recent paper [NS19], there appears a
very similar result (Proposition 3.4), though it seems to be weaker in this specific
case. In [Hub03] there also is a result for very low temperatures.

Theorem 7.2. [Hub03] Let F = ∅ and p ≥ 1− (|E|q)−1. Then

τcoup(ρ, 1/2) ≤ 2(|E|q)2 .

This result is rather weak in the setting of subgraphs of Z2, because p is growing in
|E|. Moreover, the result is believed to be not optimal in the supercritical phase of
the model. The proofs for both of these results do not use derived model properties
such as exponential decay of correlations, and the question stands whether stronger
results can be derived in the specific setting of G = (Vm, Em) being a rectangular
subgraph of Z2.

7.2 Spectral gap comparison results

The next big step in understanding the Swendsen-Wang algorithm and other random
cluster dynamics has been achieved in the recent works [Ull13], [Ull12a], [Ull12b].
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Many spectral gap results for the spin heatbath dynamics, Glauber dynamics and
Swendsen-Wang dynamics Markov chains have been elaborated using powerful com-
parison results.

Theorem 7.3 (Spectral gap results [Ull12a]). The following results hold for the
spectral gaps of random cluster dynamics.

a) On a graph with finite maximum degree ∆, for the q-state Potts model at
inverse temperate β one has

1− λ2(SW ) ≥ q−1q exp(2β)−2(1− λ2(HB)) ,

where λ2(SW ) is the second biggest Eigenvalue of the Swendsen-Wang dynam-
ics and λ2(HB) is the second biggest Eigenvalue of the spin heatbath dynamics.

b) On a graph with m ≥ 3 edges, one has

1− λ2(G) ≤ 1− λ2(SW ) ≤ 8m(logm)(1− λ2(G))

with λ2(SW ) the second biggest Eigenvalue of the Swendsen-Wang dynamics
(starting from a random cluster configuration) and λ2(G) is the second biggest
Eigenvalue of the Glauber dynamics Markov chain.

c) On the rectangular subgraph (Vm, Em) of Z2, for q = 2 at the critical temper-
ature p = pc(q) one has

1− λ2(SW ) ≥ Cm−c

for some constants C, c > 0.

Together with already known results for heatbath dynamics in the subcritical phase,
these were the first results for the Swendsen-Wang algorithm that hold for all p <
pc(q). Note that the rapid mixing result for q = 2 at the critical temperature
transfers to Glauber dynamics as well.

7.3 Spectral gap results in the subcritical phase

In the very recent paper [BCV18], it has been shown that the monotone Swendsen-
Wang dynamics on rectangular subgraphs of Z2 (in the q = 2 case) has mixing
time O(logm) throughout the subcritical phase, and therefore it has a spectral gap
which is independent of m. We have seen this result in Chapter 5. Concerning the
spectral gap of the Swendsen-Wang dynamics, the following result has been derived
in [BCSV19].

Theorem 7.4 (Spectral gap of the Swendsen-Wang dynamics). Let G = (Vm, Em)
be the usual quadratic subgraph of Z2 and q ≥ 2. Throughout the subcritical regime,
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the Swendsen-Wang dynamics Markov chain satisfies

1

1− λ2(SW )
∈ O(1) ,

where λ2(SW ) is the second biggest Eigenvalue of the Swendsen-Wang dynamics
Markov chain on G.

This is a substantial improvement to the previously known bounds that follow from
[Ull13],[Ull12a],[Ull12b].

7.4 Recent mixing time results

Finally,the paper [BCP+20] released in 2020 provides the optimal mixing time bound
in the subcritical phase.

Theorem 7.5 (Mixing time of the Swendsen-Wang dynamics for p < pc(q)). The
Swendsen-Wang dynamics Markov chain on the subgraph (Vm, Em) with parameter
p < pc(q) has a mixing time Tmix(SW ) ∈ O(logm).

This has been achieved by considering the relative entropy of the system, which can
be shown to contract at a constant rate. The result generalizes to subcubes of Zd
in the presence of strong spatial mixing (SSM). In [BCP+20], there also is a mixing
time result for the supercritical phase, achieved with similar methods.

Theorem 7.6 (Mixing time of the Swendsen-Wang dynamics for p > pc(q)). The
Swendsen-Wang dynamics Markov chain on the subgraph (Vm, Em) with parameter
p > pc(q) has a mixing time Tmix(SW ) ∈ O

(
m2 logm

)
.

This result is believed to not be the optimal rate (which should be logm).
Overall, this leaves us with the following state of affairs for the Swendsen-Wang
algorithm on rectangular subgraphs of Z2:

• In the subcritical phase p < pc(q), optimal spectral gap and mixing time results
are present. The spectral gap stays constant and the mixing time increases as
logm for increasing system size m.

• For q = 2 and p = pc(q), the spectral gap depends polynomially on m, making
the Swendsen-Wang dynamics rapidly mixing.

• In the supercritical phase, there is the (suboptimal) mixing time result of
O(m2 logm).
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7.5 Experimental results in the supercritical phase

One of the main contributions of this work is the observation that the grand coupling
introduced above (due to [Hub03]) shows a remarkably good convergence behavior
throughout the supercritical phase of the random cluster model on the subgraph
(Vm, Em), for any q ≥ 2. We provide numerical evidence to support the conjec-
ture that the mixing time of the Swendsen-Wang dynamics is in O(logm) in the
supercritical case. Moreover, introducing a small modification, states with different
boundary conditions can be coupled to align locally, i.e. with reasonable distance
from the boundary.

7.5.1 Coupling time measurements

Consider the rectangular subgraph G = (Vm, Em) of Z2 with some boundary condi-
tions and parameters p ∈ (0, 1), q ∈ N with q ≥ 2. Let H be the Swendsen-Wang dy-
namics grand coupling introduced above, and consider the induced coupled Markov
chain (Xt, Y t) for some initial states X0, Y 0 ⊆ Em. We investigate the coupling
time

τcoup = τcoup(H, 1/4) = inf
{
t : P[Xt 6= Y t for any X0, Y 0 ⊆ Em] ≤ 1/4

}
of H in a numerical way. For a monotone coupling, it would suffice to consider
the maximal initial states X0 = ∅ and Y 0 = Em, however this is not the case for
H. For increasing m, the number of possible initial states grows exponentially fast,
therefore we have to make an approximation here. Consider

τcoup
(
{X0

1 , . . . X
0
n}
)

= inf
{
t : P

[
Xt

1 = . . . = Xt
n

]
≥ 3/4

}
as a discrete approximation. We obviously have τcoup({X0

1 , . . . X
0
n}) ≤ τcoup, but

hope that both quantities are reasonably close for sufficient conditions on the set
{X0

1 , . . . X
0
n}.

As a quick overview, we begin with the parameter set m = 32, q = 2, p ∈
{0.05, 0.1, . . . , 0.9, 0.95}, {∅, Em} as initial conditions and free boundary condition.
We run the simulation N = 1000 times and record the coupling times to estimate
the quantity P (t) = P[Xt

1 = . . . = Xt
n], with the results seen in Figure 7.1. For low

and high p, the coupling probability increases very fast in t. For p ∈ {0.5, 0.55},
we see that P (t) is not increasing at all up to t = 100. Note that the critical value
for our parameter settings is pc(2) ≈ 0.5858. This simulation already gives a lot of
insight into the properties of the given coupling. In the subcritical phase, the cou-
pling time seems to behave well for p ≤ 0.45, which is already a great improvement
to the known result by Huber. In the supercritical phase, this also seems to be the
case for p > 0.6.
We continue with a finer increment scheme given by p ∈ {0.4, 0.41, . . . , 0.7}. Running
the simulation again for N = 1000 times, we get the coupling time approximations
in Figure 7.2 (the experiment was aborted after t = 400 timesteps).
It is evident that in the range p ∈ (0.5, 0.6) the coupling time does not behave well.
We can repeat the same experiment with wired boundary conditions and essentially
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Figure 7.1: Coupling probability P (t) for different values of p. For p ∈ {0.5, 0.55, 0.6}
the Swendsen-Wang coupling does not couple fast. This is in the vicinity of the
critical value pc(2) ≈ 0.5858.
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Figure 7.2: Coupling time approximations for m = 32, q = 2, p ∈
{0.40, 0.41, . . . , 0.7} and free (left) or wired (right) boundary conditions.
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Figure 7.3: On the left: Coupling probability P (t) for increasing m. This simulation
had parameters q = 2, p = 0.6, wired boundary conditions and initial conditions
{∅, Em}. Averages were obtained from N = 1000 samples. On the right: Increased
initial conditions X.

get the same picture, with a slightly different critical range for p, see Figure 7.2. Due
to τcoup(∅,Em) being a lower bound of τcoup, these experiments show the limitations
of the coupling in the range p ∈ (0.5, 0.6) for this parameter set.
The optimal mixing time of the Swendsen-Wang algorithm is already known in the
subcritical phase, therefore we will focus on the supercritical phase from now on. We
continue to investigate the coupling time approximation, this time for the parameter
set q = 2, p = 0.6, {∅, Em} as initial conditions and wired boundary conditions, with
varying system size m ∈ {8, 16, 32, 64, 128, 256, 512}.
It is easy to see from Figure 7.3 (left) that the coupling time approximation roughly
satisfies

τcoup({∅, Em}) ∈ O(log2m) ,

in this specific case, though it is unclear whether the initial configuration set is
sufficient to allow for conclusions regarding the coupling time. We therefore repeat
the experiment with an increased initial conditions set

X = {∅, Em} ∪
9⋃
i=0

9⋃
j=0

Xj
i ,

where Xj
i is distributed according to the percolation law µG,pi,1 with pi = 0.05+0.1·i,

and independent from Xk
i for j 6= k. The results in Figure 7.3 (right) indicate that

the qualitative behaviour does not change, which increases the numerical evidence
of τcoup(∅, Em) being a good approximation to τcoup. Repeating the experiment for
p ∈ {0.7, 0.8, 0.9} produces the same behavior, see Figure 7.4.

We continue with a variation of the parameter q. We expand the first experiment
with m = 32, free and wired boundary conditions respectively, initial conditions
{∅, Em} and record the coupling time approximation for q ∈ {2, 3, 4, 5, 6, 7, 8, 9} and
p ∈ {0.01, 0.02, . . . 0.99}, repeating the experiment N = 1000 times, see Figure 7.6.
For increasing q, the range of p-values that do not have a good coupling time slightly
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Figure 7.4: Coupling probability P (t) for increasing m, for p = 0.7 (left), p = 0.8
(middle) and p = 0.9 (right). This simulation had parameters q = 2, wired boundary
conditions and initial conditions {∅, Em}. Averages were obtained from N = 1000
samples.

Figure 7.5: Triangular- and hexagonal lattice structures in the plane.

shifts to the right on the p-axis. It is evident that this non-amenable range is tied to
the critical value pc(q). This gives another evidence to the claim that the coupling is
sensitive to the phase transition of the random cluster model, and that the coupling
works in the supercritical phase of the model.

For q = 4 with free boundary conditions, we repeat the experiment at increasing
system size m ∈ {8, 16, . . . , 512} to see how close to the threshold pc(q) the coupling
is still providing good results, see Figure 7.7. It can be seen that the graphs of
the coupling time approximation are intersecting each other around p = 0.7, which
means that the coupling time approximation is not increasing monotonously in m
close to the critical value pc(q) = 2/3. This indicates that the coupling increases its
efficiency for increasing system size, at a fixed value of p > pc(q) (in the long run
for m→∞ we expect the O(logm) regime to hold regardless).

As a final step, we test the coupling on the triangular and hexagonal lattice, see
Figure 7.5. From the theoretical point of view, the random cluster model on these
graph classes is similar to the rectangular one, in the sense that the model has a
subcritical and a supercritical phase, separated by a sharp phase transition at the
critical point pc(q) which can be computed exactly, see [BDC12].
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Figure 7.6: Coupling time approximations τ = τcoup({∅, Em}) for q ∈ {2, 3, . . . , 9}
and p ∈ {0.01, 0.02, . . . , 0.99}, at fixed system size m = 32. Free and wired boundary
conditions are taken into account. Results were obtained from N = 1000 samples.



118 CHAPTER 7. COUPLINGS FOR THE SWENDSEN-WANG DYNAMICS

0 0.2 0.4 0.6 0.8 1
0

100

200

300

p

τ

m = 8

m = 16

m = 32

m = 64

m = 128

m = 256

m = 512

pc(q)

Figure 7.7: Coupling time approximations τ = τcoup({∅, Em}) for q = 4 and p ∈
{0.01, 0.02, . . . , 0.99}, at varying system size m ∈ {8, 16, 32, 64, 128, 256, 512}. Free
boundary conditions are taken into account. Results were obtained from N = 1000
samples.
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We proceed with a rigorous definition of the graphs used. Let Gm,n∆ = (V m,n, Em,n∆ )
be the graph with vertex set

V m,n = {(v1, v2) ∈ Z2 : 0 ≤ v1 ≤ m, 0 ≤ v2 ≤ n}

and edge set

Em,n∆ = {(v, w) ∈ V × V : v 6= w, 0 ≤ w1 − v1 ≤ 1, 0 ≤ w2 − v2 ≤ 1} .

With this definition, the left graph from Figure 7.5 becomes G7,8
∆ . We similarly

define Gm,n7 = (V m,n, Em,n7 ) to have the same vertex set V m,n, together with the
edge set

Em,n7 = {(v, w) ∈ V × V : v1 = v2 and w2 − v2 = 1}
∪{(v, w) ∈ V × V : w1 − v1 = 1, v2 = w2 and v1 + w1 is an even integer} .

The right graph in Figure 7.5 is the denoted byG7,8
7 . As is, the graphs are stated with

free boundary conditions. For wired boundary conditions, the outermost vertices of
V m,n are treated as being connected regardless of the underlying state, and we use
the same notation in this case.
We repeat the simulation that produced Figure 7.6 for the triangular graph Gm,m∆

with m = 64 (12416 edges), and for the hexagonal graph Gm−1,m
7 with m = 100

(15000 edges). The results can be observed in Figures 7.8 and 7.9. In both cases,
the overall behavior aligns with the rectangular lattice case. The Swendsen-Wang
coupling H is sensitive to the phase transition and seems to be amenable throughout
the supercritical phase.

7.5.2 Limit distribution and locality of the coupling

Consider the usual rectangular subgraph G = (Vm, Em) of Z2, together with the
random cluster measures µm0 , µm1 which correspond to free and wired boundary
conditions, respectively. Using the coupling procedure of Lemma 5.1, it is possible
to define a coupling (X,Y ) such that

X ∼ µm0 , Y ∼ µm1 , X ≤ Y ,

using the Glauber dynamics Markov chain. Moreover, this coupling can be modified
such that for any edge e with endpoints v, w, it holds that if v or w is not connected to
the boundary via the Y configuration, X(e) = Y (e) follows (here we write X(e) = 1
iff e ∈ X and X(e) = 0 iff e /∈ X). In other words, the coupling aligns on all
edges which do not belong to the Y -cluster that is connected to the boundary. In
the subcritical phase, this results in an exponential decay of P[X(e) 6= Y (e)], with
respect to the distance of e to the boundary. This was an essential property for
the coupling time proofs of Chapter 5. We will call it locality, because locally,
i.e. away from the boundary, the coupling aligns. Sadly, for the given coupling it is
unclear whether this property is present in the supercritical phase, because the range
of the Y -cluster that connects to the boundary will encompass the whole system,
independent of m.
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Figure 7.8: Coupling time approximations for the triangular lattice graph Gm,m∆

with τ = τcoup({∅, Em,m∆ }) for q ∈ {2, 3, . . . , 9} and p ∈ {0.01, 0.02, . . . , 0.99}, at
fixed system size m = 64. Free and wired boundary conditions are taken into
account. Results were obtained from N = 1000 samples.



7.5. EXPERIMENTAL RESULTS IN THE SUPERCRITICAL PHASE 121

0 0.2 0.4 0.6 0.8 1
0

100

200

300

p

τ
q = 2 free
q = 2 wired

pc(q)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

p

τ

q = 3 free
q = 3 wired

pc(q)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

p

τ

q = 4 free
q = 4 wired

pc(q)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

p

τ

q = 5 free
q = 5 wired

pc(q)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

p

τ

q = 6 free
q = 6 wired

pc(q)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

p

τ

q = 7 free
q = 7 wired

pc(q)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

p

τ

q = 8 free
q = 8 wired

pc(q)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

p

τ

q = 9 free
q = 9 wired

pc(q)

Figure 7.9: Coupling time approximations for the hexagonal lattice graph Gm−1,m
7

with τ = τcoup({∅, Em−1,m
7 }) for q ∈ {2, 3, . . . , 9} and p ∈ {0.01, 0.02, . . . , 0.99}, at

fixed system size m = 100. Free and wired boundary conditions are taken into
account. Results were obtained from N = 1000 samples.
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Figure 7.10: Approximation of D(e) for the limit distribution of the H-coupling
applied with free and wired boundary conditions. Parameters are given by q = 2,
p = 0.6, m = 128. It is evident that the coupling does not have the locality property,
because D(e) is not decreasing to 0 with increasing distance to the boundary.

Nevertheless, we can try to find couplings that have this nice property. For instance,
we can consider the coupling H and apply it to states X and Y , but with respect
to different boundary conditions. In this case, clearly the coupling will almost never
align completely, and even if it does, this does not imply that subsequent states are
aligned. Instead, we can simulate the coupling up to equilibrium and investigate
the limit distribution of the coupling and its locality features. We run the following
experiment: Let q = 2, p = 0.6 > pc(q), m = 128 and Gm = (Vm, Em) the usual
rectangular subgraph of Z2. Let X0 = ∅ and Y 0 = Em be the initial states. We
apply the H coupling to X0 with respect to free boundary conditions and to Y 0 with
respect to wired boundary conditions to obtain the coupled Markov chains (Xt, Y t).
After a burn-in time of t0 = 10000, we track the observables 1[Xt(e) 6= Y t(e)] for
all edges e ∈ Em up to t1 = 10000000 + t0 to approximate the function

D(e) = P[X(e) 6= Y (e)] ,

where (X,Y ) is distributed to the limit distribution of the given coupling. The result
is given in Figure 7.10.
Close to the boundary D(e) is high. It then decays with increasing distance to the
boundary, down to a value D(e) ≈ 0.018, clearly not displaying the desired locality
property. Going into the details of the given coupling, we can find a reason why this
is the case. Assume that (X,Y ) is distributed to the limit distribution, then both X
and Y will have a unique biggest (global) cluster (in terms of vertex count) CX and
CY . Even if CX and CY align with increasing distance to the boundary, if the random
enumeration generated by the coupling implies different root vertices for CX and CY ,
the disagreement from the boundary can propagate to the whole configuration in
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one Step, due to both global clusters getting different spin assignments.
In an attempt to mitigate this problem, we introduce the following modification to
the H coupling:

1. Generate a random spin configuration σ : Vm → {1, . . . , q}, and a random
enumeration i = (v1, . . . , vM ) of the vertices.

2. For a given configuration A ⊆ E, assign to each open cluster C of A a spin
s = f(C, σ, i) ∈ {1, . . . , q}, where

f(C, σ, i) = σ(vj), with j = min{k : vk ∈ C} .

*. Choose s∗ ∈ {1, . . . , q} uniformly at random. Let CA be the open cluster of
A that has the most vertices (if there are multiple such open clusters, choose
one of them uniformly at random). Assign to it the spin s∗.

3. For e ∈ F , set e ∈ A′ if and only if e ∈ D. For e /∈ F , draw re ∈ [0, 1] uniformly
at random and perform the assignment{

e /∈ A′ both endpoints have differing spin or re > p ,

e ∈ A′ else .

We call the procedure with the added ∗-Step the H∗ coupling. In the supercritical
phase of the model, the probability that many biggest clusters exist is practically
zero. The modification attempts to align the global clusters of the given cluster
configurations. The definition of the global cluster can also be implemented in the
following way to avoid the uniqueness issue: A cluster is called global if it connects
to all four boundary sides. If such a cluster exists, it is unique for rectangular graphs.
Or, in the case of wired boundary conditions, one can define the global cluster to be
the unique cluster connecting to any boundary vertex. In the supercritical phase,
all of these methods are practically the same. We will however stick to the above
definition in this section because this is the version we used in the simulations.
The H-coupling satisfies the following property: If A and B align on two clusters
C1, C2 that are next to each other, then after applying H, the resulting A′ and B′

align on all edges belonging to C1, C2 and all edges connecting C1 and C2. For the
H∗-coupling, this only holds for non-global clusters C1, C2, however an additional
property also holds: If A and B align on a cluster C and its boundary to the
respective global clusters of A and B, then the resulting A′ and B′ align on C and
on this boundary. This means that in the event that A and B disagree only close to
the system boundary, this disagreement will not travel across the whole configuration
in one step.
Before we make this statement more rigorous, we repeat the simulation with the
H∗-coupling, see Figure 7.11. In this case, the function D(e) has better decay
properties. To further investigate this decay, we show an axis-aligned slice through
the lattice that passes the origin in Figure 7.12. It is evident that D(e) for the
H∗-coupling has very good decay properties. It decays exponentially fast right up
to the precision of this MC-simulation, which is t−1

1 = 10−7 in this case.
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Figure 7.11: Approximation of D(e) for the limit distribution of the H∗-coupling
applied with free and wired boundary conditions. Parameters are given by q = 2,
p = 0.6, m = 128. The coupling seems to have the locality property, because D(e)
is decreasing to 0 with increasing distance to the boundary.
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Figure 7.12: Comparison of D(e) for the limit distribution of the H-coupling and
H∗-coupling applied with free and wired boundary conditions. Parameters are given
by q = 2, p = 0.6, m = 128. The data is taken from an axis-aligned slice through
the middle of the lattice. On the left, we have the absolute values of D(e), on
the right the value-axis has been scaled logarithmically. Exponential decay for the
H∗-coupling seems to be present.
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7.6 The H∗-coupling in the supercritical phase

The H∗-coupling seems to have the locality property in the supercritical phase,
though it is hard to prove this due to the lack of monotonicity of the Swendsen-
Wang dynamics. Nevertheless, we can try to specify the reach of the disagreement
percolation for this specific coupling. For this purpose, we will rely on the exponen-
tial decay of non-global clusters property from Lemma 5.22. Here, we as well define
the global cluster in the *.-Step to be the unique cluster connecting to the boundary.

Theorem 7.7. Let G = (Vm, Em) be a rectangular subgraph of Z2 with wired bound-
ary conditions. Let µm be the associated random cluster measure, with p > pc(q).
Let A0 ∼ µm and let B0 differ from A0 at a specific edge e ∈ Em. Let (At, Bt) be
the time evolution of the H∗-coupling and let

E(e, t) =
t⋃

s=0

{e ∈ Em : As(e) 6= Bs(e)}

be the union of disagreeing edges up to time t. then one has

E[|E(e, t)|] ∈ O(tb)

for all b > 2.

Proof. Let Γ(e, t) be the set of vertices adjacent to E(e, t), i.e. all vertices that are
an endpoint of an edge in E(e, t). Let u be an endpoint of e and define R(t) =
maxv∈Γ(e,t) ‖u− v‖1 to be the radius of Γ(e, t). We want to bound

E[R(t) | R(t− 1)]

using a tower argument, and therefore need to consider the probability

P[v ∈ Γ(e, t) | R(t− 1)] .

This can only be the case if an adjacent edge f is contained in E(e, t). So let f be
an edge with endpoints v, w and consider the cases for which f ∈ E(e, t) is possible.
We claim the following: f ∈ E(e, t) is only possible if v or w is connected to a vertex
in Γ(e, t − 1) via a non-global cluster (in At−1 or Bt−1). Assume that this is not
the case. Then the At−1-cluster associated to v is either a non-global cluster not
connecting to Γ(e, t−1), which implies that this cluster aligns with the Bt−1-cluster
associated to v. Or it is the global cluster, which implies that the Bt−1-cluster
associated to v is also the global cluster. In both cases, the spin assignment of Steps
2 and (*) of the H∗-coupling assign the same spin to v in both Markov chains. The
same holds for w, therefore the status of edge f will be the same in both Markov
chains, which implies f /∈ E(e, t).
We have shown that f ∈ E(e, t) implies that v or w are connected to a vertex in
Γ(e, t− 1) via a non-global cluster. Therefore we get

P[v ∈ Γ(e, t) | Γ(e, t− 1)] ≤
∑

w∈Γ(e,t−1)

C exp(−c‖v − w‖2) ≤ C ′ exp(−c′d)
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with d = d(v,Γ(e, t−1)) = minw∈Γ(e,t−1) ‖v−w‖1 and adjusted constants C ′, c′ > 0.
Now, we proceed as in Lemma 5.16:

E[R(t)−R(t− 1) | R(t− 1)]

≤E

∑
r≥1

1[∃v ∈ Γ(e, t) with ‖u− v‖1 = R(t− 1) + r] | R(t− 1)


=
∑
r≥1

P[∃v ∈ Γ(e, t) with ‖u− v‖1 = R(t− 1) + r | R(t− 1)]

≤
∑
r≥1

min
{

1, 4(R(t− 1) + r)C ′ exp(−c′r)
}
,

where the last inequality comes from a summation over vertices with distance R(t−
1) + r to u and the exponential bound from above. As in Lemma 5.16, we get that
this sum can be bound by an O(log(R(t− 1))) term, which implies

E[R(t) | R(t− 1)] ≤ R(t− 1) +O(log(R(t− 1)))

and therefore E[R(t)] ∈ O(tb) for all b > 1. The result follows from |E(e, t)| ∈
O(R(t)2).



8 Conclusion

In this Chapter, we give a short summary of this thesis and provide an outlook for
possible extensions of this research.

8.1 Summary

Throughout the course of this thesis, we considered Markov chains for the Fortuin-
Kasteleyn random cluster model. Being a classical example of a statistical mechanics
model, the only reliable method for the approximation of quantities of interest is
given by Markov chain Monte-Carlo methods. In the planar Z2 case, the model
undergoes an order/disorder phase transition, and the main goal was to understand
the effect of the phases on the mixing time behavior of Markov chains for this model.
To this end, we collected necessary tools for the analysis of Markov chains. We gave
an overview of different Monte-Carlo integration schemes for statistical models, and
derived basic error estimates for these methods. These are dependent on the mixing
behavior of the given Markov chain, and in order to analyze this we introduced the
coupling method as a powerful tool. The coupling method can be used to prove mix-
ing time estimates in theory, but it can also be used in practice to obtain insights
for the Markov chain at hand.
Afterwards, we gave a thorough introduction to the Fortuin-Kasteleyn random clus-
ter model. We discussed monotonicity features of the model on general graphs, its
connection to the Ising and q-state Potts models, as well as planar duality and in-
finite volume limits. In the planar case, the phase picture of this model is quite
well-understood due to recent results concerning the different phases of the model.
We stated the essential results for the model on the Z2-graph, as well as their im-
plication for rectangular subgraphs of Z2.
Next, we introduced popular Markov chains for the random cluster model and re-
lated models. These range from standard Glauber dynamics over block dynamics to
systematic scans, and of course the famous Swendsen-Wang algorithm. One main
tool for the analysis of these chains is given by monotone couplings, and we discussed
in which cases such a coupling is possible.
In the next chapter, we gave an extensive discourse on mixing time results for the
introduced monotone Markov chains and block dynamics. Many of the results have
been published in parallel to the time this thesis was written, and we outlined
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the central proof techniques concerning coupling methods. We contributed with an
alternate approach to optimal mixing time results using a speed of disagreement per-
colation argument, which can be used to bootstrap polynomial mixing time bounds
to optimal order. Moreover, we were able to transfer ideas to the supercritical phase
of the model in a certain sense, showing new results here.
As an application, we introduced the new down-up model and showed that it has a
rich monotone structure that can be exploited in a similar way. This model can be
viewed as a generalization of the Ising model for non-integer q ≥ 2. We showed that
the monotone Swendsen-Wang Markov chain has a generalization for this model that
is monotone, and used phase properties coming from the random cluster model to
prove mixing time results.
In the final chapter, we concerned ourselves with the Swendsen-Wang algorithm,
a Markov chain that does not have a monotone coupling and therefore cannot be
treated with the methods of the previous chapters. After a discussion on results for
this Markov chain (which are mainly concerning the subcritical phase), we focused
on the supercritical case of the model. We investigated a grand coupling using nu-
merical methods, attempting to measure quantities related to the mixing time. The
results showed that the given grand coupling performs exceedingly well throughout
the supercritical phase, and we solidified this observation with an extensive variation
of parameters, as well as a variation of underlying graph structures. We discussed a
modification of the coupling that numerically shows exponential decay of disagree-
ment with respect to the boundary, a major indication pointing towards optimal
mixing time results. We also proved a polynomial speed of disagreement percolation
result for this grand coupling similar to those in Chapter 5.

8.2 Outlook

Many of the stated results in this thesis concern monotone Markov chains, requiring
monotonicity features of the model. These are present in the random cluster model,
Ising model and down-up model. Monotonicity of the model and the Markov chains
is a great feature and makes it relatively easy to show local/global connections and
properties of the limit distribution for a coupling. A natural extension would be to
generalize the results to the Potts model with q ≥ 3. Monotonicity is missing in this
case, however local to global coupling results and speed of disagreement percolation
results are still present.
The down-up model is interesting on its own, and its critical behavior should be
similar to the random cluster model. This means that this model opens new possi-
bilities for the study of discrete conformal invariance. Smirnov has shown that single
−/+ interfaces in the rectangular Ising model converge to the Schramm-Loewner-
Evolution SLE(3) at criticality, and similar statements might be possible for single
∇/∆ interfaces in the down-up model. Moreover, the model allows the study of
observables that relate in a monotonous way in the down-up model, but not in the
random cluster model, adding a new layer of depth.
For the Swendsen-Wang algorithm in the supercritical phase, using the given grand
coupling should allow us to give optimal mixing time results. One big step to this
end would be to show the locality of the coupling, which manifests itself through
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exponential decay of disagreement with respect to the boundary. Here as well, mono-
tonicity is not present, and new methods need to be discovered to rigorously validate
the observed mixing behaviour.
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