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Summary. Micro structures of coating surfaces lead to new industrial applications.
They allow to steer the wetting and dewetting behaviour of surfaces and in partic-
ular to enhance hydrophobicity. Here, we discuss the formation of micro structures
in the drying process of a coating. Furthermore, for a given micro structured sur-
face we show how to predict the effective contact angle of drops on the surface.
At first, we derive a new approach for the simulation of micro structure evolution
based on a gradient flow perspective for thin liquid films. This formulation includes
a solvent dependent surface tension, viscosity and evaporation rate. In each time
step of the resulting algorithm a semi implicit Rayleigh functional is minimized.
The functional itself depends on the solution of a transport problem. We apply a
finite difference discretization both for the functional and the transport process. As
in PDE optimization a duality argument allows the efficient computation of descent
directions. Next, given a certain micro structured coating we mathematically de-
scribe effective contact angles in different configurations and their impact on the
macroscopic hydrophilic or hydrophobic surface properties. On periodic surfaces we
aim at the computation of effective contact angles. This involves a geometric free
boundary problem on the fundamental cell. Its solution describes vapor inclusions
on the wetted surface. The free boundary problem is solved by a suitable composite
finite element approach. Furthermore, we introduce a new model for the influence
of micro structures on contact angle hysteresis. This model is adapted from elasto–
plasticity and dry friction. It identifies stable contact angles not only as global or
local energy minimizers but as configurations at which the energy landscape is not
too steep.
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Introduction

Micro structures in coatings are of great industrial relevance. They can be
desirable and undesirable. On the one hand they might lead to rupture of
a paint. On the other hand they can enhance hydrophobicity of the surface.
Here we discuss two different aspects of these phenomena.
In Section 1 we consider a model for the formation of micro structures in a
drying coating. These strucutures can for instance evolve from a non homoge-
neous solvent distribution in an originally flat coating. We model the coating
by an adapted thin film model. It is based on a gradient flow model with
solvent dependent viscosity, surface tension and evaporation rate, see section
1.1. This introduces Marangoni effects to the film which can lead to a struc-
tured film height but also counteract rupture. It also takes into account the
solvent evaporation in a coating, which is fast at low film heights, due to a
faster heating up. A third effect considered is the hardening, i.e. the temporal
change of the viscosity of the coating. In Section 1.2 and 1.3 we introduce a
numerical algorithm based on a semi implicit time discretization, which takes
advantage of the gradient flow structure. In each time step a corresponding
Rayleigh functional is minimized In Section 1.5 we show numerical results.
In the second part in Section 2 we discuss the implications of a structured sur-
face to contact angles of macroscopic drops sitting on the surface. The micro
structures highly influence the contact angle and thereby the sticking of the
drop to the surface. One governing effect is the formation of vapor inclusions
on the surface at a micro scale. This reduces the contact of the drop to the
surface - hence, it rolls off easily. We introduce an algorithm in Section 2.1,
which simulates the vapor inclusions in a periodic setup. The corresponding
liquid vapor interface is a minimal surface with prescribed microscopic con-
tact angle of the triple contact line. In the limit of small scale periodicity of
the surface this enables the calculation of effective contact angles.
Finally, in Section 2.2 we consider the stability of drop configurations on the
micro structured surface. A new model is introduced which determines the
stability of effective contact angles. Their stability depends on the micro con-
figuration of the drop, i.e. on the possible vapor inclusions. The model allows
for intervals of stable contact angles (contact angle hysteresis). It is adapted
from elasto–plasticity and dry friction, and assumes a configuration not only
to be stable if it minimizes (locally) the relevant surface energy but also if the
energy landscape at this configuration is not too steep. This leads to different
hysteresis intervals for configurations with and without vapor inclusions. A
change in the vapor configuration at the surface can explain the highly non
monotone dependence of the hysteresis on the surface roughness, known since
the sixties, [JD64], as well as more recent experiments.
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1 Modeling and Simulation of the Micro Structure
Formation in Thin Coatings

1.1 Modeling Thin Coatings as a Gradient Flow

We propose a simple model for coatings similar to the one considered in
[HMO97], which in spite of its simplicity reproduces many of the interest-
ing features known for a drying paint. We assume the paint to consist of two
components, the non–volatile resin and the volatile solvent, whose concentra-
tion is given by s. Together they form a well–mixed fluid with height h. In
the simulations we plot both the height (on the left) and the solvent concen-
tration (on the right), see Figure 1. These are the two parameters describing
the physical properties of the fluid:

Fig. 1. A time evolution (back to front) of a coating is described by its height (on
the left) and solvent concentration (on the right). Here the trivial case with constant
Solvent Concentration is depicted.

The solvent concentration influences the viscosity µ (the drying coating be-
comes harder with descreasing solvent concentration) as well as the surface
tension σ (the surface tension increases with decreasing solvent concentration)
and the evaporation rate e. The evaporation rate also depends on solvent con-
centration and on the height of the film, as a thin film dries fast due to its
closeness to the warm substrate. We assume a well–mixed coating, where both
components are transported by the same horizontal fluid velocity u.
This model can introduce micro structures even on an initially flat coating.
Indeed, they may be originated in a inhomogeneous distribution of solvent.
Local areas on the coating where the solvent concentration is high have less
surface tension. This induces a Marangoni flow in the direction from high
to low solvent concentration. This flow reduces the surface energy as the
interface with less surface tension is strechted in comparison to the interface
with high surface tension, which is condensed. Hence, fluctuation in the solvent
concentration lead to a structured film height. On the other hand, surface
tension primarily induces a flow which reduces the area of the interface. It
therefore drives the fluid to a flat film. These two forces can in the absence of
evaporation compensate each other leading to an inhomogeneous structured
but stable film, c.f.[W93]. Figure 2 shows a Marangoni induced stable micro
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structure.
Furthermore, the combination of a height dependent evaporation rate e of the
solvent and of Marangoni effects (i.e. the solvent dependent surface tension)
counteracts film rupture at points, where the height of the film tends to zero.
In fact, due to their closeness to the warm surface the film dries quickly
at low film heights. This reduces the solvent concentration at these points,
which again induces a Marangoni flow to the valleys on the film surface due
to a higher surface tension in case of a low solvent concentration. This flow
counteracts rupture. Indeed our simulations (Figures 5 and 4) do not show a
critical deepening of the film leading to rupture.

Gradient Flow Structure. For our model we firstly assume a balance of vis-
cous and capillary forces but neglect the momentum of the fluid. We assume
an over–damped limit in which the quasi stationary Stokes equations for an
incompressible fluid are appropriate. By the well known lubrication approx-
imation [BDO97] they can be reduced to the thin film equations, which are
of gradient flow structure (cf. [GO03]). The height of the film h performs a
steepest descent of an energy functional E:

ḣ = −gradE
∣∣
h
. (1)

To make sense of the gradient of the energy one has to identify the metric
structure of the manifold M on which the gradient flow takes place. In this
case, this is the manifold of all heights of the film with prescribed volume.
The metric is described by its metric tensor gh(δh, δh) on the tangent spaces,
which consist of the infinitesimal height variations δh. Denoting diffE

∣∣
h
.δh =

limε→0
1
ε (E(h + εδh)− E(h)) turns (1) into

gh(ḣ, δh) = −diff E
∣∣
h
.δh ∀ δh ∈ ThM. (2)

Equation (2) can be seen as the Euler–Lagrange equation of

F(δh) =
1
2

gh(δh, δh) + diff E
∣∣
h
.δh (3)

with respect to δh. Indeed, the actual rate of change ḣ minimizes F under all
possible infinitesimal variations δh. We will use such a gradient flow structure
to model thin coatings, inspired by the gradient flow model for thin films,
which we will explained first.

Thin Films as a Gradient Flow. Thin fluid films are described by the well
known thin film equation

ḣ = − σ

3µ
div(h3∇∆h), (4)

for the height of the film [BDO97]. Here, we might impose either periodic or
natural boundary conditions. This evolution is a gradient flow, as introduced
in [O01]. The relevant energy is the linearized surface energy:
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E(h) :=
∫

Ω

σ

(
1 +

1
2
|∇h|2

)
dx.

The metric tensor is given by the minimal energy dissipated by viscous friction,
i. e.

gh (δh, δh) = inf
u

{∫
Ω

3µ

h
u2dx

}
,

where Ω is the underlying domain. Note that the metric tensor is base point
dependent. The infimum is taken over any velocity profile u that realizes the
given change in film height δh described by the transport equation

δh + div (h u) = 0. (5)

On the first sight the metric tensor seems to be a complicated object, as it in-
volves the minimization of the viscous friction. Therefore finding the minimizer
of the functional F in (3) requires to solve a nested minimization problem.
This can be avoided, if one describes the tangent space, i.e. all infinitesimal
changes in film height h, directly by an admissible velocity fields u via (5) (of
course the same δh may be described by many u’s). In this sense the metric
tensor can be lifted onto the space of admissible velocities u:

gh(u, u) =
∫

Ω

3µ

h
u2dx. (6)

Rewriting (3) leads to a formulation of the gradient flow as the evolution

ḣ + div (h u∗ ) = 0, (7)

where u∗ minimizes the Rayleigh functional

F(u) =
1
2

gh(u, u) + diff E
∣∣
h
.u (8)

over all fluid velocities u. Here diff E
∣∣
h
.u is defined as diff E

∣∣
h
.δh with δh

satisfying (5). It is now easy to see that the gradient flow given by (6) – (8)
coincides with the evolution of the thin film equation (4). Indeed, we observe
that u∗ solves the Euler–Lagrange equation corresponding to the Rayleigh
functional (8):

0 = gh(u∗, u) + diff E
∣∣
h
.u =

∫
Ω

3µ

h
u∗ · u dx −

∫
Ω

σ∇h∇div(h u) dx

for all test velocities u. For periodic or natural boundary conditions this im-
mediately implies

u∗ =
σh2

3µ
∇∆h.

Finally, plugging u∗ into (7) yields the thin film equation (4). The thin film is a
special case of a thin coating, i.e. the one with constant solvent concentration.
Numerical results for the spreading of a thin film are shown in Figure 1.
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Thin Coatings as a Gradient Flow. The model for thin coatings is more dif-
ficult, as the state of the paint is not only described by its film height h but
also by the solvent concentration s in the film. We assume a thin film model,
which is inspired by the gradient flow described above. Here, we adopt a point
of view developed in [GP05]: The gradient flow evolves on the manifold of all
possible film heights. The solvent will be transported along with the fluid and
is taken into account as a vector bundle on the manifold. At any given film
height, there is a vector space of possible solvent concentrations, the fiber.
They are not part of the manifold. The tangent spaces therefore consist only
of the infinitesimal changes in film height δh. These are induced by a velocity
u (as explained above):

δh + div (h u) = 0 (9)

The solvent concentration is transported by parallel transport. That is, we
assume a mixed fluid, where the solvent is transported by the same velocity.
As s is the concentration of solvent, the actual amount of solvent is given by
h s. Therefore

δ(hs) + div (hs u) = 0. (10)

This vector bundle construction to model an extra component slaved to the
transport of the fluid was introduced in [GP05] for a thin film with surfactant.
The gradient flow is now given by the reduced energy and the metric on the
manifold. As in the thin film case, the relevant energy is the linearized surface
energy:

E(h, s) :=
∫

Ω

σ(s)
(

1 +
1
2
|∇h|2

)
dx. (11)

The surface tension σ depends on the solvent concentration s. This introduces
Marangoni effects to the model, which we see in a drying coating. The metric is
given by the minimal energy dissipated by viscous friction, where the viscosity
µ depends on the solvent concentration. The drying coating becomes hard.
One has the metric tensor

gh,s (u, u) =
∫

Ω

3µ(s)
h

u2dx. (12)

The gradient flow is (9) and (10) with the velocity field u = u∗, where u∗

minimizes the Rayleigh functional

F(u) =
1
2

gh,s(u, u) + diff E
∣∣
h,s

.u (13)

over all velocities u. This model is similar to the thin film model, but has
included the solvent features of a thin coating. On the one hand it tries to
minimize the (linearized) surface energy (11) by mean surface tension and
Marangoni flows. They reduce the energy by elongating the surface with low
surface tension. One the other hand the flow is hindered by viscous friction
(12). The viscous friction increases as the evaporation continues (as µ(s) is an
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increasing function). The only effect not yet modeled is the evaporation. On a
continuous level this would include the modeling of the full vapor phase. On
the discrete level the evaporation is included as a second step in an operator
splitting method, see below.

1.2 Natural Time Discretization

Any gradient flow has a natural time discretization. It involves the natural
distance function dist on the manifold M defined via

dist 2(h0, h1) := inf
γ

{(∫ 1

0

√
gγ(t)(γ̇, γ̇) dt

)2
}

,

with γ any smooth curve with γ(0) = h0 and γ(1) = h1. If M is actually
Euclidean instead of genuinely Riemannian as in our case

dist 2(h0, h1) = |h0 − h1|2. (14)

If τ denotes the time step size, the solution hk+1 at step k +1 can be inferred
from the state hk at step k via the variational problem:

hk+1 = argminh

{
1
2τ

dist 2(h, hk) + E(h)
}

. (15)

As a motivation consider the Euclidean case (14). Here the Euler–Lagrange
equation for (15) turns into the implicit Euler scheme

1
τ

(hk+1 − hk) = −∇E
∣∣
hk+1 .

We want to use (15) as a starting point to construct a natural and stable
discretization. The drawback of (15) is, it is fully nonlinear and it involves
two nested minimizations.
One natural idea to overcome this drawback, which is also used for epitaxial
growth, see the corresponding chapter in this book, is the following: We ap-
proximate the functional by its quadratic at hk and then lift the variational
problem on the level of possible velocities u in the spirit of (7) and (8). We
first turn to the quadratic approximation: Writing h = hk + τδh, we have

1
2τ

dist 2(h, hk) + E(h) ≈

τ

2
ghk(δh, δh) + E(hk) + τ diff E

∣∣
hk .δh +

τ2

2
ghk(δh, Hess E

∣∣
hkδh),

(16)

where Hess E
∣∣
hk denotes the Hessian of E in hk. Hence we can solve

δh∗ = argminδh

{
1
2

ghk(δh, δh) + diff E
∣∣
hk .δh +

τ

2
ghk(δh, Hess E

∣∣
hkδh)

}
(17)
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and then set hk+1 = hk + τδh∗, cf. (3). However, as in (3), (17) still involves
two nested minimizations. Therefore, using (5) we may lift (17) on the level
of possible velocities u as before. This yields

uk+1 = argminu

{
1
2

ghk(u, u) + diff E
∣∣
hk .u +

τ

2
ghk(u, Hess E

∣∣
hku)

}
(18)

and then set hk+1 = hk + τ div(hk uk+1). Compare (18) to (7) and (8). This
is the basis for the gradient flow algorithm used for epitaxial growth.
For our algorithm we use an alternative approach. We consider a semi implicit
time discretization. For this we only approximate the squared distance dist 2

in (15) by its metric based approximation and keep E fully nonlinear. We use
the following notation: For given velocity field u varying in space and fixed
in time define the transport operator h(·, ·), which maps a height field hk at
time tk onto a height field h(hk, u) = h(tk+1), where h solves the transport
equation ∂th + div(h u) = 0 with initial data h(tk) = hk. Given this operator,
we again apply a linearization of the distance map dist in (15) and evaluate
the energy on h[hk, u]. This energy is again implicitly defined via the velocity
field u, which minimizes a corresponding functional. Thus, we define

uk+1 = argminu

{τ

2
ghk(u, u) + E(h(hk, u))

}
, (19)

which can be considered as a semi-implicit alternative to the time discretiza-
tion in (18). The new height field is then given by hk+1 = h(hk, uk+1). Here,
we still use the metric for the linearization of the distance map and evaluate
this at the height field hk at the old time tk.
This gradient flow model for the thin film equation can easily be generalized
for the thin coating model. To simplify the presentation let us introduce the
vector q = (h, hs) consisting of the two conservative quantities film height h
and amount of solvent hs. Furthermore, we again define a transport operator
q(·, ·), which maps qk = (hk, hksk) at time tk onto q(qk, u) = q(tk+1), where
q is a the solution of the system of transport equations

∂th + div(h u) = 0 (20)
∂t(hs) + div(hs u) = 0 (21)

with initial data q(tk) = qk = (hk, hksk). In analogy to (19), we consider an
implicit variational definition of the motion field

uk+1 = argminu

{τ

2
gqk(u, u) + E(q(hk, u))

}
, (22)

where E[q] is given by (11). Hence, in every time step we ask for the minimizer
of a functional whose integrand depends on the solution of a hyperbolic initial
value problem. Indeed this is a PDE constrained optimization problem. In the
next section we will solve this problem numerically based on a suitable space
discretization and duality techniques.
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1.3 Space Discretization for the Gradient Flow

Let us consider a discretization of (22) in one and two space dimensions and
for simplicity restrict to a domain Ω = [0, 1]d, where d ∈ {1, 2}, and impose
periodic boundary conditions. We suppose Ω to be regularly subdivided into
N interval of width ∆ := 1

N (d=1) or squares of edge length ∆ (d=2). By
Q = (Qi)i∈I = (Hi,HiSi)i∈I and U = (Ui)i∈I we denote nodal vectors of
discrete q and u quantities, respectively, where the ith component corresponds
to a grid nodes xi. Here I is supposed to be the lexicographically ordered index
set of nodes (for d = 2 these indices are 2-valued, i. e. i = (i1, i2), where the
two components indicate the integer coordinates on the grid lattice). Spatial
periodicity can be expressed by the notational assumption Qi = Qi+Ne and
Vi = Vi+Ne, where e = 1 for d = 1 and e = (1, 0) or (0, 1) for d = 2. Now,
we define in a straightforward way a discrete energy value E[Q] on R2]I and
a discrete metric GQ[U,U ] on Rd]I × Rd]I :

E[Q] =
∑
i∈I

∆dσ(S̃i)
[
1 +

1
2

(∇iH)2
]

, (23)

GQ(U,U) =
∑
i∈I

∆d 3µ(Si)
Hi

|Ui|2, (24)

where S̃ = 1
2 (Si + Si+1) (d = 1) or S̃ = 1

4 (Si + Si+(0,1) + Si+(1,0) + Si+(1,1))
(d = 2) are interpolated values for the solvent concentration at cell centers,
and ∇iH = 1

∆ (Hi+1 −Hi) (d = 1) or ∇iH = 1
2∆ (Hi+(1,0) + Hi+(1,1) −Hi −

Hi+(0,1),Hi+(0,1) + Hi+(1,1)−Hi−Hi+(1,0)) (d = 2) is the difference quotient
approximation of the gradient of the height field. Next, we define an operator
Q, which computes Q(Qk, U) = Qk+1 = (Hk

i ,Hk
i Sk

i )i∈I as the solution of an
implicit Lax-Friedrich scheme for the associated transport problem for given
data Qk at time tk and a discrete velocity vector U . Let us detail this here in
the one dimensional case, where we obtain the following system of equations

Qk+1
i −Qk

i

τ
=

Ui+1Q
k+1
i+1 − Ui−1Q

k+1
i−1

2∆
+ ε

Qk+1
i+1 − 2Qk+1

i + Qk+1
i−1

∆2

for all i ∈ I and a small positive constant ε. The two dimensional case is
completely analogous. This scheme can be rewritten in matrix vector notation

Qk = A(U)Q(Qk, U) (25)

where A(U) ∈ R2]I×2]I is a matrix depending on the discrete vector field U ,
which can easily be extracted from the Lax-Friedrich scheme. For ε > 0 this
matrix is invertible. Thus, we obtain the explicit representation Q(Qk, U) =
A(U)−1Qk for the discrete transport operator. With these ingredients at hand,
one obtains a discrete counterpart of the variational problem (22)

Uk+1 = argmin
U∈Rd]I

{τ

2
GQk(U,U) + E(Q(Qk, U))

}
. (26)
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Finally, we define Qk+1 = Q(Qk, Uk+1). In each time step we aim at comput-
ing the discrete minimizer Uk+1 via a gradient descent scheme on Rd]I . Hence,
besides the energy on the right hand side of (26) we have to compute the gradi-
ent vector on Rd]I . For the variation of the energy E(Q(Qk, U)) in a direction
W ∈ Rd]I we get ∂UE(Q(Qk, U))(W ) = ∂QE(Q(Qk, U))(∂UQ(Qk, U)(W )).
A direct application of this formula for the evaluation of the gradient of the
energy E would require the computation of

∂UQ(Qk, U)(W ) = −A−1(U)(∂UA(U)(W ))A−1(U)Qk

for every nodal vector W in Rd]I . To avoid this, let us introduce the dual
solution P = P (Qk, U) ∈ R2]I which solves

A(U)T P = − ∂QE(Q(Qk, U)).

Computing the variation of the linear system (25) with respect to U we achieve

0 = (∂UA(U)(W ))Q(Qk, U) + A(U)(∂UQ(Qk, U)(W )),

from which we then derive

∂UE(Q(Qk, U))(W ) = ∂QE(Q(Qk, U))(∂UQ(Qk, U)(W ))
= −A(U)T P (Qk, U) · (∂UQ(Qk, U)(W ))
= −P (Qk, U) ·A(U)(∂UQ(Qk, U)(W ))
= P (Qk, U) · (∂UA(U)(W ))Q(Qk, U).

This representation of the variation of the energy can be evaluated without
solving d]I linear systems of equations. In our implementation we consider
the Armijo rule as a step size control in the descent algorithm on Rd]I .

1.4 Evolution of Thin Coatings with Solvent Evaporation

So far the model for the evolution of a thin film consisting of resin and solvent
is considered as a closed system and formulated as a gradient flow. Evaporation
of the solvent from the liquid into the gas phase - the major effect in the drying
of the coating - still has to be taken into account. As already mentioned,
incorporating this in a gradient flow formulation would require to model the
gas phase as well. To avoid this we use an operator splitting approach and
consider the evaporation separately as a right hand side in the transport
equations. Thus, we consider the modified transport equations

∂th + div(h u) = e(h, s) ,

∂t(hs) + div(hs u) = e(h, s) ,

where e(h, s) = − C
c+hs is the usual model for the evaporation [BDO97], where

C, c > 0 are evaporation parameters. In the time discretization we now al-
ternate the descent step of the gradient flow and an explicit time integration
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of the evaporation. In the first step, the velocity uk+1 is computed based on
(22) . Solving the corresponding transport equations (20) and (21) we obtain
updated solutions for the height and the solvent concentration at time tk+1,
which we denote by h̃k+1 and s̃k+1, respectively. In the second step, applying
an explicit integration scheme for the evaporation we finally compute

hk+1 = h̃k+1 + τe(h̃k+1, s̃k+1) ,

sk+1 = (hk+1)−1(h̃k+1s̃k+1 + τe(h̃k+1, s̃k+1)) .

For the fully discrete scheme, we proceed analogously and update the nodal
values Qk+1 in each time step. In fact, given Uk+1 as the minimizer of (26) we
compute Q̃k+1 = (H̃k+1, S̃k+1) = A(Uk+1)−1Qk and then update pointwise
Qk+1

i = Q̃k+1
i + τe(H̃k+1

i , S̃k+1
i ).

1.5 Numerical Results

The numerical results show the features of thin coatings introduced by
Marangoni and surface tension effects combined with evaporation and hard-
ening. We will discuss them separately. A first test of our algorithm was to
run it with constant solvent concentration, which turns the model for thin
coatings into the simpler thin film model described above. Numerical results
are already shown in Figure 1. They are numerically consistent with results
obtained by a finite volume scheme for the thin film equation [GLR02], where
thin films with (and without) surfactant are simulated. Figure 2 shows the
effects introduced by Marangoni forces. In particular an inhomogeneous sol-
vent concentration can lead to a structure formation in the film height. In the
absence of evaporation this structure becomes stable as the Marangoni forces
are opposed by mean surface tension forces, which want to reduce the length
of the film surface.

Fig. 2. Evolution of a coating with a
marangoni flow introduced by an inho-
mogeneous solvent concentration.

Fig. 3. Evolution of a coating with evap-
orating solvent.

An inhomogeneous solvent concentration also introduces a structured film
height via evaporation, Figure 3. This leads - as only solvent evaporates - to
valleys in the film located at positions with a high amount of solvent. Still
the coating is by no means close to rupture, as this is opposed by Marangoni
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forces. Figure 5 shows that the combination of these effects leads to a micro
structure. This micro structures turns into a stable pattern of the dry coating.
This is due to a solvent dependent viscosity, which leads to hardening during
the drying process. Figure 4 shows that in a coating with constant viscosity
the mean surface tension forces dominate the evolution at later times. This
finally leads to a flat coating similar to the thin film case. Micro structures
occur only at intermediate times.

Fig. 4. The drying of a coating with (ar-
tifically) constant viscosity with a vanish-
ing of micro structures.

Fig. 5. The evolution of a coating with
hardening, where micro structures per-
sist.

2 Micro Structured Coatings and Effective Macroscopic
Contact Angle

Micro structures in thin coatings are not only an unwanted feature, like the
rupture of a coating. They also can be desirable, as micro structures enhance
water repellent properties of a surface. This feature is known as the lotus
effect. Among other plants, the lotus plant makes use of this [BN97], to let
water roll off their leaves. One can also spot it at the back of a duck. The
duck will stay dry while the water rolls off in pearls, as the feathers have a
micro structure whose cavities are not filled with the water. To analyze this
effect one has to understand how the form of the drops especially the contact
angles are determined by the surface energy, which is the relevant energy in
the quasi static case we are considering here.
The surface energy E is the sum of the energies of the three different inter-
faces in our problem. That is, the liquid/vapor interface ΣLV , the solid/liquid
interface ΣSL and the solid/vapor interface ΣSV . Each of these interfaces is
weigthened with its surface tension:

E = |ΣSL| · σsl + |ΣLV | · σlv + |ΣSV | · σsv.

The shape of the drop is the one with the least energy given the volume
of the drop. This also determines the contact angle, which is important to
understand the lotus effect. Drops with large contact angles take a nearly
pearl like form and roll of easily. Drops with small contact angles are flatter
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and stick more to the surface.
For a flat surface the contact angle θY can be calculated using Young’s law,
which can be derived from minimizing property with respect to the surface
energy (see below):

cos θY =
σsv − σsl

σlv
. (27)

Drops on surfaces with micro structures are more complicated. They can either
fill the micro structure with water, a situation described by Wenzel in [W36]
(Figure 6), or they can sit on air bubbles situated in the surface cavities, as
considered by Cassie and Baxter in [CB44], see Figure 7. For a nice review on
this effect see either [Q02] or the book [GBQ04].

Wθ

Fig. 6. A Wenzel type drop

CB
θ

Fig. 7. A Cassie–Baxter type drop

On a periodic surface it is possible to calculate effective contact angles. These
are contact angles that would be attained in the limit of small scale periodic-
ity. These contact angles determine the shape of the drop, see Figures 6 and
7. The micro structure is much smaller than the size of the drop. It therefore
makes sense to think of an effective surface tension of the micro structured
surface. The justification for this is given in [AS05], where it is shown that the
energy minimizing drops behave in the limit of small surface periodicity like
the drops with the corresponding effective surface tensions. This is a mathe-
matically rigorous argument using the Γ -convergence of the energies.
The effective surface tensions are the ones assigned to a macroscopically flat
surface with a small scale micro structure. In the Wenzel situation the solid
surface and thereby the solid/liquid interface as well as the solid/vapor inter-
face are enlarged by the roughness r. (r equals the area of the surface on the
unit square.) The effective surface tensions σ∗sl and σ∗sv are:

σ∗sl = r · σsl and σ∗sv = r · σsv,

The effective contact angle θW is then determined by an adapted Young’s law,
cf. (27):

cos θW =
σ∗sv − σ∗sl

σlv
= r · σsv − σsl

σlv
.

Therefore a Wenzel type situation enlarges large contact angles and shrinks
small ones in comparison to the flat surface case. Thus it enhances water re-
pellent properties of a surface (with pearl like drops and large contact angles),
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as well as hydrophilic properties (with flat drops and low contact angles).
In the Cassie–Baxter situation the calculation of the effective surface tension
is more difficult as it involves a determination of the size of the vapor bub-
bles at the micro scale, see Figure 7. In a periodic set up this leads to a free
boundary problem to be solved on the periodicity cell. The solution may be
a configuration with or without vapor inclusions. At the triple line the con-
tact angle for a flat surface θY is attained. Below, we developed an algorithm
which solves the free boundary problem and thereby determines the shape of
the vapor inclusions.

S
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r − φ

φφ
θY α

Fig. 8. The Configuration of a cell problem in the Cassie–Baxter regime.

The solution of the cell problem provides the area α of the liquid/vapor in-
terface in one periodicity cell, the area β of the solid/liquid interface and the
area of the solid/vapor interface, which is r − β, see figure 8. The effective
surface tension σ?

sl is the sum of the surface tensions of the interfaces:

σ?
sl = α · σlv + β · σsl + (r − β) · σsv.

We obtain a modified Young’s law (cf. (27)) for the effective solid/vapor sur-
face tension σ?

sv = r · σsv and thereby determine the effective Cassie–Baxter
contact angle:

cos θCB =
σ?

sv − σ?
sl

σlv
= −α + β · cos θY .

For α → 1 and β → 0 the Cassie–Baxter contact angle tends to 180◦. This
is the situation when the drop hardly touches the surface but rests mostly on
the air pockets. The drop takes a nearly spherical shape and rolls off easily.
The effective contact angles calculated above are derived under the assumption
of periodicity of the surface. An assumption typically not satisfied by natural
surfaces. Theses surfaces show a highly inhomogeneous structure with both
sizes and shape of the micro structure varying over several orders of magni-
tude, see Figure 9. A future perspective is to derive a mathematical model
which captures these inhomogeneities. It should be based on a stochastical
model where one asks for the expectation of the effective contact angle.
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Fig. 9. Natural surfaces with micro structure (copyright: Bayer Material Science)

There is a second drawback of Young’s law which describes the the absolut
minimizer of the energy. In fact, drops on surface can have many different
stable contact angles. Rain drops on a window sheet demonstrate this in our
daily life. They stick to the window and do not roll off, in spite of the window
being inclined. These drops are not spherical caps but take an non symmetric
shape, see Figure 10.

Fig. 10. A drop sticking to a tilted plane

The contact angles at the upward point part of the contact line are much
smaller than those at the downward pointing part. Nevertheless all contact
angles are stable, as the drop does not move. We developed a new model
to understand which drops are stable, [SGO07], see Section 2.2. This model
is adapted from models used in dry friction and elasto–plasticity. It mainly
states that a drop should by stable, if the energy landscape is not to steep at
its configuration.

2.1 Computing the Effective Contact Angle

In this section we will discuss how to compute the effective contact angle
on a rough coating surface in the regime of the Cassie–Baxter model. Thus,
we consider a periodic surface micro structure described by a graph on a
rectangular fundamental cell Ω (cf. Fig. 11). The surface itself is supposed
to be given as a graph f : Ω → R, whereas the graph of a second function
u : Ω → R represents the gas / liquid interface between a vapor inclusion on
the surface and the covering liquid. In fact, we suppose {(x, y) ∈ Ω×R | f(x) <
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y < u(x)} to be the enclosed gas volume. Following [SGO07] we take into
acount the total (linearized) surface energy on the cell Ω given by

E(u, f) =
∫

[u>f ]

σsv

√
1 + |∇f |2 + σlv

√
1 + |∇u|2dx +

∫
[u<f ]

σsl

√
1 + |∇f |2dx

=
∫

[u>f ]

(σsv − σsl)
√

1 + |∇f |2 + σlv

√
1 + |∇u|2dx

+
∫
Ω

σsl

√
1 + |∇f |2dx

Here, [u > f ] = {x ∈ Ω | f(x) < u(x)} represents the non wetted domain of
the vapor inclusion, also denoted by Ωsv, and [u < f ] = {x ∈ Ω | f(x) > u(x)}
the wetted domain, respectively (cf. Fig. 7, 11). Let us emphasize that for fixed
f the energy effectively depends only on u|[u>f ]. In the energy minimization
we have to compensate for this by a suitable extension of u outside [u > f ].
The variation of the energy E with respect to u in a direction w is given by

∂uE(u, f)(w) =
∫

∂[u>f ]

(v · ν)
(
(σsv − σsl)

√
1 + |∇f |2 + σlv

√
1 + |∇u|2

)
dH1

+
∫

[u>f ]

σlv
∇u · ∇w√
1 + |∇u|2

dx ,

where ν denotes the outer normal at the triple line ∂[u > f ] and v is the normal
velocity field of this interface induced by the variation w of the height function
u. The relation between v · ν and w is given by (v · ν)(∇f · ν −∇u · ν) = w. A
minimizer u of E(·, f) describing the local vapor inclusion attached to the sur-
face is described by the necessary condition ∂uE(u, f)(w) = 0 for all smooth
variations w. Applying integration by parts we deduce the minimal surface
equation −div ∇u√

1+|∇u|2
= 0 for u on [u > f ] and the boundary condition

0 =
(σsv − σsl)

√
1 + |∇f |2 + σlv

√
1 + |∇u|2

∇f · ν −∇u · ν
+

σlv∇u · ν√
1 + |∇u|2

on ∂[u > f ]. The energy is invariant under rigid body motions. Hence, for a
point x on ∂[u > f ] we may assume ∇f(x) = 0. In this case ν(x) = − ∇u(x)

|∇u(x)|

and thus σls−σsv

σlv
=

√
1 + |∇u(x)|2 − |∇u(x)|2√

1+|∇u(x)|2
= 1√

1+|∇u(x)|2
= cos(θ),

where θ is the contact angle between the solid-liquid and the liquid vapor
interface. Hence, we have recovered Young’s law on the micro scale of the cell
problem.
Finally we end up with the following free boundary problem to be solved: Find
a domain Ωsv and a function u, such that the graph of u on Ωsv is a minimal
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surface with Dirichlet boundary condition u = f and prescribed contact angle
θ on ∂Ωsv, and this graph should be periodically extendable as a continuous
graph on R2 (cf. Fig. 11 and Fig. 12).

Fig. 11. The effective contact angle on a rough surface is calculated based on the
numerical solution of a free boundary problem on a fundamental cell. The liquid
vapor interface of the vapor inclusion on the surface forms a minimal surface with
a contact angle on the surface of the solid determined by Young’s law.

Fig. 12. Each row shows on the periodic cell a family of coating surfaces together
with the liquid vapor interfaces of the corresponding vapor inclusions in the wetting
regime of the Cassie–Baxter model. In the first row the transition in the surface
configuration from a wavelike pattern in one axial direction to more spike type
structures is depicted from left to right, whereas in the second row the transition
from the same wave pattern to elongated troughs is shown.

The numerical solution of this free boundary problem is based on a time
discrete gradient descent approach for a suitable spatially discrete version of
the above variational problem. Let us denote by Vh the space of piecewise
affine, continuous functions (with a continuous periodic extension on R2 on
some underlying simplicial mesh of grid size h covering the rectangular fun-
damental cell Ω. For a discrete graph F ∈ Vh of the coating surface we start
from some initial guess U0 ∈ Vh for the (extended) discrete graph of the liq-
uid vapor interface on top of the vapor inclusions and successively compute
a family (Uk)k≥0 with decreasing Energy E(·, F ). For given Uk we first solve
the discrete Dirichlet problem for a minimal surface on Ωk

sv := [Uk > F ] in a
composite finite element space Vk

h [HS97, HS98] and based on that compute
the next iterate Uk+1. In fact, following [HS97a] we define Vk

h as a suitable
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subspace of functions W ∈ Vh with W = 0 on ∂Ωk
sv. Thereby, the degrees of

freedom are nodal values on the original grid contained in Ωk
sv whose distance

from ∂Ωk
sv is larger than some ε = ε(h) > 0. Then, a constructive extension

operation defines nodal values on all grid nodes of cells intersec ted by Ωk
sv

(for details we refer to [HS97a]). Hence, we compute a solution Ũk+1 with
Ũk+1 − F ∈ Vk

h , such that

0 =
∫

Ωk
sv

∇Ũk+1 · ∇Φ√
1 + |∇Uk|2

dx

for all test functions Φ ∈ Vk
h . Next, based on Ũk+1 data on ∂Ωk

sv we compute
a discrete descent direction V k ∈ Vh as the solution of

Gk(V k+1, Φ) = −∂uE(Ũk, F )(Φ)

for all Φ ∈ Vh. Here, with the intention of a proper preconditioning of the gra-
dient descent, we take into account the metric Gk(Ψ,Φ) = σlv

∫
Ωk

sv

∇Ψ ·∇Φ√
1+|∇Uk|2

.

Given V k+1 we finally determine the actual descent step applying Amijos step
size control rule and compute Uk+1 = Ũk+1+τk+1V k+1 for a suitable timestep
τk+1. Here, we implicitly assume that the built–in extension of Ũk+1 on whole
Ω is sufficiently smooth.

2.2 A New Model for Contact Angle Hysteresis

We consider a drop on a micro structured plane. Experiments show that there
is an hysteresis interval [θr, θa] of stable contact angles. It is bounded by the
receding contact angle θr and the advancing contact angle θa. The dependence
of this interval on the surface roughness is badly understood. We introduced
a new model for contact angle hysteresis [SGO07] to understand the experi-
mental evidence of a complicated dependence of the hysteresis interval on the
roughness:
Well known experiments from the sixties [JD64] show that the width as well
as the position of the hysteresis interval depend in a nonlinear way on the
surface roughness, see Figure 13. Especially the receding contact angle shows
a jump like behavior at a certain surface roughness.
Furthermore, recent experiments [QL03] show that the receding contact angle
not only depends on the surface roughness, but also on the way the drop is
put on the surface. In Figure 14 we show how the receding contact angles
depends on a pressure applied to press the drop into surface cavities. The
pressure is then released and the contact angle is measured. Figure 14 again
shows a jump like behavior of the receding contact angle.
We introduce a new model to capture these phenomena. It is similar to models
used in dry friction [MT04] and elasto–plasticity [MSM06]. The main idea of
our model is that stability of drops is primarily not related to global or local
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Fig. 13. Experimental Dependence
of Advancing and Receding Contact
Angles on the Surface Roughness.
Reprinted with Permission from
[JD64]. Copyright (1964) Amer-
ican Chemical Society

Fig. 14. Experimental Dependence of
Receding Contact Angles on the Pres-
sure Pushing the Drop onto the Sur-
face. Reprinted from [QL03] with Per-
mission.

minimality of its interfacial energy, but rather to the fact that the local energy–
landscape seen by the drop should not be too steep such that dissipation
energy pays off the modify the configuration. To be be more precise, if the
energy that would be gained moving the drop (i.e. controlled up to first order
by the slope of the energy landscape) is smaller than the energy that would be
dissipated while moving, then the drop will not move. In order to implement
these concept, we use the derivative–free framework proposed in [MM05] (see
also the review [M05]).
That is, we assume a drop L0 (with its contact angle) to be stable if

E(L0) − E(L̃) ≤ dist(L0, L̃)

for all L̃ with the same volume. Here we have modeled the distance of two
drops to be the area of the coating surface wetted by only one of them. This
seems reasonable, as we know that the most energy is dissipated around the
moving triple line. Therefore a drop which has significantly changed its bot-
tom interface on the coating surface is far apart from its initial configuration.
Our new model implies two different diagrams of stable contact angles, de-
pending on the type of drop (Wenzel or Cassie–Baxter type). These are shown
in Figures 15 resp. 16 in the case of a surface with flat plateau and vallees,
separated by steep edges. The roughness of this type of surface can be in-
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creased by deepening the asperities without changing the size of the wetted
surface plateau. The hysteresis interval for Cassie–Baxter drops is much nar-

0

1
− cos θ

r
−1

region of stability

Fig. 15. Stable contact angles for
Wenzel type drops.

− cos θ
1

r
−1

region of stability

Fig. 16. Stable contact angles for
Cassie–Baxter type drops.

rower than the one for Wenzel drops. This can explain qualitatively both the
downward jump at large pressures of the receding contact angles in Figure 14,
and the jump behavior in Figure 13.
The latter can be understood as a superposition of the two stability diagrams.
The jump in the width of the hysteresis interval results from a transition
from Wenzel type drops to Cassie–Baxter type drops. At low surface rough-
nesses Wenzel type drops are stable. They exhibit a wide hysteresis interval.
At higher roughness, the stable configurations in the experiment are instead
Cassie–Baxter. They display a much narrower hysteresis interval. The stable
contact angles resulting from the transition from Wenzel to Cassie–Baxter
drops are shown schematically in Figure 17, where they are superposed on
the experimental results of Johnson and Dettre. The comparison is only qual-
itative, because experimentally roughness is measured only indirectly, through
the number of heat treatments undergone by the solid surface in the sample
preparation. The figure shows a transition from a regime in which the differ-
ence between advancing and receding contact angles increases monotonically
with roughness, to one in which such a difference is smaller, and nonsensitive
to roughness.
Figure 14 reflects the fact that the stability interval depends on the type of
drop. Assuming that the corresponding surface has sufficiently large rough-
ness, we see from Figures 15 and 16 that forcing a transition from a Cassie–
Baxter to a Wenzel type drop (by applying a large enough pressure) may
reduce the lower end of the stability interval (i.e., the receding contact angle)
from well above to well below 90◦.
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Fig. 17. A schematic sketch of the stable contact angles is given according to our
model. The shaded regions represents the set of stable angles for varying surface
roughness, superposed on experimental data from Figure 13.
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