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Notations

M denotes always a hypersurface
Mc[u] Level set of u for c ∈ R, i. e., {u = c} := {x ∈ Ω : u(x) = c}
M [u] Morphology of an image I , i. e., {Mc[u] : c ∈ R}
P [u] Projection onto tangent space TM, i. e., P [u] =

� − ∇u
‖∇u‖ ⊗ ∇u

‖∇u‖ .
nI Gauss-map of the morphology of u. nu = ∇u

‖∇u‖ .

Dφ Jacobian ( ∂φi

∂xj
)ij of the function φ

φi,j j-th partial derivative of i-th component of φ, φi

∂xj

detA determinant of the matrix A
Cof A cofactor matrix of a matrix A ∈ R

n,n. For A invertible Cof A = detA ·A−T

µ = µn n-dimensional Lebesgue measure
H n n-dimensional Hausdorff measure
dA area element
cardA number of elements of the set A
Br(x) open ball or radius r around x
Br(A) tubular neighborhood of the set A with radius r, i. e.,

⋃

x∈ABr(x)
u · v Euclidian scalar product uivi of the vectors u and v
‖u‖ Euclidian norm

√
u · u of u

u⊗ v tensor product uvT

A : B matrix inner product AijBij of the matrices A = (Aij) and B = (Bij)

‖A‖ Frobenius norm
√
A : A of the matrix A

Ih interpolation operator H1,2 → Vh
gradE gradient of the functional E with respect to the canonical metric
gradgE gradient of E with respect to the metric g
L (X ,Y ) space of bounded linear operators between Banach spaces X and Y

∇Mf gradient on the surface w.r.t. a metric
or in the level set context the tangential gradient,
i. e. projection of the gradient onto the tangent space

divv divergence of the vector field v : Ω→ R
d, vi,i

divT divergence (∂jTij) of the tensor field T : Ω→ R
m,n

∆Mf Laplace-Beltrami operator
BV (Ω) space of functions of bounded variation
SBV (Ω) space of special functions of bounded variation (µc = 0)
M
d d× d matrices with entries in R

intA interior of the set A
A closure of the set A
〈·, ·〉 dual pairing
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∂A boundary of the set A
Cm(Ω) m-times continuously differentiable functions Ω→ R

Cm(Ω; Rd) =
{
φ = (φi) : Ω→ R

d : φi ∈ Cm(Ω) for all i = 1, . . . , d
}

Lp(Ω; Rd) =
{
φ = (φi) : Ω→ R

d : φi ∈ Lp(Ω) for all i = 1, . . . , d
}

Sn n-dimensional unit sphere
A space of admissible functions in the context of energy minimization
Γ− limEα Γ-limit of the sequence of functionals Eα.
v⊥ clockwise rotation of a vector v ∈ R

2 by π/2
ap lim sup approximate lim sup (cf. p. 23)
ap lim inf approximate lim inf (cf. p. 23)
Su set of points where ap lim inf 6= ap lim sup
kerF kernel of an operator F : X → Y , i. e., {F = 0}
rangeF range of an operator F : X → Y , i. e., {F (x) : x ∈ X }
L space of level set ensembles
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Chapter 1

Introduction

FINDING a point–to–point correspondence between a pair of images is a fundamental prob-
lem in image processing. The process of determining a mapping between two images, or in

other words, of finding a deformation of one image, such that it is as “similar” as possible to a
given second image is referred to as image registration or image matching.

Image registration has become a very challenging task and has quickly lead to a large inter-
disciplinary field of research. Various mathematical, algorithmical, information theoretical and
medical studies were stimulated by the rapid development of tomography. With the early success
of X-ray based computed tomography (CT) and its enormous impact on diagnostics and surgery
planning much effort has been invested into further radiological research. CT data offered the
first type of images to be processed and visualized volumetrically and opened the way to three
dimensional anatomical data processing. However, CT images mainly show bone structures and
suffer from lack of detail in the remaining parts. A popular approach to enrich the information is
to map the acquired data onto a reference image, for which detailed information of anatomical
and functional structures is available through some pre-processing. This reference information
can then be mapped back onto the particular patient. This is where the need for image registra-
tion comes into play and subsequently the demand for efficient handling and processing of large
datasets has grown immensely. Magnetic resonance tomography (MRT) was the next milestone
in the history of radiology. Since it is based on the spin of hydrogen atoms, which are present
throughout the tissue, MRT allows the generation of images with very detailed and sharp tissue
structures. In some cases, for a deeper understanding of the particular clinical case, it was essen-
tial to have access to several different imaging modalities at the same time, i. e., sources of data
like CT or MRT. The number of different modalities and variations of existing technology has
been growing steadily and current research in new approaches like diffuse tomography indicate
significant further potential. Subtle tumor infiltration, for example, may require special FLAIR
sequences on MRT. Furthermore, acquisition devices have improved significantly with respect
to the accuracy of the sampling. It is already possible to produce CT images of 10242 pixels in
resolution per slice, and for MRT resolutions of 2562 or 5122 have become standard.

Due to the complexity and immense structural variety of natural images, the task of image
registration poses a multitude of theoretical as well as algorithmical challenges. In this chapter
we first give a short overview on practical problems, especially in clinical applications, where
image registration plays an important role. Due to the wide spectrum of different tasks, models,
applications as well as computational approaches, this overview is not meant to be comprehen-
sive. The methods also differ in the assumptions on the theoretical model and date properties.
A variety of techniques rely on structural assumptions on the underlying registration problem,
i. e., some kind of a-priori information on the type of deformation, intensity invariance of the
images or other prerequisites. We refer to [120, 35] for a more detailed overview on registration
methods.

This thesis is devoted to mathematical and algorithmical aspects of non-rigid registration and
its connection to other fields in image processing, especially image restoration, feature extraction
and continuation techniques of features that are also used in the framework of image inpainting.
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We will propose numerical methods to solve such computationally demanding problems efficient
and robustly.

The thesis is organized as follows: In the next section of the introduction, an overview on
registration will be given. For a comprehensive understanding of image similarity we will first
revise fundamental concepts in mathematical image processing and motivate the combination
of different image processing tasks into a single model. In Section 1.3 we will introduce a
simple unimodal registration approach, that will serve as a model problem to devise and verify
robust numerical algorithms. It turns out that the task of image matching is generically ill-
posed, and that consequently regularization is of fundamental importance. Different approaches
of regularization with an emphasis on the application for image registration will be outlined in
Section 1.4. In Section 1.5 we will introduce some basic notations and results from mathematical
morphology that will play an important rôle to devise a class of similarity measures that is based
on the shapes of the objects of the underlying input images.

In Chapter 2 we will construct a robust and efficient optimization algorithm that is essentially
built upon the concept of a generalized gradient descent with a regularizing metric. Furthermore
multiscale and multilevel techniques will be incorporated and discussed.

However, in the applications the task of registration of data from different imaging machinery
is much more important. In Chapter 3 we will devise a morphological registration algorithm,
that is based on the geometric information in the images. This information is essentially contrast-
invariant. In that chapter we will incorporate an additional regularization and apply techniques
from nonlinear elasticity to address the question of existence. Here, we will also discuss a
weaker notion of boundary conditions, that will turn out to be more convenient for registration
problems with large displacement fields.

Regularization will give rise to the question of how the regularized problem and the original
problem are related. Even though the solutions of the regularized problem will in general differ
from the original, one may study the behaviour of the solutions when the regularization tends
to 0. In Chapter 4 we will use the concept of Γ-convergence to two types of regularizations:
nonlinear Tikhonov-regularization and multiscale strategies.

Chapter 5 will be devoted to a registration approach that complements to the morphologi-
cal alignment of images: based upon variational free discontinuity problems, image registration
can be significantly enhanced and stabilized by incorporating an energy that penalizes a disalign-
ment of image discontinuities. We will present a level set algorithm which is based on shape
optimization techniques and compare it to a phase-field approximation of the free discontinuity
problem.

As will be described in Section 1.1 the Willmore energy is of fundamental importance for
contrast invariant inpainting of images and higher order regularization of contours. In Chapter
6 we will derive a level set formulation for theL2-gradient flow of the Willmore energy (Willmore
flow) and consider a semi-implicit Finite Element scheme for the numerical computation.

The Willmore flow is a geometric flow of fourth order and hence computationally demand-
ing. In Chapter 7 a narrow band approach is proposed for the solution of higher order flows
with semi-implicit time stepping schemes. We will apply the algorithmical framework to the
inpainting of two-dimensional surfaces in three-dimensional medical datasets.

In subsequent sections, we review different approaches presented in the literature and de-
scribe mathematical models for the registration problem.

1.1 An overview on registration

1.1.1 Registration problems in variational form

So far, we have only vaguely defined the registration problem. How do we judge whether images
are similar and furthermore is there a way to measure the distance between images? Does it
apply universally to all classes of images? The common aim of most registration methods is
first to define a way of measuring the similarity or analogously the disparity between images,
which are mathematically understood as functions from an image domain Ω ⊂ R

d into R
d and

in L∞(Ω).
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MRT†

PD‡

CT†

MRT†

MRT-FLAIR†

CT†

MRT-T1†

CT†

Figure 1.1: An overview of MRT (magnetic resonance), CT (computed tomography), PD (positron

density) and MR-FLAIR images. The two images on the left, and the images on the right show

axial resp. sagittal slices of the human spine. The others show axial slices of a human brain.
(†kindly provided by Neurosurgical clinic, Bonn. ‡image courtesy Max-Planck institute of cognitive

neurosciences, Leipzig)

Furthermore, let us denote by V ⊂
{
φ : Ω→ R

d
}

a space of deformations which we consider
as possible candidates for suitable mappings from one image domain to another and by I a
suitable space of images, which is yet left to be specified.

We are left to define a disparity function D : I × I × V → R
+
0 and henceforth formulate

the registration problem as follows: find φ ∈ V , such that for given uT and uR, φ is a solution
of the following minimization problem

D[uT , uR, φ] = inf
ψ∈V

D[uT , uR, ψ]. (1.1)

Equivalently this can be understood as maximizing the similarity of uT ◦ φ and uR, which
may be defined by −D[uT , uR, φ].

Even though most registration problems can be written in such a variational form, some
techniques are driven by image dependent “forces” [195] and cast directly into the form of an
instationary PDE. Throughout this thesis, we will only consider registration problems of the form
(1.1).

1.1.2 Image analysis and similarity

Natural images in general contain a whole range of characteristics. The most fundamental prob-
lem of the task of registration, also referred to as image matching, is the question of how to
formalize the similarity of images. If we do not want to restrict ourselves to a particular class
of images (e. g. photographs of buildings, CT images of human skulls, scans of typed texts)
one is confronted with all the types of structures which a bounded function from a particular
domain to a bounded interval may represent: images contain flat regions, edges, corners, tex-
tures, self-similarities, sensoring artefacts, occlusions, curves, straight lines etc. And even before
tackling the problem of registration, in the analysis of a single image, like object classification
(segmentation), the problem of analyzing images by abstraction is important. It eventually boils
down to analyzing the human perception of vision.
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MOREL ET AL. have picked up fundamental works which are known as Gestalt1-theory. It con-
nects many of the geometrical ideas (edges, curvature, length, continuation) that are important
in the mathematical modeling for many image processing tasks. Contrast plays a vital rôle in the
perception of images. The notion of morphology and its geometrical interpretation, decouples
the analysis of contrast and the analysis of shapes. The basis of morphological analysis of images
is the decomposition of the graph of the image intensity function into a family of level sets. As
we will describe in detail in Section 1.5, this family provides the entire topographic description
of the image. The level sets give rise to the study of shapes. For images which are described by
intensity functions of bounded variation, the boundaries of sets of the form {u ≥ 0} are rectifi-
able and have a well-defined normal H d−1 everywhere. For sufficiently smooth isophotes, these
sets can be understood as smooth submanifolds and hence be analyzed by differential geometric
techniques. Since the geometry is characterized by differential geometric entities like tangent
spaces, first and second fundamental forms (and hence notions of curvature), and corresponding
differential operators, morphological methods lead in a very natural way to geometric partial
differential equations.

A large conceptual area of image processing is based on statistical and information theoretic
approaches (Bayesian analysis, Gabor-filters [116], etc.). However, the connection to geometry
is rather implicit and yet not completely understood.

Let us also mention that images can be decomposed uniquely into a structural part u and an
oscillatory v part. RUDIN&OSHER&FATEMI (ROF) proposed to minimize ‖u‖BV +λ‖v‖2L2 subject
to I = u+ v [177, 178]. The term v then consists of texture and noise. As analyzed by MEYER

[152], the norm of v is still small in the Besov space Ḃ−1,∞
∞ . The model of MUMFORD&SHAH is by

nature related to the ROF-model, since discontinuity sets are already built into the underlying
function space SBV and away from these the original function ought to be approximated by
a smooth function in the L2 sense [163]. These approaches are “almost” morphological, in
the sense that they identify discontinuities as jumps if they are large enough in magnitude. If
we consider continuous contrast transformations, discontinuities will still be present after the
contrast change and are hence also a morphological invariant. In Chapter 5 we will apply
those concepts to image registration. In general, modern image analysis simultaneously treats
discontinuities, geometries (along edges as well as in smooth areas) and textures. For image
registration, textures are far too oscillatory to be aligned. In the following we will interprete
textures as noise and aim at alignment of the main morphological features of images.

1.1.3 Image registration in clinical routine

Due to the complexity of anatomical and spatial structures, and the increasing understanding
of functional relationships in clinical research areas such as neurosurgery, preoperative diag-
nostics can be significantly enhanced by having access to a multitude of preoperative imaging
modalities. Even during the surgery itself, so called frameless navigational devices can enhance
the insight and security by giving visual online information that is related to anatomical and
functional structures. Typically the three dimensional position of the instruments is tracked on-
the-fly and set into correlation to marker points and structures, which have been preoperatively
defined on computer aided surgery planning tools. The tracking of the surgical instruments is
usually undertaken by optical markers (e. g. LEDs, which are linked to an active infrared array)
[24].

In the planning stage, anatomical structures in images have to be identified. This process,
that is called segmentation, helps the surgeon to obtain a three dimensional visualization of such
structures during the phase of planning and also during the surgery itself, instead of inspecting
sequences of single image slices manually. If online registration of the patient to the preopera-
tively acquired data takes place, distance maps of those segments allow fast localization of the
instruments in relation to these structures. One can think of, for example, the segmentation of
vital organs and vessels, such that an alarm can be triggered if the instruments approach them
too closely and risk the life of the patient. Functional modalities allow to keep track of the
position of eloquent cortical regions (e. g. visual, speech cortex, sensomotoric structures).

1Gestalt (ger): shape
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During planning and especially during navigation, it is a severe restriction to havo to choose
one particular imaging modality for the navigation system. For example, for the resection of
skull base tumors, which frequently infiltrate the skull, it would be desirable to have access to
CT sequences to visualize the bone structures as well as MR sequences to visualize the subtle
tumor structures. The anatomical precision of the registration is of crucial importance during
pre-operative planning as well as intraoperative referencing. During surgery the body position
of the patient usually changes and thus has to be tracked by the navigation system.

Especially due to the impact of the operation itself, e. g., opening of the skull, the position
of the organs and structures may change drastically. For instance, due to the change of pressure
within the skull, the position of the brain is strongly influenced by gravitation once the skull is
opened, whereas the sturdy bone structures stay in position. This phenomenon is called brain-

shift. As a consequence, non-rigid registrations has to take place during surgery, to keep the
navigation precise. To be of any use at all, these computations have to be done almost on-the-
fly, in order not to interrupt the time-critical surgery process. Intraoperative imaging is often
CT-based. Unimodal registration to the preoperative CT sequence would give access to different
modalities which have to be matched with high precision in the planning phase.

1.1.4 Requirements on the deformation

Spatial misalignment of image features may have several different reasons. In medical image
registration, there are several different scenarios:

(i) intra-individual—In clinical routine, the validation of therapies and treatments often re-
quire the reacquisition of CT or MR data in order to observe the state of the patient in
intervals which range from several days to months or even years. In case of ambiguities
these are enhanced by biopsies. It is unrealistic to assume that alignment could be achieved
by simple rigid transformation. Non-rigidity of the tissue and different positioning may
then lead to locally varying deformations. Furthermore diseases may lead to strong mor-
phological changes. Sometimes, the neurosurgeon may decide to observe the state of the
patient via follow-up MRI or CT sequences instead of immediate surgical resection. This
may be the case for example for WHO2 low grade tumors where the surgical risk of sole
observation has to be weighted against the risk of neurological deficits to intervention.

Even in the same modality, the intensity levels may change, due to the infiltration of tumors
on surrounding tissue. During the growth process, the borderline marks the region of high
activity (mitotic activity3), whereas the necrotic core of the tumor is growing as well,
which is due to the change of vascular nutrition within the tumor, the border and the
surrounding tissue. Here the analysis of temporal changes is of enormous importance
for the clinician. These considerations make clear, that morphological analysis of these
structures are more important, than the contrast information, which is given by the image
intensities. Furthermore this process is highly non-uniform and varies locally and hence,
the transformation to capture the change over time cannot be assumed to be a purely rigid
transformation.

(ii) inter-individual—The revolutionary advances in the development of imaging modalities
has enabled clinical researchers to perform precise studies of the immense variability of hu-
man anatomy. As described in the excellent review by MILLER, TROUVÉ & YOUNES [156]
and the overview article of GRENANDER & MILLER [120], this field, usually referred to as
computational anatomy, aims at automatic detection of anatomical features, given as ge-
ometric entities, the evaluation and the comparison of those features as well as statistical
codification of intra-individual variabilities in order to gather probabilistic information for
the testing of disease states. As stated by D’ARCY THOMPSON in 1917, “in a very large
part of morphology, our essential task lies in the comparison of related forms rather than

2World Health Organization. WHO grades range from I (benignant, low risk) to IV (malignant, immediate risk by
further infiltration).

3cell activity
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the precise definition of each; and the deformation of a complicated figure may be a phe-
nomenon easy of comprehension, though the figure itself may have left to be unanalyzed
and undefined.”

This means that we aim at finding deformations which capture the difference from one
morphology to another. In the case of computational anatomy, the variation of a particular
patient to a given and well-understood reference anatomy allows one to devise automated
methods to detect pathologies by measuring morphological defects. Of course, those de-
fects can once more be very local in nature and require a fine space of deformations. Rigid
deformation spaces only allow for a very coarse registration, where the fine and subtle
anatomical variabilities still have to be studied by visual perception, depending strongly
on the experience of the clinician.

1.1.5 Morphing

Image morphing is aimed at finding a smooth transition between two separate but similar im-
ages. A simple alpha-blending is obviously smooth, but no morphing of the shapes in the images
takes place. It is more desirable to find a mapping, which transforms one image into the other.
This allows one to interpolate the spatial offset φα =

�
+αu for α ∈ [0, 1]. Here, one particularly

assumes that the images can be mapped to each other one-to-one as well.

1.2 The interdependency of image processing tasks

In this section we give a short overview on three other important fields of mathematical image
processing, namely segmentation, feature extraction, image restoration/denoising and inpainting.
The latter is also known as image interpolation (cf. the work of CASELLES, MOREL & SBERT

[45]) and disocclusion as by MASNOU & MOREL [148]. Most of these image processing tasks are
usually studied on their own and extended to other areas of application, as, for example, sur-
face processing. Compared to the early advances in these fields, most of those areas are already
quite well-developed, even though there is still room for improvements. Especially the task of
segmentation, the recognition of objects in images, has turned out to be very tough. Natural
images are often too complex and thus reveal a wide range of ambiguities. Even for the human
eye the precise demarcation of a certain region may be a difficult task. The appropriate defini-
tion of a segment often depends on the context: while in some applications, the boundaries of
segments can be characterized by strong “edges”, this may not be true for medical applications.
As described in [99, 98] some additional information may be crucial. This may be knowledge
about functional, histological or pathological properties of certain regions. Unfortunately these
properties are not always captured well by typical imaging machinery as MRT or CT and further
imaging modalities as fMRT (functional MRT) become necessary, which indicates that at this
point image registration has to come into play.

We assert that paying respect to given interdependencies and devising combined ap-
proaches will lead to significant advances, which may not be possible by further devel-

opments that are restricted to a single discipline.

In the following sections we will give a short introduction to developments and ideas in
the above mentioned fields of image processing and describe the links between those areas.
Throughout this thesis we will understand segmentation in a general sense, which covers both
the detection of regions and the extraction of features. We list and draw connections between
fundamental ideas and approaches in the field of image processing, however this should be
understood as an illustrative overview rather than a complete overview over the broad field of
ideas that can be found in the literature.

1.2.1 Image restoration and feature extraction

By physical considerations, natural images are always corrupted by noise. Nowadays this noise
is often hardly visible in images produced by state-of-the-art imaging technology as tomography
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devices, digital cameras or scanners. However, this is mostly due to the fact that the generated
images are already being denoised directly after acquisition and before they are transferred to
a different medium. Early filters for image denoising were both homogeneous and isotropic.
The probably most basic example of a filter is a discrete convolution in the neighborhood of the
pixels, corresponding to a weighted sum of the surrounding intensities, i. e., a low-pass-filter. In
an axiomatic way, ALVAREZ, GUICHARD, LIONS & MOREL [3] showed that the heat equation

ut = ∆u in R× Ω, u(0) = u0 in {0} × Ω (1.2)

uniquely describes a scale-space coarsing, which fulfills a set of “natural” assumptions as causility,
and in particular linearity and isometry invariance and thus gave rise to respect the rôle of PDEs
in image processing as already proposed by KOENDERINK [137]. In the context of morphological

image processing [149, 146, 145, 144] a large class of morphological filters, namely any contrast
invariant and monotone operator can be written as a so called sup-inf operator.

The linear diffusion of Eq. (1.2) does obviously not take into account any structural informa-
tion from the input image; it blurs out noise as well as prominent image features, such as edges
the same way. PERONA&MALIK’s pioneering idea [172] consists in introducing a dependence
of the diffusion coefficient on some local properties of the image itself. The weighting function
g(s) = 1/(1 + s2

λ2 ) ensures for a given λ > 0, that the diffusion coefficient is small where edges
are indicated by high-gradients:

ut = div(g(‖∇u‖2)∇u) in R× Ω, u(0) = u0 in {0} × Ω. (1.3)

It is nowadays well-known that this equation is not well-posed, since it allows backward diffu-
sion iff ‖∇u‖ > λ (cf. for example the books of WEICKERT [203] or AUBERT & KORNPROBST

[12]). As proposed by CATTÉ, LIONS, MOREL & COLL [46] the evolution problem becomes well-
defined by approximating g(‖∇u‖) by g(‖∇uσ‖), where uσ corresponds to a prefiltered version
of the image u by linear diffusion of time σ2

2 . On account of the boundedness of ‖∇uσ‖ and the
application of Schauder’s fix point theorem it can be shown that the problem has a unique solu-
tion. In this setting g(‖∇uσ‖) acts as a prior for the existence of edges and steers the diffusion
process. Hence, the quality of the restoration depends on the quality of this prior. WEICKERT

has generalized (1.3) to anisotropic diffusion replacing g(‖∇uσ‖) by a tensor D = D(Jρ(uσ))
depending on the regularized structure tensor Jρ(uσ). The parameter ρ indicates a component-

wise linear smoothing of uσ ⊗ uσ of time ρ2

2 . The idea is to smooth particularly along edges and
prohibit by construction of D an undesired smoothing across dominant edges. Here, Jρ(uσ) is
an indicator of the local image structure.

However, the quality of this prior depends also on the quality of the image itself. If precise
information about the edges and feature directions would be available then g resp. D could be
constructed in an exact way and yield a good restoration. Conversely, a good restoration would
allow a robust and exact estimation of edges and feature directions. However, the evolution of
the regularized equation (1.3) or the anisotropic diffusion pays respect to this: the diffusion co-
efficient resp. diffusion tensor ideally depends on the current function u(t) during the evolution,
which is expected to be an improved version of u0.

In their pioneering paper, MUMFORD & SHAH [163] proposed the minimization of the fol-
lowing energy functional:

EMS(u,Γ) =

∫

Ω

(u− u0)
2dx+

µ

2

∫

Ω\Γ

‖∇u‖2 dµ+ νH d−1(Γ) (1.4)

where u0 is the initial image defined on an open bounded set Ω ⊂ R
d. Here α, β are positive

weights. The idea is to find an approximation u of u0 in the least-squares sense. Furthermore
u ought to be smooth, but only apart from a yet to be found discontinuity set of u, which is
denoted by Γ (set of potential edges). Hence the second integral imposes smoothness on Ω \ Γ.
Furthermore one incorporates the length of Γ in the d − 1-dimensional Hausdorff-measure into
the energy. Here, this contour can be considered as an analogon of g: it prohibits smoothing
across features given by Γ. However, rather than being chosen a priori, it is an optimization
variable and minimization of (1.4) means to simultaneously find Γ and u, such that Γ is an
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approriate “feature set” of u, u is a good approximation of u0 in the L2 sense and the length of
Γ is not too large. Thus it pays respect to the fact, that u and Γ depend on each other.

Moreover we want to mention geometric flows as mean curvature motion of the level lines of
an image, which corresponds geometric diffusion of the level lines understood as submanifolds.
We will describe this equation in more detail in Chapter 2, however we want to mention that
PAUWELS, FIDDELAERS & VAN GOOL [171] and also SAPIRO [182] suggested to incorporate edge
information of the image to steer the diffusion process in a similar way as in (1.3). PREUSSER &
RUMPF then extended this idea to fully anisotropic mean curvature flow, which respects promi-
nent feature directions of the level sets or surfaces. Here the Weingarten map plays the same
rôle as the structure tensor for images. Once more the quality of the reconstruction depends on
the quality of the prior and vice versa.

1.2.2 Registration and feature extraction

It is evident that the richness of available information about the local image structure influences
the quality and robustness of feature extraction. Since images are corrupted by noise, simple
edge detectors are often based on a certain threshold parameter to avoid over-identification.
As an example consider the identification of edges by thresholding the gradient magnitude.
Thresholding however is a highly unstable process: small perturbations of the image can lead to
an entirely different set of detected edges. This indicates a high degree of ambiguity when the
measured indicator is close to the threshold. In the case of multichannel data, this ambiguity
is somewhat reduced. Let us suppose, that we have an exact registration of an MR and a CT
image of the same patient available. In that case, ambiguous edges in the MR image, e. g., along
the boundary of a bone structure might be clearly detectable in the other image. Hence, in the
same fashion as feature detection in color images, the detection of features in the MR-CT pair
is much more robust. Another way of feature detection is segmentation. Segmentation by active
contours or snakes [135, 77, 42, 182] is done by evolving an initial curve or surface towards the
boundary of an object. It is most often also based on some kind of feature detector, which allows
to devise external forces which attract the contour towards dominant edges. In contrast to pure
feature extraction, also forces depending on the curve itself (internal forces) play an important
rôle, for instance controlling the length or the curvature of the contour. Once such internal
contributions are incorporated, the segmentation process is no longer purely local. By the same
kind of arguments as above the availibility of different modalities significantly facilitates the
segmentation process. Segmentation can also be performed by minimizing the Mumford-Shah
functional by an optimization over a space of contour sets. These contour sets are a finite union
of Jordan curves. For multichannel data the fidelity term (u − u0) and the smoothness term
‖∇u‖2 could now be measured in several images, and again render the process of finding the
contour Γ more robust.

Conversely, imagine two images that are not yet registered, but that a precise segmentation
of a particular object is available. As we will see later, the alignment of such segments is not
hard to achieve. What remains is to perform a registration which already receives valuable hints
about the position of certain features.

1.2.3 Registration and image restoration

The link between registration and image restoration already becomes clear by the considera-
tions from above. However, every registration technique naturally depends on the two images,
given as a reference and a template. As we will point out in subsequent sections, the task of
registration is in general ill-posed. Without regularization these registation problems lack stabil-
ity, uniqueness and existence properties. Hence, the situation becomes even much worse if the
data is strongly corrupted by noise and hence the application of an image restoration method
is essential. As described above, however a proper registration facilitates the process of feature
preserving smoothing of both images.
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Figure 1.2: Missing information in image registration tasks. In the CT image the right, some part

of the skull is missing. A prior inpainting will prevent the registration from unpredictable results.
Alternatively the matching region might be adjusted automatically and the missing structure be

reconstructed on account of the knowledge of the reference shape on the left.

1.2.4 The rôle of inpainting

The problem of image inpainting (also referred to as disocclusion) refers to the reconstruction
of hidden domains by taking into account information from the surrounding border.

In the early work [45] CASELLES, MOREL & SBERT have introduced the absolute minimal

Lipschitz extension model (AMLE) derived from fundamental axioms, like translation invariance,
rotation invariance, comparison principle, stability and regularity. MASNOU & MOREL [148]
have proposed a variational approach based on the geometry on the level lines, by taking into
account geometric quantities as length and curvature and minimizing

eEA[M] =

∫

M

(α + βh2) dA. (1.5)

This model of Euler’s elastica has been formulated by treating the level lines parametically. Later,
BERTALMIO, BERTOZZI & SAPIRO have applied models borrowed from fluid dynamics to inpaint-
ing problems [25].

Level set methods allow to evolve all level lines simultaneously, which has been exploited
for example by BALLESTER ET AL. who have coupled the interpolation of normal fields to the
interpolation of the level lines [15] or CHAN & SHEN who formulated a level set approach
for the Euler’s elastica model [52, 49]. They used a finite difference upwind scheme for the
discretization of the resulting fourth order flow. ESEDOGLU & SHEN [109] have combined the
MUMFORD-SHAH functional with fourth order inpainting techniques, using a conjecture of DI

GIORGI to approximate the geometric flow that minimizes the Euler’s elastica energy by a fourth
order phase field model. Many of those approaches have in common that they, minimize an
energy which incorporates the Willmore energy

eW [M] =

∫

M

h2 dA.

We also refer to the works [178, 56, 50, 26, 199, 17, 162] for related approaches on inpainting.
For segmentation the Willmore energy provides a meaningful internal energy in regions,

where no significant edge indicator is available. In those regions, the shape of the curve should
be extended as smoothly as possible, a task which can be interpreted as a weak form of inpaint-
ing.

Sometimes information is also missing in images which are the input for a registration prob-
lem. Instead of simply masking out a particular region, it is more favorable to inpaint the missing
information before the registration process. Once the registration is known the process of in-
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Figure 1.3: Model-based restoration: The contour ΓR is partially matched on the corresponding
contour ΓT . The aim is to identify the area region D in which the image of φ(ΓR) does not relate to

the contours of ΩT automatically. In this region the image uT that corresponds to the edges given

by ΓT may be restored by knowledge of the image structure of the reference uR in the preimage
φ−1(D).

painting can be adjusted by exploiting morphological information from the other image, i. e., to
adjust the geometry of the isophotes.

1.2.5 Further directions

In some image registration problems, certain structures may be corrupted or not be visible in
one of the images and the boundary of these regions may not even known. In such a situation,
the inpainting region has to be found automatically during the registration process, which aligns
features and regions of high similarity only in the complement of that region (see Figure 1.3).
Since the contour can only be detected in the exterior of the inpainting region, the Willmore
energy represents a suitable regularization for the edge contour within the inpainting region. It
ensures that the contour is smoothly extended into the inpainting domain. This process may be
followed by a model-based restoration, which corresponds to the reconstruction of the isophotes
by knowledge of the reference morphology as described at the end of Section 1.2.4 .

An immense speed-up of image processing tasks can be achieved by special implementations
on modern graphics hardware. Level set algorithms for segmentation [180, 141] on graphics
processing units (GPUs) can be performed in real-time even in volumetric data sets with simul-
taneous visualization of the segment. In [105, 104] a unimodal registration algorithm has been
implemented on DirectX 94-compatible graphics hardware with a speed up factor of 10 and
higher.

1.2.6 Remarks

Unfortunately the problems described above do in general depend nonlinearly on each other, for
instance, the Perona-Malik evolution depends non-linearly on the feature indicators. Acquired
features with respect to a given registration depend nonlinearly on the input images for the
matching problem etc. The coupling of different problems requires either some sort of iteration
outer iteration or directly modelling a problem which comprises the desired subproblems and
eventually leads to a nonlinear problem as a whole.

In Chapter 5 we will combine image restoration, feature extraction and image registration
into a single model.

4Registered trademark of Microsoft Corp.
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1.3 Unimodal registration

The simplest choice for measuring image similarity is to consider Lp norms. It is in general
not appropriate to assume Sobolev-regularity of images. Obviously these norms are not strong
enough to capture geometrical characteristics. However, they are an important prototype to
devise regularization approaches and numerical algorithms.

In the following, we will first use a simple similarity measure and concentrate on robust
and efficient multiscale approaches for the solution of problems with large displacement and
subsequently carry over to purely geometrical ideas.

Let us consider the following prototype problem. We now assume that the pair of images
to be registered has been acquired by the same sensor and in a comparable environment. Then
we can assert that if a certain physical property leads to a particular acquired image intensity
in one image, it would lead to the same intensity in the other image. However, in general we
obviously cannot assume the converse, namely that image intensities indicate uniquely which
physical property has been measured.

Let us for now assume that the imagespace is I := C 1(Ω) Hence, calling uT ∈ I the
template and uR ∈ I the reference, we aim at finding a deformation φ ∈ V := L2(Ω)n, such that

uT ◦ φ ≈D uR in the sense that D[uT , uR,φ] := E[φ] :=
1

2

∫

Ω

|uT ◦ φ− uR|2 dµ→ min!

Obviously, the corresponding minimization problem is without further restriction to the images-
pace or the space of admissible deformations not uniquely solvable and thus does not satisfy
Hadamard’s conditions of well-posedness. These conditions are the following:

(i) For all admissible data there exists a solution.

(ii) For all admissible data the solution is unique.

(iii) The solution depends continuously on the data.

As an illustrative example let us consider a displacement which keeps all level sets of uT fixed,
i. e., {uT = c} = {uT ◦ Λ = c} for all c ∈ R, then obviously for all φ ∈ V we haveE[φ] = E[Λ◦φ].
There is a continuum of such deformationsφ in a suitable set V =

{
φ ∈W 1,2(Ω; Rn) : φ(Ω) = Ω

}

since uT ∈ C 1(Ω).
For ψ ∈ C∞

0 (Ω; Rn) we can directly derive

〈E′[φ];ψ〉V′×V =

∫

Ω

(uT ◦φ− uR)∇uT ◦ φ · ψ dµ (1.6)

where 〈·, ·〉V′×V denotes the dual pairing in V ′×V . Hence we obtain the usual L2-representation
of the Fréchet-derivative of E as the representation of E ′ in the L2 scalar product,

gradL2(Ω)dE[φ] = (uT ◦ φ− uR)∇uT ◦ φ
if the right hand side of (1.6) is defined. A first, naive, approach to find the solution of the
minimization problem would be to consider the L2-gradient flow

∂tφ = −gradL2(Ω)dE[φ] in R
+ × Ω,

φ(0) = φ0 on {0}× Ω.
(1.7)

Due to the ill-posedness unregularized gradient flows don not work well in practice.

1.4 Regularization

As it has been pointed out in the exposition of the previous section, registration problems are
typically ill-posed. This is roughly speaking due to the “high-level of non-uniqueness” and the
irregular space of minimizers of the disparity measure. Suitable regularization methods are
of crucial importance to methodologically and computationally overcome the problem of ill-
posedness.
Regularization has two main aspects.
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(i) Choice criterion—As we have pointed out previously, the unregularized variational reg-
istration problem (1.1) which is based solely on maximizing similarity, in general admits
meaningless solutions. This is due to the fact that the stated variational problem only
takes into account the properties of the deformed template and not the properties of the
deformation itself and can hence be regarded as highly under-determined. Regularization
imposes further restrictions on the solution. More precisely it chooses a solution from the
set of minimizers, which is optimal with respect to a further measure on the solution itself.
For instance, in the theory of regularization of linear inverse problems (cf. e. g. [108]),
Tikhonov regularization strategies yield in the limit5 the computation of the Moore-Penrose

inverse of operators which are by itself not invertible and ill-posed. In a variational setting,
a large amount of local minima are ruled out by regularization strategies. On the other
hand regularizations do not, in general, ensure the existence of a unique minimum.

(ii) Stability—Although the unregularized problem is typically solvable by admitting minimiz-
ers, the high degree of ill-posedness and non-uniqueness results in numerical problems. In
the discrete viewpoint, ill-posedness translates into a prohibitively high condition number.
In a variational setting, local minima can be accumulated so densely in the set of solutions
as to render the task of global optimization almost impossible.

In this thesis we have considered three complementary types of regularizations. Before we
describe those approaches in detail, we first give a short overview and motivate their incorpora-
tion and combination in case of the registration problem.

1.4.1 Tikhonov regularization

Linear inverse problems

Let us first consider linear inverse problems of finding a solution x in the Banachspace X such
that

Fx = y (1.8)

with F : X → Y .
We call x ∈ X a least-squares solution of (1.8), iff ‖Fx − y‖ = inf {‖Fz − y‖ : z ∈ X }.

Furthermore, we call x a best-approximate solution of (1.8) iff it is a least-squares solution and

‖x‖X = inf {‖z‖X : z is least-squares solution of (1.8)} .

Such best-approximate solutions are closely related to the Moore-Penrose inverse of F : If we
define

F̃ := F
∣
∣
ker(F )⊥

: ker(F )⊥ → range (F ),

then the Moore-Penrose inverse F † of F ∈ L (X ,Y ) is defined as the unique linear extension of
F̃−1 to D(F †) := rangeF ⊕ ( rangeF )⊥ with kerF † = range (F )⊥ (see for instance the book of
ENGL, HANKE & NEUBAUER [108, Def. 2.2] for a detailed treatise of the regularization methods
for inverse problems). Then for y ∈ D(F †) the problem Fx = y has a unique best-approximate

solution x† := F †y ([108, Thm. 2.5.]).
For ill-posed problems in which only perturbed data yδ is given instead of y, F † is not a useful

approximation of F †y, due to the fact that F † is an unbounded operator. Classical Tikhonov

regularization consists of the minimization of

‖Fx− y‖2Y + α‖x‖2X
with a regularization parameter α > 0.

It can be shown, that for suitably chosen regularization strategies (assuming decreasing
amount of noise level δ in the data) and for reducing α → 0, the minimizers xα converge to
the Moore-Penrose F †y in X .

5The limit of solutions for the regularized problems for diminishing scaling of the regularization, with if necessary
the extraction of a subsequence.
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Nonlinear problems

Similar concepts can be carried over to the nonlinear case, even though so far, the theory of
Tikhonov regularization is by far not so well developed as in the linear case. Here, we want to
solve

F (x) = y, (1.9)

where F is a nonlinear operator between Banach spaces X and Y . See the work of SCHERZER

& WEICKERT [185] for relations of diffusion filtering and regularization techniques. More gen-
eral than in the linear case where we looked for best-approximate solutions, one may look for
solutions to (1.9) which are optimal with respect to a regularization energy Ereg.

Consider the minimization problem (1.1) and an energy Ereg[φ], which itself fulfills lower
semicontinuity and growth conditions to ensure the existence of a minimizer. Regularization
energies are usually chosen such that a finite energy implies some kind of regularity. Then one
considers the competitive combination of energies and formulates the minimization problem

E[φ] + αEreg[φ]→ min! (1.10)

where α > 0. There is obviously a trade-off between minimizing the disparity and keeping the
transformation smooth by keeping Ereg small. For high values of α the regularization dominates
and will eventually prohibit precise alignment with respect to the similarity measure. When
Ereg is given as a Dirichlet energy, minimization takes place in H1,2(Ω)n, and since for now I =
C 1(Ω; Rn), we see that the overall integrand satisfies Caratheodory’s conditions and coercivity,
and hence we obtain a minimizer in H1,2(Ω)n.

In Chapter 4 we will show (for a slightly reformulated minimization problem) that the se-
quence of minimizers φα will allow the choice of a subsequence which converges to a minimizer
of E[φ] and is optimal with respect to the regularization Ereg and thus yield a similar interpre-
tation as the Moore-Penrose inverse of a linear operator, which selects an optimal solution with
respect to the norm in X .

In this thesis we are particularly interested in non-quadratic regularization energies, which
apart from regularity ensure also injectivity of the solution, which is impossible to ensure by
quadratic energies. In particular we will consider hyperelastic energies, and apply the frame-
work of the direct methods in the calculus of variations for vectorial energies with polyconvex
integrands. Furthermore these energies allow to prove existence also for imagespaces, where
Caratheodory’s condition is violated on a “small” set. We will consider the convergence of se-
quences of minimizers by observing that the regularized energies Γ-converge to the unregular-
ized energy.

From a practical point of view, especially in intra-individual registration the reason for a
deformation over a longer period is often at least to a large extent due to elastic deformations.
In case of deformations resulting from diseases, such as growth of malignant tumors, this is
not necessarily the case. However, due to the complexity of the nature of tumor growth or
other morphological changes in pathology, those growth processes are difficult to model and
to simulate. Nevertheless the hyperelastic energy helps to rule out meaningless solutions and
maintains smoothness and injectivity which are still reasonable assumptions. We will describe
this in more detail in Chapter 3.

1.4.2 Regularized gradient flows

A completely different point of view is given by a regularization of update directions that are
required in gradient descent methods. In practice, to be able to solve the regularized problem
(1.10), α > 0 cannot be arbitrarily small. The ill-posedness would become too large, and hence
cause problems due to a too high amount of local minima. On the other hand, if α is too
large, the regularization energy will become very dominant and thus the minimization of the
regularized problem will yield solutions which are far from maximizing the similarity measure
of the images.

The choice criterion induced by a regularized metric is given by the idea, that those solutions
should be ruled out, which cannot be reached by smooth paths from one initial deformation
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Figure 1.4: Multiscale minimization: Starting with an initial guess φσ1

0 the minimum φσ1

1 of the
coarse representation of the energy Eσ1 is not difficult. Taking this minimium as the starting
point for the next scale is an immense aid to find the global minimum on the finest scale Eσ3 .

(typically the identity) to the target deformation. This idea is closely related to the works of
CHRISTENSEN, GRENANDER, MILLER, TROUVÉ, YOUNES [106, 120, 58, 59, 57, 155, 156, 155]
and coworkers who have considered smooth paths by local diffeomorphisms. These paths are
geodesics with respect to a metric given by a differential operator integrated over time.

A regularized metric can also be interpreted as a different scalar product on the Hilbert space
of deformations (cf. CLARENZ, DROSKE & RUMPF [71]). Such metrics may also exploit informa-
tion about the images and respect image features, especially feature directions. Furthermore the
metric can be Riemannian, i. e., depend on the particular deformation itself. In this thesis we
will present a fully geometric interpretation of the NAGEL-ENKELMANN model [164] for feature
based regularization of infinitesimal flow fields and embed this into the framework of metrics.

The gradient with respect to a general metric is then given by Riesz’-representation theorem:

g(gradgE[φ],ψ) = 〈E′[φ];ψ〉V′×V ∀ψ ∈ V .

In combination with Tikhonov regularization, the regularized gradient flows provide a very
convenient framework for stabilizing the energy minimization by direct methods.

In Chapter 2 we give examples of suitable metrics for image matching, which have a regular-
izing impact on the gradient direction. Furthermore we compare the metric point of view with
iterative Tikhonov regularizations, Levenberg-Marquart methods, devise efficient numerical al-
gorithms and present results.

1.4.3 Multiscale methods

Tikhonov regularization and regularized gradients impose smoothness on the deformation and
the flow itself. They however do not address the point of locality. Gradients depend on local
quantities of the image. If the spatial difference in the images to be matched is very large the
gradient may be meaningless even after regularization by a metric. Simply consider a pair of
non-overlapping shapes with a constant background.

The incorporation of multiscale methods mainly aims at providing coarser energy landscapes
and at improving the regularity of the energy functional itself. In general, multiscale methods
provide smoothing filters, that yield a coarsening, usually by removing undesired information
such as noise. If we apply such filters to the data that will be incorporated into the registration
energy, we naturally obtain a much coarser energy-landscape. The most basic scale space is
generated by linear diffusion which corresponds to Gaussian filtering, i. e., the convolution with
a Gaussian kernel. Information is transported with infinite speed, i. e., the Green’s function
has infinite support, which means that information is blurred globally for arbitrary small scale
parameters. In the context of energy minimization it has the convenient effect, that minor local
minima are destroyed. Furthermore it broadens the regime of deformations which will by the
gradient flow lead to the same local or global minimum. As we will describe later in more
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Figure 1.5: In the case of non-overlapping shapes the gradient flow will lead to degenerate
solutions. After smoothing the input images the two objects will start to “see” each other.

detail, we start first with on coarse scale to avoid a high amount of local minima. Then the scale
is successively reduced in order to resolve finer details in the images until the level of noise is
reached.

1.5 The geometry of images: Morphological methods

1.5.1 Preliminaries

We will need an approriate notion of level sets of functions, which are not necessarily continu-
ous. The following definition can be found for instance in [111].

Definition 1.5.1 (Approximate limits). For a Borel function u : Ω → R, we define the approxi-
mate lim sup, as follows

ap lim sup
y→x

u(y) := inf

{

t ∈ R : lim
r→0

µ(Br(x) ∩ {u > t})
µ(Br(x))

= 0

}

Similarly the approximate lim inf of u is given by

ap lim inf
y→x

u(y) := sup

{

t ∈ R : lim
r→0

µ(Br(x) ∩ {u < t})
µ(Br(x))

= 0

}

and u is approximately continuous at x, iff ap lim supu(x) = ap lim inf u(x) in which case we call

this value ap limu(x).

Remark 1.5.2. If lim inf u (lim supu) exists then ap lim inf u (ap lim supu) exists and lim inf u =
ap lim inf u (lim supu = ap lim supu).

Definition 1.5.3 (Morphology). For a given image u ∈ L∞(Ω) we define

Mc[u] = {x ∈ Ω : ap lim inf u(x) = c} M [u] = {Mc[u] : c ∈ R}

and call M [u] the morphology of the image u. We say two images u, v are congruent iff M [u] =
M [v].

By definition of M [u] the morphology is invariant under arbitrary contrast transformations
g : R→ R, i. e.,

M [u] = M [g ◦ u].
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Another notion of the morphology has been originally introduced by MATHERON [149] and
also taken into account by CASELLES, COLL & MOREL [43]. They considered the so called upper
topographic map which is defined as the union of Xcu = {u ≥ c}. By construction they are
related by ∂Xcu \ ∂Ω =Mc[u].

Hence, any method which only depends on the morphology of the given images is contrast
invariant. The goal of morphological methods is to devise methods—given for example as filters
or other methods where the data is at least partially given by images—which only take into
account the geometrical information of shapes within the images.

1.5.2 Differential geometry on implicit surfaces

Let us first translate differential geometric operators and entitities into the level set context.
Embedded manifolds M are endowed with a mapping x : M → R

d+1, where d = dimM,
which induces the first fundamental form g by transferring to the scalar product in R

d+1, i. e.,
g(v, w) := 〈Dx(v), Dx(w)〉. The Weingarten map S : TpM→ TpM is then given by

S := Dx−1 ◦Dn,

where n corresponds to the normal field of x(M). In classical differential geometry, gradients of
functions f ∈ C 1(M) on manifolds are given g(gradMf, v) := v(f), for all v ∈ TpM, by Riesz-
representation [97, 132]. In the level set context, functions are primarily given in the Euclidian
frame.

By the implicit function theorem, we immediately obtain the following

Lemma 1.5.4. Let φ :M→ N be a differentiable map, dimM ≥ dimN , c ∈ N and df(x) have
rank dimN for all x ∈ M with φ(x) = c. Then Mc = {x ∈M : φ(x) = c} is a differentiable

submanifold ofM with dimension dimM− dimN .

In order, to eliminate the normal component of the Euclidian gradient, the correct analogon
of gradients and divergence is given by considering only the tangential component. Let us now
define the gradient and divergence on level sets (cf. [92, 118]).

Definition 1.5.5 (Projection onto tangent space). For a level set function φ : Ω → R and

M =Mc[φ] = {φ = c} we denote by

P [M] := P [φ] :=

(
� − ∇φ
‖∇φ‖ ⊗

∇φ
‖∇φ‖

)

(1.11)

the projection onto the tangent bundle TM.

Definition 1.5.6 (Tangential gradient). The tangential gradient of a function u ∈ C 1(Ω) with
respect to a manifoldM is given by (using the summation convention)

∇Mu = ∇u− (n · ∇u)n = (
� − n⊗ n)∇u = P [M]∇u = (u,i − ninju,j)i.

See also the book of GILBARG & TRUDINGER [118, pp. 389].

Definition 1.5.7 (Tangential divergence). The tangential divergence of a smooth tangential vec-
torfield v ∈ TM is given by

divMv = divv − (Dv n) · n = vi,i − ninjvi,j .

Lemma 1.5.8 (Laplace-Beltrami operator). For a smooth function u ∈ C 1(Ω) the Laplace-

Beltrami operator with respect to the manifoldM is given by

∆Mu := divM∇Mu = ∆u− h∂nu− ∂2
nu. (1.12)

where h denotes the mean curvature ofM.
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Proof. We calculate straightforwardly by using the previous definitions

divM∇M = div
(
(

� − n⊗ n)∇u
)
−
(

D
(
(

� − n⊗ n)∇u
)
n
)

· n
= div∇u−

(
∇(∇u · n) · n

)
− (∇u · n)divn

−(D2un · n) +
(

∇(n⊗ n · ∇u)n · n
)

= ∆u− ∂2
nu− (∇(∇u · n)) · n− (∇u · n)divn

+(∇u · n)(∇nn) · n+
(

(n⊗ n)∇(∇u · n)
)

· n
= ∆u− ∂2

nu− (∇u · n)divMn

= ∆u− ∂2
nu− h∂nu

Here we have used the fact that
((

(n⊗ n)∇(∇u · n)
)
· n
)

=
(
∇(∇u · n) · n

)
. �

Lemma 1.5.9 (Shape operator). Let M = Mc[u], then the matrix representation of the Wein-

garten map on the tangent bundle TM is given by

S =
1

‖∇u‖P [M]D2uP [M].

Proof. The matrix representation of the Weingarten map is given by dxi(∇Mnk))i,j , where x =
�
. Let us first consider the the variation of the normalization,

d

dε

v + εw

‖v + εw‖
∣
∣
∣
ε=0

=
w

‖v‖ −
v · v
‖v‖3w =

(
� − v ⊗ v
‖v‖2

)

w. (1.13)

We first evaluate the tangential gradient of the normal field:

∇Mn = P [u]∇ ∇u‖∇u‖ =
D2u‖∇u‖ −∇u∇‖∇u‖

‖∇u‖2 = P [u]

(
1

‖∇u‖D
2u− (∇u⊗∇u)D2u

‖∇u‖3
)

=
1

‖∇u‖P
2[u]D2u =

1

‖∇u‖P [u]D2[u].

After restriction of ∇Mn to the tangent space by projection, we obtain the desired result. �

The following formula provides a curvilinear generalization of Fubini’s theorem, and allows
us to aggregate integrals, which are defined on level sets of a function φ : Ω ⊂ R

d → R. The
general version can be found in the book of EVANS & GARIEPY [111, Sec. 3.4.2].

Proposition 1.5.10 (Coarea formula (level sets)). Let φ : Ω → R be Lipschitz and f : Ω → R

be a measurable function. Then

∫

Ω

f‖∇φ‖ dµ =

∫

R

∫

Ω∩{φ=c}

f dA dc.
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Chapter 2

Generalized gradient flows

BEFORE we move on to more sophisticated similarity measures, let us in this chapter first
address the conceptual framework for the minimization of highly nonlinear minimization

problems. As motivated in the introduction, we eventually aim to find a registration model,
which is based on geometric entities. Nevertheless, we will remain within the variational frame-
work throughout the thesis. The registration models under considerations will always be based
on an energy which is supposed to be minimized in a stable and efficient way. For the sake
of clarity, we will treat the minimization process and the modeling of different disparity mea-
sures, continuously as well as numerically, separately. The following methodological framework
is versatile and turns out to be very convenient for a wide range of variational problems.

In this chapter, we will first discuss generalized gradient flows, or to be more precise, gra-
dient flows which are endowed with a regularizing metric on the space of deformations. The
regularizing effect is crucial also for the numerical setting. It induces regularity on the deforma-
tion during the flow, due to the fact that update directions are prevented from being irregular,
and hence it allows to choose larger step sizes. Moreover, we will stabilize and globalize the
minimization process through a multiscale approach.

The idea of finding a continuous formulation, which just through the definition of scalar
products and corresponding Hilbert spaces induces regularity of the flow is not new. We will
show relations to classical methods, which are widely used in the inverse problems community.
The metric point of view however, is very convenient and allows to incorporate feature depen-
dencies in a natural way.

In the third section of this chapter, we will address the efficient numerical solution of the
continuous formulations.

2.1 Continuous formulation of generalized gradient flows

Let us recall the gradient flow (1.7). In a more general setting, gradients are defined by the
representation of the Fréchet derivative in a metric g, i. e.,

g(gradgE[φ],ψ) = 〈E′[φ];ψ〉 ∀ψ ∈ C
∞
0 (Ω; Rd). (2.1)

Now we consider the g-gradient flow of the minimization problem, i. e.,

∂tφ = −gradgE[φ] in R
+ × Ω,

φ(0) = φ0 on {0} × Ω,
(2.2)

which for the example (1.6) leads to the problem of finding φ : R
+
0 → V , such that

g(∂tφ,ψ) + 〈E′[φ];ψ〉 = 0 ∀ψ ∈ C
∞
0 (Ω; Rd) (2.3)

such that φ fulfills the initial condition.
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Notation 2.1.1. For a given metric g, we consider its representation Ag : V → V ′ in the duality

pairing (V ′,V):

g(φ,ψ) = 〈Agφ;ψ〉V′×V .

With this notation the g-gradient flow can also be written as

∂tφ = −A−1
g E′[φ] (2.4)

Theorem 2.1.2. Suppose V is a Banach space and there exists a Banach space W ⊃ V , such that

W ↪→ V ′ (continuous embedding) . Let Ag be a linear isomorphism from V ontoW . Suppose E ′ :
is Lipschitz continuous mapping from V toW .

Then there exists a unique solution of the evolution problem of finding for initial data φ0 ∈ V a

solution φ : R
+
0 → V , such that

∂tφ = −A−1
g E′[φ]

φ(0) = φ0.

Proof. Follows directly by application of the Picard-Lindelöf Theorem for Banach spaces. �

Remark 2.1.3. For every metric g, the corresponding isomorphism Ag is selfadjoint, positive defi-
nite. Hence, we obtain an important property with in the context of energy minimization, namely

that descent directions are preserved, i. e.,

〈
E′[φ]; gradgE[φ]

〉
= g(gradgE[φ], gradgE[φ]) ≥ 0.

2.1.1 Examples

Let us consider some possible examples for the choice of the metric.

(i) L2 metric—The standard choice is given by the intrinsic scalar product of L2, namely
g(φ,ψ) = (φ,ψ)L2 . Higher order terms are neglected.

(ii) H1,2 metric—A gradient flow formulation inH1,2(Ω; Rd) corresponds to the metric g(φ,ψ) =
(φ,ψ)H1,2 = (φ,ψ)L2 + (Dφ, Dψ)L2 , which obviously reacts upon strong gradients of its
arguments. Here the weighting of (∇φ,∇ψ)L2 is fixed.

(iii) Weighted H1,2 metric—If we now consider for given σ > 0, the metric

gσ(φ,ψ) = (φ,ψ)L2 +
σ2

2
(∇φ,∇ψ)L2 (2.5)

we get Ag =
� − σ2

2 ∆, and hence obtain

gradgσE[φ] =

(
� − σ2

2
∆

)−1

gradL2E[φ].

As corresponding spaces, we now take into account V = H1,2(Ω; Rd) and W = L2(Ω; Rd).
The isomorphism property and thus the Lipschitz continuity of A−1

gσ are well-known in this
case, since A−1

gσ u is determined as the solution v ∈ H1,2(Ω; Rd) of the problem

v + τ∆v = u in Ω ∂νv = 0 on Ω,

with τ = σ2/2 which is nothing else but a semi-implicit time step of the heat equation or
equivalently as the minimization of the energy

I(v) =
1

2

∫

Ω

{

(u− v)2 +
σ2

2
‖∇v‖2

}

dµ.

We can interprete the incorporation of this metric as a smoothing of gradients with a
diffusion filter with filter width σ.
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(iv) Weighted H2,2 metric—g(φ,ψ) = (φ,ψ)L2 + σ2

2 (∇φ,∇ψ)L2 + σ4

4 (∆φ,∆ψ)L2 , and we

obtain Ag =
� − σ2

2 ∆− σ4

4 ∆2, where we now take into account the spaces V = H2,2(Ω)n

and W = L2(Ω)n. A related idea to higher order approach is due to MODERSITZKI &
FISCHER who introduced a regularization that is based on the componentwise Laplacian of
the deformation, which they called curvature regularization [158].

(v) Rigidity enhancing metric—For a given deformation field at time t, it is known that φ(t, ·)
is rigid, iff

Dφ(t)Dφ(t)T =
�
. (2.6)

For φ(t) =
�

+ d(t) we see that

(
�

+Dd(t)) (
�

+Dd(t))T =
�

+Dd(t) +Dd(t)T +Dd(t)Dd(t)T

=
�

+Dd(t) +Dd(t)T + o(‖Dd(t)‖2)

and thus aim to penalize the deviationDd+Dd
T from 0. Now, we want at finding a metric,

such that the corresponding gradient directions gradgE[φ] are close to being infinitesimally

rigid, i. e., pointwise gradgE[φ] + (gradgE[φ])T ≈ 0. Therefore it makes sense to define
the following metric

g(φ,ψ) = (φ,ψ)L2 + µ

∫

Ω

ε(φ) : ε(ψ) dµ

where we define, taking into account the summation convention, A : B = AijBij and as
usual, the symmetrized deformation gradient (here used in an infinitesimal sense) ε(φ) :=
1
2 (Dφ+DφT ), which by Korn’s inequality [60] yieldsH1,2-ellipticity. We thus choose again
V = H1,2(Ω)n and W = L2(Ω)n. With the same kind of argument, one can motivate the
incorporation of λ

2 (divφ, divψ), since tr(Dφ) = divφ and thus expresses changes of area
or volume that can be penalized by the Lamé-constant λ. The Euler-Lagrange equation of
the functional

∫

Ω

ε(φ) : ε(ψ) dµ+

∫

Ω

λ

2
(divφ, divψ) dµ

corresponds to the Lamé-Navier equation.

2.2 Gradient flows on level set functions

Let us now study the evolution of the level sets by gradient flows. One possible approach is
to first consider the manifolds given by the level sets separately, define a geometric motion,
for instance as arising as a gradient flow of a geometric energy, or by directly formulating a
geometric motion equation and reconstruct a new image intensity function from the evolved
set of shapes. This approach allows the modeling to take place entirely with respect only to
the shape or more precisely on purely differential geometric quantities. Instead of solving the
motion equations separately, one may derive a velocity from the purely geometric model and
formulate the problem via the level set equation, which for a given normal velocity of the level
lines, describes the evolution of the corresponding level set function in time. A prominent
example is given by the mean curvature flow. It is well known, that the steepest descent of the
area functional corresponds to the evolution of the manifold in normal direction weighted by
the negative mean curvature. By noting that for an intensity function φ, the mean curvature is
given by the divergence of the normal, one can insert this velocity into the level set equation
and yield the level set formulation of the mean curvature flow.

Let us first consider an energy density f on the manifoldM, i. e.,

e[M] =

∫

M

f dA.
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The L2-surface metric on a manifoldM is given by

gL2(M)(u, v) =

∫

M

uv dA.

We will later use u and v for scalar weights of normal variations xε = x + εu(x)n(x) of the
surfaceM. The gradient flow with respect to gL2(M) is given by

∂tx = −gradL2(M)e[M] or equivalently (∂tx, ϑ)L2(M) = −〈e′[M];ϑ〉 ∀ϑ ∈ C
∞(M).

2.2.1 Integration of the energies

Our aim is to evolve all level setsMc of a given level set function φ simultaneously. To this end,
we have to construct a global energy, which is defined over the entire domain Ω. This can be
achieved by an application of the co-area formula (see Prop. 1.5.10 and [111]). It allows to
integrate over all level sets to define the global energy, i. e.,

E[φ] :=

∫

R

e[Mc]dc =

∫

Ω

‖∇φ‖ f dµ.

Here, we set e[Mc] = 0 ifMc = ∅.

2.2.2 Defining a metric on the space of level set functions

In order to realize a gradient flow, we have to build a metric on the whole ensemble of level sets
M [φ].

Metrics on level set functions

Let us revisit the level set equation

∂tφ+ v‖∇φ‖ = 0 in (0, T )× Ω,
φ(0) = φ0 in Ω.

(2.7)

It allows to establish a link between the tangent vector s := ∂tφ and the normal velocity, which
is given by v, namely s = −v‖∇φ‖. Here we endow the space L of of level set ensembles which
are represented by level set functions with a trivial structure and interprete ∂tφ as a tangent
vector.

These considerations motivate us to define the following metric on L , again using the co-
area formula. We take into account the metrics on the manifolds Mc, which measure the
scalar variations of the level set function. We obtain these by the level set formula, i. e.,
v = −∂tφ/‖∇φ‖ and write

gφ(s1, s2) :=

∫

R

∫

Mc

v1v2 dA dc

=

∫

Ω

s1
‖∇φ‖

s2
‖∇φ‖ ‖∇φ‖ dµ =

∫

Ω

s1s2 ‖∇φ‖−1
dµ .

Hence, having an appropriate geometric metric at hand, we are able to consider the gradient
flow of the aggregated energy E. The simultaneous gradient flow of the M [φ] is now given by

∂tφ = −gradgφ
E[φ] which means gφ(∂tφ, ϑ) = −〈E′[φ], ϑ〉 ∀ϑ ∈ C

∞
0 (Ω).

Hence, we are now in position to define

Definition 2.2.1 (Aggregated geometric flow). For a given energy defined on manifoldsM, the

corresponding gradient flow of the level set ensembles is given by

∂tφ =

∫

Ω

∂tφϑ ‖∇φ‖−1 dµ = −〈E′[φ], ϑ〉. (2.8)

for all functions ϑ ∈ C ∞
0 (Ω).
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Example: steepest descent of the area functional

Let us consider the area-functional e[M] = area(M). It follows immediately by the co-area
formula that the aggregated energy and its first variation are given by

E[φ] =

∫

Ω

‖∇φ‖ dµ, 〈E′[φ];ϑ〉 =

∫

Ω

∇φ · ∇ϑ
‖∇φ‖ dµ ∀ϑ ∈ C

∞
0 (Ω),

and we obtain the weak formulation of the evolution equation
∫

Ω

∂tφϑ‖∇φ‖−1 dµ = −
∫

Ω

∇φ
‖∇φ‖ · ∇ϑ dµ .

Indeed, this is the weak formulation of mean curvature motion in level set form [112]. Applying
integration by parts and the fundamental lemma, we arrive at the classical level set formulation
of the mean curvature flow:

∂tφ− div

( ∇φ
‖∇φ‖

)

‖∇φ‖ = 0. (2.9)

2.3 Metrics steered by image features

So far we have only considered metrics which are homogeneous in space. Let us now give a short
review on an image dependent regularization technique which is typically used in the context of
the determination of an optical-flow field [130, 2, 127, 5, 94, 173, 153, 175]. Consider a “movie”
u : [0, T ]×Ω→ R, and let us adopt for now the usual assumption that the intensity along paths,
that describe the movement of an object, does not change in time (known as brightness-constancy

assumption). Furthermore, let us assume that Ω ⊂ R
2 within this section. Then for all such paths

x(t), we obtain ∂tu(t, x(t)) = 0, which for v = ẋ(t) then leads to the under-determined so called
optical-flow equation

∇u · v + ∂tu = 0.

A typical approach for the solution to this system for v is an unconstrained optimization problem
of the form [127, 205]

Eof [v] =

∫

Ω

f(∇u · v + ∂tu) +Ereg[v]

where f is convex and ∂tu and ∇u are precomputed—in practice by some robust estimator.
NAGEL&ENKELMANN[164] (see also [204]) have proposed the following, image dependent reg-
ularization for two-dimensional images and small λ > 0

ENA[v] =

∫

Ω

∇u⊥ ⊗∇u⊥ + λ2 �

‖∇u‖2 + 2λ2
∇v : ∇v dµ

with A : B = tr(ATB). Let us consider a small modification, namely

Ereg[v] =

∫

Ω

∇u⊥ ⊗∇u⊥ + λ2 �

‖∇u‖2 + λ2
∇v : ∇v dµ.

We can rewrite the energy as

Ereg[v] =

∫

Ω

P‖∇u‖2 + λ2 �

‖∇u‖2 + λ2
∇v : ∇v dµ

=

∫

Ω

(
1− γ(‖∇u‖)

)
∇v : ∇v + γ(‖∇u‖)P∇v : ∇v dµ
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with γ(s) = 1 − 1/(1 + s2/λ2) and the notation P = P [u] :=
(

� − ∇u
‖∇u‖ ⊗ ∇u

‖∇u‖

)

. In two di-

mensions we obviously have P = ∇u⊥⊗∇u⊥

‖∇u‖2 . The geometric interpretation is thus the following:
depending on the edge-indicator function γ(‖∇u‖), which yields small values for flat gradients
in smooth regions and is close to 1 on edges, the energy is a convex-combination of a homoge-
nous penalization of gradients in v in smooth regions and a purely anisotropic penalization near
edges, which is reflected by the projection P on the tangent space of the level lines of u.

Alternatively, we propose to consider regularization energies on level setsMc of u and obtain
by the co-area formula (1.5.10)

e[M, v] =

∫

M

γ(‖∇u‖)‖∇Mv‖2 dA

⇒ Ereg[v] =

∫

R

e[Mc, v]dc =

∫

Ω

γ(‖∇u‖)‖∇Mv‖2‖∇u‖ dµ.

The Fréchet-derivative of Ereg with respect to v is given by

〈
E′

reg[v];w
〉

=

∫

Ω

γP [u]∇v : ∇w‖∇u‖ dµ.

Applying integration by parts, we see that the gradient corresponds to

gradEreg = −divM (γ(‖∇u‖)∇Mv) in Ω.

From the above considerations, we are motivated to define the following metric

gγ(φ,ψ) = (‖∇uR‖φ, ψ)L2 +

∫

Ω

γP [uT ◦ φ]∇φ : ∇ψ‖∇uR‖ dµ.

It is symmetric and positive definite. Let us remark, that the previous derivation can also be
done, by first defining the metrics on the level sets of u and then integrating those metrics
by the co-area formula over all level sets. For the unimodal matching energy, this approach
corresponds to a regularization within the set of invariant descent directions.

2.4 Relations to other formulations

2.4.1 Nonlinear Landweber iteration

Nonlinear inverse problems are often formulated in the following form: Given two Hilbert spaces
X and Y , and a mapping F : X → Y and some yδ ∈ Y , find x ∈ X , such that according to
MOROZOV’s discrepancy principle

‖F (x)− yδ‖X ≤ δ
is fulfilled. Here, δ indicates the noise level of the data. For a comprehensive treatment of the
regularization of inverse problems we again refer to [108].

For the unimodal registration problem this translates the following way: Choose X =
L2(Ω; Rd) and Y = L2(Ω) and further set F (φ) = uT ◦ φ− uR for given images uT and uR.

In a Hilbert space formulation, the energy is given by the scalar product. For the registration
problem we have

E[φ] = ‖F (φ)− yδ‖2Y .
Derivation yields for Fréchet-differentiable F

〈E′[φ];ψ〉 = (F (φ)− yδ, F ′(φ)ψ)Y = (F ′(φ)∗(F (φ)− yδ),ψ)X .

We observe that the gradient is hence given by gradXE[φ] = F ′(φ)∗(F (φ) − yδ). Here
A∗ : Y ′ → X ′ denotes the adjoint of A with respect to the given scalar product and the
nonlinear Landweber iteration

φk+1 = φk − F ′(φk)∗(F (φk)− yδ)
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is nothing else, than a discrete time stepping of the gradient flow. By this reasoning, if we endow
X with a metric g, the adjoint F ′(φ)∗ implicitly incorporates inverse A−1

g of the representation
Ag of g.

2.4.2 Iterative Tikhonov regularization

Iterative Tikhonov regularization have been applied to image registration by HENN&WITSCH

[125]. The idea is the following. Given φk, find φk+1 as the solution of the following minimiza-
tion problem

φk+1 := argmin
φ∈X

E[φ] + αk‖φ− φk‖2g (2.10)

where αk is a decreasing sequence of weights and where we have defined ‖ · ‖g :=
√

g(·, ·). As
pointed out in [73], the Euler-Lagrange equation αkg(φ−φk, w) + 〈E′[φ];w〉 corresponds to an
implicit time step of length α−1

k of the regularized gradient flow, i. e,

αk(φ
k+1 − φk) + gradgE[φk+1] = 0

One obtains an explicit time step by considering a linearization of the energy integrand around
φ.

2.4.3 Regularized Levenberg-Marquart type methods

For twice Fréchet-differentiable F : X → Y , let us consider first and second derivatives of
E = ‖ · ‖2

Y

〈E′[φ]; v〉 =
(

F (φ)− yδ, F ′(φ)v
)

Y

(2.11)

〈E′′[φ]; v, w〉 =
(

F ′(φ)v, F ′(φ)w
)

Y

+
(

(F (φ)− yδ), F ′′(φ)(v, w)
)

Y

(2.12)

For a pure Newton type method, one iteratively has to solve

gradF (φn)(φn+1 − φn) = yδ − F (φn).

via

HessF (φk)(φk+1 − φk) = −gradF [φk].

The Hessian is due to the second part of (2.12) difficult to invert and the ill-posedness of the
problem results in a large condition number of the discretized Hessian. If we drop the second,
non-symmetric part of the second derivative, we arrive at the Gauss-Newton method, which is
still difficult to solve. The idea of the Levenberg-Marquart method is to iteratively determine the
updates vk+1 = φk+1 − φk by minimizing

1

2

∥
∥
∥F (φk) + F ′(φk)v − yδ

∥
∥
∥

2

Y

+
1

2

(

Avk+1, vk+1
)

X

(2.13)

which leads to the Euler-Lagrange equation
(

F (φk) + F ′(φk)vk+1 − yδ, F ′(φk)w
)

Y

+
(

A · vk+1, w
)

X

= 0 ∀w ∈ Y

where A : X →X is a self-adjoint endomorphism. This rewrites into
(

F ′(φk)∗(F (φk)− yδ), w
)

Y

+
(

F ′(φk)vk+1, F ′(φk)w
)

Y

+
(

A · vk+1, w
)

X

= 0 ∀w ∈ Y .

If we introduce the metric interpretation and define A by g(v, w) =: (Av,w)
X

and

gφLM(v, w) := g(v, w) +
(

F ′(φk)v, F ′(φk)w
)

Y

∀v, w ∈ X
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we observe, since F ′(φk)∗(F (φk)− yδ) corresponds to the derivative of E[φk], that

vk+1 = grad
gφk

LM

E[φk]. (2.14)

For the unimodal matching problem, the Levenberg-Marquart metric gLM is on account of
(

F ′(φk)v, F ′(φk)w
)

Y

=

∫

Ω

(

F ′(φk)v
)(

F ′(φk)v
)

dµ

=

∫

Ω

(
(∇uT ◦ φk) · v

)(
(∇uT ◦ φk) · w

)
dµ

=

∫

Ω

(

∇uT ◦ φk ⊗∇uT ◦ φk
)

v · w dµ

given by

gφ
k

LM(v, w) = g(v, w) +

∫

Ω

(

∇uT ◦ φk ⊗∇uT ◦ φk
)

v · w dµ.

Theorem 2.4.1. If the Fréchet-derivative F ′ ∈ L (X ,Y ) exists, and further, g is metric on X ,

such that g(u, u) ≥ cg‖u‖2X for some cg > 0. Then (2.14) is well-defined.

Proof. This is a straightforward application of the Lax-Milgram Lemma [1], since 〈E ′[φ];w〉 =:

f(w) is a bounded-linear form. The coercivity of gφLM follows by

gφLM(u, u) ≥ g(u, u) ≥ cg‖u‖2X
The continuity follows from the properties of F . �

Trust-Region methods

Levenberg-Marquart type methods (cf. HENN [124], HANKE [123]. See BURGER [37] for
Levenberg-Marquart level set methods) of the form (2.13) are usually enhanced with a Trust-

Region strategy: We recall that ‖ · ‖g :=
√

g(·, ·) and minimize

1

2

∥
∥
∥F (φk) + F ′(φk)vk+1 − yδ

∥
∥
∥

2

Y

+
1

2
‖vk+1‖2g subject to ‖vk+1‖g ≤ ηk.

The so called trust-region radius ηk is incorporated to control the accuracy of the linear approxi-
mation, i. e., we want to ensure that

F (φk + vk+1) ≈ F (φk) + F ′(φk)v for all ‖v‖g ≤ ηk

and furthermore ensure that the energy should be decreasing in every iteration.
Now for vk+1 := gradφgLM

E[φk], we observe that for w = vk+1

〈

E′[φk]; vk+1
〉

= −‖vk+1‖2g −
(

F ′(φk)vk+1, F ′(φk)vk+1
)

Y

≤ 0.

Hence we can infer the following

Lemma 2.4.2. Under the conditions of Thm. 2.4.1 φ is either a stationary point or there exists

η > 0, such that

E[φ− τgradgφ

LM

E] < E[φ] ∀0 < τ ≤ η.

A typical strategy for trust region control is Armijo’s rule 2.6.5, which is also used for gradient
methods and non-linear conjugate gradient methods, in other words, the trust-region radius ηk

has to be chosen small enough, to ensure such that

E[φk + vk+1]−E[φk]
〈

E′[φk]; vk+1
〉

X ′×X

≤ α. (2.15)
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If this condition is violated, one successively reduces ηk. Conversely, one aims to choose ηk

as large as possible within a predefined set of candidates, e. g.,
{
ηl0 : l ∈ Z

}
for η0 > 0. At

this point the truly Riemannian character of the metric comes into play. We see that gφLM now
varies for different deformations φ. To ensure the condition (2.15) gφLM has to be adjusted with
different weights in front of g, which then play the rôle of the Lagrange parameter.

2.5 Combination with a multiscale approach

Due to the complex structure of natural images, the energy landscape of the registration problem
(1.1) engenders a large amount of local minima. This obviously poses serious problems in terms
of energy minimization via a gradient flow or a nonlinear conjugate gradient method. They
only converge robustly, if a unique minimum is given for a convex energy. One reason for the
non-convexity is the dependence of the energy on the image data which is typically corrupted by
noise. Such perturbations can only be modeled statistically and eliminate even local convexity
of the energy. But as described in Section 1.3 the energy is ill-posed and possesses a possibly
very irregular set of minimizers which can be reached by a gradient flow for different initial
deformations, even if the gradient flow is regularized by a regularized metric. Local variations
of the image only capture the local alignment of the images and hence may produce unexpected
degenerate solutions even for simple images. Let us consider the following example:

When the energy is non-convex, global optimization is a difficult task. In this section we
will propose to generate a family of perturbations of the energy (Eσ)σ>0, such that the family
(Eσ))σ>0 consists of simplified versions of the original energy E. In the same spirit as in the
scale-space theory of images [3], we aim at reducing the complexity or variability with increasing
σ. In Chapter 4 we will discuss this in the framework of Γ-convergence in more detail.
Recall the definition of the unimodal registration energy

Em[φ] =
1

2

∫

Ω

|uT ◦ φ− uR|2 dµ

and let us consider scale-space operator Sσ : I → I , which maps a given initial image u to
a coarser image uσ of scale σ. We define the coarsened registration energy by measuring the
disparity of the coarsened versions of the intensity functions, i. e.,

Eσm[φ] :=
1

2

∫

Ω

|uσT ◦ φ− uσR|2 dµ. (2.16)

So far, we have not addressed the qualitative effect on coarsened images with respect to an
increasing scale σ. Scale-space theory [203, 3] has been built upon a variety of axioms to define
which requirements should be fulfilled for a meaningful scale-space operator (see for instance
the fundamental work of ALVAREZ, GUICHARD, LIONS & MOREL [3], or the nice overview in the
book of WEICKERT [203] for details).

Let us review some well-known examples of scale-space operators.

(i) Linear diffusion—The simplest choice of defining a scale on an image space is to apply the
linear diffusion equation

ut = ∆u in (0, T ]× Ω

u(0) = u0 in {0} × Ω

on a given initial image, which corresponds to the L2 gradient flow of the Dirichlet integral
∫

Ω ‖∇u‖ dµ. It is well-known that diffusion until time t can be obtained by the convolution
with a Gaussian with standard deviation

√
2t. In order to obtain an interpretation of a filter

width we define SσlinI as the solution of the diffusion equation at time σ2

2 .

(ii) Perona-Malik-diffusion—Linear diffusion obviously does not take into account any struc-
tural information from the input image, but rather blurs out noise as well as prominent
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image features, such as edges the same way. PERONA&MALIK’s pioneering idea [172] con-
sists of introducing dependence of the diffusion coefficient on some local properties of the
image itself. The weighting function g(s) = 1/(1 + s2

λ2 ) ensures for a given λ > 0, that the
diffusion coefficient is small where edges are indicated by high-gradients:

ut = div(g(‖∇u‖2)∇u) in (0, T ]× Ω.

(iii) Mean curvature motion (curve shortening flow) and its variants—the geometric equivalent
of linear diffusion on images is given by the L2-gradient flow of the area functional e[M] =
∫

M
dA. This flow is given by ∂tx = ∆Mx on M for an immersion X : M → R

d. Since
∆Mx = −tr(S)n = −hn, where h is the sum of the principal curvatures, the so called
mean curvature, the flow is driven by the mean curvature of the immersed surface.

As shown in Section 2.2 (see the weak formulation in Eq. 2.9) the mean curvature flow for
level set ensembles with Neumann boundary conditions is given by

ut − div

( ∇u
‖∇u‖

)

‖∇u‖ = 0 in (0, T ]× Ω ∂nu = 0 on (0, T ]× ∂Ω.

Well-posedness, existence of viscosity solutions [112], inclusion principles and conver-
gence and stability of numerical schemes [88] are well-known. Many results are obtained
by the fact, that the maximum principle of the second order geometric parabolic PDE
can be transferred from non-geometric PDE theory and hence classical results can be ap-
plied. Similarly as in the case of linear diffusion, information and noise are destroyed
homogeneously, however during the evolution of mean curvature flow, the diffusion only
takes place geometrically with respect to the shape of level lines of the image. See [183]
for a detailed treatise on geometric flows in the level set context. Hence, as we will
consider in subsequent chapters, the scale-space which is generated by mean curvature
motion is the simplest example of an adequate morphological coarsening. In the same
spirit as PERONA & MALIK improved the linear image scale-space, SAPIRO [183] proposed
to incorporate an image dependent weight into the geometric diffusion equation, i. e.,
∂tx = divM(g∇Mx) where g plays again the rôle of an edge indicator but now in the geo-
metrical sense. CLARENZ ET AL. [69] extended this idea even further by locally analyzing
the Weingarten map of the surface, which can be understood as the geometric equivalent
of the structure tensor which has been used for feature aligned anisotropic diffusion by WE-
ICKERT [203]. Later, PREUSSER&RUMPF [174] have devised level set formulations of this
parametric approach and PREUSSER [173] has proven the existence of viscosity solutions
of the resulting second order anisotropic mean curvature flow.

In the case of linear diffusion, the support of the Green’s function is infinite, hence the image
information is blurred over the entire image domain for arbitrary small times and induces a
much more global effect on the measurement of the mismatch |uT ◦ φ − uR| when the two
images are not correctly aligned. This transfers to the derivative of this functional as well,
hence the gradient is not only concentrated on the small subset of Ω of actual disparity.

2.6 Discretization

2.6.1 Finite Element discretization in space

In this section we will focus on the discretization of the previously described continuous for-
mulations. Algorithms for registration problems are in practical applications often required for
large three dimensional data sets. Modern image acquisition technology produces images of
resolutions up to 10243 pixels. As pointed out previously we will avoid to establish regularity by
artificially restricting the discrete function space for the deformation to coarser, lower dimen-
sional representations. Restricting the function space to a low dimensional space of B-Spline
functions automatically induces regularity, but the computational and implementational effort
is higher and furthermore the continuous interpretation is not intuitive. Natural images show
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a high level of details and hence very local variations of the deformation are important to be
captured by the registration algorithm as well.

Instead, we have set up a continuous model with different sources of regularization and
we aim to carry these regularizations over to the discrete case as closely as possible. We will
define nested sequences of finite elements spaces in order to eventually apply multilevel and
multigrid techniques. Multilevel approaches are very effective ingredients to avoid redundancy
and unnecessary computations on fine representations. Instead, large scale approximations are
computed on coarse representations which are successively prolongated to finer representations
where finally only the difference to the fine details of the solution is computed.

We will now first describe the spatial discretization by finite elements, multilevel hierarchies
of finite element spaces and formulate a multilevel algorithm for the energy minimization prob-
lem.

Notation 2.6.1 (nested Finite Element hierarchy). Let V1, . . . ,V lmax be a sequence of finite

dimensional subspaces of H1,2(Ω). We call this sequence nested, iff

V1 ⊂ V2 ⊂ . . . ⊂ V lmax .

Let (ψli)i be a basis of V l for all l = 1, . . . , lmax. For all 1 ≤ k < l ≤ lmax we denote the prolongation

operator from Vk to V l—usually obtained by interpolation—by P lk and the restriction operator from
V l to Vk by Rkl .

Nested Finite Element (FE) spaces can be constructed in several ways. FE spaces are built
upon a triangulation T of open simplices or other polygonal elements, which approximates the
domain Ω (for simplicity we assume that Ω = Ωh, where Ωh denotes the discrete approximation
of the domain Ω), i. e.,

Ω̄h =
⋃

T∈T

T̄ T1 ∩ T2 = ∅ ∀T1, T2 ∈ T , T1 6= T2. (2.17)

On these elements, one typically defines local polynomial function spaces and aggregates
the local spaces to a global one by taking into account continuity conditions. Hence, nested
sequences of spaces can be achieved by enriching the local polynomial spaces by increasing
the order (p-approach), or alternatively by generating a nested sequence of triangulations with
decreasing cell size, with a fixed local basis (h-approach) or a combination of the two (h-p-
methods).

In image processing, the images are almost always given on rectangular domains. Hence, it
is very convenient to define uniform structured grids, by subdividing the domain into smaller
rectangles as well and recursively refine by subdivision of cells into smaller cells with the same
aspect ratio. Throughout this thesis we will assume, for the sake of simplicity, that Ω = (0, 1)d.

Definition 2.6.2 (Quad-Tree and Oct-Tree grids). Let lmax ∈ N, 1 ≤ l ≤ lmax. Then we define
triangulations T l at level l and the entire hierarchy T by

T
l =

{
Elα = (0, 2−l)d + hlα : αi ∈ {0, . . . , 2l − 1}

}
T =

lmax⋃

l=1

T
l

and we say T is a Quad-Tree grid for (d = 2) or an Oct-Tree grid (d = 3) of depth lmax. We define

the discretization parameter hl := 2−l, i. e., the edge-length of the elements on level l. We denote
by N l and N (El) the set of nodes of T l resp. El = Elα which are defined by

N (Elα) = {(α+ β)hl : βi ∈ {0, 1}} and N (T l) =
⋃

El∈T l

N (El).

By xlα we denote the node at position xlα = hlα.

It is easy to check the following properties

(i) Partitioning—For all 1 ≤ l ≤ lmax, T l is a partition of Ω, i. e., (2.17) is fulfilled.
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(ii) Nestedness— For 1 ≤ l < lmax, every element El ∈ T l is partitioned uniformly into 2n

subelements on level l + 1

Ēl =
⋃

El+1∈C(El)

Ēl+1 where C(Elα) :=
{

El+1
β : βi ∈ {2αi, 2αi + 1}

}

.

We refer to C(El) as the set of children of El.

(iii) Regularity—For fixed 1 ≤ l ≤ lmax and all Elα, E
l
β ∈ T l, the intersection Ēlα ∩ Ēlβ is either

∅, a common vertex, a common edge or a common face.

We will now define the finite element space, that has been used for all the results that are
presented in this thesis. However, the formulation of the algorithm does not depend on this
particular choice of space. We define

V l :=
{
u ∈ H1,2(Ω) : u

∣
∣
El bilinear resp. trilinear ∀El ∈ T

l
}
.

The simplest and most natural choice of a basis is given by a so called nodal basis, where the
basis functions are so called hat-functions, i. e.,

(ψlα)α s.t. ψlα(xlβ) = δαβ ∀α, β ∈ N (T l).

Here we have identified indices β with nodes xβ . Depending on the context, when no ambiguity
can arise, we will also index basis functions and nodes by i ∈

{
1, . . . , cardN (T l)

}
:= I l. For

U l ∈ V l, we denote by Ū l ∈ R
cardIl

the vector of coefficients, which is uniquely determined by
U l =

∑ Ū liψl and we may drop the superscript l when no confusion might arise.
Due to the construction of the grids, which can be interpreted as successive uniform refine-

ment of an initial macro triangulation, we are limited to resolutions of the type (2l +1)n. This is
not a very severe drawback in many practical applications, since medical imaging devices pro-
duce resolutions of this dyadic resolution. However, the significant merit of this structure is the
computational ease of implementing multilevel approaches. By the nestedness of the grid, we
automatically obtain a nested hierarchy of finite element spaces in the sense of (2.6.1). Further-
more, as we will describe in further detail in Section 2.6.4 we are in the position to embed an
efficient multigrid solver for the solution of the large linear systems that have to be solved in the
core of the regularized gradient flow algorithm.

2.6.2 Discretization of the regularized gradient flows

Since the space of deformations is vectorial, we will use the space (V l)n =: Vn for fixed l and
use upper case symbols for elements of Vn. We approximate the partial derivative ∂tφ in (2.3)
by the difference quotient φ

n+1−φn

τ , where τ denotes the time step and φn := φ(nτ). Then (2.3)
translates into

g

(
Φn+1 − Φn

τ
,Ψ

)

+ 〈E′[Φn]; Ψ〉 = 0 ∀Ψ ∈ Vn. (2.18)

Notation 2.6.3. For a given metric g we define Gij := g(Ψi,Ψi) ∀i, j ∈ I . Due to the properties

of a metric, G is obviously symmetric and positive definite.

Testing with all basis functions Ψi and using the representation of Φ(n+1) in the basis, we
obtain the following discrete system:

G(Φ̄n+1 − Φ̄n) + τĒ′[Φn] = 0 where Ē′[φ]i = 〈E′[Φn]; Ψi〉 ∀i ∈ I (2.19)

which is uniquely solvable on account of the positive definiteness of G. Let us now formulate
the full problem where we split E into a part Eimp which we will treat implicitly in time and a
part Eexp which is treated explicitly.

Problem 2.6.4 (Discrete regularized gradient flow). LetE = Eimp−Eexp be Fréchet-differentiable

in H1,2(Ω)n, and g a metric on H1,2(Ω)n, and G be defined by Notation 2.6.3. Given Φ0 ∈ Vh,

find a sequence (Φn) ∈ Vh, such that

G(Φ̄n+1 − Φ̄n) + τĒ′
imp[Φn+1] = τĒ′

exp[Φn].



2.6. DISCRETIZATION 39

level 6

level 5

level 4
level 7

uT ◦ φ uR

level 8

(a) Deformed templates on levels 4 to 8 in comparison to the reference on the right.

(b) Stationary deformations on grid levels 5 to 8.

Figure 2.1: Multiscale matching: The template image is a mirrored version of the reference image.
In the top row we show the sequence of matching results on the grid refinement levels 4 through 8

corresponding to different scales. Most of the significant features can already be matched on coarse
scales.

2.6.3 Coupling resolution to scales

In this section we will assume that the scale space operator is generated by the heat equation. A
diffusion of time t is equivalent to Gaussian convolution

u(t) = Gσ ∗ u0.

The Gaussian kernelGσ has a “standard deviation” of σ =
√

2t hence we obtain an interpretation
of a filter width. This suggests to couple the resolution of the discretization with the linear scale
parameter, and control the grid resolution such that h always fulfills

h ≤ ασ for a fixed α > 0. (2.20)

Hence, we will first define a sequence of scales and on each of those scales check the approxi-
mation condition (2.20).

2.6.4 Multigrid approximation of the discrete metric

The incorporation of the metric into the gradient flow results in the inversion of a differential
operator. For the computation of the gradient with respect to the weighted H1,2-metric it is
required to perform an implicit timestep of the heat-equation in every iteration of the gradient
descent method. Since we have already proposed a cascadic multilevel approach for the energy
minimization, we algorithmically already have a framework for hierarchical grid handling at
hand. Multigrid methods as introduced by HACKBUSCH [121] are proven to be very efficient
solvers for the solution of large sparse systems, as long as the discrete operator fulfills some
suitable smoothing properties. To be more precise, multigrid solvers rely on iterative smoothers
for the residuals of the discrete system. In the case of elliptic operators, the smoothing prop-
erties of Jacobi and SSOR iterations or incomplete Cholesky decompositions are well-known.
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Figure 2.2: Profiles through a three dimensional data set after the application of one multigrid cycle

for the solution of the discrete heat equation with corresponding filter width σ = 0.1 and a discrete

centered Dirac distribution as initial image. We applied 1 through 3 pre- and post-smoothing steps.
These correspond to the actually applied kernels in a multigrid smoothing cycle. The bottom right

image shows the profile corresponding to the exact discrete solution. One can clearly observe, that

the overall shape varies only very slightly when the number of smoothing steps is changed.

When it comes to energy minimization, where the discretization of the admissible space of so-
lutions is high-dimensional, efficient solvers and approximations of the inverse metric that are
computable in a fast way are essential. Additionally, it is desirable to ensure efficiency also
with respect to memory usage, since the highly resolved two-dimensional or three-dimensional
images themselves already have to be stored permanently in memory .

To recapitulate the multigrid method, we first define for a given matrix A ∈ R
N,N (where

N = |I lmax |, which in our applications corresponds to the discrete form of the metric, i. e.,
Aij = g(Φi,Ψj)) the following coarse grid operators on V l

Al := Rllmax
AP lmax

l , 1 ≤ l ≤ lmax

and further we denote by Sl : V l → V l a smoother on level l, e. g., an SSOR iteration. To solve
the linear system Almax

xlmax
= blmax

, the multigrid solver is then formulated recursively by

MGlxl := S
ν2
l (xl + P ll−1MG

α
l−1R

l−1
l (bl −AlS ν1

l xl)) 1 < l ≤ lmax

and MG0 is an exact solver on the finest grid. ν1 and ν2 denote the number of pre- and post-
smoothing steps of each iteration and for α = 1 we obtain a V-cycle and for α ≥ 2 we obtain a
W-cycle. Then we iterate

xk+1
lmax
←MG

α
lmax

xklmax
until ‖Almax

xk+1
lmax
− blmax

‖ ≤ ε.
For the regularized gradient flow the exact solution of the smoothing of the descent direction is
often not crucial. Much more important are the smoothing properties for the regularization of
the flow and furthermore the support of the discrete Green’s function, or in other words the spa-
tial filter-width of the discrete filter. Standard iterative solvers for sparse systems, which make
use of the matrix structure typically require O(N) iterations, since they connect the degrees of
freedom as encoded in the matrix structure only in a neighborhood of each degree of freedom.
For finite elements this depends on the overlapping of the basis functions and for finite differ-
ence schemes on the extent of the discrete stencil of the differential operator. In every iteration
of the multigrid method, due to the restrictions and prolongations of the residuals, the iterative
smoothers on each grid only have to connect the degrees of freedom in a neighborhood which
corresponds to the difference of resolution from one grid level to the next.

For the multiscale approach, we considered a continuous scale space which is given by ap-
plying a scale-space operator Sσ . In the final algorithm we will need to compute the solutions
of the respective PDE that generates the scale-space for a decreasing sequence σj . Instead of
solving a discrete time stepping of the PDE for increasing σ in a preprocessing step and storing
u
σj

T and u
σj

R in memory, the fast multigrid solver allows us to generate uσj

T on-the-fly without
much computational effort.
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2.6.5 Minimization by regularized gradient methods

Regularized gradient flows fit nicely into the framework of classical gradient methods. In fact,
we can use line-search strategies, which are well-established for gradient methods. The g-
regularized gradient flow can be considered as a pre-conditioning of the nonlinear-cg method,
since the regularized gradient directions are by the properties of the metric still descent direc-
tions. Furthermore, the regularizing effect of the metric often compensates numerical errors by
differentiation and line-search strategies in practice indicate that far larger gradient steps can
be performed. We consider the following line search strategies.

Definition 2.6.5 (Armijo-Goldstein’s line-search strategy). For φ, let δ ∈ H1,2(Ω; Rd) be given,

such that 〈E′[φ]; δ〉 < 0. Furthermore let α ∈ (0, 1) and β ∈ (0, 1) be fixed. Armijo’s line search
strategy consists of finding

τ := max
{
βl : l ∈ Z and E[φ+ βlδ] ≤ E[φ] + αβl〈E′[φ]; δ〉

}
.

This strategy can lead to overshooting of the step size. Although it is always ensured that
the energy is decreasing in every step, the Armijo-Goldstein condition allows one to increase
the timestep in the zone where the energy is increasing again. The following strategy takes into
account derivatives of the energy at the deformed position:

Definition 2.6.6 (Wolfe-Powell Line-Search strategy (strict version)). For φ, let δ ∈ H1,2(Ω; Rd)
be given, such that 〈E′[φ]; δ〉 < 0. Furthermore let α ∈ (0, 1

2 ) and β ∈ [α, 1) be fixed. The Wolfe-
Powell line search strategy consists of finding τ > 0, such that

E[φ+ τδ] ≤ E[φ] + ατ〈E ′[φ]; δ〉 and (2.21)

|〈E′[φ+ τδ]; δ〉| ≤ −β〈E′[φ]; δ〉. (2.22)

Since 0 < β < 1, we ensure to choose a step-size such that the derivative is smaller than
the derivative of the point where the descent direction is computed. Thus we ensure that the
step-size is not too small and furthermore we avoid a regime where the energy increases steeply.

With those line search strategies at hand, we can consider a g-preconditioned nonlinear cg-
method, which is a variant of the original method of FLETCHER & REEVES in the Banach space
X :

2.6.6 Algorithm: g-preconditioned nonlinear conjugate gradient

Step 0 choose initial φk ∈ X , 0 < ε� 1.

Step 1 set δ0 := gradgE[φk].

Step 2: inner loop

Step 2.1 search step size τk according to strategy or 2.6.6.

Step 2.2 update φk+1 := φk + τkδk.

Step 2.3 set βk :=
‖grad

g
E[φk+1]‖2

g

‖grad
g
E[φk]‖2

g

.

Step 2.4 update δk+1 := βkδk − gradgE[φk+1].

Step 2.5 check stopping criterion ‖gradgE[φk]‖g ≤ ε.

We will propose an algorithm which marries the multiscale, multilevel and multigrid ap-
proaches that have previously been described in detail.
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2.6.7 The full cascadic multiscale algorithm

In the previous sections we have collected all the required tools for the overall minimization:

(i) Regularized metric—The metric on the space of deformations plays the rôle of penalizing
irregular gradient directions. The representation of the derivative in the metric hence
becomes regularized.

(ii) Multiscale approach—Select a decreasing sequence of scales σi and setup the energy with
smoothed data.

(iii) Coupling resolution to scales—The resolution is chosen according to approximation proper-
ties of smoothed data. Hence for decreasing scales, the resolution is successively refined.

(iv) nonlinear g-cg method—modification of the nonlinear cg method by choosing the regular-
ized negative gradient as new descent direction in every step.

(v) Multigrid approximation of the metric and Sσ—Solve the computation of the g-gradient
with a multigrid solver.

Let us first describe the gradient flow version of the multiscale descent.

Cascadic discrete multilevel algorithm for regularized gradient flow

Step 0 Set the level to l = l0 < lmax, σi = σ0, i = 1

Step 1 Initialize φl0,0 :=
� ∈ V l0 .

Step 2 repeat

Step 2.1 determine level lk := min {l : h ≤ βσk}
Step 2.2 compute data on scale σk: uσk

R,l := SσkRllmax
uR and uσk

Tl
:= SσkRllmax

uT

Step 2.3 prolongate solution on current level φ0
li,i := P lili−1

φli−1,i

repeat

Step 2.4.1 compute descent direction δkli,i = gradgE[φkl,i]

Step 2.4.2 determine step size by line search strategy: chose such that

E[φkli,i + τkli,iδ
k
li,i]−E[φkli,i] ≤ ατkli,i〈E′[φkli,i]; δ

k
li,i〉

Step 2.4.3 update φk+1
li,i

:= φkli,i + τk+1
li,i

δkli,i
Step 2.4.4 k ← k + 1.

until ‖gradgE
σi [φkl,i]‖g ≤ ε

Step 2.4 i← i+ 1.

until i > total number of scales

The inner loop in Step 2.4.1 corresponds to the regularized gradient flow on a fixed level li and
for a fixed scale σi with a line search strategy. We obtain the multilevel nonlinear cg method, by
replacing this loop with Algorithm 2.6.6, where we take the computed stationary point of the
previous scale as initial value.

2.7 Results and Discussion

Let us now discuss some numerical results for some test cases with an emphasis on the efficiency
and the robustness of the algorithm and consider the unimodal registration as a prototype for ill-
posed registration problems. In real applications the deformations which yield a proper match
between the input images often consist of a global, smooth and almost rigid part which mainly
results from a different positioning and orientation and an additional, more local component,
which results from the effective differences in morphology. The reason for such local displace-
ments are for instance inter-individual variabilities, intra-individual growth processes or changes
due to diseases. In all the examples the metric gσ was used where σ = 5hlmax

.
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Process Duration

V-cycle (single component) 3.3s
computation of E[u] and grad E[u] 5.25s
computation of 〈E′[u], φ〉 5.38s
computation of E[u] 1.23s
time–step control 1-3s

Table 2.1: Approximate computing times for the key ingredients of each gradient descent step in

our algorithm on a reference PC (Pentium IV, 1.7 Ghz, 1Gb RAM) applied on 3D images with 1293

voxels.

Scale (k) Filter width (εk) Steps (nk) Gridlevel (l(k)) Time

0 .250 5 5 <1s
1 .177 3 5 <1s
2 .125 3 5 <1s
3 .088 4 6 9s
4 .062 3 6 7s
5 .044 4 7 67s
6 .031 6 7 95s
7 .022 6 7 96s
8 .016 5 7 82s
9 .0 5 7 83s

Table 2.2: Iteration counts on different scales due to the adaptive stopping criteria and the corre-

sponding absolute timings for the computation on the correspondingly chosen grid levels. Here we

assume α = 1
4 ,γ = 1

2 .

Large local displacements

As a first three-dimensional text example, let us consider the MR-dataset at the top of Figure
2.3. It shows an axial slice through a human skull which has been opened on one side due to
a surgery. As can be seen in the axial slices of 2.3 and the saggital slices in 2.4 the application
of the multiscale matching algorithm yields almost a perfect match of the deformed template
uT ◦ φ with uR. The deformation as shown in 2.3 (c) is smooth. However, one can observe an
overfolding which leads to a loss of injectivity in those regions where large local displacements
occur. We will introduce an additional regularization energy which will rule out such overfold-
ings in Chapter 5. The whole computation of the three-dimensional data set of resolution 1293

voxels took only approximately 4 minutes on a standard desktop PC with an Intel Pentium IV
CPU running at 1.7Ghz. The durations of the key components of the algorithm are shown in
Table 2.1. Thanks to the coupling of the resolution to the scale, the matching algorithm needed
only 5 gradient descent steps on the finest scale. As can be seen in Table 2.2 the number of
iterations on each scale is approximately constant.

Small local displacements

Apart from minor morphological differences, the anatomical structure of the two hemispheres of
a healthy brain is almost identical, hence we a reflection by the saggital plane provides us with
a feasible and meaningful test problem (cf. Figure 2.1). Naturally the reflection itself is a global
minimizer of the matching energy, however in this particular test example, we are only interested
in the matching of the hemispheres in the reference with their corresponding counterpart from
the other side of the initial template image. Finding the reflection by minimization is almost
prohibited by the regularization energy and the nature of the regularized gradient flow.
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Robustness with respect to noise

The next test example aims to test the matching algorithm with respect to robustness against
noise. Due to the multiscale approach and the regularization of the descent directions, we expect
the gradient flow to behave reasonably stable for such perturbations. We generated a test pair
of data by applying a twist to the same MRT data set as in the previous examples and artificially
corrupted the images with 20% Salt-and-Pepper noise, i. e., 20% of the pixels were replaced
by either a black or a white pixel. The original images and the noisy input data are shown in
Figure 2.5. It turns out that the algorithm is very robust: the initial twist of the deformation is
reproduced almost exactly.

Large global displacements

As another test scenario we have considered two geometrically simple input images, which differ
by a strong rotation twist by a maximal angle of π/3. The input images are shown in Figure 2.6
(a) and (b). The matching result uT ◦φ is shown in part (d) of the figure. We can conclude, that
the matching algorithm is also able to cope with strong global mismatches of the input images,
and to reproduce deformations which are smooth and do not reveal any numerical artefacts.
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(a) reference uR, axial slice through the original MR-
dataset

(b) template uT (reflection of the reference)

(c) deformation applied to uniform grid (d) matching result uT ◦ φ

Figure 2.3: Artificial 3D–matching example with large local magnitude of the deformation. To test
the matching algorithm, the template is generated by a reflection of the reference with respect to the

central symmetry plane.
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(a) reference uR, saggital slice through the original MR-
dataset

(b) template image

(c) deformation applied to uniform grid (d) matching result uT ◦ φ

Figure 2.4: Corresponding saggital (vertical rear view) slices of the matching example in Figure

2.3.
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(a) reference (original) u∗

R
(b) template (original) u∗

T

(c) noisy reference uR (d) noisy template uT

0

20

40

60

80

100

120

0 20 40 60 80 100 120

(e) deformation φ applied to a uniform grid (f) final match u∗

T
◦ φ

Figure 2.5: Robustness of the multiscale matching algorithm with respect to noise. The 3D matching

problem was set up by artificially corrupting the initial reference (a) and template (b) images by
20% “salt and pepper” noise. The noisy variants (c) and (d) were taken as the input to the matching

algorithm. The final deformation and the deformed original template are shown in image (e) and

(f) respectively.
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(a) reference uR (b) template uT

(c) deformation φ applied to a uniform grid (d) matching result uT ◦ φ

Figure 2.6: The images show the 3D–matching results of a synthetically generated problem (ro-
tational twist by π

3 ) with resulting rather large deformations. The images show slices through a

central plane of the 3D dataset of resolution 1293.
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Chapter 3

Morphological registration

MORPHOLOGICAL shape analysis will be the fundamental ingredient in the construction of
a framework for general cost functionals to measure disparity between the geometries in

the images. It is easily possible to construct image pairs which contain completely different
shapes, but are arbitrary close in the L2 sense. The final aim is the registration of multimodal
pairs of images by means of the underlying geometry. More precisely, it is based on the alignment
of tangent spaces via the alignment of the normals.

This chapter is organized as follows. First the general formulation of the alignment of mor-
phologies will be described in Section 3.1. The problem is ill-posed and requires a suitable
regularization. In Section 3.2 we will propose to use a nonlinear hyperelastic regularization,
because it allows the control of singularity sets and renders an existence proof for images which
may reveal degenerate normals possible. We give a brief overview on the required ingredients
of the direct methods in the calculus of variations. For image registration, injectivity of the
deformation is an important requirement, otherwise the interpretation of the deformation as
a correspondence between specific points in one image to specific points in the other becomes
meaningless. We will apply injectivity techniques from nonlinear elasticity to ensure that the
minimizer of the variational problem is injective, and, under additional assumptions on the
space of admissible deformations, is even a homeomorphism.

We want to apply the multiscale approach combined with the regularized gradient flow of the
previous chapter that has worked well to rule out convergence to local minima. The variations
of the energy are presented in Section 3.3. Finally, the implementation will be described in
Section 3.4 and results are presented and discussed in Section 3.5.

3.1 General approach based on congruence

As pointed out in the introduction, the morphology M [u], completely describes the topographi-
cal shape information of the image u. Now we aim at penalizing the deviation from congruence,
or in other words to measure the morphological defect which indicates a difference in shapes.
One can characterize the morphology by the Gauss-maps of the image:

Lemma 3.1.1. Let u, v ∈ C 1(Ω) and ∇u resp. ∇v be different from 0 almost everywhere. Then

M [u] = M [v] ⇔ nu = ±nv a. e. on Ω, where nu : Ω→ Sn−1, x 7→ ∇u(x)
‖∇u(x)‖

where ∇u(x) 6= 0 and nu = 0 otherwise.

Hence, we will have a perfect match of the morphology, i. e., M [uR] = M [uT ◦ φ] iff the
Gauss-map of the deformed image coincides with the Gauss-map of the reference image. Let
us denote by nφR the transformation of the normal with respect to the deformation φ, which
by the condition nφR · Dφ v = 0 and the transformation rule for the exterior vector product
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uR uT

nR

nT
x φ(x)

nφR

φ(Mc[R])

Mc2 [T ]

Mc1 [R]

φ

Figure 3.1: The idea behind morphological registration: Alignment of the morphologies. A level set
Mc[R] of uR is mapped into the domain of uT . In order to align the level set to the iso-value c1 of

uR, the normal nR is transformed from x to nφR at the deformed position φ(x) and compared with
the normal nT of uT . Although only one particular level set is drawn in each of the images, the aim

is to align the entire morphology.

Dφu ∧Dφ v = CofDφ(u ∧ v) for all u, v ∈ TpMuR(p)[uR] is given by

nφR =
Cof DφnR
‖CofDφnR‖

=
CofDφ∇uR
‖CofDφ∇uR‖

(3.1)

wherever this makes sense. The matching of the morphologies can be rephrased in terms of an
alignment of the Gauss maps, i. e., find φ : Ω → R

d, such that nT ◦ φ ‖ nφR (see Figure 3.1).
Let us now consider a function ω∗ : Sn−1 × Sn−1 → R

+
0 , which measures the misalignment of

two directions in Sn−1. After integration, we arrive at a morphological registration energy of
the following general form:

EM [φ] =

∫

Ω

ω∗(nT ◦ φ, nφR) dµ =

∫

Ω

ω(nT ◦ φ, nR,CofDφ) dµ, (3.2)

where ω : Sd−1 × Sd−1 ×M
3 → R, (u, v, A) 7→ ω∗(u,Av). We will denote the set where normals

degenerate by

D [u] := {x ∈ Ω : ∇u = 0} . (3.3)

Naturally, it would be a far too severe restriction to assume that D [uR] = D [uT ] = ∅. Therefore,
let us first extend the integrand ω of the energy to R

d×R
d homogeneously, i. e., for A ∈M

d we
set

ω0(u, v, A) :=

{
ω( u

‖u‖ ,
v

‖v‖ , A), u 6= 0 and v 6= 0,

0, otherwise.
(3.4)

for A ∈ M
d. We are now in the place to define rewrite the energy now depending on the image

gradients:

EM [φ] =

∫

Ω

ω0(∇uT ◦ φ,∇uR,CofDφ) dµ (3.5)

The observation that the integrand depends on derivatives of φ via the cofactor matrix allows
us to embed the theoretical treatment into the framework of the calculus of variations with
polyconvex integrands introduced by BALL [13]. This will be described later and is the subject
of the subsequent sections.

Let us consider some examples.



3.2. NONLINEAR HYPERELASTIC POLYCONVEX REGULARIZATION 51

(i) We might start with a first choice of the form, ω∗(u, v) = γ(^(u, v)), where γ is an increas-
ing function with γ(0) = 0 and ^(u, v) denotes the angle between u and v. One possible
example is given by

ω(u, v, A) =
1

2

∥
∥
∥
∥
u− Av

‖Av‖

∥
∥
∥
∥

2

⇒ EM [φ] =
1

2

∫

Ω

‖nT ◦ φ− nR‖2 dµ (3.6)

Clearly, the energy is invariant under monotone contrast transformations β : R→ R of the
images.

(ii) The integrand in (3.6) does not fulfill the condition that for given φ it should solely depend
on the morphologies M [uT ] and M [uR], for which clearly M [uT ] = M [β ◦ uT ] also for
non-monotone contrast changes β : R → R. This leads us to postulate the symmetry
condition

ω(u, v, A) = ω(−u, v, A) = ω(u,−v,A) ∀u, v ∈ R
d, A ∈ R

d,d. (3.7)

In most practical multimodal registration problems, the violation of this symmetry condi-
tion would be somewhat artificial and lead to unpredictable results.

A natural choice of matching functionals is obtained by defining ω such that it depends on
the scalar product of nφR and nT , for instance we might consider to measure the length of
the projection of nφR onto the tangent space TM [uT ]⊥nT ◦φ, i. e.,

( � −nT ◦φ⊗nT ◦φ
)
·nφR,

which yields

ω(u, v, A) = ω̂

(
( � − u⊗ u

)
· Av

‖Av‖

)

(3.8)

with a convex and even function ω̂. Since (−u) ⊗ (−u) = (−u)(−u)T = uuT = u ⊗
u and ω

(( � − u⊗ u
)
· A(−v)
‖A(−v)‖

)

= ω
(( � − u⊗ u

)
· Av
‖Av‖

)

(3.7) is fulfilled. Due to the

renormalization of Av we see that ω is not convex with respect to A. Later we will become
more precise on the control of CofDφ in the context of regularization.

3.2 Nonlinear hyperelastic polyconvex regularization

We give a brief review about the direct methods in the calculus of variations in the vectorial
case. We will combine the morphological registration energy with a suitable regularization to
gain control over the volume of the deformed singularity set and apply the classical machinery
from non linear elasticity to prove existence of the combined energy.

Let us denote the space of admissible functions by A . The general recipe for existence proofs
relies on the following ingredients:

(i) Estimate from below. There exists β ∈ R such that for all φ ∈ A we have E[φ] > β.

(ii) Compactness. For every sequence (φk), φk ∈ A that fulfills E[φk] < C, the sequence has a
subsequence which converges w.r.t. the given topology and the limit is in A .

(iii) Lower-semicontinuity. For every converging sequence φk → φ w.r.t. the given topology the
energy fulfills

E[φ] ≤ lim inf
k→∞

E[φk].

Then the proof of existence is easy. By the first condition (i) one chooses an infimizing sequence,
such that infψ∈A E[ψ] = lim infk→∞ E[φk], which by (ii) has a subsequence converging to some
φ ∈ A . We denote the subsequence again by (φk). Finally, on account of the last condition (iii),
we deduce

E[φ] ≤ lim inf
k→∞

E[φk] = inf
ψ∈A

E[ψ].
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Figure 3.2: Morphological matching of images with exactly the same morphology but completely
different contrast. The UPPER ROW shows the input images. Additionally the initial misfit (BOT-
TOM LEFT) and the final match (BOTTOM RIGHT) are shown.

The crucial point lies in the choice of the combination the topology, the compactness conditions
and the conditions which ensure lower-semicontinuity. The compactness usually relies on some
kind of weakened topology, e. g., weak convergence in H1,p. In the scalar case, lower semicon-
tinuity of energies of the form E[φ] =

∫

Ω f(x, φ,Dφ) relies on Carathéodory’s condition with
respect to x and φ and convexity in Dφ, in fact lower-semicontinuity implies convexity. In the
vectorial case, such a convexity condition would be far to restrictive. However, existence can be
obtained by more general notions of convexity.

3.2.1 General notions of convexity, Hyperelasticity and existence theory

The most general notion of convexity is quasiconvexity as introduced by MORREY [161].

Definition 3.2.1 (Quasiconvexity). Let f : R
m,n → R be a locally integrable Borel function. Then

f quasiconvex :⇔ f(A) ≤ 1

µ(D)

∫

D

f(A+Dφ) dµ (3.9)

for every bounded domain D ⊂ R
d, every A ∈ R

m,n and for every φ ∈W 1,∞
0 (D; Rm).

Under suitable growth conditions, quasiconvexity implies weak lower semicontinuity and vice
versa [79]. For variational methods in nonlinear elasticity, quasiconvexity is however of no use,
since these growth conditions are too prohibitive.

The following convexity condition is due to BALL[13] and is tailored to the existence theory
in elasticity.
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Figure 3.3: Test example. TOP LEFT: reference image uR = β ◦ uT ◦ ψ, generated from the tem-
plate image by applying an artificial volume preserving distortion ψ and a non-monotone contrast

transformation β. TOP RIGHT: template image uT . BOTTOM LEFT: reference image uT ◦ ψ before

contrast transformation. Bottom right: registration result uT ◦ φ, template image applied to the
computed deformation φ. All images have a resolution of 2572. Areas of special interest are marked

by white circles. See Figure 3.4 for the corresponding deformation.
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Figure 3.4: Exact deformation ψ (LEFT) and computed deformation φ (RIGHT) for the example in

Figure 3.3.

Definition 3.2.2 (Polyconvexity). We define for 2 ≤ s ≤ min(n,m) the adjugate adjA of a

matrix A ∈ R
n,m by the matrix of all its s× s-minors. Furthermore, we set

τ(n,m) =

min(n,m)
∑

s=1

σ(s) σ(s) =

(
m

s

)(
n

s

)

.

A function W : R
n,m → R̄ is said to be polyconvex if there exists a convex function g : R

τ(n,m) → R,
such that

f(F ) = g(T (F )), (3.10)

where T : R
n,m → R

τ(n,m) is defined by

T (F ) := (F, adj 2F, . . . , adj min(n,m)F ).

For n = m = 3 we will write

W(F,Cof F, detF ) = g(T (F ))

Remark 3.2.3. In two dimensions the cofactor matrix is given by Cof A =

(
a22 −a21

−a12 a11

)

. In

three dimensions we write (with cyclic indices) (Cof A)ij = ai+1,j+1ai+2,j+2 − ai+1,j+2ai+2,j+1.

It can directly be seen that polyconvexity is implied by convexity, and that polyconvexity only
differs from convexity in the vectorial case, i. e., m > 1 and n > 1.

Polyconvexity implies quasiconvexity [79, Ch. 4, Thm. 1.1], which itself under suitable
growth conditions implies weak lower semicontinuity of energies with quasiconvex integrands.
However, in general the converse is not true. In this smaller class of applicable functions with
respect to convexity, it turns out that the growth and coercivity conditions are more mild than
they have to be for quasiconvex functions.

Regularization via hyperelastic energies

We are interested in the application of the existence theory for nonlinear elastic problems. Hy-

perelasticity means, that the Piola-Kirchhoff stress tensor can be written in terms of the Fréchet-
derivative of an energy with a stored energy function Ŵ :

Ereg[φ] =

∫

Ω

W (Dφ) dµ =

∫

Ω

Ŵ(Dφ,CofDφ, detDφ) dµ (3.11)
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Figure 3.5: Length, area and volume deformation: for infinitesimal test volumes of dimension one
(L), two (A) and three (V ) the infinitesimal deformation of length, area and volume is given by

‖Dφ‖, ‖CofDφ‖ resp. detDφ.

where Ŵ : R
m,n × R

m,n × R is convex and limW (Dφ) = +∞ for detDφ→ 0+ or +∞, e. g.,

Ereg[φ] =

∫

Ω

‖Dφ‖p + ‖CofDφ‖q + Γ(detDφ) dµ. (3.12)

with a suitable choice for Γ. Materials which are modeled with such kind of energies are called
Mooney-Rivlin-materials. For our registration problems, these energies allow us to control the
length-, area- and volume- deformation separately (see Figure 3.6). In particular, the properties
of Γ ensure that a set of finite volume will not be mapped to a set of arbitrary small or large
volume. Such a mechanism to prevent the blow up of singularity sets under the deformation will
turn out to be the key ingredient of the existence proof for the regularized matching problem.

We combine the matching energy and the regularization into a total energy (see Figure 3.2)
for a first result)

E[φ] := EM [φ] + αEreg[φ]. (3.13)

Restrictions on the integrand of the registration energy

In essence, the hyperelastic regularization energy ensures the desired compactness property. On
account of the growth conditions of the stored energy function W , one may deduce from the
boundedness of the energy the control of the invariants of the Jacobian. Due to polyconvexity,
the chosen regularization is also weakly lower semi-continuous. If we combine the regulariza-
tion with the matching energy, we have to ensure that the overall energy is still lower semicon-
tinuous. Due to the fact, that EM is positive, the compactness property is still fulfilled. The
choice of the integrand (3.4) depends on the cofactor matrix of the Jacobian. Hence, we require
the ω0 to be convex in the argument A.

Unfortunately one can show that any function f : M→ R which is 0-homogeneous and con-

vex has to be constant, which would restrict our choice to trivial and useless matching energies.
Indeed, first note that for any convex function we have

f(E − s(C −D)) ≤ f(E)− s(f(C)− f(D)). (∗)

Now let us assume, A,B ∈ M
d such that ∞ > f(A) − f(B) = δ > 0 and define Aα,r :=

rA + α(A−B) with r > 0 and α > 0. We define s := α
r and use (∗):

f(Aα,r) = f(rA+ s(A−B)) ≥ f(rA) + s
(
f(rA) − f(rB)

)

= f(A) +
α

r
(f(A)− f(B)) = f(A) +

αδ

r

r→0−→ +∞.



56 CHAPTER 3. MORPHOLOGICAL REGISTRATION

We deduce f(A−B) = +∞, which contradicts the assumption on f . As long as ω̂ in (3.8) is not
constant the matching energy in (3.8) will not be lower semicontinuous.

Therefore this particular choice is not appropriate to apply existence proof techniques of
the direct methods of the calculus of variations. As an alternative we drop the normalization
‖Cof Aw‖ and consider

ω(u, v, A) = ‖( � − v ⊗ v)Aw)‖γ for 1 ≤ γ ≤ q (3.14)

which is convex w.r.t. A and results in the following registration energy

EM [φ] =

∫

Ω

∥
∥(

� − (nT ◦ φ)⊗ nT ◦ φ) · CofDφnR
∥
∥
γ

dµ.

With this kind of integrand, we have still ensured that ω0(v, w,A) = 0 iff v ‖ Aw. The value
‖CofDφnR‖ corresponds to the change of the area element on the level set Mc[uR] (see also
[103]).

Global invertibility

In nonlinear elasticity global invertibility is an important requirement, since the loss of injectivity
would be highly “unphysical”. The phenomenon of cavitation, which means that the deformed
object is torn apart, may be more realistic [14]. However, for the purpose of a suitable regular-
ization for image registration, this loss of continuity is obviously undesirable.

The theory is based on the following fundamental theorem.

Theorem 3.2.4. Let Ω ⊂ R
d be open, bounded and connected, int Ω̄ = Ω, ψ ∈ C 0(Ω̄; Rd) injective.

If φ ∈ C 0(Ω̄; Rd) ∩ C 1(Ω; Rd) satisfies

detDφ > 0 in Ω φ
∣
∣
∂Ω

= ψ
∣
∣
∂Ω
,

then φ : Ω̄→ φ(Ω̄) is a homeomorphism, and φ is a diffeomorphism in Ω.

The proof is based on the topological degree (see [60, ch.5]). Hence the condition that φ co-
incides with an injective function on the boundary cannot be dropped. The following extension
is due to BALL [14]

Theorem 3.2.5. Let Ω ⊂ R
d be a non-empty bounded connected strongly Lipschitz open set. Let

φ0 : Ω̄ → R
d be in C (Ω̄; Rd) and one-to-one in Ω, p > d and let φ ∈ W 1,p(Ω) take values in R

d

and satisfy φ
∣
∣
∂Ω

= φ0

∣
∣
∂Ω

. Furthermore let detDφ(x) > 0 for µ-almost every x in Ω. Let φ0(Ω)
satisfy the cone-condition and suppose that for some q > d,

∫

Ω

‖Dφ−1‖qdetDφ dµ <∞.

Then φ is a homeomorphism of Ω ontoφ0(Ω), and the inverse function x(φ) belongs toW 1,p(φ0(Ω))d.
The matrix of weak derivatives of x(·) is given by

Dx(y) = Dφ−1(x(y)) almost everywhere in φ0(Ω).

If, further, φ0(Ω) is strongly Lipschitz, then φ is a homeomorphism of Ω̄ onto φ0(Ω̄).

Since, we control the growth of the inverse of φ by CofDφ and detDφ and the fact that
Dφ−TdetDφ = CofDφ, one immediately obtains the following corollary [14]:

Corollary 3.2.6. Under the hypotheses above, there exists φ ∈ A which minimizes Ereg on A, φ is

a homeomorphism of Ω onto φ0(Ω) and the inverse function x(φ) belongs to W 1,σ(φ0(Ω)), where
σ = q(1 + s)/(q+ s). If, further, φ0(Ω) is strongly Lipschitz, then φ is a homeomorphism of Ω̄ onto

φ(Ω0).

Hence, if we fix the deformation along the boundary we can ensure that the minimizing
deformation is a homeomorphism. This fact has been exploited in [103].
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φ(Ω) ∩ Ω
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Figure 3.6: For large deformations, it might be more appropriate to allow free boundary conditions

instead of fixing φ to be the identity on ∂Ω. The disparity of the images is only measured on the
subset of Ω which is again mapped under φ into Ω, namely φ−1(Ω) ∩ Ω.

Free boundaries and alignment of feature sets

Dirichlet conditions on ∂Ω have a significant disadvantage, in the case when large transfor-
mations are necessary. The hyperelastic regularization energy by construction penalizes de-
formations, which result in strong distortions. In some cases, however, strong distortions are
unavoidably close to the boundary in order to transform one part of the image into a distant
part of the other image. The matching energy is always balanced against the regularization en-
ergy, so if the weight which controls the intensity of the regularization remains unchanged, the
total energy will prevent a proper match. However, it is undesirable to reduce this weight, since
the regularization rules out irregular minimizers.

One might relax the boundary condition by allowing the boundary to move freely, in partic-
ular allowing that φ(Ω) 6⊂ Ω. Since uT is only defined on Ω, the disparity cannot be measured
in φ(Ω) ∩ ΩC . Hence, we might adjust the domain of integration to cut out the set that is not
mapped onto Ω and integrate only over φ−1(Ω) ∩ Ω. However, this would lead to trivial unde-
sired minimizers: any deformation in the kernel of the regularization, i. e., translations, which
map Ω entirely out of Ω will have zero energy (cf. Figure 3.5). This will also lead to a loss of
compactness.

In order to penalize such deformations, we consider an additional energy contribution. Let us
assume that we have two feature sets ΓR, ΓT ⊂ Ω, which correspond to each other. Furthermore,
we assume that ΓR and ΓT are of class C 0,1. We define an energy, which measures the distance
of the transformed feature set φ(ΓR) to the feature set ΓT and consider:

Edist[φ] :=

∫

φ(ΓR)

dist(·,ΓT )2 dµ (3.15)

The next lemma assures that the control of the H1,p-norm and the control of Edist implies
the boundedness of the Lp-norm of the deformations.

Lemma 3.2.7. Let Ω ⊂ R
d open, bounded and connected with Lipschitz boundary. Let Γ1, Γ2 be

two n− 1-dimensional Lipschitz surfaces, such that

CΓ := diam Γ2 := sup
x1∈Γ2,x2∈Γ2

|x1 − x2| < +∞.

Then there exists C = C(Γ1,Γ2), such that for all φ ∈ W 1,p(Ω; Rd) with 1 < p < ∞, p > 3 the
following inequality holds:

‖φ‖Lp(Ω) ≤ C
(

‖distΓ2
(φ(·))‖Lp(Γ1) + ‖Dφ‖Lp(Ω) + 1

)
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Proof. First we note W 1,p(Ω) is compactly embedded in C 0(Ω; Rd) and that for fixed x̃2 in Γ2

and all x1 ∈ Γ2 we have |φ(x)| ≤ |φ(x) − x2|+ |x2| ≤ |φ(x) − x1| + |x1 − x2|+ |x̃2| ≤ |φ(x) −
x1| + diam Γ2 + |x2|, i. e., |φ(x)| ≤ CΓ + C and hence ‖φ‖LpΓ1

≤ C
(

‖distΓ2
(φ(·))‖Lp(Γ1) + 1

)

.

Now we show that there is a constant again denoted by C, such that

‖φ‖Lp(Ω) ≤ C
(

‖φ‖Lp(Γ1) + ‖Dφ‖Lp(Ω) + 1
)

by a Poincaré-type argument [1]. Assume that the inequality does not hold. Then there exists a
sequence (φk)k, k ∈ N such that

‖Dφk‖Lp(Ω) + ‖φk‖Lp(Γ1) + 1 ≤ 1

k
‖φk‖Lp(Ω) (3.16)

from which we deduce ‖φk‖Lp(Ω) → +∞. For K > 0 arbitrary, we have

δk := K‖φk‖−1
Lp(Ω) → 0 for k →∞.

We define ψk := δkφk, i. e., ‖ψk‖Lp(Ω) = δk‖φk‖ = K, and (3.16) now yields

‖Dψk‖Lp(Ω) + ‖ψk‖Lp(Γ1) + δk ≤
1

k
‖ψk‖Lp(Ω) =

K

k
→ 0 for k → +∞.

Hence, the ψk are bounded in H1,p(Ω) and thus allows the choice of a subsequence ψk ⇀ ψ

weakly inH1,p(Ω). Due to to the above inequality and the weak convergence of the subsequence,
we deduce Dψk → 0 strongly in Lp(Ω), hence Dψk → 0. Due to the connectedness of Ω, ψ is
constant almost everywhere. Hence, due to Sobolev’s embedding ψk → ψ strongly. We see that
‖ψk‖Lp(Γ1) → 0 and hence, due to the continuity of the trace onto Γ1 we obtain ψ ≡ 0. On the
other hand, we have ψk → 0 strongly in Lp(Ω) due to Rellich’s embedding theorem, thus

K = ‖Dψk‖Lp(Ω) → 0

which is a contradiction and concludes the proof. �

Avoiding fold-over for free boundaries

CIARLET & NEČAS proposed [62] to add a further constraint on the admissible set to ensure injec-
tivity of the resulting deformation by forbidding deformations which start to fold over beyond
points where self-contact occurs. In contrast to Theorem 3.2.5 which relies on the existence
of an injective deformation φ0 on Ω and which by degree-theoretical arguments transfers the
injectivity of φ0 onto φ, the constraint

∫

Ω

detDφ dµ ≤ volφ(Ω)

allows to prescribe Dirichlet conditions on a subset of the boundary. In [62], the authors have
also treated the problem, where φ(Ω) has to be in the interior of an obstacle B which is a closed,
possibly unbounded subset of R

d. Here, we confine ourselves to the case B = R
d, since in typical

registration applications such an obstacle condition does not have to be incorporated.
We now cite the existence theorem of BALL [13] and the extension by Theorem 5 in [62].

Theorem 3.2.8 (Existence). Let the boundary Γ = ∂Ω be Lipschitz, H d−1(Γ0) > 0, and a stored

energy function W : M
3
+ → R be given, which satisfies the following assumptions:

(i) Polyconvexity—There exists a convex function W : M
3 ×M

3 × (0,+∞)→ R such that

W (F ) = W(F,Cof F, detF ) for all F ∈ M
3
+.

(ii) Coercivity—There exist constants a > 0, b ∈ R, p > 0, q ≥ p
p−1 , r > 1, such that

W (F ) ≥ a(‖F‖p + ‖Cof F‖q + (detF )r) + b for all F ∈ M
3
+.
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We define

A := {φ ∈ W 1,p(Ω; R3); CofDφ ∈ Lq(Ω; M3), detDφ ∈ Lr(Ω), (3.17)

detDφ > 0 a.e. in Ω }

Let the density f of the applied body force be such that the linear form ψ ∈ W 1,p(Ω) 7→
∫

Ω
f ·ψ dµ is continuous and let φ0 ∈ W 1,p(Ω) be given in such a way that the set

A0 := {φ ∈ A : φ = φ0 on Γ0} (3.18)

is not empty. Assume that infφ∈A0
E[φ] < +∞ where the energy E is defined by (3.13). Then the

problem of finding a minimizing deformation φ ∈ A , i. e., E[φ] = infψ∈A E[ψ] has at least one
solution (BALL ’77).

If further, the admissible set A0 is replaced by

A
#
0 :=

{

φ ∈ A0 :

∫

Ω

detDφ dµ ≤ volφ(Ω)

}

and W furthermore fulfills W (F ) → +∞ as detF → 0+, then by CIARLET&NEČAS ’87 the min-

imum problem again has at least one solution φ ∈ A
#
0 , which is now injective almost everywhere

in the sense that

cardφ−1(y) = 1 for almost all y ∈ φ(Ω). (3.19)

3.2.2 Existence

Existence for unimodal registration

Before this framework was applied to morphological registration, hyperelastic regularization has
been used by RUMPF [179] to prove the existence of a homeomorphic minimizer of the unimodal
registration energy provided that the space of admissible deformations is chosen such that the
deformations are fixed on the boundary. Images are allowed to have discontinuities as long as
the measure of δ-neighborhoods of the discontinuity set converges to zero for δ → 0.

Existence for multimodal registration

In this section we will address the question of existence for the morphological registration energy
combined with the hyperelastic regularization energy of (3.11)

E[φ] := EM [φ] + αregEreg[φ] + αdistEdist[φ]. (3.20)

Existence of a homeomorphism φ with φ =
�

on ∂Ω has been proved in [103]. In this section
we will follow the strategy presented therein and modify the existence result in order to allow
free boundaries of the transformed domain. In this case, the homeomorphism property is lost,
however it is still injective µ-almost everywhere.

Definition 3.2.9. Let us now define the space of images. We set

I := I (Ω) :=
{

u ∈ C1(Ω̄) : ∃D [u] ⊂ Ω such that ∇u 6= 0 on Ω \Du and µ(Bε(D [u]))
ε→0−→ 0

}

.

For convenience we define DT := DuT
and DR := DuR

. Let us consider the space of admissible

deformations

A
# :=

{

φ ∈ A :

∫

Ω

det∇φ dµ ≤ volφ(Ω)

}

(3.21)

where A was defined in (3.17).



60 CHAPTER 3. MORPHOLOGICAL REGISTRATION

Theorem 3.2.10 (Existence of minimizing deformations). Suppose d = 3, uT , uR ∈ I (Ω),
and consider the total energy E defined in (3.20) for deformations φ in the set of admissible defor-
mations A # from (3.21) where p, q > 3 and r > 1.

(i) Polyconvexity. Suppose W : M
3 ×M

3 × R
+ → R is convex.

(ii) Growth condition. Let there exist constants β, γ, s ∈ R, β > 0, and s > 2q
q−3 such that

W (F ) ≥ β (‖F‖p2 + ‖Cof F‖q2 + (detF )r + (detF )−s) ∀F ∈M
3
+ (3.22)

and E[φ] ≥ γEdist[φ] ∀φ ∈ A
#. (3.23)

(iii) Continuity condition on ω. Assume that ω0(v, w,A) = ω( v
‖v‖ ,

w
‖w‖ , A), for some function

ω : S2 × S2 × R
3,3 → R

+
0 , which is continuous in v

‖v‖ , w
‖w‖ , convex in A and for a constant

m < q the estimate

ω(v, w,A)− ω(u,w,A) ≤ Cω ‖v − u‖ (1 + ‖A‖m2 )

holds for all u, v, w ∈ S2 and A ∈M
3.

Then E attains its minimum over all deformations φ ∈ A # and the mapping is injective in the

sense of (3.19).

Proof. The proof combines the techniques of BALL [14], CIARLET&NEČAS [62] and the singular-
ity control of DROSKE&RUMPF [103].

We observe that the total energy is polyconvex. Furthermore the volume of the neighborhood
setsBε(DT ) andBε(DR) of the singularity sets DT and DR respectively can be controlled. Hence,
we can basically confine to a set, where the integrand fulfills Carathéodory’s conditions.

Let us first recall the weak continuity results for the principle invariants of the Jacobian. In
fact they are the only non linear mappings which are weakly continuous.

Given a sequence of deformations (φk)k in H1,p, with CofDφk ∈ Lq and detDφk ∈
Lr, then we have the following weak continuity results:

φk ⇀ φ in H1,p

CofDφk ⇀ C in Lq

detDφk ⇀ D in Lr






⇒ C = CofDφ and D = detDφ.

For the proof we refer to BALL [13] or the book of Ciarlet [61, Section 7.5, 7.6] or Dacorogna
[79]. The proof of the theorem proceeds in 5 steps:

Step 1. Due to the assumption on the image set I (Ω) we have µ(D(uR)) = µ(D(uT )) = 0
and hence the energyEM [φ] is well defined for all φ ∈ A #. In particular ω0(∇uT ◦φ,∇uR,CofDφ)
is measurable. Obviously

� ∈ A and E[
�
] <∞, thus

E := inf
φ∈A #

E[φ] <∞

and due to (3.22) and the positivity of ω0 we get E ≥ 0. Let us consider a minimizing se-
quence (φk)k=0,1,··· ⊂ A # with E[φk] → infφ∈A # E[φ]. We denote by E an upper bound of
the energy E on this sequence. Due to the growth condition on W we get that the sequence
{

(Dφk,CofDφk, detDφk)
}

k=0,1,···
is uniformly bounded in Lp(Ω)×Lq(Ω)×Lr(Ω). Because of

the reflexivity of Lp × Lq × Lr for p, q, r > 1 we can extract a weakly convergent subsequence,
again denoted by an index k, such that

(Dφk,CofDφk, detDφk) ⇀ (Dφ, C,D)

in Lp×Lq×Lr with C : Ω→ R
3×3, D : Ω→ R. Applying the above results on weak convergence

we achieve C = CofDφ and D = detDφ. Further by (3.23) we can infer on account of Lemma

3.2.7 we obtain that
{

φk
}

k=0,1,···
is uniformly bounded in H1,p(Ω).
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In particular the incorporation of the energy Edist into Etotal ensures the boundedness of
the Lp-norm of the infimizing sequence. For Dirichlet boundary conditions on a subset of ∂Ω,
this could be achieved by a simple application of the Poincaré-inequality. Since Ω has Lipschitz
boundary and p > 3 the Sobolev space H1,p(Ω; R3) is compactly embedded in C 0(Ω̄) by Kon-
drašov’s Theorem (cf. [165, p. 107]). Hence φk converges uniformly and we obtain φ ∈ C 0(Ω̄).

Step 2. Next, we control the set where the volume shrinks by a factor of more than ε for the
limit deformation. Let us define

Sε = {x ∈ Ω : detDφ ≤ ε}

for ε ≥ 0. Let as assume without loss of generality that the sequence of energy values E[φk] is
monotone decreasing and that for given ε > 0 we denote by k(ε) the smallest index such that

E[φk] ≤ E[φk(ε)] ≤ E + ε ∀k ≥ k(ε) .

From Step 1 we know that the sequence Ψk := (Dφk,CofDφk, detDφk) converges weakly
to Ψ := (Dφ,CofDφ, detDφ) in Lp × Lq × Lr. Hence, applying Mazur’s Lemma we obtain
a sequence of convex combinations of Ψk and φk which converges strongly to Ψ and φ in
Lp × Lq × Lr × Lp. Thus, there exists a family of weights ((λki )k(ε)≤i≤k)k≥k(ε) with λki ≥ 0,
∑k

k(ε) λ
k
i = 1, such that

λki Ψ
i → Ψ and λki φ

i → φ .

Now, taking into account the growth conditions, the convexity of W and Fatou’s Lemma we
estimate

βε−sµ(Sε) ≤ β

∫

Sε

(detDφ)−s dµ ≤
∫

Sε

W (Ψ) dµ

=

∫

Sε

lim inf
k→∞

W (λki Ψ
i) dµ ≤

∫

Sε

lim inf
k→∞

λkiW (Ψi) dµ

≤ lim inf
k→∞

λki

∫

Sε

W (Ψi) dµ

≤ lim inf
k→∞

λki

∫

Ω

W (Ψi) + ω0(∇uT ◦ φi,∇uR,CofDφi) dµ

≤ E

and infer µ(Sε) ≤ Ēεs

β . As one consequence µ(S0) = 0 and we know that detDφ > 0 a. e. on Ω.
Step 3. Now, we deal with the singularity set of the image uT . By our assumption on the

image set I (Ω) we know that for given δ > 0 there exist εT > 0 such that µ(BεT (DT )) ≤ δ.
From this and the injectivity (cf. [14, Theorem 1 (ii)]) we especially deduce the estimate

µ
(
φ−1(BεT (DT )) \ Sε

)
≤ 1

ε

∫

φ−1(BεT
(DT ))

detDφ dµ =
1

ε

∫

BεT
(DT )

dµ ≤ δ

ε
.

Hence, we can control the pre-image of Bε(DT ) with respect to φ but restricted to Ω \ Sε. Due
to the continuous differentiability of both images uT and uR we can assume that

‖∇uT (x)‖ ≥ γ(ε) on Ω \Bε(DT ) (3.24)

where γ : R
+
0 → R is a strictly monotone function with γ(0) = 0.

Step 4. Let us now define the set

Rε,δ := φ−1(BεT (DT )) ∪ Sε,

whose measure can be estimated in terms of ε and δ, i.e.

µ(Rε,δ) ≤
δ

ε
+
Ēεs

β
.
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On account of the uniform convergence of φk the sequence (∇uT ◦ φk)k=0,1,··· converges uni-
formly to∇uT ◦φ on Ω\Rε,δ. Next, from the assumption on ω and the 0-homogeneous extension
property of ω0 we deduce that

|ω0(u,w,A)− ω0(v, w,A)| ≤ Cγ ‖u− v‖ (1 + ‖A‖m2 ) (3.25)

for u, v, w ∈ R
3, A ∈ M

3 and ‖u‖ , ‖v‖ , ‖w‖ ≥ γ. To use this estimate for u = uT ◦ φk and
v = uT ◦ φ below, we assume that k(ε) is large enough, such that φk(x) ∈ Ω \ B εT

2
(DT ) for

x ∈ Ω \Rε,δ and

Cγ(
εT
2

)

∥
∥∇uT ◦ φk −∇uT ◦ φ

∥
∥
∞,Ω\Rε,δ

≤ ε

for all k ≥ k(ε). Now we are able to estimate E[φ] using especially the convexity of W and
ω(v, w, ·), the estimate (3.25), the Hölder inequality and Fatou’s Lemma:

E[φ] =

∫

Ω

W (Ψ) + ω0(∇uT ◦φ,∇uR,CofDφ) dµ

≤
∫

Ω

lim inf
k→∞

λkiW (Ψi) dµ+ ‖nT ◦ φ− nR‖Cω
∫

Rε,δ

(1 + ‖CofDφ‖m) dµ

+

∫

Ω\Rε,δ

lim inf
k→∞

λki ω0(∇uT ◦ φ,∇uR,CofDφi) dµ

≤ lim inf
k→∞

λki

∫

Ω

W (Ψi) dµ+ 2Cω



µ(Rε,δ) +

(
∫

Rε,δ

‖CofDφ‖m· q
m dµ

)m
q

· µ(Rε,δ)
1−m

q





︸ ︷︷ ︸

=b(µ(Rε,δ))

+ lim inf
k→∞

λki

∫

Ω\Rε,δ

(

ω0(∇uT ◦ φ,∇uR,CofDφi)− ω0(∇uT ◦ φi,∇uR,CofDφi)

+ ω0(∇uT ◦ φi,∇R,CofDφi)
)

dµ

where b(s) := 2Cω(s + ( Ēβ )
m
q s1−

m
q ). Here we have in particular used the a priori estimate

‖CofDφ‖q,Ω ≤ ( Ēβ )
1
q . We estimate further and obtain

E[φ] ≤ lim inf
k→∞

λki

∫

Ω

(

W (Ψi) + ω0(∇uT ◦ φi,∇uR,CofDφi)
)

dµ+ 2 b(µ(Rε,δ))

+Cγ(
εT
2

) sup
k→∞

∫

Ω\Rε,δ

∥
∥∇uT ◦ φ−∇uT ◦ φk

∥
∥

(

1 +
∥
∥CofDφk

∥
∥
m

2

)

dµ

≤ lim inf
k→∞

λkiE[φi] + 2 b(µ(Rε,δ)) + ε b(µ(Ω))

≤ E + ε+ 2 b(µ(Rε,δ)) + ε b(µ(Ω)) .

For given ε̄ we choose ε and then δ and the dependent εT small enough and k(ε̄) large enough
to ensure that

ε+ 2 b(µ(Rε,δ)) + ε b(µ(Ω)) ≤ ε̄ .

and get E[φ] ≤ E + ε̄. This holds true for an arbitrary choice of ε̄. Thus we conclude

E[φ] ≤ E = inf
φ∈A #

E[φ] .

Step 5. We will sketch how to prove
∫

Ω
detDφ dµ ≤ µ(φ(Ω)) to deduce that φ ∈ A # and

infer that the minimizer is injective almost everywhere, by following the arguments given in
[62]. Let ε > 0 be arbitrary but fixed. Due to the compactness of φ(Ω̄), the properties of the
Lebesgue measure provide an open set Oε such that φ(Ω̄) ⊂ Oε and µ(Oε \φ(Ω̄)) < ε. Due to the
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compactness of φ(Ω̄ \ Rε) one can show that there exists δ = δ(ε) > 0 such that Bδ(φ(Ω̄)) ⊂ Oε
and deduce that there exists k0 = k0(ε), such that

φk(Ω̄ \Rε) ⊂ Oε ∀k ≥ k0, (3.26)

where we used the fact that the sequence φk converges uniformly. The choice of A # and the
inclusion (3.26) implies

∫

Ω

detDφk ≤ µ(φk(Ω̄)) ≤ µ(Oε).

Since detDφk ⇀ detDφ in Lr we infer that
∫

Ω

detDφ dµ = lim
k→∞

∫

Ω

detDφk dµ ≤ µ(Oε) = µ(φ(Ω̄)) + ε

The arguments of Step 2 or the fact that φ ∈ H1,p(Ω; R3), p > 3, d = 3 imply that φ maps sets of
zero volume onto sets of zero volume. Since Ω is a Lipschitz domain, we infer µ(∂Ω) = 0, and
hence µ(φ(Ω̄)) = µ(φ(Ω)). Since ε was arbitrary we can deduce

∫

Ω

detDφ ≤ µ(φ(Ω)).

Since φ ∈ H1,p(Ω; R3) and p > 3, we can apply a theorem of MARCUS&MIZEL[147] to obtain
∫

Ω

detDφ =

∫

φ(Ω)

card (φ−1) dµ

and finally deduce

µ(φ(Ω)) ≤
∫

φ(Ω)

card (φ−1) dµ =

∫

Ω

detDφ ≤ µ(φ(Ω))

which proves (3.19).
�

Remarks 3.2.11.

(i) In Step 1 step a Poincaré type argument for deformations with fixed Dirichlet conditions on a
part ΓD of the boundary was replaced by assumption (3.23).

(ii) Step 2 to Step 4 are almost identical to the proof of existence with fixed boundary of [103].

(iii) Step 5 is necessary to show that the minimizer is in the admissible set. For the details we refer
to [62].

(iv) CIARLET&NEČAS have given an interpretation for the minimizer of the elastic minimization

problem along the boundary, for x ∈ ∂Ω, we have T̂[φ](x) · ν = 0 if there is no contact, and

otherwise T̂[φ](x1) · ν1 + T̂[φ](x2) · ν2 = 0, for φ(x1) = φ(x2) and x1 6= x2. Here, the tensor

T̂ is given by

〈E′[φ];ψ〉 =
∫

Ω

T̂ : Dψ dµ.

Furthermore they have also treated the problem with the presence of an obstacle.

3.3 Variation of the energy

In order to applied a regularized gradient descent method as in Chapter 2, let us now address the
calculation of the variations of the total energy (3.20). For smooth images, the morphological
matching energy does not recognize perturbations of the deformation in normal direction of
the template, i. e., in direction nT ◦ φ, hence there exist stationary points which are arbitrary
close in the set of minimizers (if they exist) when no regularization is considered. The problem
of minimizing the morphological matching energy is hence ill-posed and requires a suitable
regularization.



64 CHAPTER 3. MORPHOLOGICAL REGISTRATION

3.3.1 The hyperelastic regularization energy Ereg

Let us first recall the variation of the hyperelastic regularization energy of the form (3.12). Let
us consider the contributions

Elen[φ] =

∫

Ω

‖Dφ‖p dµ, Esurf [φ] =

∫

Ω

‖CofDφ‖q dµ and Evol[φ] =

∫

Ω

Γ(detDφ) dµ.

Then the variations of Elen and Esurf can be calculated straightforwardly by the chain rule:

〈Elen[φ];ψ〉 = p

∫

Ω

‖Dφ‖p−2Dφ : Dψ dµ

〈Esurf [φ];ψ〉 = q

∫

Ω

‖CofDφ‖p−2Cof Dφ :
〈
Cof ′Dφ;Dψ

〉
dµ.

Here, Cof ′A denotes the Fréchet-derivative of the mapping Cof : R
d,d → R

d,d, A 7→ Cof A. For
the variation of Evol we note that for A ∈ M

d invertible and H ∈ M
d, we have det (A + H) =

detA · det (I + A−1H) = detA · (1 + tr(A−1H) + o(‖H‖)), whence,
〈
det ′(A);H

〉
= detA ·

tr(A−1H) = tr(Cof ATH), so we obtain

〈Evol[φ];ψ〉 =

∫

Ω

Γ′(detDφ)tr
(
(Cof Dφ)TDψ

)
dµ.

3.3.2 The morphological matching energy EM

For the specific form of the integrand 3.14, the variation of the energy is given by the following
theorem.

Theorem 3.3.1. Let nT , nR ∈ C 1(Ω; Rd), and ω be given by

ω = ω̂ ((
� − u⊗ u)Av) where ω̂ : R

d → R convex, (3.27)

then the variation of the morphological matching energy is given by

〈E′
M [φ];ψ〉 = −

∫

Ω

Dω̂
(
P [nT ◦ φ]CofDφnR

)
·
{

(nT ◦ φ · CofDφ nR) ·DnT ◦ φ

+ (nT ◦ φ)⊗ (DnT ◦ φ · CofDφnR)
}

·ψ dµ

+

∫

Ω

Dω̂
(
P [nT ◦φ]CofDφnR

)
·
{

P [nT ◦ φ]
(〈

Cof ′Dφ;Dψ
〉
) · nR

}

dµ

Proof. First, recall that for an energy of the form

E[φ] =

∫

Ω

f(x,φ, Dφ) dµ

the variation is given by

〈E′[φ];ψ〉 =
d

dt
E[φ+ tψ]

∣
∣
∣
t=0

=

∫

Ω

(
d

dt
f(x,φ+ tψ, Dφ)

∣
∣
∣
t=0
· ψ +

d

dt
f(x,φ, Dφ+ tDψ)

∣
∣
∣
t=0

: Dψ

)

dµ.

We first derive w.r.t. φ, setting f(v,A) := ω̂((
� − (nT ◦ v)⊗ (nT ◦ v)) · Cof AnR):

d

dt
f(φ+ tψ, Dφ)

∣
∣
∣
t=0

=
d

dt
ω̂
(
(

� − (nT ◦ (φ+ tψ))⊗ (nT ◦ (φ+ tψ)) · CofDφnR
)
∣
∣
∣
t=0

= −Dω̂
(
P [nT ◦ φ]CofDφnR) ·

[
DnT ◦ φ · ((nT ◦ φ) · Cof DφnR)ψ

+ nT ·
d

dt
(nT ◦ (φ+ tψ) · nR)

∣
∣
∣
t=0

]
.
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where we have first applied the chain rule and the product rule. For n : R
d → R

d and v ∈ R
d,

we calculate further

(n(z) · (D(n(z) · v)))ij = ni(z)(nk,j(z) · vk)j = (n(z)⊗ ((Dn(z))T · v))ij

and obtain

d

dt
(nT ◦ (φ+ tψ) · CofDφ nR)

∣
∣
∣
t=0

= (nT ◦ φ)⊗ (DnT ◦ φ · Cof DφnR)

which yields the first integral. We continue with the derivation with respect to Dφ:

d

dt
f(φ, Dφ+ tDψ)

∣
∣
∣
t=0

=
d

dt
ω̂
(
P [nT ◦ φ] · Cof (Dφ+ tDψ)nR

)
∣
∣
∣
t=0

= Dω̂
(
P [nT ◦ φ] · CofDφnR) ·

P [nT ◦φ]
(
DDφCofDφ : Dψ

)
· CofDφnR

where we again applied the chain rule and used the following formula. For F : R
d,d → R,

A 7→ ω̂(B[A] · v), v ∈ R
d, B : R

d,d → R
d,d, C ∈ R

d,d we have

(〈F [A];C〉)i = (Fi,stCst) = ω̄i(B[A] · v)Bij,stvjCst.

�

3.3.3 The feature energy Edist

It is well known that the gradient of the area functional

e[M] =

∫

M

dA

is given by

〈e′[M]; v〉 =

∫

M

hM(n · v) dA.

Whence for the area functional of the transformed curve φ(Γ)

e[φ] :=

∫

φ(Γ)

dA (3.28)

we infer—assuming that φ is invertible by means of the regularization—that

〈e′[φ];ψ〉 =

∫

φ(Γ)

hφ(Γ)(nφ(Γ) · ψ ◦ φ−1) dA =

∫

Γ

hφ(Γ) ◦ φ(nφ(Γ) · ψ)‖CofDφnΓ‖dA. (3.29)

Here we have applied the transformation rule
∫

φ(Γ)

g dA =

∫

Γ

g ◦ φ‖CofDφnΓ‖dA. (3.30)

On the other hand, the functional in (3.28) is equal to

e[φ] =

∫

Γ

‖CofDφnΓ‖dA,

so we obtain,

〈e′[φ];ψ〉 =

∫

Γ

DDφ‖CofDφnΓ‖ : Dψ dA. (3.31)
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Figure 3.7: Image and the Gauss map and the corresponding grid for the brain slice at scales
σ = h, 2h, 8h.

By combining (3.29) and (3.31) and the fact that Γ was arbitrary, we deduce thatDDφ‖CofDφ‖ :
Dψ = hφ(Γ) ◦φ(nφ(Γ) ·ψ)‖CofDφ‖ almost everywhere. Before we proceed with the derivation
of Edist, transform the integral to ΓR instead of deriving on φ(ΓR):

Edist[φ] =

∫

φ(ΓR)

dist(·,ΓT )2 dA =

∫

ΓR

dist(·,ΓT )2 ◦ φ‖CofDφnΓ‖dA,

and thus, by using the observation from above, we calculate (setting dΓT
:= dist(·,ΓT ))

〈E′
dist[φ];ψ〉 =

∫

ΓR

(

2dΓT
◦ φ∇dΓT

◦ φ‖CofDφnΓ‖ψ + (dΓT
◦ φ)DDφ‖CofDφnΓ‖ : Dψ

)

dA

=

∫

ΓR

(

2dΓT
◦ φ∇dΓT

◦ φ‖CofDφnΓ‖ψ + (dΓT
◦ φ)hφ(Γ) ◦ φ(nφ(Γ) · ψ)‖CofDφnΓ‖

)

dA.

We want to remark that the derivation can also be obtained by applying the derivation rules in
the context of shape sensitivity analysis, in particular equation (5.9).

3.4 Implementation

The implementation of the minimization of the total energy (3.20) is done exactly the way as
described in Section 2.6.7. In order to implement Algorithm 2.6.7, we have to choose a suitable
scale space operator on the normals. We induce a such a scale operator, by first considering a
scale space operator on the images and computing the normals from the images at a coarser
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scale. The natural morphological scale space is given by the mean curvature flow. We define

nσu := nuσ for u = uT , uR

Moreover, the restriction that the measure of flat region of the images is zero cannot be ensured
in practice. To avoid, division by zero, whence undefined normals, we consider the following
approximation to the normalization:

nσ,εu :=
∇uσ

√

‖∇uσ‖2 + ε2
for u = uT , uR and ε > 0.

As in the unimodal case, the smoothed data induces a coarse scale energy Eσ
M

. Alternatively,
one might consider a simple Gaussian filtering by linear diffusion. In fact, the linear smoothing
worked well in practice. The homogenous diffusion in all directions had a favorable effect on the
overall matching algorithm. The effect of Gaussian filtering on the normals is shown in Figure
3.7. As a regularizing metric we chose g = (·, ·)L2 + σ2

2 (∇·,∇·)L2 .

3.5 Results and Discussion

To test a registration approach, one has to study the resulting deformation. Given an image
uR and an image uT , there usually exists a large set of deformations such that the disparity
of uR and uT ◦ φ is small with respect to the matching energy, possibly containing entirely
meaningless deformations. Thus, a true validation cannot be based on the observation of the
deformed template itself. However, in real applications the exact deformation is not known.

Figure 3.3 shows a test example, in which the reference image has been generated by a
deformation of a given template uT (MRT) for a known deformation ψ ∈ A0. Furthermore,
the grey values of the deformed template uT ◦ψ have been transformed under a non-monotone

contrast change β : R → R and finally defined uR := β ◦ uT ◦ ψ. The computed solution φ
now yields a deformed template uT ◦ φ which is shown on the bottom right. The white circles
indicate some regions of interest, we see that visually, the deformed structures are very close
to the shapes of uR, even in regions with low contrast. The advantage of the morphological
registration approach is the independence of contrast, and thus the only driving factor is given
by the geometry. On the other hand, we deduce that dominating edges are neglected entirely.
In Chapter 5 we will enhance the registration approach by taking into account the alignment of
discontinuities1. Finally, Figure 3.4 compares the deformation ψ with the computed result φ.
We observe that the deformation

(i) is regular and injective, i. e., no over-folding occurred,

(ii) captures the structure of the original “exact” deformation ψ.

(iii) In the regions closer to the boundary, the computed solution is closer to the identity than
ψ. This is explained by the fact, that in this regions the images themselves to do not show
any relevant morphological structures, so here the regularization energy dominates.

Figure 3.8 shows an application on a real, multimodal set of data. The reference image is a
section of a CT scan of the human spine, the bone of a particular vertebra is clearly visible and
shown as the bright structures in the center of the image. The template image is an MRT scan
of the same patient and particularly reveals the tissue structure. Still, the major morphological
features are very similar. The white dots mark some dominant visible features in the reference
image, which have been selected by hand. These are shown at the same position in the template
to illustrate the initial misfit.

Due to the complexity of the images, especially the oscillatory textures in the bottom part
of the template and the lack of these structures in the reference, the incorporation of a feature
energy was necessary. Instead of incorporating the feature-based energy into the total energy we

1This is to be understood in the sense of the model of Mumford-Shah.
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proceeded in two steps. This allows to validate the additional effect of the morphological energy
separately. The two images on the bottom show the result after the pre-registration under the
minimization of the feature-energy and the final result by minimizing the combination of the
regularization and the morphological matching energy. Especially in the middle of the image,
one can see a significant improvement of the matching result after the second step.

This is further visualized in Figure 3.9, which shows a striped superposition of the reference
template in comparison to the initial template and the final deformed template. Figure 3.10
shows the corresponding deformations after the first and the second step respectively. Here,
on can see that the pre-registration mainly results in a pure shift, while the final morphological
registration locally aligns significant morphological features.

Finally, in Figure 3.12 the result of a registration of two MR images is shown, the reference
is T1-weighted, while the template is a FLAIR image. Both images were taken from the same
patient. Both images are already geometrically close to each other, so we did not incorporate
the feature based energy. The deformed template matches well to the original reference in
most parts of the image. Even though the morphology is aligned also in the region marked
by the dotted line, the dominant edges are not overlaid well. The registration morphological
energy only measures deviations of the Gauss-maps, the alignment of these features however
would correspond to a shift in normal direction. In such cases, additional modeling of feature
alignment has to be taken into account. This will be the subject of Chapter 5.
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uT ◦φf uT ◦ φ

uTuR

Figure 3.8: Sectional morphological registration on a pair of MR and CT images of a human spine.
Dotted lines mark certain features visible in the reference image. There are repeatedly drawn at

the same position in the other images. TOP LEFT: reference, CT, TOP RIGHT: template, MR, with

clearly visible misfit of structures marked by the dotted lines. BOTTOM LEFT: deformed template
after feature based registration T ◦φf , where φf is the result of a feature based pre-registration (cf.

Figure 3.11 for the feature sets used in this example). BOTTOM RIGHT: deformed template T ◦ φ
after final registration where the dotted feature lines nicely coincide with the same features in the
deformed template MR-image. All images have a resolution of 2572.
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Figure 3.9: Comparison of superimposed template and reference before (LEFT) and after (RIGHT)
registration.

Figure 3.10: LEFT: deformation after the pre-registration solely based on the feature energy. RIGHT:

final deformation after the registration including feature and morphological matching energy.

Figure 3.11: Feature sets serving as a rough guidance of the matching process.
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uR uT

uR, uT ◦ φuR, uT

After registration

Initial misfit

Figure 3.12: Registration of a T1-weighted MR-image (TOP LEFT) against an MR-image with
FLAIR weighting (TOP RIGHT) . The initial misfit and the final registration result are shown in the

(BOTTOM LEFT) and (BOTTOM RIGHT) parts respectively.
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Chapter 4

Γ-Convergence of perturbed registra-
tion energies

WE have considered mainly two kinds of perturbations of the registration energies Em and
EM in Chapters 2 and 3, namely to instate a scale-space on the data and to add an addi-

tional regularization energy (Tikhonov regularization). So far, these approximations were based
on heuristic arguments and their applicability was only confirmed by numerical results. The aim
of this chapter is to verify a variational convergence of these perturbations, or, more precisely, to
study the behavior of the minimizers when the scale parameter and the regularization parameter
go to zero.

The convergence of variational functionals is a central interest in many research areas as for
example, homogenization, phase transitions, non-smooth analysis and approximation of varia-
tional functionals.

Γ-convergence as introduced by DI GIORGI is probably the most general notion of variational
convergence and provides a well-developed framework for a large class of problems. In this
chapter we will first recall the definition of Γ-convergence and its basic properties, that will be
need in the forthcoming sections. For further results and applications, we refer the interested
reader to the books of DAL MASO [80] and BRAIDES [33] for comprehensive overviews. In
Section 4.2 we will see that it is not difficult to verify, that for a given lower semicontinuous
functional E the sequence of Tikhonov-regularized functionals α−1E+Ereg converges to a func-
tional whose set of minimizers is optimal with respect to the regularization with vanishing energy
E. This confirms the interpretation of the rôle of the regularization energy to impose a choice
criterion. In Section 4.3 we will study the variational convergence of the perturbations given by
the coarsened energies by means of the scale-space methodology in case of the unimodal energy.

4.1 The notion of Γ-convergence

Definition 4.1.1 (Γ-convergence). Let (A , d) be a metric space. We say, that a sequence Eα :
A → R of functionals Γ-converges to E : A → R := R∪{−∞,∞}, iff for all φ ∈ A , the following

two conditions hold.

(i) (lim inf inequality) For every sequence (φα)→ φ in A

E[φ] ≤ lim inf
α→∞

Eα[φα]. (4.1)

(ii) (lim sup inequality) There exists a sequence (φα)→ φ in A , such that

E[φ] ≥ lim sup
α→∞

Eα[φα]. (4.2)

This sequence is called a recovering sequence of φ.
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The definition can also be formulated using a continuous index.

We will need the following results and definitions (cf. Dal Maso [80, Def. 7.6]).

Definition 4.1.2. The sequence (Eα) is equi-coercive on the space A if for every t ∈ R there exists
a closed countably compact subset Kt of A , such that {Eα ≤ t} ⊆ Kt for every α > 0.

Lemma 4.1.3. The Γ-limit is lower semicontinuous.

Definition 4.1.4. For ε > 0 and E ∈ A we define

Mε[E] := {φ ∈ A |E[φ] ≤ inf
ψ∈A

E[ψ] + ε} and

M [E] := {φ ∈ A |E[φ] = inf
ψ∈A

E[ψ] } =
⋂

ε>0

Mε(E) .

An important, fundamental consequence of Γ-convergence along with equi-coercivity is the fol-
lowing theorem (see [80, Th. 7.23]).

Theorem 4.1.5. Suppose that (Eα) is equi-coercive and Γ-converges to a functional E on A . Then
for every neighborhood U of M(E) in A there exists ε > 0 and α > 0 such that

M(Eβ) ⊆Mε(Eβ) ⊆ U (4.3)

for every 0 < β < α. If, in addition, E is not identically +∞ , then for every φ ∈ M(E), for every

neighborhood V of φ and every ε > 0 there exists α > 0 such that

Mε(Eβ) ∩ V 6= ∅ (4.4)

for every 0 < β < α.

Or analogously

Theorem 4.1.6. Let (A , d) be a metric space, (Eα) be a sequence of equi-coercive functionals on

A , and let E := Γ− limα→0Eα, then

∃ min
A

E = lim
α→0

inf
A
Eα.

Moreover, if (φα) is a precompact sequence such that

lim
α→0

Eα[φα] = lim
α→0

inf
A
Eα,

then for every converging subsequence φα → φ, φ is a minimum point of E, i. e., φ ∈ argminEα.

4.2 Tikhonov regularization

In Section 1.4.1 we proposed to use Tikhonov regularization for the regularization of registration
problems. From the combination (1.10) we see that the matching energy and the regularization
are competing against each other:

Etotal,α[φ] = Em[φ] + αEreg[φ]

In (3.20) we combined the morphological registration energy with the non-quadratic polyconvex
regularization energy. A strong regularization energy will hence lead to a very smooth minimizer,
but this minimizer may be far from minimizing Em. The regularization parameter α controls the
trade-off of these energies, the proper choice of α is however a non-trivial task. In Section 1.4.1
we have also pointed out, that for linear problems, Tikhonov regularization corresponds to the
computation of the least-squares solution (w.r.t. to a specific norm) of Ematch = Em (unimodal
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matching energy) or Ematch = EM (the morphological matching energy of Chapter 3), i. e., for
a norm ‖ · ‖A on A :

find φ ∈ A such that ‖φ‖2A = inf
ψ∈M [Ematch]

‖ψ‖2A.

This requires A to be a Banach-space. The framework of Γ-convergence, however requires A

only to be a metric space. One may ask, under which conditions the minimization of Etotal,α

corresponds to the problem

Find φ ∈ A such that Ereg[φ] = inf
ψ∈M [Ematch]

Ereg[ψ].

Let us defineE := infψ∈A Ematch[ψ]. From now on we assume thatEmatch is lower-semicontinuous,
and that Ereg is coercive and lower-semicontinuous with respect to the chosen topology, e. g., the
weak topology of H1,p(Ω; Rd) as in Section 3.

Remark 4.2.1. As a consequence α−1(Ereg[φ]−E) +Ematch[φ] it is also lower semicontinuous for
all α > 0.

Remark 4.2.2. Since Eα ≥ Ereg, and Ereg is lower semicontinuous and coercive, the equi-coercivity

follows by Proposition 7.7 in [79].

First, we see that the family Etotal,α, α > 0 is not equi-coercive since the coercivity induced
by Ereg is scaled with α. However, we obtain an equi-coercive functional by defining

Eα[φ] := α−1(Ematch[φ]−E) +Ereg[φ], (4.5)

where we assume E > −∞. Furthermore we define

E[φ] :=

{
Ereg[φ] , Ematch[φ] = E
∞, otherwise .

(4.6)

It is then not difficult to verify the following Γ-convergence result.

Theorem 4.2.3. Γ− lim
α→0

Eα = E.

Proof. We will verify the inequalities of Definition 4.1.1. (i) For the lim inf inequality, we have
to show that

E[φ] ≤ lim inf
α→0

α−1(Ematch[φα]−E) +Ereg[φα]

for all φ ∈ A and all φα → φ in A .

Case (a) E[φ] <∞: That follows directly from the remark 4.2.1 and the fact that,

lim inf
α→0

(
α−1(Ematch[φα]−E) +Ereg[φα]

)

≥ lim inf
α→0

(Ematch[φα]−E +Ereg[φα]) ≥ lim inf
α→0

Ereg[φα] ≥ E[φ].

Case (b) E[φ] =∞: We observe

lim inf
α→0

(
α−1(Ematch[φα]−E) +Ereg[φα]

)

= lim inf
α→0

(

α−1(Ematch[φα]−Ematch[φ]
︸ ︷︷ ︸

≥0

) + α−1(Ematch[φ]−E
︸ ︷︷ ︸

>0

) +Ereg[φα]
)

=∞+ lim inf
α→0

Ereg[φα] = E.
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(ii) We have to show that for each φ ∈ A , there exists a sequence (φα), φα ∈ A with φα → φ,
such that

E[φ] ≥ lim sup
α→0

α−1(Ematch[φα]−E) +Ereg[φα].

Case (a) E[φ] =∞: Directly fulfilled.

Case (b) E[φ] <∞: By choosing φα := φ, we obtain Ematch[φ] = E, and hence

lim sup
α→0

(
α−1(Ematch[φα]−E) +Ereg[φα]

)
= 0 +Ereg[φ].

�

Remark 4.2.4. This theorem is only interesting if Ematch has minimizers in A , since otherwise the

limit E is always +∞. Since the Γ-limit is unique, this however allows to deduce that in case Ematch

does not have a minimizer, Eα will eventually converge to the functional E ≡ +∞, and indicates
once more that regularization is absolutely essential.

By Lemma 4.1.3, E is lower semicontinuous, however the direct minimization of E seems
to be impossible in practice since it corresponds to the minimization of Ereg over the set of
minimizers of Ematch. The minimization of Eα for small α renders this problem to be feasible
in practice. We conclude that for α → 0 and eventually choosing a converging subsequence of
this sequence, it is possible to obtain the optimal minimizer with respect to the regularization,
which is can be interpreted as an analogue to the concept of the Moore-Penrose inverse.

4.3 Multiscale perturbation of the unimodal matching energy

In this section, we want to study the matching functionals Eσm defined in Eq. (2.16) with respect
to Γ-convergence. The smoothing via a scale-space operator Sσ is essential for the matching al-
gorithm, especially when the images have discontinuities (see the detailed treatise of the subject
in the work of RUMPF [179]). It would be an intolerable restriction to define matching prob-
lems only on smooth images. The smoothed version SσuT renders the gradient flow feasible to
computational gradient descent methods. Let us now define a suitable function space of images
which allows to have discontinuities, which can be represented by the union of finitely many
Lipschitz curves.

Definition 4.3.1 (Function space of images).

I
1(Ω) :=

{

u : Ω→ R

∣
∣
∣u ∈ L∞(Ω), ∃α ∈ (0, 1], J ⊂ Ω,m ∈ N,

H
n−1(J) <∞, Ji of class C

0,1 s. t. H
n−1
(

J −
m⋃

i=1

Ji

)

= 0, u ∈ C0,α(Ω \ J)
}

.

Note that the definition implies I 1(Ω) ⊂ SBV (Ω) and that µ(Bε(Su))
ε→0−→ 0.

Theorem 4.3.2. Suppose d = 3, uT , uR ∈ I 1(Ω). Consider the matching energy

Em[φ] :=

∫

Ω

|uT ◦ φ− uR|2 dµ (4.7)

and the regularized matching energy

Eσm[φ] :=

∫

Ω

|Sσ(uT ) ◦ φ− Sσ(uR)|2 σ > 0, (4.8)

where Sσ denotes a scale operator at scale σ > 0, fulfilling the following properties

(i) ‖Sσu− u‖L2(D) → 0 for σ → 0, u ∈ I (Ω) and D ⊂ Ω Lipschitz domain.
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(ii) ∃0 < α ≤ 1, s. t. for all u ∈ C 0,α(D) we have a constant C depending on u with

sup
σ
‖Sσu‖C 0,α(D) ≤ C(u).

Furthermore we consider the polyconvex regularization energy

Ereg [φ] :=

∫

Ω

W (Dφ,CofDφ, detDφ) dµ, (4.9)

and the overall energies

E[φ] := Em[φ] +Ereg [φ] and Eσ [φ] := Eσm[φ] +Ereg[φ] (4.10)

defined for all φ in

A0 = {φ : Ω→ Ω
∣
∣ φ ∈ H1,p(Ω),CofDφ ∈ Lq(Ω),

detDφ ∈ Lr(Ω), detDφ > 0 a.e. in Ω, φ =
�

on ∂Ω}

where p, q > 3 and r > 1. Suppose W : M
3 ×M

3 × R
+ → R is convex and there exist constants

β, s ∈ R, β > 0, and s > 2q
q−3 such that

W (A,C,D) ≥ β (‖A‖p2 + ‖C‖q2 +Dr +D−s) ∀A,C ∈M
3, D ∈ R

+. (4.11)

Then

Γ− lim
σ→0

Eσ = E in X := A ∩ E < M.

Proof. The proof relies on many techniques already used in the existence proof in [179], espe-
cially the restriction to the complement of a set whose measure is arbitrary small.

Due to Rellich’s embedding theorem φσ ⇀ φ in H1,p(Ω; Rd) implies the strong convergence
of φσ → φ in Lp(Ω; Rd). By Sobolev’s embedding theorem, we know that A ⊂ C 0(Ω̄, Ω̄) and
hence that φσ ⇒ φ (uniform convergence). Now, for δ > 0, we choose εT , εR, such that
µ(BεT (ST )) < δ, µ(BεR(SR)) < δ. Furthermore, we set

Sε := {detDφ ≤ ε} ,

Using the change of variables formula for Sobolev functions given p > n, the Lebesgue measure
of Sε can be estimated (cf. [179]) by µ(Sε) ≤ Mεs

β . Similarly the measure of the pre-image of
the neighborhood of the singularity set of uT can be estimated by

µ(φ−1(BεT \ Sε) ≤
δ

ε
.

We define

Rε,δ := φ−1(BεT (ST )) ∪ BεT (SR) ∪ Sε,

whose measure can be estimated by

µ(Rε,δ) ≤
δ

ε
+ δ +

Mεs

β

and since µ is a Radon measure, we one can find an open set U , such that Rε,δ ⊂ U , and µ(U \
Rε,δ) arbitrary small, and furthermore, since µ is the Lebesgue measure, we can approximate U
by an overlapping of the union of a countable number of d-dimensional cubes, we find an open
set R̂ε,δ with Lipschitz boundary and U ⊂ R̂ε,δ, such that

µ(R̂ε,δ) ≤ µ(Rε,δ) + ε

and observe that (uT ◦φσ −uR) converges uniformly to uT ◦φ−uR on the compact set Ω̄ \ R̂ε,δ,
due to the uniform continuity of uT and uR on that set.
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(i) We start by showing, the lim inf-inequality (4.1), that is

E[φ] ≤ lim inf
σ→0

Eσ[φσ ] ∀φσ ⇀ φ in H1,p

and estimate by recalling that uT , uR ∈ L∞:

(Em[φ])
1
2 ≤ ‖uT ◦ φ− uR‖L2(Ω̄\R̂ε,δ) + C∞η(µ(R̂ε,δ))

≤ C∞η(µ(R̂ε,δ))

+ ‖uT ◦ φ− uR − Sσ(uT ◦ φ− uR)‖L2(Ω̄\R̂ε,δ) (I)

+ ‖Sσ(uT ◦ φ)− Sσ(uT ) ◦ φ‖L2(Ω̄\R̂ε,δ) (II)

+ ‖Sσ(uT ) ◦ φ− Sσ(uT ) ◦ φσ‖L2(Ω̄\R̂ε,δ) (III)

+ ‖Sσ(uT ) ◦ φσ − Sσ(uR)‖L2(Ω̄\R̂ε,δ)

≤ C∞η(µ(R̂ε,δ)) + (I) + (II) + (III)

+ ‖Sσ(uT ) ◦ φσ − Sσ(uR)‖L2(Ω) + C∞η(µ(R̂ε,δ))

where η(s)→ 0 for s→ 0. Clearly (I)→ 0 for σ → 0.
To treat (II), we further estimate

(II) ≤ ‖Sσ(uT ◦ φ) − uT ◦ φ‖L2(Ω̄\R̂ε,δ) + ‖uT ◦ φ− Sσ(uT ) ◦ φ‖L2(Ω̄\R̂ε,δ).

The first summand clearly goes to 0 for σ → 0. Since detDφ > ε on Ω \ R̂ε,δ, we get

∫

Ω̄\R̂ε,δ

|uT ◦ φ− Sσ(uT ) ◦ φ|2 dµ =

∫

φ(Ω̄\R̂ε,δ)

|uT − Sσ(uT )|2(detDφ)−1 dµ

≤ µ(Ω)

ε

∫

Ω\BεT
(ST )

(cardφ−1)|Sσ(uT )− uT |2 dµ −→ 0 for δ → 0.

To estimate (III) we first observe that uT restricted to Ω \ R̂ε,δ is in C0,α(Ω \ R̂ε,δ), so that the
set {Sσ(uT ) : σ > 0} is bounded in C0,α(Ω \ R̂ε,δ) and thus is equi-continuous. We know that
φσ converges uniformly to φ0 on Ω, hence

(III) = ‖Sσ(uT ) ◦ φ− Sσ(uT ) ◦ φσ‖L2(Ω̄\R̂ε,δ) −→ 0

for σ → 0. For given arbitrary ε̄, one can choose ε, δ, εT , εR such that

Em[φ] ≤ ε̄+Eσm[φσ ]

for 0 < σ < σ(ε, δ, ε̄) sufficiently small. Due to the weak lower-semicontinuity of Ereg and its
independence of σ, we find

Em[φ] +Ereg [φ] ≤ lim inf
σ→0

Eσm[φσ ] + lim inf
σ→0

Ereg [φσ ] ≤ lim inf
σ→0

Eσ [φσ ] + ε̄

for ε̄ > 0 arbitrary, which is the desired result of the lim inf inequality.
(ii) To show the lim sup-inequality (4.2), we set φσ := φ and obtain:

(∫

Ω

|Sσ(uT ) ◦ φσ − Sσ(uT ◦ φ)|2
) 1

2

≤ ‖Sσ(uT ) ◦ φ− Sσ(uR)‖L2(Ω̄\R̂ε,δ)

+‖Sσ(uT ◦ φ− uR)‖L2(Ω̄\R̂ε,δ) + C∞η(µ(R̂ε,δ))

≤
√

µ(Ω)

ε
‖Sσ(uT )− uT ‖L2(Ω̄\R̂ε,δ)

+‖Sσ(uR)− uR‖L2(Ω)

+‖uT ◦ φ− uR‖L2(Ω) + C∞µ(R̂ε,δ)

≤ ε̄+ ‖uT ◦ φ− uR‖L2(Ω)
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for arbitrary ε̄, if ε, δ, εT , εR are chosen appropriately small and 0 < σ < σ(ε, δ, ε̄) sufficiently
small. Here we used again the estimate for (II) from the first part. Hence, we arrive at the
desired lim sup-inequality

lim sup
σ→0

Eσ [φσ ] = lim sup
σ→0

Eσm[φ] +Ereg [φ] ≤ Em[φ] +Ereg [φ]

and we conclude the desired Γ-convergence of Eσ to E. �

Remark 4.3.3. We have to address the equi-coercivity, in order to apply Theorem 4.1.5. Due to
the growth condition of W and its independence on σ, Eσ is equi-coercive. Hence, we know that all

the converging subsequences of the sequence φσ of minimizers of Eσ converge to a minimizer of E.
Furthermore this process can be regarded as a choice process for the selection of minimizers out of

the overall set of minimizers of E.
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Chapter 5

Mumford-Shah based registration

MORPHOLOGICAL registration aims at aligning the level sets of the reference image with
the level sets of the deformed template. Until now we have ignored the fact that dominant

edges, that can be mathematically interpreted as discontinuities with a sufficiently “large” jump
in the images can also be regarded as belonging to the morphological description of an image,
even though this is not reflected by the definition of M [I ]. In fact our visual perception is
well trained at detecting edges in natural images. In areas of smooth transitions, we are rather
sensible to shapes and textures. In this chapter we will enhance the registration model by
discontinuity alignment.

5.1 A coupled free discontinuity problem of Mumford-Shah

type

Let us reconsider the functional of MUMFORD & SHAH from (1.4):

EMS(u,Γ) =

∫

Ω

(u− u0)
2dx+

µ

2

∫

Ω\Γ

‖∇u‖2 dµ+ νH n−1(Γ).

The mathematical treatment of this energy is subtle. It has to be minimized over the set of
admissible curves Γ and admissible u simultaneously. However, it is not possible to obtain
lower-semicontinuity of the Hausdorff measure within a reasonable topology of subsets of Ω.

Existence theory for (1.4) is established by DE GIORGI, CARRIERO AND LEACI [83] who pro-
posed to consider the minimization of the energy depending on u only, and the set of admissible
sets is chosen as SBV (Ω), the space of functions of bounded variation u for which the measure
Du can be written as Du = ∇uµ+ (u+ − u−)nH d−1|S(u), i. e., the Cantor part of the support
of the singular part of the measure known from BV functions, is empty [8]. u+ and u− denote
the approximate lim sup resp. lim inf of u. The energy is integrated over the entire domain Ω
and Γ is now represented by Su the complement set of Lebesgue points of u, i. e. the measure
theoretic discontinuity set of u. It is well known (cf. AMBROSIO, PALLARA, FUSCO [8]) that
using the compactness of SBV (Ω) and lower-semicontinuity theorems, that under mild condi-
tions there exists a solution u ∈ SBV (Ω) with Hn−1(Su) <∞. Especially due to the complexity
of discretizing the singularity set, various approximations Eε of the Mumford-Shah functional
have been introduced for which Γ-convergence results are known (cf. e. g. [10, 11, 28, 176]).
AMBROSIO AND TORTORELLI [11] for example have proposed a phase-field type regularization
and introduced an auxiliary variable which itself is regularized by an elliptic functional. We also
refer to [197, 76, 77, 115] for further extensions based on the Mumford-Shah functional.

5.2 The interdependence of registration and segmentation

From a more general point of view, the proposed approach corresponds to a simultaneous de-
tection of image features which ought to be coupled by a deformation. The subtlety of this
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approach is that both the contour in the reference as well as the deformation are unknowns. If
no further energy contributions acting on the deformation were present, this would be equiv-
alent to finding the contours in both images separately and a deformation a-posteriori which
maps the reference contour to the template contour.

However, this would have serious disadvantages: Edge extraction is a very subtle process,
it usually relies on indicators derived from differential operators (e. g. gradients or the image
Hessian, which is needed for example for DERICHE’s filter or CANNY’s edge detector) or local
integral operators such as moments [74]. Most of those edge detectors act local. The set of
detected edges is often disrupted and irregular, and furthermore they are most often given by
binary indicators, hence information about weak edges is destroyed and often neglected. Let
us first assume that we enrich the image space by overlaying several images, which have been
registered perfectly in a pre-processing step. Features which are very weak and hardly visible
in one of the images might be clear and salient in the other image. A feature detection model
may now exploit the complementary information of both images, and only reject possible edges
if some statistical or geometrical indicators are weak in all images. Clearly, this approach would
make the whole process of feature detection much more stable. If the images are not previously
aligned, we have to incorporate the deformation as a further unknown, and the whole process
can be described as follows:

Given a pair of images, a reference and a template image, we aim to find a
deformation and, simultaneously, a set of features, in such a way, that this set

describes the features in the reference image well and the transformed feature
set corresponds to the template image. Furthermore, the deformation as well

the edge set should be as “simple” as possible.

In this formulation, the deformation is only determined on the set itself. Eventually we aim
at a smooth extension of this deformation to the rest of the image domain in order to obtain a
mapping of the images also away from the feature sets. Let us emphasize, that this problem can
in no way be split equivalently into separate processes of feature extraction and registration,
since both processes interdepend on each other.

In the following we will describe in more mathematical detail what is meant by feature
extraction, simplicity of the edge set and simplicity of the deformation.

5.3 The idea of coupling the free discontinuity sets

By the minimization of the Mumford-Shah functional we will obtain an approximation of the
discontinuity sets of u0. Note that u0 is perturbed by noise and only in L2(Ω) and may thus have
an arbitrarily bad set of discontinuities. On the other hand if u0 ∈ BV , then for µ, α small, the
discontinuity set of uwill be close to that of u0. Apart from the discontinuities, the morphological
registration energy may be active, but additionally we want to ensure that the discontinuity set
S(uR,0) will be mapped onto the discontinuity set of uT , i. e., φ(S(uR,0)) = S(uT,0). Here and
in the rest of this thesis we denote—with slight abuse of earlier notation—the data by uR,0 and
uT,0 to conform to the usual notation in this framework. Instead of formulating this problem in
SBV (Ω) we will analogously treat the geometric variable Γ and the functional variables uT , uR
and φ independently. See for example the book of AUBERT & KORNPROBST[12] or the book of
BRAIDES [32] for a comprehensive overview. Alignment of the singularity set can be achieved
by minimization of the following functional [101]:

ẼMS(Γ,φ, uR, uT ) =
1

2

∫

Ω

(uR − uR,0)2 dµ+
µ

2

∫

Ω\Γ

‖∇uR‖2 dµ+
ν

2
H

d−1(Γ)

+
1

2

∫

Ω

(uT − uT,0)2 dµ+
µ

2

∫

Ω\Γφ

‖∇uT‖2 dµ+
ν

2
H

d−1(Γφ). (5.1)

Here Ω ⊂ R
d is the domain of definition of the images with d = 2, 3, uT,0, uR,0 ∈ L∞(Ω) are

the given template images, Γ ⊂ Ω is (an approximation of) the edge set of the given image uR,0
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Figure 5.1: Multimodal complementary registration. The two images on the left show the initial
contour Γ in the images uR and uT where the initial deformation is the identity. On the right of the

initial images, the resulting contours, coupled by the deformation (right image) are shown after 75
steps of the regularized gradient descent.

and Γφ = φ(Γ) is the transformed edge-set Γ under the transformation φ. In the following we
assume that Γ = ∂D for an open set D with D ⊂ Ω.

We see, that the deformation is obviously not uniquely determined by this condition, not
even on the edge set itself, since reparametrization along the singularity set does not change
the energy. Furthermore, the energy does not consider the behavior of φ away from the edge
set. If we do not combine this energy with another registration energy that influences the
deformation away from the singularity set, we have to incorporate an additional regularization
energy, which ensures that the deformation is suitably extended into Ω \ Γ. In order to avoid
technical difficulties we avoid the length-measurement of Γφ and solely measure the length of
Γ:

EMS(Γ,φ, uR, uT ) =
1

2

∫

Ω

(uR − uR,0)2 dµ+
µ

2

∫

Ω\Γ

‖∇uR‖2 dµ+ νH d−1(Γ)

+
1

2

∫

Ω

(uT − uT,0)2 dµ+
µ

2

∫

Ω\Γφ

‖∇uT ‖2 dµ. (5.2)

Let us point out, that the proposed free discontinuity based approach is only a template study
which fits into the general formulation of the joint feature extraction and registration problem.
Different classes of images may require different models to drive the contour Γ towards the sig-
nificant features of the images, e. g. a geodesic active contour model as proposed by CASELLES,
KIMMEL AND SAPIRO [44], which would lead to a coupled energy of the form

Eac(Γ,φ) =

∫

Γ

gRdH
d−1 + ν

∫

Ω

gRdx+

∫

Γφ

gT dH
d−1 + ν

∫

Ω

gT dx, (5.3)

where gR and gT correspond to some suitable edge detectors in the images uR and uT . A com-
mon choice is, for example, gu(x) = (1+s|∇u(x)|2)−1, s > 0. The idea of coupling segmentation
with registration has also been pointed out by Yezzi, Zöllei and Kapur [134]. They have shown
results for the coupling of the geodesic contour model and registration.

In the remainder of this chapter we will present a level set approach by treating the problem
as a shape optimization problem, formulate a phase-field approximation of the energy in the
spirit of the well-known AMBROSIO & TORTORELLI-approximations, and do a comparison of
both methods.



84 CHAPTER 5. MUMFORD-SHAH BASED REGISTRATION

5.4 An interface model using level sets

In this section we will describe a level set model for the coupled free discontinuity problem
(5.2). We will first restrict ourselves to edge sets which are the union of finitely many Jordan-
curves. In this case, the feature set can be viewed as the boundary of detected segments, which
are mapped to similar segment boundaries in the second image. For a large class of images,
this is a very suitable and convenient approach, since images can often be decomposed into a
finite set of independent objects. However this is not always the case. Crack tips might occur
not only due to weak edge information but due to the fact that the image contains disrupted
discontinuity sets.

For many practical registration problems, we can confine to such simple interface sets, espe-
cially if we want to restrict ourselves to dominant feature sets. The complexity of the images
may render the aim of mapping all features onto each other unrealistic and inappropriate.

In a shape optimization framework, we would start with an initial feature set and evolve it
according to a regularized energy minimization method. The curve may be elegantly described
and propagated by the level set approach of OSHER and SETHIAN [169, 170]. In [129] HINTER-
MÜLLER & RING have derived a level set based Newton-Type regularized optimization algorithm
for minimizing the Mumford-Shah functional. That work is the algorithmical basis for our joint
free discontinuity problem for registration. For related approaches we refer to [55, 53, 54, 129].

We consider Γ to be given as the zero level set of the level set function uΓ : Ω→ R, i. e.,

Γ =M0[u] = {uΓ = 0} .

Furthermore we set Ω1 := {u < 0} and Ω2 := {u > 0}.

5.4.1 Regularization

As pointed out earlier the transformation φ is not determined by the functional (5.2) on the
entire domain Ω. Thus, we incorporate an additional regularization energy Ereg which ensures
that the deformation is smoothly extended into Ω \ Γ.

We write φ =
�

+ d where u is understood as the pure displacement vector field, i. e.,
the deviation from the identity. Depending on the context we will either use d or φ as the
optimization variable.

Let us again consider a Tikhonov-type regularization of the form

E(Γ,φ, uR, uT ) = EMS(Γ,φ, uR, uT ) + αEreg(φ). (5.4)

Here, Tikhonov regularization has a prominent rôle in comparison to regularized gradient flows
and multiscale methods. Only this type of regularization ensures a meaningful continuation of
the deformation on the edge set to the rest of the domain.

If we would—only hypothetically—consider a set of admissible deformations which is fixed
along Γ then a Dirichlet type regularization would correspond to harmonic interpolation of the
deformation within the subregions. Naturally, we also want to regularize the deformation along
the edge set itself.

In the context of aligning feature sets we want the transformed contour Γφ to have the same
topology as Γ. This means that we have to ensure that the deformation is one-to-one in a
neighborhood of Γ, so the polyconvex registration techniques, which were described in detail in
Section 3.2.1 are again a very convenient and suitable regularization.

In the remainder of this chapter, we will focus on the registration energy and for the sake of
clarity we will consider the Dirichlet-type regularization energy:

Ereg[φ] = ‖Dφ‖2L2(Ω;Rd) =

∫

Ω

‖Dφ‖2 dµ.

5.4.2 The reduced functional

The functional (5.4) depends on the variables uR, uT , φ and Γ. In the process of minimiza-
tion we may devise different strategies for the different variables. Fortunately the functional is
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quadratic in the variables uR and uT . Hence, we may minimize (5.4) for fixed Γ and φ over im-
age spaces of uR and uT . Let us now denote by uR(Γ) and uT (Γ,φ) the minimizers of (5.4) for
fixed Γ and φ, which are obtained as the solution of a simple quadratic optimization problem.
Now we can define the following reduced functional

Ê(Γ,φ) = E(Γ,φ, uR(Γ), uT (Γ,φ)). (5.5)

It is obvious that the minimizer with respect to uR depends only on Γ, whereas the minimizer
with respect to uT depends also on u via the domain of integration Ω \ Γφ. We specify the
functional spaces for the variables uR and uT as uR ∈ H1,2(Ω \ Γ) and uT ∈ H1,2(Ω \ Γφ). By
first variation of the energy with respect to uR and uT and the fact that the energy is convex
with respect to those variables, we obtain the sufficient conditions of optimality:

0 =

〈
∂E

∂uR
;ϕ

〉

H−1,2(Ω\Γ)×H1,2(Ω\Γ)

= µ

∫

Ω\Γ

∇uR · ∇ϕ dµ+

∫

Ω

(uR − uR,0)ϕ dµ ∀ϕ ∈ H1,2(Ω \ Γ) (5.6)

for uR = uR(Γ) and for uT = uT (Γ, u) we obtain similarly

0 =

〈
∂E

∂uT
;ϕ

〉

H−1,2(Ω\Γφ)×H1,2(Ω\Γφ)

= µ

∫

Ω\Γφ

∇uT · ∇ϕ dµ+

∫

Ω

(uT − uT,0)ϕ dµ ∀ϕ ∈ H1,2(Ω \ Γφ). (5.7)

We obtain the following Euler-Lagrange equations for uT and uR:

−µ∆uR + uR = uR,0 in Ω \ Γ, −µ∆uT + uT = uT,0 in Ω \ Γφ,
∂νuR = 0 on Γφ, ∂νuT = 0 on Γ.

5.4.3 Shape sensitivity calculus

In this section, let us give a brief overview on the calculus of variations for energies which
depend on a subdomain of Ω, for instance a “thick” subdomain (with a positive Lebesgue mea-
sure) or a hypersurface. Details can be found in the books of SOKOŁOWSKI & ZOLÉSIO [189] or
DELFOUR & ZOLÉSIO [92]. Furthermore the Appendix of [129] gives a nice overview.

For a smooth vector field v : Ω→ R
d let us first consider the initial value problem

X ′(t) = v(X(t)), (5.8)

X(0) = X0,

for X0 ∈ Ω. The flow Tt : Ω → R
d (with respect to v is then defined as Tt(x) = X(t), where is

X(t) is the solution of (5.8) with X0 = x. For a functional E : E → R, and a fixed perturbation
vector field v, the Eulerian derivative is defined by

〈dE[Γ]; v〉 = lim
t↘0

E[Tt(Γ)]−E[Γ]

t
.

Here E denotes a suitable space of interfaces. The functional E is said to be shape-differentiable
at Γ if the limit exists for all v ∈ B, where B is a Banach space of perturbation vector fields.

We will need the following lemma ( cf. [189]).

Lemma 5.4.1. Let Γ be a C 1-hypersurface, and θ ∈ H2
loc(R

d). Then the functional

E[Γ] =

∫

Γ

θ dA
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is shape differentiable for any perturbation v ∈ C 1
0 (Rd) and the shape derivative is given by

〈E′[Γ]; v〉 =

∫

Γ

(

∇θ · v + θdivΓv
)

dA

=

∫

Γ

( ∂θ

∂nΓ
+ θh

)

v · nΓ dA

(5.9)

where nΓ denotes the normal to the interface Γ. Note that the orientation of Γ does not influence
the value of the integral. h denotes the mean curvature of Γ.

Definition 5.4.2 (material derivative). Let θ(Ω) ∈ B(Ω) for all Ω ⊂ R
d open, ∂Ω ∈ E , where

B(Ω) is some Banach space of functions on Ω, furthermore let v ∈ C 1
0 (Rd,Rd) be given. We call the

limit

Dθ

dt
:= θ̇ := lim

t↘0

θ(Ωt) ◦ Tt − θ(Ω)

t

(weak) material derivative, if it exists in the strong (weak) topology of B(Ω).

For a function θ which does not depend on Ω, we have θ̇ = ∇θ · v. This gives rise to the
following

Definition 5.4.3 (shape derivative). If the weak material derivative and ∇θ(Ω) · v exist in B(Ω),
then we set

θ′(Ω) = θ̇(Ω; v)−∇θ(Ω) · v
and call it shape derivative of θ at Ω in direction v.

In the next section we will also need the following

Proposition 5.4.4. Let θ(Ω) be given such the weak L1-material derivative θ̇(Ω; v) and the shape

derivative θ′(Ω; v) ∈ L1(Ω) exist. Then, the functional

E[Ω] =

∫

Ω

θ(Ω, x) dµ

is shape differentiable and the derivative is given by

〈dE[Ω]; v〉 =
∫

Ω

θ′(Ω; v) dµ+

∫

Γ

θ(v · nΓ) dA. (5.10)

5.4.4 Sensitivity analysis

With these tools available, we are now able to derive the first variation of Ê with respect to
the shape variable Γ and with respect to the functional variable φ. It is well known that the
shape derivative only depends on the normal component of the perturbation vector field v ∈
H1,2

0 (Ω; Rd). Let us first transform the integrals, such that they are defined over the reference
configuration via the coordinate transformation x 7→ φ(x), φ : Ω→ Ω. We then obtain

Ê(Γ,φ) =
1

2

∫

Ω

(uR(Γ)− uR,0)2 dµ+
µ

2

∫

Ω\Γ

‖∇uR(Γ)‖2 dµ

+
1

2

∫

Ω

(uT (Γ,φ)− uT,0)2 dµ+
µ

2

∫

Ω\Γφ

‖∇uT (Γ,φ)‖2 dµ

+ νH d−1(Γ) + αEreg(φ)

=
1

2

∫

Ω

(uR(Γ)− uR,0)2 dµ+
µ

2

∫

Ω\Γ

‖∇uR(Γ)‖2 dµ

+
1

2

∫

Ω

(

(uT (Γ,φ)− uT,0)2 ◦ φ
)

|detDφ| dµ

+
µ

2

∫

Ω\Γ

(

‖∇uT (Γ,φ)‖2 ◦ φ
)

|detDφ| dµ+ νH d−1(Γ) + αEreg[φ].
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First variation with respect to Γ

Now we can apply (5.9) as well as (5.10), where we have to integrate along the boundaries
from both sides of the contour. Furthermore, recall that v

∣
∣
Ω
≡ 0, so we obtain:

dÊ ((Γ,φ); v) =
1

2

∫

Γ

J(uR(Γ)− uR,0)2K v dA+
µ

2

∫

Γ

J‖∇uR(Γ)‖2K v dA

+
1

2

∫

Γ

J(uT (Γ,φ)− uT,0)2 ◦ φK |detDφ| v dA+
µ

2

∫

Γ

J‖∇uT (Γ,φ)‖2K ◦ φ |detDφ| v dA

+
〈 ∂E

∂uR
, (u′R)v

〉

+
〈 ∂E

∂uT
, (u′T )v

〉

+ ν

∫

Γ

hv dA, (5.11)

where J·K denotes the jump of the discontinuity across Γ and Γφ respectively with respect to the
trace onto the interface, i. e., J(uR(Γ)− uR,0)2K = (u

(1)
R − uR,0)2 − (u

(2)
R − uR,0)2. u′R,v and u′T,v

are the shape derivatives of uR and uT in direction to the perturbation given by v. u(i)
R denotes

the restriction of uR to Ωi (and analogously for u(i)
T ) for i = 1, 2. Note that the the jumps are

well-defined independently of the choice of the level set function uΓ.
Let us now apply (5.10) for shape integrals of the form

∫

D
θ(Ω, x) dµ to the weak first order

conditions for uR and uT , (5.6) and (5.7):
∫

Ωi

u
(i)′

R ϕ+ µ∇u(i)′

R ∇ϕ dµ+

∫

Γ

[

(u
(i)
R − uR,0)ϕ+ µ∇u(i)

R · ∇ϕ
]

v dA = 0,

∫

Ωφ

i

u
(i)′

T ϑ+ µ∇u(i)′

T ∇ϑ dµ+

∫

Γ

[

(u
(i)
T − uT,0)ϑ+ µ∇u(i)

T · ∇ϑ
]

v dA = 0,

for all test functions ϕ ∈ H1,2(Ωi) and ϑ ∈ H1,2(Ωφi ). With a similar reasoning as in [129], we
obtain that the shape derivatives (u

(i)
R )′ resp. (u

(i)
T )′ are given as the solution of the above weak

formulation of an elliptic problem in H1,2(Ωi) resp. H1,2(Ωφi ) and can thus be used as a test

function in (5.6) and (5.7). Hence, the terms
〈 ∂E

∂uR
, (uR)′v

〉
and

〈 ∂E

∂uT
, (uT )′v

〉
in (5.11) vanish

if so we can finally summarize:

dÊ ((Γ,φ); v) =
1

2

∫

Γ

(
J(uR(Γ)− uR,0)2K + µJ‖∇uR(Γ)‖2K

)
v dA

+
1

2

∫

Γ

(q
(uT (Γ,φ)− uT,0)2

y
+ µ

q
‖∇uT (Γ,φ)‖2

y)
◦ φ |detDφ| v dA+ ν

∫

Γ

h v dA. (5.12)

Recall that uR(Γ) and uT (Γ,φ) are defined as the solutions of the corresponding Helmholtz
problems (5.6) and (5.7).

First variation with respect to φ

Let us assume that φ is invertible and that φ−1 ∈ C 0,1(Ω; Rd) (Recall also Theorem 3.2.5,
which suggests that polyconvex regularization would be of benefit also in this case). Then a
perturbation ψ of φ corresponds to a perturbation vector field ψ ◦φ−1 on the transformed curve
Γφ. Thus, the variation with respect to the deformation is given by:

〈

∂φÊ;ψ
〉

=
∑

i=1,2

∫

D\Γφ

{

u
(i)′

T (u
(i)
T − uT,0) + µ∇u(i)′

T · ∇u(i)
T

}

dµ

+
1

2

∫

Γφ

(
J(uT (Γ,φ)− uT,0)2K + µJ‖∇uT (Γ,φ)‖2K

)
(ψ ◦ φ−1 · nΓφ) dA

+ 〈∂φEreg;ψ〉. (5.13)

By the same arguments as before the first term on the right hand side vanishes. If the regulariza-
tion term (5.5) is used, the Frèchet derivative of Ê with respect to d in directionψ ∈ H1,2

0 (Ω; Rd)
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reads as

〈

∂φÊ[φ];ψ
〉

=
1

2

∫

Γφ

(
J|uT (Γ,φ)− uT,0|2K + µJ|∇uT (Γ,d)|2K

)
(ψ ◦ φ−1 · nΓd) dA

+ 〈∂dEreg[φ];ψ〉. (5.14)

5.4.5 Regularized gradient descent direction

The first variations contain jump terms of uT −uT,0 resp. uR−uR,0, where uR,0 and uT,0 are the
possibly noisy input images. Hence the regularity of the descent direction is at least as low as the
regularity of the data, and is thus expected to be very irregular. We will now again incorporate
a metric to regularize the descent direction.

Regularization of the descent direction with respect to φ

We have considered variations in H1,2
0 (Ω), hence the bilinear form

g0(φ,ψ) = (∇φ,∇ψ)L2

defines a regularizing metric on the space of variations. The regularized descent direction dgσ
0

with respect to the metric gσ0 is thus given by

g0(dg0 ,ψ) = −
〈

Ê[φ];ψ
〉

∀ψ ∈ H1,2
0 (Ω; Rd)

Therefore, the direction of steepest descent is given as the solution to

∫

D

〈∇dg0 ,∇ψ〉 dµ = −
(

α

∫

D

∇φ : ∇ψ dµ

+
1

2

∫

Γφ

(
J|uT (Γ,φ)− uT,0|2K + µJ|∇uT (Γ,φ)|2K

)
〈ψ ◦ φ−1, nΓφ〉dA

)

(5.15)

for all ψ ∈ H1,2
0 (Ω; Rd).

Alternatively one might want to allow variations in H1,2 instead of prescribing homogeneous
Dirichlet conditions. This can be particularly important in the case of large translations between
the reference and the template image. To this end, let us reconsider the following metric:

gσ(φ,ψ) = (φ,ψ)L2 +
σ2

2
(∇φ,∇ψ)L2 .

Then dgσ = −gradgσ Ê(·,Γ) is given as solution of

∫

D

(

dgσ · ψ +
σ2

2
∇dgσ : ∇ψ

)

dµ = −α
∫

D

∇φ : ∇ψ dµ

− 1

2

∫

Γφ

(
J(uT (Γ,φ)− uT,0)2K + µJ‖∇uT (Γ,φ)‖2K

)
(ψ ◦ φ−1 · nΓφ) dA (5.16)

for all ψ ∈ H1,2(Ω; Rd). After applying the transformation rule (3.30), the surface integral on
the right hand side of (5.15) and (5.16) can be rewritten as

1

2

∫

Γ

(
J(uT (Γ,φ)− uT,0)2K + µJ‖∇uT (Γ,φ)‖2K

)
(ψ · nΓφ) ‖CofDφnΓ‖dA. (5.17)

Furthermore the transformed normal nΓφ is given by

nΓφ =
Cof DφnΓ

‖CofDφnΓ‖
. (5.18)
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Regularized descent direction for the geometric variable

By the same arguments as above, regularization of the shape gradient with respect to the geo-
metric variable is desirable to ensure a stable gradient descent. In this section we aim at finding
a metric for the function space of update directions v, such that the regularization is balanced
with the regularization of the functional variable. The regularized descent direction vg is deter-
mined by

vg = −gradgΓÊ(·,φ) ⇒ gΓ(vg , w) = −dÊ ((Γ,φ);w) ∀w ∈ H 1
2 (Γ). (5.19)

At this point we have to find a suitable way to define and evaluate the metric gΓ. There are
several ways to achieve this. An intrinsic approach would consist of defining the scalar product
directly on the geometry, i. e.,

gσΓ(v, w) =

∫

Γ

v w dA+
σ2

2

∫

Γ

∇Γv · ∇Γw dA.

This would lead to a balance according to the metric gσ for the variations of the deformation,
and the regularization of the velocity v would lead to the following geometric elliptic problem
on Γ:

−σ
2

2
∆Γvd + vd = vg on Γ. (5.20)

Here, ∆Γ again denotes the Laplace-Beltrami operator on Γ. In the other example of the previous
section, the update direction dg ∈ H1,2

0 (Ω; Rd) induces a movement of the transformed geometry
with a speed in normal direction which is given by

vdg
= 〈d ◦ φ−1, nΓφ〉 ∈ H 1

2 (Γφ)

for sufficiently smooth φ. This motivates us to choose the gradient with respect to theH
1
2 -metric

on Γ, i. e., we set

gΓ(v, w) := (v, w)
H

1
2 (Γ)

.

By this choice we expect a reasonable balance between the regularization of update directions
for the functional variable φ and the geometric variable Γ. In order to evaluate the inner product
(·, ·)

H
1
2 (Γ)

let us consider the boundary value problem

−η∆w + w = 0 in Ω,

∂w

∂n
= wΓ on Γ, (5.21)

for wΓ ∈ H− 1
2 (Γ). The weak formulation for (5.21) is given by

∫

Ω

(
η∇w · ∇ϕ+ w ϕ

)
dµ =

〈
wΓ, ϕ|Γ

〉

H−
1
2 (Γ)×H

1
2 (Γ)

(5.22)

for all ϕ ∈ H1(Ω).
Now we define the Neumann-to-Dirichlet map for the operator −η∆ +

�
on Ω as the linear

operator N : H− 1
2 (Γ) → H

1
2 (Γ) which maps wΓ in (5.21) to the Dirichlet trace w|Γ of the

solution to (5.21). It is well known (cf.[136]) that N is an isomorphism and that the inner
product on H

1
2 (Γ) can be defined as

gΓ(v, w) = (v, w)
H

1
2 (Γ)

= 〈N−1v, w〉
H−

1
2 (Γ)×H

1
2 (Γ)

Finally the regularized update vg is determined as the the solution of

〈N−1vd, w〉
H−

1
2 (Γ)×H

1
2 (Γ)

= −dÊ ((Γ,φ);w) ∀w ∈ H 1
2 (Γ)
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and hence the regularized descent velocity for (5.12), is given by

vg =
1

2
N
(

J|uR(Γ)− uR,0|2K + µJ‖∇uR(Γ)‖2K

+
(q

(uT (Γ,φ)− uT,0)2 ◦ φ
y

+ µ
q
‖∇uT (Γ,φ)‖2 ◦ φ

y)
|detDφ|

)

+ αh (5.23)

on Γ.

5.4.6 A level set shape gradient descent method

Now that we have derived first order variations of the energy and devised suitable regulariza-
tions of the descent directions, we will describe how the optimization, that takes place over a
shape and the deformation simultaneously, can be solved numerically. The topology of the solu-
tion Γ of the optimization problem is not known a-priori and furthermore the gradient descent
method depends on an initial guess. This should not restrict the class of admissible solutions to
shapes of the same homotopy class. Level set methods provide a convenient framework for the
representation and numerical evolution of sharp interfaces, especially when topological changes
come into play.

Regularized shape gradient method

The algorithm consists of the following steps.

Step 0 Choose initial level set function uΓ,0, choose initial deformation φ0.

Step 1 Extract the current shape Γk =
{
ukΓ = 0

}
, Ωk1 =

{
ukΓ < 0

}
and Ωk2 =

{
ukΓ > 0

}
.

Step 2 Compute ukR and ukT by solving (5.6) resp. (5.7) for the current Γk and φk .

Step 3 Compute v according to (5.12).

Step 4 Solve the elliptic equation (5.21) with Neumann data v for w and compute vkg as the
trace of v on Γk.

Step 5 Extend vkg to a function vext
g defined on a neighborhood of Γk .

Step 6 Compute the regularized descent direction dkg according to (5.15).

Step 7 Solve the level set equation

uk+1,i+1
Γ − uk+1,i

Γ

τu
+ vext

g ‖∇ukΓ‖ = 0 with uk+1,0
Γ = ukΓ

for the evolution of Γk for i = 1, . . . as long as the energy is decreasing. τu is chosen to
obey the CFL-condition τvext

g ≤ CCFLh. Perform an update φk+1 = φk + τdkg , where τ is
determined by a line search strategy.

Step 8 k ← k + 1.

Step 9 check stopping criterion ‖vkg‖L2(Γ) + ‖dkg‖ ≤ ε, otherwise go to Step 1 .

Detailed description of the algorithm

The Finite Element approximations of the functions uR and uT and the auxiliary variable v in
(5.22) on the irregular domains Ω \ Γ, Ω \ Γφ and Ω are done using Composite Finite Elements
(cf. [122]). The transformation vector field φ is discretized using standard Finite Elements. Let
us look at some steps of the algorithm in more detail.
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Step 2

In order to solve (5.6) and (5.7) with standard Finite Elements retriangulation and thus reorga-
nization of the degrees of freedom would be necessary. Composite Finite Elements as introduced
by SAUTER & HACKBUSCH [122] are designed to cope with irregular geometries and to allow the
application of efficient multigrid solvers. This is of vital importance for the proposed algorithm,
since in every iteration, 5 elliptic PDE’s have to be solved on domains with moving boundaries.
An overview on Composite Finite Elements (CFEs) is given in section 5.4.7.

In order to construct the basis functions of the CFE space, first the contour Γk, which is given
as the zero level set of ukΓ, has to be extracted. For the computation of uT we obtain the contour
φ(Γk) from the level set function ukφ := ukΓ ◦ (φk)−1. To compute ukφ we introduce a simplicial

triangulation T on D and approximate φk as well as ukΓ by piecewise affine Finite Elements on
T . Then we can compute a deformed triangulation T φ, which is obtained by Tφ = φ(T ) for
all T ∈ T , and finally on all of those deformed triangles the nodal values of ukφ are calculated
by interpolating the values of ukΓ which are pushed forward by the deformation φ.

Step 3

Before regularizing the descent direction we have to extract the shape gradient on Γ by evalu-
ating all the terms which appear in (5.12). This function will then be used as Neumann data in
the next step or alternatively be extended to a neighborhood to solve the geometric Helmholtz
problem (5.20).

As can be seen from (5.22) the functionals on Γ are considered in the form
∫

Γ
Fg ϕn dA,

for all Finite Element basis functions ϕn. Hence the values of F only have to be evaluated
in the interior of the edges, which intersect the rectangular Finite Element grid. To this end,
the values of F are extended from the discrete contour to all surrounding nodes, which belong
to the intersected cells, and are henceforth available for interpolation which is needed for the
quadrature rule to compute the line boundary integrals. The calculation of the shape gradient
involves the computation of jumps of uR − uR,0 and ∇uR along the contour. Here, uR is the
solution to (5.6) on Ω (and similar jumps depending on uT ). Those values are obtained by
straightforward interpolation of the discrete Finite Element representations of uR and uT .

Step 4

In order to calculate the regularized descent direction vg in (5.23), we have to solve

(∇φ̂i,∇φ̂j)L2(Ω1)V̄g,i + (φ̂i, φ̂j)L2(Ω1)V̄g,i + (V, φ̂i)L2(∂Ω1) = 0 ∀φ̂j ∈ V̂ ,

for the discrete representation Vg of vg. Here φ̂i denote the basis functions of the composite
Finite Elements space (cf. Section 5.4.7), and V̄g,i denotes the i-th component of the vector V̄g ,
standing for the coefficient vector of Vg .

Step 5

To evolve the level set function with a speed on the contour given by vg , we first have to extend vg
to a function vext

g which is defined on a small neighborhood of the contour. A natural extension
is given by the following approach. For each point x in a defined neighborhood, the extended
velocity is calculated by first projecting x via the projection πΓ onto Γ and evaluating v at this
projected point, i. e., vext

g (x) = vg(πΓ(x)). This is equivalent to solving the following transport
equation:

∇vext
d · ∇dΓ = 0 on Ω and vext

d = vd on Γ, (5.24)

where dΓ stands for the distance function x 7→ dist(x,Γ). dΓ and vext
d can be computed simul-

taneously by a modified fast marching method for solving the eikonal equation ‖∇d‖ = 1 (cf.
[168, 186] for a comprehensive description of the algorithm) or by the method proposed by
BORNEMANN & RASCH [29], which computes the viscosity solution of static Hamilton-Jacobi
equations by iterated local Hopf-Lax updates. Note that if the extension is given by this proce-
dure, distance functions are locally preserved.
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Step 7

For the evolution of the level set function, via

∂tuΓ + vext
d ‖∇uΓ‖ = 0 on Ω (5.25)

we have applied a third-order accurate ENO-scheme (cf. [168]).

5.4.7 Composite Finite Elements and Multigrid

In this section we will briefly describe the spatial discretization of the function spaces on Ωi,
which are divided by the contour Γ given by the level set function uΓ. Furthermore we outline
a multigrid method for the solution of (5.6), (5.7), (5.15) and (5.22). We use Composite Finite
Elements introduced by Hackbusch and Sauter [122]. Let us emphasize, that the advantages
of CFEs are twofold. They provide a multilevel framework for the discretization of complicated
and moving domains, as well as PDE’s with discontinuous coefficients. In our application we
have incorporated the CFE for the first reason.

The idea of the CFE approach is the following: Instead of resolving the Ωi by a retriangulation
or local adaptive refinement, we confine ourselves to a uniform quadrilateral resp. hexahedral
grid and define the triangulations Ti by the following overlap-condition:

Ωi ⊆
⋃

T∈Ti

∀T ∈ Ti s. t. T ∩ Ωi 6= ∅. (5.26)

Let us denote by Vh(ΩT ) the usual Finite Element space given by the condition that for U ∈
Vh(Ωh), U

∣
∣
T

is a multilinear function for each T ∈ T . The corresponding Composite Finite
Element space is then simply given by the restriction of the functions in Vh(Ωh,i) to the domain
Ωi, i. e.

V̂h(Ωh,i) := {U |Ωi
|U ∈ Vh(Ωh,i)}. (5.27)

Hence, a basis (ϕ̂i)i of V CFEh is given by ϕ̂i := ϕi
∣
∣
ΩTi

, where (ϕi)i denotes a basis of the space

Vh(ΩTi
). For the assembly of the mass matrix

M̂ l
ij =

∫

Ωl

ϕ̂iϕ̂j dµ

and the stiffness matrix

L̂lij =

∫

Ωl

∇ϕ̂i∇ϕ̂j dµ

we thus need to apply quadrature rules for functions on T ∩Ωi. On each cell T , which is crossed
by the zero level set of uΓ we generate a partition of T ∩ Ωi into simplices on-the-fly. We can
then apply a barycentre quadrature rule on each simplex.

Ω1

Ω2

Figure 5.2: Decompositions of the domains Ωi ∩C for a cell C into subtriangles. The type subtrian-
gulation only depends on the signs of the level set function on the vertices of C and can be efficiently

generated on-the-fly using lookup-tables.

So far this procedure is the FE analogue of a Shortley-Weller discretization by finite differ-
ences. In the iteration of the gradient descent method, the second order elliptic PDE’s have to
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Figure 5.3: Towards model-based reconstruction. The image at the TOP LEFT shows an artificial

reference model of a tooth. On the BOTTOM LEFT a nonlinearly deformed version of the reference
with a large destroyed region is shown. Both images also show the initial contour Γ. The sequence

shows the evolution of Γ and Γφ for the iteration numbers 0, 20, 80, 320, where the parameters were

chosen as µ = 50, α = 200 and ν = 5000.

be solved each time the contour changes, i. e., in every iteration. In order to render the descent
efficient, it is crucial to solve those equations efficiently and exactly, because an inexact solution
would lead to inaccurate velocities. To apply a multigrid method, we first generate a sequence
of nested Composite Finite Element spaces by applying an appropriate coarsening process on
the CFE triangulation on the finest level lmax (Ωlmax

Ti
:= ΩTi

), i. e.

Ωi ⊂ Ωlmax

Ti
⊂ Ωlmax−1

Ti
⊂ . . . ⊂ Ω0

Ti
(5.28)

leading to correspondingly nested CFE spaces V̂h(ΩlTi
), 0 ≤ l ≤ lmax. Prolongations and restric-

tions naturally have to be defined with respect to the CFE discretization, hence the prolongation
onto level l is defined by evaluation of the basis functions ϕ̂l−1

i for Lagrange nodes on level l.
Convergence analysis for multigrid algorithms using Composite Finite Elements has been inves-
tigated by Sauter et al. [122, 202].

5.4.8 Numerical experiments

We have tested the approach in different scenarios. Figure 5.2 shows a synthetic image pair,
which was designed to test the approach in cases, where only very little common information is
contained in the images. The shape on the upper left is supposed to be fitted into the structure
on the bottom left, which is hence only determined by the four small objects in the corners of the
image. After 75 steps of the gradient descent, a deformation is found which rotates the propeller-
like shape, and the resulting push-forward of the contour matches quite well to the rounded
corners in the second structure in the bottom. This example shows the capability of a model-
based inpainting, where the shape information of the inpainted contour is transformed from a
reference image. We assume, that the deviations from the obvious solution of a pure rotation
result from the fact, that the rigid transformations are not in the kernel of the regularization
energy, and we think that this could be solved by different regularization methods as for example
higher order methods [158]. However, we will not focus on the regularization in this context.

In Figure 5.4 we have applied the algorithm to a pair of brain images. The top row shows
a positron density (PD) scan, while the bottom row shows a T1-weighted magnetic resonance



94 CHAPTER 5. MUMFORD-SHAH BASED REGISTRATION

Figure 5.4: TOP ROW: Reference image uR (positron density image (PD) of a human brain) and
Γ. BOTTOM ROW: Template image uT (T1-weighted MR image). The sequence shows the gradient

descent for the iteration numbers 0, 10, 80 and 180. The parameters were chosen as µ = 50, α = 20,

ν = 500.

image of the same patient. The initial difference of the image pair consists mainly of a translation
of about 8-9 pixels. The algorithm finds the brain structure in both images well after about
80 steps, and the resulting deformation consists mainly of a shift enhanced by some minor
local deformations. This example underlines the practicability of the level set approach: after
a few steps the initial contour splits up into three different components which are henceforth
independently mapped onto the corresponding segments in the template.

The last example in Figure 5.3 demonstrates the competing effect of the regularization and
the energy contributions which pull the contour towards the edges. We can exploit this in order
to map an original reference shape (top row) to a given object, where the shape is partially
corrupted (bottom row). Apart from the destroyed region the shapes differ also by a non-rigid
deformation plus a translation. This can be well observed in the second column. Here the
deformation is still close to the identity and hence the contours are aligning to the edges in
the vicinity first until in subsequent iterations the deformation evolves in such a way that the
contours map to the true edges in both images apart from the borders of destroyed region. At
this stage, the regularization dominates and prohibits the contour in the bottom row to evolve
towards the “visible” edge and prefers to adopt the contour from the reference image. This yields
a reconstruction of the destroyed shape, which is optimal with respect to the regularization
energy.

5.4.9 Conclusion

We have presented a level set based algorithm for simultaneous segmentation and registration
of images by incorporating a Mumford-Shah type energy on the reference image as well as the
template image, where the contour is transformed into the template image by a regularized de-
formation. The work presented here is motivated by the fact, that, given an exact registration of
two images of different modality, edge-extraction and segmentation can be enhanced consider-
ably by combining complementary feature information from both modalities. On the other hand
the process of registering a pair of images may rely on segmentations and feature-extractions
of both images, which is often a very tedious process, especially if in some areas the feature
information is very weak. Due to the coupling of the edge sets by the smooth deformation, the
edge is driven to its correct shape.
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(a) Deformation plot of the matching result from Figure
5.3.
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(b) Deformation plot of the matching result from Figure
5.4.

We have demonstrated a further important application of this method, namely to perform a
fully-automatic model-based reconstruction and inpainting of destroyed regions, without having
to explicitly mark the region where the object is destroyed as long as there exist no prominently
dominating edges.

Due to the regularization of the gradient flow, the minimization process has turned out to
be stable and requires only a small number of iterations until convergence. On the other hand,
the regularization and necessity of determining the solutions of the Helmholtz equations in the
regions Ω1 and Ω2 requires the solution of elliptic PDEs. In order to make the method efficient
we have applied multigrid techniques which lead to an enormous speed-up of the algorithm.

5.5 Phase-field approach to edge-alignment for free disconti-

nuities

In this section we will present an alternative to the previously described sharp interface model.
In [11] Ambrosio and Tortorelli proposed a phase field approximation of the Mumford-Shah

[163] functional

EMS[u,Γ] =

∫

Ω\Γ

‖∇u‖2 dµ+
µ

2

∫

Ω

(u− u0)
2 dµ+ νH d−1(Γ)

where u0 ∈ L∞(Ω) and u varies in C 1(Ω \ Γ). Theoretical subtleties arise mainly from the fact,
that u varies in a space, which depends on Γ, while the variation of Γ results in problems of
finding a set of admissible contours with suitable compactness properties. Before we revise the
approximation, we rewrite the Mumford-Shah energy [81, 160, 11] to

F [u] =

∫

Ω\Γ

‖∇u‖2 dµ+
µ

2

∫

Ω

(u− u0)
2 dµ+ νH d−1(Su)

where the space of admissible functions in L∞(Ω) is endowed with the L2(Ω) topology, or to be
more precise in the space of piecewise C 1 functions

PC1(Ω) =
{
u ∈ L∞(Ω) : u ∈ C

1(Ω \ Su) and H
d−1(Su ∩ Ω \ Su) = 0

}
.

Su denotes the complement of the set of Lebesgue points of u. Since PC1 is not compact with re-
spect to a suitable topology, the common approach is to relax F to F (u) = inf

{
lim infs→∞ F (us) : us → u ∈ L2(Ω), us ∈ PC1(Ω)

}
.
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Let us now consider the approximation, that has been proposed by AMBROSIO&TORTORELLI in
[11]. Let us suppose kε > 0 and consider the functional

Eε[u, v] =

∫

Ω

{

(u− u0)
2 +

µ

2
(v2 + kε)‖∇u‖2

}

dµ+ ν

∫

Ω

{

ε‖∇v‖2 +
(1− v)2

4ε

}

dµ

=: Eε,1 +Eε,2. (5.29)

They have shown the Γ-convergence of Eε to the functional defined by E[u, v] = F [u], iff v ≡
1, and E[u, v] = +∞ otherwise. The Γ-convergence is respect with to the strong L2(Ω) ×
L2(Ω; [0, 1]) topology.

A remark on anisotropy

The energy contribution
∫

Ω ε‖∇v‖2 dµ introduces a homogeneous smoothness energy on the
function v which continuously represents the singularity set Su. Even though this Eε already
qualitatively converges to E, in practice one aims at minimizing Eε for a small ε > 0. To
improve the approximation results for a fixed ε > 0, we (for twodimensional problems) propose
a modification of the form

Eε[u, v] =
β

2

∫

Ω

{
(u− u0)

2 + (v2 + kε)‖∇u‖2
}

dµ

+
α

2

∫

Ω

{

εA(x,∇uσ0 )∇v · ∇v +
(1− v)2

4ε

}

dµ (5.30)

where A : Ω × R
d → R

d,d is a uniformly elliptic and bounded tensor, which we will design in
such a way that v is regularized along estimated edges and regularization of v is small across
such yet to detect edges. Following typical structure-tensor based approaches for the design of
such tensors, e. g. WEICKERT [204], NAGEL-ENKELMANN [164], we suggest

A2D(x,∇uσ0 ) :=
(∇uσ0 )⊥

‖(∇uσ0 )⊥‖ ⊗
(∇uσ0 )⊥

‖(∇uσ0 )⊥‖ + g(‖∇uσ0‖)
∇uσ0
‖∇uσ0‖

⊗ ∇uσ0
‖∇uσ0‖

,

where g : R
+
0 → R

+
0 is a continuous monotonously decreasing function, and uσ0 denotes a

regularized version of u0, obtained by solving the initial value problem of e. g. linear diffusion
or mean curvature motion with natural boundary conditions. To generalize the construction of
the tensor in more dimensions on can write

A2D/3D(x,∇uσ0 ) := P [uσ0 ] + g(‖∇uσ0‖)(
� − P [uσ0 ]).

See Figure 5.5 for improved results obtained with this variant. It has to be mentioned, that it
is so far unknown if similar Γ-results hold in this case. We assume that this will particularly
depend on the choice of g.

5.5.1 Variational model formulation

Let us recall the Mumford-Shah-based registration formulation (1.4). Although we have obtained
satisfactory results with the sharp interface model in the shape optimization context, it would be
interesting to compare the previous approach with the respective phase-field formulation. The
reason for this is threefold: First, the sharp interface approach depends on the shape of the initial
interface Γ. Whereas this may be convenient in some cases, for example, when the initialization
allows a certain degree of user control to preselect certain features, it may also be ambiguous
and tedious in other cases. Secondly, the classical level set framework is restricted to closed
curves, and thus it does not allow to represent crack tips by a single level set function. Although
this could be achieved by combining several level set functions with boolean operations, the
phase field approach appears to be more flexible and practicable for the applications discussed
here. Thirdly, the phase field model is very easy to implement, if standard numerical toolboxes
for the solution of coupled PDE’s are available.
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Figure 5.5: Isotropic vs. anisotropic version of the approximation of the Mumford-Shah func-
tional. The parameters were chosen as ε = 0.01, α = 10 and λ = 0.05 (for the special choice
g(s) = 1/(1 + s2

λ2 )).

We suggest an analogous coupled phase-field formulation by again introducing an auxiliary
variable v, describing the singularity set ST of the image uT , but at the same time v ◦ φ should
energetically describe the edge set SR in the image uR. A corresponding energy formulation is
then given by the minimization of

EATreg,ε[uR, uT , v,φ] :=
1

2

∫

Ω

{

(uR − uR,0)2 + (uT − uT,0)2
}

dµ (5.31)

+
µ

2

∫

Ω

{

(v2 ◦ φ+ kε)‖∇uR‖2 + (v2 + kε)‖∇uT ‖2
}

dµ (5.32)

+
ν

2

∫

Ω

{

ε‖∇v‖2 +
1

4ε
(v − 1)2

}

dµ (5.33)

with kε = o(ε). Now, the signature v corresponds to the contour Γφ and the contour Γ
is described by v ◦ φ. The data uR,0 and uT,0 are given as images in L∞(Ω) and can thus
contain very irregular and dense sets of singularities. Again, when we speak of edge sets of uR,0
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and uT,0 this is to be understood in the sense of the Mumford-Shah approximation, where the
approximating functions uT resp. uR are in SBV (Ω) with H n−1 measurable discontinuity sets.

Let us now describe this energy in some detail. The first integral measures the deviation of
uR and uT to the data in the L2-sense. The second integral now forces the signature v2 to be
small where uT has steep gradients and, correspondingly, v2 ◦φ to be small where uR has steep
gradients. On the other hand, this determines φ to align the signature function in the reference
domain to line up with the edges of uR, and finally, for fixed signature and deformation, the
smoothness of the images uR and uT is controlled, i. e., steep gradients of uT are penalized
where v 6≈ 0 and analogously for uR.

Again, the deformation φ will mainly be determined along the discontinuity sets. Away
from the contours, the signature v will approximately be identical to 1, and hence variations
of φ will not change the energy in these regions. Thus, it is essential to further regularize the
minimization problem. Let us again consider the nonlinear hyperelastic regularization given by
the additional energy contribution (3.12), and consider the minimization problem of finding
(uR, uT , v,φ) ∈ H1,2(Ω)3 ×H1,2

0 (Ω; Rn) =: A , such that

EATreg,ε[uR, uT , v,φ] + αEreg[φ] = inf
(ũR,ũT ,ṽ,φ̃)∈A

EATreg,ε[ũR, ũT , ṽ, φ̃] + αEreg[φ̃] (5.34)

The following approaches for the overall registration energy are possible:

• Pure Edge-based registration—in order to determine the deformation only by the align-
ment of features, one might consider the pure Mumford-Shah based approach as described
above:

EATedge[uR, uT , v,φ] = EATreg,ε[uR, uT , v,φ] + αEreg[φ]. (5.35)

• Edge-based registration with weighted regularization—the signature function v au-
tomatically yields information about where the variation of the deformation determines
a change in the energy, namely along and in the vicinity of edges, which are given by
v2 ◦ φ ≈ 0. In order to avoid over-regularization, the integrand of the regularization may
be weighted by v2 ◦ φ:

EATweight[uR, uT , v,φ] = EATreg,ε[uR, uT , v,φ]

+ α

∫

Ω

(v2 ◦ φ+ kε)W(Dφ,CofDφ, detDφ) dµ (5.36)

Hence, the regularization dominates away from the edges.

• Combined Mumford-Shah-Morphological registration—Here, we add the morphologi-
cal energy contribution on those areas, weighted such that it gives a stronger contribution
in areas away from the singularity sets of uR and uT ◦ φ. Again this set area is given by
v2 ◦ φ.

EATmorph[uR, uT , v,φ] = EATreg[uR, uT , v,φ]

+ β

∫

Ω

v2 ◦ φω0(∇uT ◦ φ,∇uR,CofDφ) dµ

+ α

∫

Ω

(v2 ◦ φ+ kε)W(Dφ,CofDφ, detDφ) dµ (5.37)

In this thesis, we have concentrated on the second approach (5.36).

5.5.2 Discrete approximation

In contrast to the original approach of [10], where approximating elliptic but non-quadratic
functionals have been used, the approximation of (5.29) gives rise to practicable numerical
methodologies. We refer for instance to [23, 176]. In order to discretize EATreg,ε, we follow
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the approach of BOURDIN [30]. He has shown the Γ-convergence of the discretized functionals
against the functional E. To this end, we construct the discrete version of the energy EATreg,ε

the following way:

EATreg,ε,h[uR, uT , v,φ] :=
1

2

∫

Ω

{

(uR − IhuR,0,ε)2 + (uT − IhuT,0,ε)2
}

dµ

+
µ

2

∫

Ω

{

(v2 ◦ φ+ kε)‖∇uR‖2 + (v2 + kε)‖∇uT ‖2
}

dµ

+
ν

2

∫

Ω

{

ε‖∇v‖2 +
1

4ε
(v − 1)2

}

dµ

where kε = o(ε). Ih stands for the Lagrange interpolation on the usual linear Finite Element
space. Moreover, uR,0,ε and uT,0,ε are chosen to be functions in C ∞

0 (Ω) approximating uR,0
and uT,0, in the sense that uR,0,ε → uR,0 strongly in L2(Ω), ‖uR,0,ε‖L∞(Ω) ≤ ‖uR,0‖L∞(Ω) and,
further, ‖∇uR,0,ε‖L∞(Ω) ≤ C

ε (this can be achieved for instance by mollification with a smooth
kernel) and analogously for uT,0,ε.

5.5.3 First variation of the energy

Let us look at the first variation of the energy. We first calculate the partial variations with
respect to the variables uR, uT and v:

〈∂uR
EATreg,ε,h[uR, uT , v,φ];ϑ〉 =

∫

Ω

(uR − IhuR,0,ε) · ϑ dµ+ µ

∫

Ω

(v2 ◦ φ+ kε)∇uR · ∇ϑ dµ

〈∂uT
EATreg,ε,h[uR, uT , v,φ]; ξ〉 =

∫

Ω

(uT − IhuT,0,ε) · ξ dµ+ µ

∫

Ω

(v2 + kε)∇uT · ∇ξ dµ

〈∂vEATreg,ε,h[uR, uT , v,φ]; ζ〉 = µ

∫

Ω

‖∇uT ‖2v · ζ dµ+ µ

∫

Ω

‖∇uR‖2(v ◦φ) · (ζ ◦ φ) dµ

+ν

∫

Ω

ε∇v · ∇ζ dµ+ ν

∫

Ω

1

4ε
(v − 1)ζ dµ (5.38)

for ϑ, ξ, ζ ∈ H1,2(Ω). On account of the hyperelastic regularization φ is invertible. Thus we can
rewrite (5.38) via the transformation formula.

〈∂vEATreg[uR, uT , v,φ]; ζ〉 = µ

∫

Ω

‖∇uT ‖2v · ζ dµ+ µ

∫

Ω

‖∇uR‖2 ◦ φ−1v · ζ(detDφ)−1 dµ

+ ν

∫

Ω

ε∇v · ∇ζ dµ+ ν

∫

Ω

1

4ε
(v − 1)ζ dµ . (5.39)

Hence, for fixed v and φ the reconstructed images uR and uT can be computed by solving the
following elliptic Helmholtz-problems:

uR − µ(v2 ◦ φ+ kε)∆uR = IhuR,0,ε, uT − µ(v2 + kε)∆uT = IhuT,0,ε in Ω,

∂νuR = 0, ∂νuT = 0 on ∂Ω.
(5.40)

Since v ≥ 0 the corresponding bilinear-forms are coercive. Furthermore, we are able to find for
each uT , uR and φ the optimal v as the solution of the Euler-Lagrange equation with respect to
the variation in the variable v, i. e.,

µ‖∇uT‖2v + µ‖∇uR‖2 ◦ φ−1v(detDφ−1) + ν
4ε (v − 1)− νε∆v = 0 in Ω,

∂νv = 0 on ∂Ω.
(5.41)

For ψ ∈ H1,2
0 (Ω; Rn) the variation of EATreg is given by

〈∂φEATreg,ε,h[uR, uT , v,φ];ψ〉 = µ

∫

Ω

‖∇uR‖2v ◦ φ (∇v ◦ φ · ψ) dµ (5.42)

= µ

∫

Ω

‖∇uR‖2 ◦ φ−1v (∇v · ψ ◦ φ−1)(detDφ)−1 dµ.
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5.5.4 Description of the algorithm

Again, we consider the Finite Element discretization, which has been described in Section 2.6.
The energy is strictly convex, even quadratic in the variables uR, uT and v, which renders the
minimization feasible to a Finite Element approach. Analogously to the approach chosen in the
sharp interface model, the energy functional can be reduced to depending only on φ, where uφR,
uφT and vφ are determined as the unique solutions to the minimization problem for fixed φ:

ÊATreg,ε[φ] = EATreg,ε[u
φ
R, u

φ
T , v

φ,φ]. (5.43)

Multiscale

We have underlined the importance of a multiscale strategy in Chapter 2. Due to the smoothing
of the data, the variation of the energy which results also in the derivation of the input images is
significantly more regular. Data is almost always corrupted by some kind of noise. In the deriva-
tion this noise is then even amplified further, and hence the gradient would be very irregular,
which would limit the step size to be very small. On the other hand, the smoothing of the data
introduces globality into the energy formulation, in the sense that the search directions force
the deformation towards the stationary point even in regions, where locally the original images
match up already.

Due to (5.42) the L2 representation of the partial derivative of ÊATreg,ε is given by

gradÊATreg,ε[φ] = ‖∇uφR‖2 ◦ φ−1vφε (detDφ)−1∇v. (5.44)

Therefore, the smoothness of gradEATreg,ε[φ] is controlled by the smoothness of φ−1, uR and v.
On the other hand, the smoothness of v is steered directly by ε on account of the penalty term
ε‖∇v‖2 in (5.33). Let us now address the smoothness of uR. For larger values of ε the single-
well potential in becomes less significant (5.33) and the smoothness term dominates, while for
a small ε, v is close to 0 where ‖∇uR‖2 ◦ φ−1 or ‖∇uT‖2 are large and v is forced to be close to
1 in the rest of the domain on account of the single well potential. We summarize:

The phase field framework comes along with a canonical multiscale strategy,
which is controlled by the approximation parameter ε. Larger values yield coarse

and smooth approximations of the characteristic function χST
and χSR

.

Similarly to the multiscale algorithm in Chapter 2, one starts with coarse approximations, to
find a stationary point in the simplified energy landscape, iteratively reduces the approximation
parameter ε by taking the solution of the previous scale as the new initial guess on the finer
scale.

Regularized gradient flow

For small values of ε, the discrete descent direction may still be perturbed, even though v is
smooth. This is due to the approximation property of the finite element space which depends
on the H1,2(Ω) norm. It becomes large in magnitude, once the gradient of v get steep. In
practice, the regularization of the gradient flow by a regularizing metric as in Chapter 2 is again
significant for a stable descent. In particular, we consider again the metric gσ from (2.5), hence
the regularized descent direction dg becomes

dg[φ] = −gradgσ ÊATreg,ε[φ]− αgradgσEreg[φ]. (5.45)

Under these considerations, we will now summarize the overall algorithm:

Algorithm: Phase field Mumford-Shah registration

The algorithm consists of the following steps.

Step 0 Choose initial v, choose initial deformation φ0, choose initial ε > 0, finest scale εtol =
o(h).
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Step 1 Compute uT , uR and v for fixed φ

Step 1.1 Solve the elliptic equation in (5.40) for uT .

Step 1.2 Solve the elliptic equation in (5.40) for uR.

Step 1.3 Solve the elliptic equation (5.41) for v.

Step 2 Compute the descent direction dg by (5.45).

Step 3 Perform an update φ← φ+ τdg , where τ is chosen according to a line-search strategy.

Step 4 If φ is not a stationary point, go to Step 1.

Step 5 If ε ≥ εtol then geometrically decrease ε and go to Step 1.

The equations in Step 1 as well as the regularization of the descent direction can be solved
efficiently by a multigrid method, and here we don’t rely on the Composite Finite Element dis-
cretization of the sharp interface approach. Due to the smooth transitions of v in the phase-field
approach, one is not faced with the numerical problem of solving a PDE with jumping coeffi-
cients. However, this holds only true for ε sufficiently large, i. e., the order of the discretization
parameter h. Otherwise the transition zone cannot be resolved by a Finite Element function. Al-
though again in every time step of the iteration with respect to φ, several PDE’s have to be solved
until the Jacobi-iteration of Step 1 converges, the algorithm is not slowed down drastically.

5.5.5 Results and discussion

In Figure 5.6, we show the result of a registration of a CT and a MR image of a human spine
vertebra, computed using the approach described above.

Even though the images reveal very complex structures, the registration could be performed
without any pre-registration – no feature extraction was necessary. As can be seen in the overlay
of the registered image with the reference, the structures are well aligned onto each other. The
method tries to map regions with almost constant intensities, onto their counterparts in the
other image.

In contrast to the sharp interface model where an initial guess for the contour Γ has to be
chosen, the dependence of this model on the initial function v is moderate, and it allows the
registration of the entire discontinuity set. By varying the parameter ε, a natural multiscale
approach can be employed by first starting with a smooth representation of v and henceforth
letting ε → 0 to eventually sharpen the edge function in order to match the edges precisely.
Since v has to be represented by a Finite Element function, ε has to remain away from 0 to
avoid numerical difficulties. However, ε can be chosen around h [31, 30], and it is more than
questionable if a further decrease of ε would further improve the results. We have obtained very
promising results and the framework is applicable to a wider class of problems.
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uR reference uT template uT ◦ φ result

Figure 5.6: Image registration by the phase field Mumford-Shah approach of CT and MR slices

of a human vertebra. The variational formulation aims at finding a signature function v and a
deformation φ, such that v describes the edges in the image uT while v ◦ φ describes the edges in

the image uR. TOP ROW: Reference image uR,0, template image uT,0, matched template uT,0 ◦ φ.

MIDDLE ROW: The left image shows the initial misfit by overlaying uR,0 and uT,0 (green), while the
image in the right shows the alignment of uT,0 ◦ φ (yellow) in comparison with uR,0. The initial

and final versions of the combined signature function v is shown in the BOTTOM ROW.
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Chapter 6

Willmore flow on level sets
and graph surfaces

GEOMETRIC methods in image processing are almost always based on the shapes of the the
level lines of the intensity function. As discussed in the introduction, the geometric content

of an image may be analyzed by considering the union of all submanifolds given as level sets,
i. e., to analyze the morphology.

In this chapter we will present a framework, which is based on the following viewpoint:
From the geometric functionals defined on the geometric representation of the level sets, we
will consider an aggregation by integrating over all level sets, which will yield a functional on
the entire morphology. By definition of a suitable metric on the space of level set functions, we
will be able to yield the gradient flow of these aggregated energies and obtain directly a weak
formulation of the level set flow. It turns out that the variation of the aggregated energies is
more convenient than the variation of the differential geometric functionals on the level sets
itself.

The geometric viewpoint gives rise to an important prerequisite: level lines, which are ini-
tially nested ought to stay nested during the evolution. Otherwise the reconstruction of the new
intensity function, treating the motion of the level lines independently is impossible. Similarly,
a parabolic level set equation would become ill-posed. In the case of second order methods, the
maximum principle gives a positive answer to the nestedness condition, and gives rise to the
notion of viscosity solutions [173, 112].

The treatment of fourth order methods is more subtle. Due to the lack of the maximum
principle, the framework of viscosity solutions may not be employed, and to the best of our
knowledge, the question of a suitable notion of a solution is still open [9, 15] Indeed, fourth
order flows may cease to be embedded after arbitrary short times for certain initial configura-
tions. In the case of Willmore flow, which will be described in more details in the subsequent
exposition, MAYER & SIMONETT have shown in [151], that self-intersections may occur after
short times. The same is true for surface diffusion flow, as well as the volume preserving mean
curvature flow [150].

However, in the subsequent considerations, we will establish the relation between regular-
ized level set formulations and the differential geometric evolution of scaled graphs. Existence
and uniqueness of the evolution of these graphs can be analyzed by known differential geometric
results.

6.1 Motivation: continuation of level lines

6.1.1 Image and surface inpainting

The problem of image inpainting (also referred to as disocclusion) refers to the reconstruction
of hidden domains by taking into account information from the surrounding border.
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In the early work [45] CASELLES, MOREL AND SBERT have introduced the absolute minimal
Lipschitz extension model (AMLE) derived from fundamental derivation axioms, like transla-
tion invariance, rotation invariance, comparison principle, stability and regularity. MASNOU &
MOREL [148] have proposed a variational approach based on the geometry on the level lines, by
taking into account geometric quantities as length and curvature. This model of Euler’s elastica
has been formulated by treating the level lines parametrically. Later, BERTALMIO, BERTOZZI AND

SAPIRO have applied models borrowed from fluid dynamics to inpainting problems [25].
Level set methods allow to evolve all level lines simultaneously, which has been exploited

for example by BALLESTER ET. AL. who have coupled the interpolation of normal field to the
interpolation of the level lines in [15] or CHAN & SHEN who formulated a level set approach for
the Euler’s elastica model [52, 49]. However they used a finite difference upwind scheme for
the discretization of the resulting fourth order flow. ESEDOGLU & SHEN [109] have combined
the Mumford-Shah functional with fourth order inpainting techniques, using a conjecture of De
Giorgi to approximate the geometric flow that minimizes the Willmore Euler’s elastica energy by
a fourth order phase field model. Many of those approaches have in common that they, at least
partially, minimize the Willmore energy

e[M] =
1

2

∫

M

h2 dA.

For parameterized surfaces the Willmore energy has been used by CLARENZ, DIEWALD, DZIUK,
RUSU & RUMPF for the inpainting of surfaces holes [68]. In [103] we have derived a semi-
implicit Finite Element scheme to solve the corresponding fourth order gradient flow in the
level set context. Furthermore we refer to [26, 199, 17] for related approaches on inpainting. In
addition to inpainting problems, fourth order evolution equations, in combination with locally
estimated anisotropies, have also become important in feature-preserving smoothing of surfaces
(cf. the work of TASDIZEN ET AL. [191]).

6.2 A level set formulation for the Willmore flow

In the following, we will apply the framework of Section 2.2 to define the aggregated Willmore
energy on L (the space of level set ensembles) and to compute its first variation. As described
above, the integrand of the Euler’s elastica is given by α+βh2, since the area functional weighted
by α and its gradient flow is well known, the Willmore energy and its corresponding gradient
flow allows the incorporation of the full functional.

It is known [207] that the L2 gradient flow for parametric formulations is given by

∂tx+ ∆Mh(t) + h(t)
(

‖S(t)‖22 −
1

2
h(t)

)

n = 0 (6.1)

We will focus on devising a level set formulation. Let us give a short review about theoretical
results for the existence of a regular solution of the Willmore flow. For the evolution of closed
manifolds under Willmore flow, SIMONETT has shown in [187], that a unique local solution of
the Willmore flow exists under the assumption that the initial surfaceM0 is a immersed closed
compact manifold of regularity C 2,α. If the initial surface is sufficiently close to a sphere, a
global solution exists. More precisely SIMONETT & MAYER have shown the following existence
result

Theorem 6.2.1. For 0 < α < 1 fixed, there exists a closed embedded surface M̃0 ∈ C 2,α, a
constant uT , 0 < t0 < t1 ≤ T , and a C 2,α neighborhood U of M̃0, such that

(i) there exists a unique classical solution (M(t))t≥0 for allM0 ∈ U .

(ii) M(t) is no longer embedded for t1 < t < t2 and every initial surfaceM0 ∈ U .

(iii) Moreover, eachM(t) is of class C ∞ for t ∈ (0, T ] and smooth up to T .
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Figure 6.1: Given an initial graph (left) Willmore flow with prescribed Dirichlet boundary condi-
tions for the position and the normal is applied. Different timesteps of the evolution (from left to

right) are displayed. The boundary condition corresponds to a spherical cap over the graph domain

which is reflected by the limit surface (right) for t→∞.

As a consequence, not all initial configurations may be treated by the level set approach,
which is by construction restricted to embedded surfaces. This is also reflected by the work of
AMBROSIO & MASNOU [9], who have shown that the level set formulation of the Euler’s elastica
functional is not lower semicontinuous.

The MAYER&SIMONETT have also shown in [151] that the Willmore energy is non-increasing
in the interval of existence, provided that the initial surface is of the class C 2,α.

We also refer to the works of KUWERT & SCHÄTZLE [138, 139, 140] who have shown existence
of a global solution under the assumption that the Willmore energy of the initial configuration
is sufficiently small, in particular e[M0] ≤ 16π.

By taking into account (6.1) the corresponding level set formulation is given by

∂tφ+ ∆Mh(t) + h(t)
(

‖S(t)‖22 −
1

2
h(t)

)

‖∇φ‖ = 0. (6.2)

In Chapter 7 we will propose a narrow band approach to the numerical solution of geometric
PDE’s of higher order, spatially centered around a particular level set surface M0. Hence the
existence properties are expected to be similar to the existence of the evolution of M0 under
parametric Willmore flow.

6.2.1 The metric point of view

In order to obtain the aggregation of the gradient flow ∂tx = −gradL2(M)e[M] on the indepen-
dent manifolds, we first apply the co area formula to define

E[φ] =

∫

Ω

h2‖∇φ‖ dµ (6.3)

and again consider the aggregated flow ∂tφ = −gradgφ
E[φ] on L .

Further, recall the metric defined on level sets of Section 2.2.2:

gφ(s1, s2) =

∫

Ω

s1
‖∇φ‖

s2
‖∇φ‖ ‖∇φ‖ dµ =

∫

Ω

s1s2 ‖∇φ‖−1
dµ .
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Theorem 6.2.2. The first variation of the aggregated Willmore functional (6.3) is given by

〈E′[φ];ϑ〉 =

∫

Ω

1

2
h2 ∇φ
‖∇φ‖ · ∇ϑ− ‖∇φ‖

−1
P∇(‖∇φ‖ h) · ∇ϑ dµ (6.4)

for all ∀ϑ ∈ C∞
0 (Ω). Here, P := P [φ] denotes the projection onto the tangent space defined in Eq.

(1.11).

Proof. Let us first recall the variation of the normal from (1.13):

d

dε

v + εw

‖v + εw‖
∣
∣
∣
ε=0

=

(
� − v ⊗ v
‖v‖2

)

w.

Now we can calculate

d

dε
E[φ+ εϑ]

∣
∣
∣
ε=0

=
d

dε

1

2

∫

Ω

‖∇(φ+ εϑ)‖
(

div

[ ∇(φ+ εϑ)

‖∇(φ+ εϑ)‖

])2

dµ

∣
∣
∣
∣
∣
ε=0

=

∫

Ω

1

2
h2 ∇φ
‖∇φ‖ · ∇ϑ+ ‖∇φ‖ h div

(
d

dε

[ ∇(φ + εϑ)

‖∇(φ + εϑ)‖

]∣
∣
∣
∣
ε=0

)

dµ

=

∫

Ω

1

2
h2 ∇φ
‖∇φ‖ · ∇ϑ+ ‖∇φ‖ h div

[

‖∇φ‖−1
P∇ϑ

]

dµ

=

∫

Ω

1

2
h2 ∇φ
‖∇φ‖ · ∇ϑ− ‖∇φ‖

−1 P∇(‖∇φ‖ h) · ∇ϑ dµ

which is the desired result. �

By taking into account the metric gφ of the manifold of level set ensembles, we obtain
∫

Ω

∂tφϑ

‖∇φ‖ dµ =

∫

Ω

−1

2
h2 ∇φ
‖∇φ‖ · ∇ϑ+ ‖∇φ‖−1

P∇(‖∇φ‖ h) · ∇ϑ dµ. (6.5)

Hence, by integration by parts we obtain the following strong formulation of the Willmore flow
in level set form.

∂tφ+ div

(
1

2
h2 ∇φ
‖∇φ‖ − ‖∇φ‖

−1
P∇(‖∇φ‖ h)

)

‖∇φ‖ = 0 (6.6)

This equation is of fourth order, and is thus not implementable in a straightforward manner with
first order Finite Elements. A common approach is to reformulate the fourth order equation
into two equations of second order. Previously, in the parametric case RUSU devised a mixed
formulation with piecewise affine Finite Elements [181] This gives rise to the question of finding
a suitable second variable, which is substituted into the weak formulation and subject to a
second possibly geometric equation. An obvious first choice would be the mean curvature h,
however the last term in (6.4) suggests that the curvature concentration

w := −‖∇φ‖ h
is the natural dependent quantity. The variable w is determined by the weak formulation

∫

Ω

‖∇φ‖−1
wψ dµ =

∫

Ω

∇φ
‖∇φ‖ · ∇ψ dµ

for all ψ ∈ C ∞
0 (Ω). Now, substituting the terms −‖∇φ‖ h by w we end up with the following

coupled problem:

Problem 6.2.3 (Weak coupled Willmore flow formulation). Given an initial function φ0 on Ω
find a pair of functions (φ,w) with φ(0) = φ0, such that

∫

Ω

∂tφ

‖∇φ‖ϑ dµ =

∫

Ω

−1

2

w2

‖∇φ‖3
∇φ · ∇ϑ− ‖∇φ‖−1

P∇w · ∇ϑ dµ , (6.7)

∫

Ω

‖∇φ‖−1
w ψ dµ =

∫

Ω

∇φ
‖∇φ‖ · ∇ψ dµ (6.8)

for all t > 0 and all functions ϑ, ψ ∈ C ∞
0 (Ω).



6.2. A LEVEL SET FORMULATION FOR THE WILLMORE FLOW 107

For this level set formulation, one can deduce the decrease of the Willmore energy in same
fashion as in the graph case. We follow [89]. Differentiating the second equation in Problem
6.2.3 yields

0 =

∫

Ω

(

∂twψ + w ∂tψ −∇φt · ∇ψ +∇φ · ∇∂tψ
‖∇φ‖ −

(w ψ −∇φ · ∇ψ) ∇φ
‖∇φ‖ · ∇φt

‖∇φ‖2

)

dµ

=

∫

Ω

(

∂twψ

‖∇φ‖ −
wψ ∇φ

‖∇φ‖ · ∇φt
‖∇φ‖2 − P [φ]∇φt · ∇ψ

)

dµ. (6.9)

After testing (6.9) with w, the first equation of 6.2.3 with φt, and adding the results one obtains

0 =

∫

Ω

(

φ2
t

‖∇φ‖ −
1

2

w2 ∇φ
‖∇φ‖ · ∇φt
‖∇φ‖2 +

wwt
‖∇φ‖

)

dµ =

∫

Ω

φ2
t

‖∇φ‖ dµ+
1

2

d

dt

∫

Ω

h2 dµ.

6.2.2 Derivation from the classical formula

Instead of deriving the level set formulation for Willmore flow from the metric point of view
described above, it is alternatively possible to consider the classical parametric gradient flow
formulation and to translate it appropriately into the according weak level set formulation.
In order to underline that the gradient flow approach is more intuitive, we will proceed by
considering the classical formula.

First, we multiply (6.2) with a test function ϑ ‖∇φ(t)‖−1 for arbitrary ϑ ∈ C ∞(Ω). After
integrating over Ω we obtain

∫

Ω

∂tφ(t)

‖∇φ(t)‖ϑ+ ∆Mh(t)ϑ+ h(t)
(

‖S(t)‖22 −
1

2
h(t)2

)

ϑ dµ = 0

for all ϑ ∈ C ∞(Ω). At first, we note that ‖S(t)‖2 = DnT : Dn and h = div n [103]. Thus,
applying (1.12) we obtain

∫

Ω

∆Mhϑ dµ =

∫

Ω

∆hϑ− h∇h · nϑ− (D2hn · n)ϑ dµ

= −
∫

Ω

∇h · ∇ϑ− h∇h · nϑ− (D2hn · n)ϑ dµ

= −
∫

Ω

∇h · ∇ϑ− h∇h · nϑ−∇(∇h · n)nϑ+∇h · (Dnn)ϑ dµ

= −
∫

Ω

∇h · ∇ϑ− h∇h · nϑ+ h∇h · nϑ+ (n⊗ n)∇h · ∇ϑ+∇h · (Dnn)ϑ dµ

=

∫

Ω

−P∇h · ∇ϑ+∇h · (Dnn) dµ.

Furthermore, we use the formula
∫

Ω

∇v : ∇w dµ = −
∫

Ω

v · divw dµ

and div(∇v) = ∇div(v), where div is the divergence of matrix valued functions, to compute
∫

Ω

h‖S‖2ϑ dµ =

∫

Ω

hDn : Dn dµ

= −
∫

Ω

(
n · div(Dnhϑ)

)
dµ

= −
∫

Ω

((
n · div(Dn)

)
hϑ+

(
n ·Dn∇h

)
ϑ+

(
n ·Dn∇ϑ

)
h
)

dµ

= −
∫

Ω

(

h∇h · nϑ+
(
n ·Dn∇h

)
ϑ+

(
n ·Dn∇ϑ

)
h
)

dµ.
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Moreover, we obtain

−1

2

∫

Ω

hh2ϑ dµ = −1

2

∫

Ω

div(n)h2ϑ dµ

=
1

2

∫

Ω

∇(h2) · nϑ+ h2n · ∇ϑ dµ.

By collecting all these terms and taking into account the relation

Dn · n =
1

‖∇φ‖PD
2φn =

1

‖∇φ‖P∇‖∇φ‖

we end up with

∫

Ω

(

∆Mh+ h(‖S‖2 − 1

2
h2)
)

ϑ dµ =

∫

Ω

(

− P∇h∇ϑ− (n · (Dn∇ϑ))h+
1

2
h2n · ∇ϑ

)

dµ

=
(

− P∇h∇ϑ− h

‖∇φ‖ · ∇ϑ+
1

2
h2n · ∇ϑ

)

dµ

=

∫

Ω

(

− P∇(‖∇φ‖h) · ∇ϑ‖∇φ‖−1 +
1

2
‖∇φ‖−3(‖∇φ‖h2)∇φ · ∇ϑ

)

dµ

which is the weak formulation we have derived in the previous section. Hence, we have verified
that the aggregated gradient flow perspective yields the same evolution problem as integrating
the gradient of the parametric Willmore energy in a straightforward manner.

6.3 A level set formulation for surface diffusion

Since, to our knowledge, surface diffusion has no important applications in image processing
we refer to [188, 38, 21, 22, 20] and only briefly describe how surface diffusion fits into the
above framework. One of its main application is in the modeling of epitaxial growth of crystals
[18, 194, 193].

It is well known, that surface diffusion is the gradient flow of the area functional with respect
to the H−1-metric, which is given by

(v1, v2)−1,M := −
∫

M

(∆−1
M v1) · v2 dA

By integrating over all level sets, one obtains the aggregated metric

g−1,L (s1, s2) = −
∫

Ω

(∆−1
M
s1) s2

‖∇φ‖2 ‖∇φ‖ dµ = −
∫

Ω

(∆−1
M
s1) s2

‖∇φ‖ dµ.

By the Ansatz,

g−1,L (∂tφ, ϑ) = −
∫

Ω

∇φ · ∇ϑ
‖∇φ‖ dµ ∀ϑ ∈ C

∞
0 (Ω)

one ends up with the

Problem 6.3.1 (Weak formulation for surface diffusion in level set form). For an initial

function φ0 ∈ H1,2(Ω), find a pair of functions φ ∈ L2(H1,2(Ω)) and w ∈ L2(H1,2(Ω)), such that
for all t ∈ R

+

∫

Ω

∂tφϑ

dµ
+

∫

Ω

P [φ]∇w · ∇ϑ‖∇φ‖ dµ = 0 ∀ϑ ∈ H1,2
0 (Ω),

∫

Ω

w ψ dµ+

∫

Ω

∇φ · ∇ψ
‖∇φ‖ dµ = 0 ∀ψ ∈ H1,2

0 (Ω).
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6.4 Regularization

We observe that the evolution problem (6.7), (6.8) reveals terms of the form ‖∇φ‖−1. It is
somewhat expectable that the evolution equation degenerates when the gradient ‖∇φ‖ of the
level set function vanishes. The derivation of the Willmore flow was made under the assumption
that the level sets of φ are manifolds, however, if the level set function is flat in some regions, one
can no longer speak of the notion of a hypersurface. These singularities will also cause numerical
difficulties, since the speed of evolution becomes arbitrary large, which will be reflected in a
high condition number of the coupled system. In practical computations small gradients cannot
always be avoided. The Willmore flow is not the only evolution problem, where degenerate
gradients cause numerical difficulties. Let us reconsider the weak formulation of the mean
curvature flow equation

∫

Ω

∂tφϑ

‖∇φ‖ dµ = −
∫

Ω

∇φ
‖∇φ‖ · ∇ϑ dµ .

where ‖∇φ‖ appears in the denominator on both sides of the equation. A common approach is
to regularize the Euclidian norm and to define

‖v‖ε :=

√

‖v‖2 + ε, (6.10)

and accordingly the regularized evolution equation becomes
∫

Ω

∂tφϑ

‖∇φ‖ε
dµ = −

∫

Ω

∇φ
‖∇φ‖ε

· ∇ϑ dµ . (6.11)

For ε > 0 the denominator is bounded away from zero, and hence the elliptic part of the equation
remains coercive. This equation has been studied in detail by EVANS & SPRUCK [112], further-
more DECKELNICK & DZIUK have derived a detailed numerical analysis of the corresponding
Finite Element scheme [87].

However, it is interesting to observe, that the regularized problem can be interpreted as the
evolution of the mean curvature flow equation of a graph which is scaled by ε−1. Let us first fix
some

Notation 6.4.1. For a given φ ∈ C 2(Ω) and ε > 0 we denote by Gε[φ] :=
{
(x, ε−1φ(x)) : x ∈ Ω

}

the graph of φ.

Notation 6.4.2. Let ε > 0, in analogy to the level set case we define

PGε[φ] :=
� − ∇φ

√

ε2 + ‖∇φ‖2
⊗ ∇φ
√

ε2 + ‖∇φ‖2
.

To avoid confusion, note that PGε[φ] is not a projection, since PG[φ]v · v ≥ 1
ε2+‖∇φ‖2 ‖v‖2.

The upward oriented normal on the graph Gε is given by nε :=
∥
∥(−∇φ, ε)T

∥
∥
−1

(−∇φ, ε)T .
Let us now determine the normal velocities vε of the evolving graph in dependence of the nor-
mal velocity v of the level set function. This velocity vε in normal direction nε of the graph
corresponds to a velocity v of the corresponding level set in direction of the level set normal n.
The normal velocity V ε is given by

V ε = vεnε = ((vn) · nε)nε = v

(
(−∇φ, 1)

‖(−∇φ, 1)‖ ·
(∇φ, 0)

‖(∇φ)‖

)

nε = −v ‖∇φ‖‖∇φ‖ε
nε.

and hence, we obtain

vε = −v ‖∇φ‖‖∇φ‖ε
. (6.12)
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Now let us define the metric of tangent vectors of L by pulling back the corresponding scalar
normal velocities of the scaled graph:

gφ,ε(s1, s2) =

∫

Gε

vε1v
ε
2 dA =

∫

Ω

√

1 + ε−2 ‖∇φ‖2 vε1 vε2 dµ

=

∫

Ω

‖∇φ‖ε
ε

v1 v2
‖∇φ‖2

‖∇φ‖2ε
dµ =

1

ε

∫

Ω

s1 s2
‖∇φ‖ε

dµ .

We are now in the position to define the energies on graph surfaces.

Regularized mean curvature flow

We consider again the area functional, which now measures the area of the scaled graph.

e[φ] := e[Gε] =

∫

Gε

dA =

∫

Ω

√

det g dµ =

∫

Ω

√

1 + ε−2‖∇φ‖2 dµ.

The first variation of e[Gε] is given by

〈e′[φ];ϑ〉 =
d

dδ
e[φ+ δϑ]

∣
∣
∣
δ=0

=

∫

Ω

ε−2∇φ · ∇ϑ
√

1 + ε−2‖∇φ‖2
dµ =

1

ε

∫

Ω

∇φ · ∇ϑ
√

ε2 + ‖∇φ‖2
dµ.

Now, the gradient flow with respect to gφ,ε yields

1

ε

∫

Ω

∂tφϑ

‖∇φ‖ε
dµ =

1

ε

∫

Ω

∇φ · ∇ϑ
‖∇φ‖2ε

dµ,

which is the regularized mean curvature flow (6.11).

Regularized Willmore flow

The Willmore energy e[Gε] of the graph surface Gε is given by

e[Gε] =

∫

Gε

(hε)2 dA

=

∫

Ω

√

1 + ε−2 ‖∇φ‖2 div




ε−1∇φ

√

1 + ε−2 ‖∇φ‖2



 dµ

=
1

ε

∫

Ω

‖∇φ‖ε div

( ∇φ
‖∇φ‖ε

)

dµ

where hε is the mean curvature of the d + 1 dimensional graph surface Gε and E[φ] the energy
from Section 6.2. Hence, regularization can be understood as an approximation of Willmore
flow for implicit surfaces via Willmore flow for graph surfaces with a scaling ε−1 for ε→∞.

For the Willmore flow of graphs we obtain

Problem 6.4.3 (Weak formulation for the Willmore flow of scaled graphs). Given an initial

function φ0 on Ω, ε > 0 find a pair of functions (φ,w) with φ(0) = φ0, such that

∫

Ω

∂tφϑ

‖∇φ‖ε
dµ = −

∫

Ω

1

2

w2

‖∇φ‖3ε
∇φ · ∇ϑ+ ‖∇φ‖−1

ε PGε[φ]∇w · ∇ϑ dµ , (6.13)

∫

Ω

w ψ

‖∇φ‖ε
dµ =

∫

Ω

∇φ · ∇ψ
‖∇φ‖ε

dµ (6.14)

for all t > 0 and all functions ϑ, ψ ∈ C ∞
0 (Ω).
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The case ε = 1 has been analyzed by Deckelnick and Dziuk [89]. Their main result is the
following numerical error estimate:

Theorem 6.4.4. Given that the Willmore flow of graphs with Dirichlet boundary conditions in both

variables has a unique solution in the interval [0, T ], which fulfills

φ ∈ L∞((0, T );H4,∞(Ω)) ∩ L2((0, T );H5(Ω)),

φt ∈ L∞((0, T );H2,∞(Ω)) ∩ L2((0, T );H3(Ω)),

φtt ∈ L∞((0, T );L∞(Ω)) ∩ L2((0, T );H1(Ω)).

Further let u0h = Ihu0 be the projection of u0 ∈ H2(Ω) ∩H1,2
0 (Ω) then

sup
0≤t≤T

‖φ(t)− φh(t)‖+ sup
0≤t≤T

‖w(t) − wh(t)‖ ≤ Ch2| logh|2,

sup
0≤t≤T

‖∇φ(t)−∇φh(t)‖ ≤ Ch,

∫ T

0

‖ut − uht‖2 dt ≤ Ch4| logh|4,
∫ T

0

‖∇w −∇wh‖2 dt ≤ Ch2.

This result confirms that the proposed weak scheme is appropriate for the straightforward
numerical discretization by a semi-implicit Finite Element scheme.

6.5 Boundary conditions

In this section we will analyze the boundary conditions, which result directly by the choice of
test functions.

Homogenous Neumann conditions

Let us allow the test functions ϑ, ψ to be in C ∞(Ω). We first integrate by parts in equation (6.8)
by assuming sufficient regularity for φ:
∫

Ω

‖∇φ‖−1 w ψ dµ =

∫

Ω

∇φ
‖∇φ‖ · ∇ψ dµ = −

∫

Ω

div

( ∇φ
‖∇φ‖

)

dµ+

∫

∂Ω

∇φ
‖∇φ‖ · νψ dA

By the fundamental lemma, we obtain w‖∇φ‖ = −h in Ω and n = ∇φ
‖∇φ‖ · ν = 0, or n⊥ν a. e.,

where ν denotes the outward pointing normal of the boundary ∂Ω. This means that the level
sets are orthogonal to the boundary ∂Ω.

Now, let us integrate by parts also in equation (6.7):
∫

Ω

∂tφϑ

‖∇φ‖ε
dµ =

∫

Ω

div

(

1

2

w2

‖∇φ‖3
∇φ+ ‖∇φ‖−1 P∇w

)

dµ

−
∫

∂Ω

(

1

2

w2

‖∇φ‖3
∇φ+ ‖∇φ‖−1

P∇w
)

· νϑdA

and again the fundamental lemma yields

∂tφ− ‖∇φ‖ div

(

w2

2

∇φ
‖∇φ‖3

+ P∇w
)

= 0 in Ω

whereas on ∂Ω we obtain on account of ∇φ
‖∇φ‖ ⊥ ν:

h2

2

∇φ
‖∇φ‖ · ν
︸ ︷︷ ︸

=0

+Pν · ∇w
︸ ︷︷ ︸

∇w·ν

= 0.

Hence, we obtain the second boundary condition ∇w · ν = 0.
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Dirichlet conditions for φ, Neumann conditions for w

In order to prescribe Dirichlet conditions φ = φ∂ on ∂Ω we consider C ∞
0 (Ω) as the space of test

functions for ϑ. This will already determine the normal n = ∇φ
‖∇φ‖ of the level sets in tangential

direction along the boundary:

(
� − ν ⊗ ν) ∇φ‖∇φ‖ =

∇∂Ωφ
∂

‖∇∂Ωφ∂‖
.

In order to prescribe the full normal n∂ , we have to determine the normal component (with
respect to the boundary) of the normal of the level lines, i. e., n∂ · ν.

Now we consider consider test functions ψ ∈ C ∞(Ω) and enhance the equation by the re-
quired boundary integral (6.8)

∫

Ω

‖∇φ‖−1 w ψ dµ =

∫

Ω

∇φ
‖∇φ‖ · ∇ψ dµ−

∫

∂Ω

γϑdA , (6.15)

for a scalar function γ on ∂Ω. We obtain the same equation w = −h‖∇φ‖ in Ω, and ∇φ
‖∇φ‖ · ν =

n·ν = γ on ∂Ω. Hence, the choice of γ is restricted to fulfill |γ| ≤ 1. Since the normal component
of n∂ is now given by γ, with this combination of boundary conditions we are able to prescribe
the full normal of the level set function:

n∂ = (
� − ν ⊗ ν)n+ γν .

If the tangential gradient of φ∂ is zero we have to set γ = 1 for consistency reasons. Indeed,
the boundary condition would result in n∂ = ν. This will be the boundary condition of choice
for inpainting problems to be discussed later, since it allows to prevent the motion of the level
sets in tangential direction, while it fixes the angle under which the level set function meets the
boundary. In the case of the Willmore flow of scaled graphs one can proceed in a completely
analogous way to prescribe the full normal of the graph surface in R

d+1.

General Neumann conditions for both equations

We might proceed for w as above, choose as test functions for the first equation ϑ ∈ C ∞(Ω) and
modify (6.7) to

∫

Ω

∂tφ

‖∇φ‖ϑ dµ =

∫

Ω

−1

2

w2

‖∇φ‖3
∇φ · ∇ϑ− ‖∇φ‖−1

P∇w · ∇ϑ dµ−
∫

∂Ω

ηψ dA,

where the equation within Ω remains unchanged and we impose

h2

2

∇φ
‖∇φ‖ · ν + Pν · ∇w = η,

and finally obtain Pν · ∇w = η − h2

2 γ.

6.6 Semi implicit Finite Element discretization

We will now describe spatial and temporal discretization of the weak formulation of the reg-
ularized Willmore flow and suggest a semi implicit scheme in time. The spatial discretization
is again given by the the Finite Element discretization based on uniformly refined quadrilateral
resp. hexahedral cells with bi- resp. trilinear elements which has been described in Section 2.6.

Now we proceed with the temporal and spatial discretization of the regularized Willmore
flow problem. We discretize the system of partial differential equations (6.7), (6.8) first in time
using a semi implicit backward Euler scheme and then in space based on piecewise affine Finite
Elements.
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6.6.1 Spatial discretization

Now, we formulate the semi discrete Finite Element problem, which is only discretized with re-
spect to space and we consider homogeneous Neumann boundary conditions for both variables.
Again, capital letters and symbols denote the discrete analogon of the the continuous variables.

Problem 6.6.1 (Semi discrete problem). Find Φ : R
+
0 → V h with Φ(0) = Ihφ0 and a corre-

sponding curvature concentration function W : R
+ → Vh, which fulfill

∫

Ω

∂tΦ(t)Θ

‖∇Φ(t)‖ dµ+

∫

Ω

(

W (t)2

2 ‖∇Φ(t)‖3
∇Φ(t) · ∇Θ +

Pε[Φ(t)]

‖∇Φ(t)‖∇W (t) · ∇Θ

)

dµ = 0(6.16)

∫

Ω

W (t)Ψ

‖∇Φ(t)‖ dµ−
∫

Ω

∇Φ(t)

‖∇Φ(t)‖ · ∇Ψ dµ = 0(6.17)

for all t > 0 and all test functions Θ, Ψ ∈ Vh.

This problem is a system of ordinary differential equations.

6.6.2 Semi implicit time discretization

Let us now address the discretization in time. For a fixed time step τ , we want to compute the
discrete approximations Φk of the level set function at time kτ , namely Φ(kτ). Due to prohibitive
time step restrictions of the type τ ≤ Ch4, where h is the spatial grid size (cf. results presented
in [211, 52]), we will not consider any explicit schemes. For a backward Euler scheme in time
of the discrete system of ODE’s which we obtain after the spatial discretization, we consider the
backward difference quotient of the time derivative

∂tΦ((k + 1)τ) ≈ Φk+1 − Φk

τ
.

In Problem 6.6.1 we observe that the terms which are related to the metric, are depending
nonlinearly on Φ and W . These are the weight ‖∇Φ‖ and the projection P [Φ]. If we evaluate
these at the previous time step, we obtain a coupled linear system for Φk+1 and W k+1. For the
other occurrences of Φ we have several possibilities to decide, which terms are to be treated
explicitly and which terms are to be treated implicitly. The term Pε[Φ]

‖∇Φ‖∇W · ∇Θ is the dominat-
ing one. It represents the variation of the energy integrand h2 for fixed metric weight and is
primarily of fourth order, since W is already obtained by a differential operator of second order.
We will hence always choose this term to be fully implicit.

We will also treat the term W (t)2

2‖∇Φ(t)‖3∇Φ ·∇Θ explicitly in (6.16) with respect to Φ apart from
the denominator. It represents the discrete variation of the metric weight ‖∇φ‖ for fixed energy
integrand h2 and is of second order. In numerical experiments, it turned out to be of significance
to maintain stability.

If we decompose the projection into Pε[Φ
k] =

�
+ (

� − Pε[Φ
k]) we can treat the second

summand either implicitly or explicitly. Note that the eigenvalues of Pε depend on ε, for ε =
0, the normal ∇Φ

‖∇Φ‖ is an eigenvector to the eigenvalue 0. Let us now summarize these two
possibilities and formulate the fully discrete problems.

Problem 6.6.2 (Fully discrete semi-implicit problem (I)). Find a sequence of image intensity

functions (Φk)k=0,··· ⊂ V h with φ0 = Ihφ0 and a corresponding sequence of weighted mean curva-
ture functions (W k)k=0,··· ⊂ Vh such that for all test functions Θ, Ψ ∈ Vh we have

∫

Ω

(
(Φk+1 − Φk)Θ

τ‖∇Φk‖ε
+

(W k)2

2‖∇Φk‖3ε
∇Φk+1 · ∇Θ +

Pε[Φ
k]

‖∇Φk‖ε
∇W k+1 · ∇Θ

)

dµ = 0

∫

Ω

W k+1 Ψ

‖∇Φk‖ε
dµ−

∫

Ω

∇Φk+1 · ∇Ψ

‖∇Φk‖ε
dµ = 0.
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After definition of the matrices

M[Φk] =

(∫

Ω

Ψα Ψβ

‖∇Φk‖ε
dµ

)

α,β

, LP [Φk] =

(∫

Ω

Pε[Φ]

‖∇Φk‖ε
∇Ψα · ∇Ψβ dµ

)

α,β

,

L[Φk] =

(∫

Ω

∇Ψα · ∇Ψβ

‖∇Φk‖ε
dµ

)

α,β

, LW [Φk,W k] =

(∫

Ω

(W k)2

2‖∇Φk‖3ε
∇Ψα · ∇Ψβ dµ

)

α,β

,

where α, β are iterating over all Lagrange-nodes of the Finite Element space Vh, we—by a
Schur-complement approach—end up with the block system

(
1
τM + LW LP

−L M

)(
Φ̄k+1

W̄ k+1

)

=

(
1
τMΦ̄k

0

)

which rewrites after the elimination of W k+1 as

(M + τLW + τLPM
−1

L)Φ̄k+1 = MΦ̄k. (6.18)

This system is non-symmetric. One possibility is to use a BiCG-stab iteration as a solver.

Problem 6.6.3 (Fully discrete problem (II)). Given φ0 ∈ H1,2(Ω), find a sequence of image in-

tensity functions (Φk)k=0,··· ⊂ Vh with Φ0 = Ihφ0 ∈ Vh and a corresponding sequence of curvature
concentration functions (W k)k=0,··· ⊂ Vh such that for all test functions Θ, Ψ ∈ Vh we have

∫

Ω

(
(Φk+1 − Φk)Θ

τ‖∇Φk‖ε
+

(W k)2

2‖∇Φk‖3ε
∇Φk+1 · ∇Θ

+
∇W k+1 · ∇Θ

‖∇Φk‖ε
∇W k+1 · ∇Θ

)

dµ =

∫

Ω

(
� − Pε[Φk])
‖∇Φk‖ε

∇W k · ∇Θ dµ

∫

Ω

W k+1 Ψ

‖∇Φk‖ε
dµ−

∫

Ω

∇Φk+1 · ∇Ψ

‖∇Φk‖ε
dµ = 0.

With a similar notation as above, we obtain the following block symmetric block system.
(

1
τM + LW L

−L M

)(
Φ̄k+1

W̄ k+1

)

=

(
1
τMΦ̄k + L( � −P )W̄

k

0

)

which again after the elimination of W k+1 becomes

(M + τLW + τLM
−1

L)Φ̄k+1 = (M + τL( � −P ))Φ̄
k.

The matrix on the left hand side is symmetric and positive definite, so the whole system can be
solved with a conjugate gradient solver.

Numerical Quadrature

For the entries of the matrices no explicit formulas are available to compute the weighted in-
tegrals of products of the basis functions. We will apply numerical quadrature schemes for the
assembly of the mass matrix M and the the stiffness matrices L and its variants. In particular, we
use mass lumping (cf. the book of THOMÉE [196]) for the mass matrix and we apply Gaussian
quadrature rules for the computation of the stiffness matrices.

For the mass matrix, we will need a generalized variant of lumping, since the products of the
basis functions are weighted by ‖∇Φk‖−1

ε . To this end, we introduce a projection I0
h to the space

of piecewise constant functions with respect to the grid by I0
hΛ|C = Λ(sC). Here sC denotes

the center of gravity of an element C ∈ C. Then we define the general weighted lumped mass

matrix by

Mh[ω]ij :=

∫

Ω

I0
h(ω)Ih(ΦiΦj) dµ
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which reveals again a diagonal structure, but the diagonal entries are now a weighted sum, of
the usual contributions

∫

C Ih(ΦiΦj) dµ with respect to the weight ω. Now in the previously
described matrix systems (6.18) and (6.19) of the discretized Willmore flow, we will replace all
occurrences of M[Φk] by Mh[‖∇Φk‖−1

ε ].
For the local integrals, which make up the entries of the stiffness matrices, we will apply

Gaussian quadrature. Consider the Lagrangian projection I1
h corresponding to the Gaussian

quadrature nodes on each element. In our computations we have mainly used 4 point formulas
(for 2D) and 8 point formulas in 3D, which ensure an exact integration up to third order tensor
product polynomials.

The Gauss quadrature of the weighted second order stiffness matrix can be written as

Lh[A] :=

∫

Ω

I1
h(A∇Φi · ∇Φj) dµ.

Now after replacing all occurrences of the stiffness matrices, by their approximations due to
numerical quadrature, i. e.,

L[Φk]  Lh[‖∇Φk‖−1
ε ], LW [Φk,W k]  Lh

[
(Wk)2

2‖∇Φk‖3
ε

]

,

LP [Φk]  Lh[P [Φk]‖∇Φk‖−1
ε ], L( � −P )[Φ

k]  Lh[(
� − P [Φk])‖∇Φk‖−1

ε ],

we end up with a fully practical Finite Element scheme.
Although we did not observe any problem in the numerical simulation, the solvability of the

linear system of equation appearing in variant I is still unclear. Furthermore, the linear system
matrix A is not symmetric. Thus, in the implementation we apply BiCGstab as iterative solver.
Concerning variant II, the corresponding matrix A is obviously symmetric and positive definite.
Hence, A is invertible and the linear systems of equations can be solved applying a CG method.

6.6.3 Boundary conditions

The discretization described above was with respect to homogeneous Neumann conditions in
both variables, i. e.,

∇Φ

‖∇Φ‖ · ν = 0 and ∇W · ν = 0.

We will now briefly describe the implementation of the boundary conditions which have been
described in Section 6.5. In the following, we will, for the sake of simplicity, restrict ourselves
to the first variant of the discretization.

Neumann conditions in both equations

As described above, we may impose ∇Φ
‖∇Φ‖ · ν = Ihγ for |γ| ≤ 1. We consider the test functions

Ψ of the second equation to be in Vh and obtain:

∫

Ω

W k+1Ψ

‖∇Φk‖ε
dµ =

∫

Ω

∇Φk+1 · ∇Ψ

‖∇Φk‖ε
−
∫

∂Ω

Ihγ ·Ψ dA

thus by defining (R[γ])α :=
∫

∂Ω
Ihγα · Ψ dA for all α ∈ I , we obtain the coefficient vector of

W k+1:

W̄ k+1 = M
−1(LΦ̄k+1 −R[γ]). (6.19)
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For the first equation we may impose Pν · ∇W = Ihη − W 2

‖∇Φ‖Ihγ and by the considerations of
Section 6.5 we can write

0 =

∫

Ω

Φk+1 − Φk

‖∇Φk‖ε
dµ−

∫

Ω

div

(
(W k+1)2

2‖∇Φk‖2ε
∇Φk+1

‖∇Φk‖ε
+

Pε[Φ
k]

‖∇Φk‖ε
∇W k+1

)

·Θ dµ

=

∫

Ω

Φk+1 − Φk

‖∇Φk‖ε
dµ+

∫

Ω

(
(W k+1)2

2‖∇Φk‖3ε
∇Φk+1 · ∇Θ +

Pε[Φ
k]

‖∇Φk‖ε
∇W k+1 · ∇Θ

)

dµ

−
∫

∂Ω

W k+1

2‖∇Φk‖ε

( ∇Φk+1

‖∇Φk‖ε
· ν
)

Θ dA−
∫

∂Ω

(
Pε[Φ

k]

‖∇Φk‖ε
∇W k+1 · ν

)

Θ dA
︸ ︷︷ ︸

=

∫

∂Ω

IhηΘ dA

(6.20)

for test functions Θ ∈ Vh. The two boundary integrals in the last part of the equation allow us to
conveniently impose the normal and the gradient of the curvature concentration from a different
level set function resp. graph function. By inserting W k+1 from (6.19) the whole system then
reads

MΦ̄k+1 + τLW Φ̄k+1 + τLPM
−1(LΦ̄k+1 −R[γ]) = MΦ̄k+1 + R[η],

⇔ (M + τLW + τLPM
−1

L)Φ̄k+1 = MΦ̄k+1 + LPM
−1

R[γ] + R[η],

here R[η] is defined analogously to R[γ].

Dirichlet condition in the first equation

In order to prescribe Dirichlet conditions for the variable φ, namely φ
∣
∣
∣
∂Ω

= g ∈ L2(∂Ω), we

introduce the Finite Element space

Vh∂ [gh] =
{
ψ ∈ Vh : Tψ = gh

}

as the discrete representation of the space

H1,2
∂ (Ω)[g] :=

{
ψ ∈ H1,2(Ω) : Tψ = g

}

Here, gh denotes the L2-projection of g onto the restriction of the Finite Element space Vh to
the boundary and T denotes the trace operator with respect to the space Vh ⊂ H1,2(Ω), i. e.,
the unique bounded linear mapping T : H1,2(Ω) → L2(∂Ω) which fulfills Tf = f on ∂Ω for all
f ∈ H1,2(Ω) ∩ C 0(Ω) [1, 111]. We denote the interior nodes of T h by N0(T

h), corresponding
to the Lagrange nodes of Vh in the interior of Ωh and denote the nodes on the boundary ∂Ωh by
N∂(T h).

For Problem 6.6.2 we obtain again, in case of natural Neumann conditions for the curvature
concentration, W̄ k+1 = M

−1
LΦ̄k+1. For the first equation we obtain

0 =
∑

β∈N0

Φ̄k+1
β − Φ̄kβ

τ

∫

Ω

ΨβΨα

‖∇Φk‖ε
dµ+

∑

β∈N0

Φ̄k+1
β

∫

Ω

(W k)2

2‖∇Φk‖3ε
∇Ψβ · ∇Ψα dµ

+

∫

Ω

Pε[Φ
k]

‖∇Φk‖ε
∇W k+1 · ∇Ψβ +

∑

β∈N∂

∫

Ω

Φ̄k+1
β

∫

Ω

(W k)2

2‖∇Φk‖3ε
∇Ψβ · ∇Ψα dµ

for all α ∈ N0. After splitting W k+1 into the interior nodes and the exterior nodes, and consid-
ering a lumped mass matrix we obtain the following system for the restricted set of degrees of
freedom:

(M0 + τLW,0 + τLP,0M
−1
0 L0)Φ̄

k+1
0 = M0Φ̄

k − τRestr[Vh0 ]LW ḡh − τRestr[Vh0 ]LPM
−1

Lḡh.

The matrices with subindex 0, denote the usual assembly, where now the indices are only run-
ning over interior nodes. One can proceed analogously for the second variant. The restriction
operator from Vh to Vh0 is denoted by Restr[Vh0 ].
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Figure 6.2: Anisotropic Surface Diffusion (TOP ROW) and Willmore flow (BOTTOM ROW) evolution.

The results for the anisotropy γ(z) = (|z1|6+|z2|6)
1
6 are depicted for timesteps 0, 50, 100, 1000, 4000.

The timestep τ was chosen as 2h4 and ε = 2h.

6.7 A note on anisotropic variants of geometric flows

In this thesis, our motivation of the Willmore flow was founded on the fact that for fixed bound-
ary conditions, stationary points of the Willmore functional are fitting smoothly to the exterior
and furthermore, shapes are preferred for which the curvature is evenly distributed and is hence
suitable for inpainting. We have assumed that we have no information whatsoever about the
morphology in the inpainting domain, that we might exploit during the inpainting process.

This might not be the case in all applications. Imagine, that at each point of the inpainting
domain, we have some kind of prior available that indicates, whether certain orientations are
preferred or unlikely. Then we might aim at devising a flow, such that alignment to directions
and smoothing is combined.

Furthermore, anisotropic surface energies play an important rôle in material science. Crystal
lattices are in general anisotropic. Actually the Wulff-shapes are named after a material scientist
who analyzed the growth of crystals [210, 114]. Certain materials are characterized by preferred
orientations, which correspond to the molecular structure of the material [193]. A detailed
treatise of the anisotropic case with respect to physics and its possible applications in image
processing would be beyond the scope of this thesis. Hence, we will only give an overview on
how the framework of the aggregated surface energies naturally extend to the anisotropic case,
leading the way to future applications, which may then be based on the anisotropic case (see
also [192, 48, 91, 87, 85, 208, 209]).

6.7.1 Weighting with respect to orientations

Mathematically, the variational modeling of preferred orientations is expressed in terms of a
weighting function on the space of normals, i. e.,

γ : Sd−1 → R
+ which extended 1-homogeneously: γ(λz) = λγ(z) ∀λ > 0, z ∈ R

d.

Definition 6.7.1. Let γ : Sd−1 → R
+ be positive, convex and 1-homogenous, then we define the

Frank-Diagram Fγ and the corresponding Wulff-shape Wγ by

Fγ :=
{
z ∈ R

d : γ(z) = 1
}

(6.21)

Wγ :=

{

z ∈ R
d : γ∗(z) := sup

n∈Sd−1

〈z, n〉
γ(n)

= 1

}

. (6.22)

Let us remark, that this definition is different from the usual definition in the literature,
where theses sets are not defined as surfaces, but as the convex bodies, which are enclosed by
the sets defined above.
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The geometric interpretation is the following. Consider a convex body K with 0 ∈ K, and for
each n ∈ Sd−1 the unique intersection point xn := {tn : t ∈ R

+} ∩ ∂K and define γ(n) as the
distance of xn to the origin, i. e., γ(n) := 〈xn, n〉. Then due to the convexity K is characterized
by

K =
⋂

n∈Sd−1

{x ∈ R
n : 〈x− xn, n〉 ≤ 0} =

⋂

n∈Sd−1

{x ∈ R
n : 〈x, n〉 ≤ γ(n)} .

Hence, for each n ∈ Sd−1, we obtain the corresponding intersection on the boundary of K by
γ(n)n. We can now rewrite Wγ as

Wγ =
{
γ(n)n : n ∈ Sd−1

}
.

Moreover, it can be shown that Wγ = γz(S
d−1) given that γ is differentiable [66].

Now let, us define the weighted area functional

ea,γ [M] :=

∫

M

γ(n) dA.

In analogy to the isotropic case define the L2 representation of the anisotropic mean curvature
by the variation of the weighted area functional:

(hγ , ϑ)L2(M) = 〈e′γ [M], ϑ〉 ∀ϑ ∈ C
∞(M)

We will from now on call this anisotropic mean curvature call γ-mean curvature. The anisotropic
Willmore functional is defined by

eW,γ[M] :=
1

2

∫

M

hγ dA.

It is shown in [66] that the L2 gradient flow of the anisotropic Willmore functional is given by

∂tx = ∆γhγ + hγ(tr(µγS
2)− 1

2
hhγ),

where ∆γ · = divM(µγ∇M·) and µγ denotes the push-forward of γzz onto the tangent bundle
TM. By observing that in the level set context the relation hγ = tr(µγS) = divγz(∇φ) (cf. [72]
for more details) holds, we obtain the aggregated Willmore energy as

EW,γ [φ] =
1

2

∫

Ω

(divγz(∇φ))2‖∇φ‖ dµ.

By a similar computation as in the proof of Theorem 6.2.2 and by choosing analogously wγ :=
−hγ‖∇φ‖ as the natural second variable one obtains:

Problem 6.7.2. For an initial function φ0 ∈ H1,2(Ω), find a pair of functions φ ∈ L2(H1,2(Ω))
and w ∈ L2(H1,2(Ω)), such that for all t ∈ R

+

∫

Ω

∂tφϑ

‖∇φ‖ +

∫

Ω

(

w2
γ

2‖∇φ‖∇φ · ∇ϑ+ γzz(∇φ)∇w · ∇ϑ
)

dµ = 0 ∀ϑ ∈ H1,2(Ω),

∫

Ω

wγ ψ

‖∇φ‖ dµ−
∫

Ω

γz(∇φ) · ∇ψ dµ = 0 ∀ψ ∈ H1,2(Ω).

Remarks 6.7.3. We observe the following.

(i) Keeping the denominator ‖∇φ‖ fixed in a semi-implicit scheme in the fashion of the isotropic
case is not sufficient to make the second equation linear.

(ii) Again, the equation has to be regularized to avoid the degeneration for vanishing gradients.

Since γ is 1-homogenous, the first derivative γz is discontinuous in the origin. It is possible to

follow again the approach of regularizing with scaled graphs. However, one has to carefully
design the extension of the anisotropy to dimension d+ 1.

(iii) γ has to be twice differentiable.

(iv) Anisotropic surface diffusion can be obtained similarly. See [193, 38, 72] for further details.

(v) Anisotropic Total Variation flow has been analyzed by ESEDOGLU & OHSER [110].
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6.7.2 Outlook: Application scenarios in image processing

In the case of an anisotropic Willmore energy it is then possible to steer the preferred orien-
tations of the minimizer of the Willmore energy. This idea is based on the work of CLARENZ

[67], who has shown that the Wulff-shape minimizes the anisotropic Willmore energy. Also for
locally varying Wulff-shapes, the anisotropic Willmore flow is expected to drive the surface to
facet according to the preferred orientations. The fundamental problem is to find priors of fea-
ture directions and subsequently construct the function γ, such that its corresponding (locally
varying) Wulff-shapes reflect the desired feature directions of the image. CLARENZ, RUMPF &
TELEA [74] have constructed stable classify surfaces locally.

Let us describe some scenarios where priors about preferred orientations can be obtained.
This is to be understood as an outlook.

(i) Partial destruction of the region. Assume that the image to be reconstructed is only
partially destroyed, e. g., corrupted by noise. Then it might still be possible to extract
feature directions in a similar way as this is done in anisotropic diffusion [203]. To our
knowledge, no stable ways of retrieving Wulff-shapes from corrupted images have been
proposed in the literature so far.

(ii) Reconstruction based on matching. Let us assume that the inpainting region in one
image is completely destroyed, but that we have a registration available, such that the
morphology can be analyzed in a second reference image. In that case, by the assumption
that the morphologies of these images are supposed to be similar, it is possible to extract
feature orientations in the known region and transfer it to the second.

6.8 Numerical results

EOC-analysis: convergence to a spherical cap

For a first validation of the numerical method, we consider the limit behavior for graph surfaces.
It is known that 2-dimensional spheres are stationary points of the Willmore functional. We keep
the position and the normals of the surface fixed along the boundary by considering boundary
conditions of zeroth and first order, i. e., Dirichlet conditions in the first equation and Neumann
conditions in the second equation, which are choosing according to the surface of the exact

solution, which is given by φ∗(x, y) =
√

1− x2 − y2 for Ω = (− 1
2 ,

1
2 )2. We chose the initial graph

function φ0 as the solution of the Poisson-problem

∆φ0 = 0 in Ω φ0 = φ∗ on ∂Ω.

We set ε = 1 and compute the evolution of VARIANT I of the gradient flow as in Problem 6.6.2.
We observe that Φk is converging to a stationary point of the Willmore functional as shown in

Figure 6.1. Moreover, Φk
k→∞−→ Φ ≈ Ihφ∗. We study the experimental order of convergence

(EOC) for successively refined grids. Discretization parameter h is halved in every refinement
step, hence the EOC is given by:

EOCh := log2

(‖Φ2h − Ihφ∗‖L2

‖Φh − Ihφ∗‖L2

)

.

As expected we verify that ‖Φh − Ihφ∗‖L2 ≤ Ch2, hence the numerical error of the converged
solution is in the order of the interpolation error (see Table 6.1).

Comparison to exact solutions in the level set context

For radially symmetric evolution of curves under the Willmore flow we see for instance by Eq.
(6.2) and taking into account the fact that h = r−1 and ‖S‖2 = r−2 that the evolution can be
described by an ordinary differential equation for the radius ṙ(t) = 1

2r(t)
−3. For a positive initial

radius r(0) = r0 the evolution in time of the radius must hence be given by

r(t) = (2t+ r40)
1/4. (6.23)
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h 2−3 2−4 2−5 2−6 2−7 2−8

L2-error 1.043e-3 2.519e-4 6.244e-5 1.575e-5 4.002e-6 1.219e-6
EOCh 2.05 2.01 1.99 1.98 1.71

Table 6.1: L2-error and experimental order of convergence for the limit surface of the Willmore
flow which is expected to converge to a sphere cap depending on the grid size h.

As initial function on the domain Ω = (− 1
2 ,

1
2 )2 we chose φ0 to be a radially symmetric level

set function with ‖∇φ0‖ = 1, here the distance to the origin, and compute the Willmore flow
for ε = h/2 on a grid of size 65 × 65, as well as on a grid of size 129 × 129. We tracked the
evolution of a particular level setMc in time and compared it with the exact solution. The time
step was chosen as 2h4. After every 50 time steps, we have reinitialized the level set function
by computing the signed distance function with respect to Mc. This comparison is shown in
Figure 6.3. Here, we have to mention, that the error is not only due to the discretization error in
the Finite Element scheme for Willmore flow but also due to the interpolation error during the
reinitialization of the discrete signed distance function. The latter can influence the evolution of
the scheme significantly, it is hence advisable to avoid superfluous re-initializations. To measure
the error (cf. Figure 6.4), we define r(t, ·) : Mc(t) → R by r(t, x) = ‖x‖ and compute the
L∞-error ‖r(t) − r(t, ·)‖L∞(Mc(t)).

Comparison with parametric Willmore flow

For a further validation of the algorithm, we compare the numerical method for the evolution
of graphs under Willmore flow with a different parametric Finite Element method for Willmore
flow presented in [68]. We define as initial function

φ0 : [0, 1]2 → R, (x, y) 7→ −1

4
sin(πy)(

1

4
sin(πx) +

1

2
sin(3πx))

and subsequently generate a triangulation of the graph as input for the parametric algorithm.
Here, we have a grid of size 652 and time step size τ = 10−6. Different timesteps of the numerical
graph and parametric evolution are shown in Figure 6.6. As Dirichlet boundary conditions we
set φ(t) = 0 on ∂Ω and upwards pointing normals. The L2 and L∞ errors plotted in Figure 6.7
are computed over the domain of the graph by converting the parametric triangulations into
their corresponding graph representations.

A topology-change of an evolving level set

Figure 6.5 demonstrates a topology change of a curve, which evolves under the Willmore flow.
As an initial configuration, two square like shapes are placed close to each other. In the early
stage of the evolution, the flow is dominated by an evolution which rounds off the corners until
the shapes are close to circles. Due to the observation (6.23) that states that circles are growing
under the Willmore flow, the two shapes have no other possibility to get closer to each other,
until the get in contact, merge and eventually evolve to a single circle. However, we want to
emphasize that the notion of a solution is not completely understood in such a situation of a
singularity in the moment of contact.

Simultaneous flow of all level sets

In Figure 6.8 an initial function with ellipse-like level sets attached to the boundary is evolved
under Willmore flow for level sets with ε = h using VARIANT II of the fully discrete Problem
6.6.3. The initial function is given by

φ0 : [0, 1]2 → R, (x, y) 7→ 1 + e
1− 1

1−y2 cos(πx) cos
(

(
1

2
+

3

2
(3x2 − 2x3))πy

)

. (6.24)
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Clearly we observe that the ellipses tend to get rounder. The applied Neumann boundary
conditions ensure orthogonality of the level lines at the boundary. We additionally observe a
concentration of level sets and a steepening of the gradient as well as a flattening behavior
in other regions. This is not very surprising: In a relatively short time-scale ellipses become
circles, which then grow outwards. At some later time, these circles have to get in closer and
closer to other shapes, which are given as the level sets with respect to a different iso-value.
This is reflected by a significant steepening of the level set function. If the shapes were treated
independently, they would intersect each other and continue to grow, this intersection, however
is prohibited by the fact that the morphology is described by a level set function: the flow of the
morphology under Willmore flow stops to have a solution.

Numerical examples of anisotropic flows

Finally, we will briefly illustrate the results of anisotropic Willmore flow as of Problem 6.7.2
and anisotropic surface diffusion. In all examples we have chosen the weighting function γ as a
regularized version of ‖ · ‖∞, namely γ(z) = ‖z‖p with p = 6. The Frank diagram corresponds
to a regularized square which is aligned to the axes of the standard coordinate system. Figure
6.7 shows an evolution of a single level set. The initial level set function φ0 was chosen as the
distance to the origin. We observe that during the evolution, the shape evolves in such a way,
that the feature directions are similar to those of the Wulff-shape which is a diamond-like shape.
Furthermore we observe that in the case of surface diffusion, the shape converges. Similarly to
the isotropic case, the shapes continue to grow under anisotropic Willmore flow.

In Figure 6.9 a comparison between the graph evolution of these flows is shown. One can
see, that the surface diffusion tends to a steepening of the graph surface.

Let us now reconsider the initial level set function of (6.24) and the anisotropic variants of
the simultaneous flow of all level sets as shown in Figures 6.10 and 6.11. Again, we observe
steepening as well as flattening of the level set function. Additionally, the geometry locally adjusts
to the weighting of the normals as given by γ: the inexpensive directions of the level sets are
preferred.
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Figure 6.3: A circle of radius r0 = 0.13 expands due to its propagation via Willmore flow (h = 64−1

(TOP ROW), and h = 128−1 (BOTTOM ROW), τ = 10h4 ). The circle is represented by a level set
function. During the evolution by the level set method for Willmore flow a signed distance function

is recomputed every 50th time step. The exact solution (DOTTED LINE) and the corresponding level

set (SOLID LINE) are plotted for different times t = 2.99 · 10−4, 1.192 · 10−3 and 3.576 · 10−3.
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Figure 6.4: Comparison of the numerical (CROSSED LINE) and the exact growth of circles repre-
sented as a level set under Willmore flow over 10000 timesteps (τ = 10h4, ε = 1

2h) is shown.

Additionally, the L∞ error for the radius function r(t, ·) over the propagating level set is plotted in

time at the bottom.



6.8. NUMERICAL RESULTS 123

Figure 6.5: Two shapes merge under the level set evolution of Willmore flow. The parameters
were chosen as follows: ε = 5h, where h = 128−1, the time step size τ was 10h4. Timesteps
0, 100, 800, 1600, 1700, 1800, 4000, 40000 are depicted from top left to bottom right.

Figure 6.6: Comparison of numerical time stepping for graph (left) and parametric (right) repre-

sentation for times t = n10−8, n = 0, 100, 1000, 2500.
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Figure 6.7: L2 and L∞ difference of graph and parametric Willmore flow plotted over time steps.

Figure 6.8: Level set evolution of Willmore flow. On the top left, some level sets of the initial
configuration are shown. The other images show the result of the evolution after timesteps
1000, 5000 and 25000.
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Figure 6.9: Surface diffusion (TOP) and Willmore flow (BOTTOM) in the graph case. p = 6,

τ = 2h4, h = 128−1. Steps 0, 100, 5000 are shown.

Figure 6.10: Anisotropic Surface Diffusion level set case (ε = 10h), p = 6, τ = h4, h = 128−1.
Steps 0, 500, 1000, 3000 are shown. The picture at the bottom illustrates the steepening of the
level set function.
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Figure 6.11: Anisotropic Willmore flow level set case (ε = 10h), p = 6, τ = h4, h = 128−1. Steps
0, 500, 1000, 3000 are shown. The picture at the bottom illustrates the steepening of the level set
function.
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Chapter 7

Narrow band level set methods for
geometric evolution problems

FOURTH-ORDER geometric evolution problems suffer from two major drawbacks in the level
set context. First, embedding the evolution into the level set context, involves the fact that

the dimension of the whole problem is increased by one. This is justifiable, if one is interested
in the simultaneous evolution of the entire morphology M , however if only a single level set
surface is of interest, this mean a vast waste of computational efficiency, since further away
of the interface, the shapes and densities of the level sets do by construction of the level set
equation not affect the evolution of the particular interface of interest. In practice, however,
the type of extension is not arbitrary. In order to avoid degeneracies, a level set function with a
gradient magnitude close to 1 is desirable.

Secondly, the lack of the maximum principle questions the applicability of the level set ap-
proach. As in the exposition of the numerical results in the previous chapter, the existence
interval for the evolution of the entire morphology may be arbitrary small for certain initial con-
figurations, even though the evolution of the single particular surfaces would be well defined.
As already pointed out by several authors [186, 188], the simultaneous evolution of level sets
by fourth order geometric flows, can be ambiguous and lacks a fundamental notion of solution.

The aim of this chapter is to devise narrow band methods especially for fourth order geomet-
ric evolution problems in order to cope with these deficiencies. In particular, it is desirable to
render these methods applicable to two dimensional surfaces embedded in highly resolved three
dimensional data sets and to avoid having a small time interval where the solution exists. This
also holds true for narrow band formulations, however, the global effect which characterizes
the fourth order flow is ruled out by restricting only to a small subset of the domain Ω, namely
an ε-neighborhood of the interface of interest. By maintaining a certain choice of extension of
the level set function, keeping the level set function close to a signed distance function prevents
steepening or flattening and ensures that the velocity is mainly given by the geometry of the
interface itself. One might consider also the parametric variant of inspecting and computing the
evolution of a single hypersurface. However, let us emphasize that in many applications it is
not convenient to leave the level set context, especially when the surfaces are extracted from
real three dimensional images, where the structural organization is canonically given by level
set functions.

In the following we focus on the evolution of a single level set. The notion of a narrow band
corresponds to the idea of only considering a tubular neighborhood of the surface instead of
computing the evolution in the entire domain.

7.1 Evolution of signed distance functions

The signed distance function with respect to a set Ω is given by

d̄Ω(x) := dist(x,Ω)− dist(x,Ωc),
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Figure 7.1: Inpainting of a subdomain of a sphere using a narrow band approach. Within the
inpainting domain the initialization was chosen as a minimal surface. Steps 0, 10, 50 and 150
are shown.

and one sees directly that the Lipschitz constant of d̄Ω is not greater than 1, and that by
Rademacher’s Theorem is differentiable a.e. Moreover, ‖∇d̄Ω‖ ≤ 1. Furthermore, it is known
that the differentiability of d̄Ω at x only depends on the uniqueness of the projection of x onto
∂Ω [6, Thm. 4.1]. According to the definition of FEDERER, a boundary is said to be of positive

reach, if there exists a tubular neighborhood, in which the uniqueness of the projection onto the
boundary is fulfilled. Note that the projection is given by [92, Ch. 4, Thm 4.4].

pMt
(x) = x− 1

2
∇d̄2

Ωt
(x) for a.e.x ∈ R

n. (7.1)

Consider a domain Ω with smooth boundary M := ∂Ω, on which we apply a geometric
evolution equation. Then the evolution of the family (Mt) for t ∈ [0, T ] induces the evolution
of the signed distance function d̄Ωt

and vice versa. In the case of the mean curvature flow, it is
clear thatMt evolves in with the negative mean curvature if and only if

∂td̄Ωt
(x) = ∆d̄Ωt

(x) ∀t ∈ [0, T ], x ∈ Mt

since the mean curvature on the interface is given by ∆d̄Ωt
and considering the level set equa-

tion. This approach is due to SONER [190]. He characterized the mean curvature flow by the
inequalities

∂d̄Ωt
≥ ∆d̄Ωt

∈ Ωct and ∂d̄Ωt
≥ ∆d̄Ωt

∈ Ωt

to be understood in the viscosity sense. In the literature there is a general agreement, that for-
mulations of geometric evolution problems based on signed distance functions is an appropriate
Ansatz to analyze the evolution if single interfaces.

In [93] DELFOUR & ZOLÉSIO have studied the evolution of the distance function for a given
velocity field V on the interfaceM. They derive the corresponding nonlinear evolution equation
for the signed distance function d̄:

∂td̄Ωt
+∇d̄Ωt

· (V (t) ◦ pMt
) = ∂td̄Ωt

+ nMt
· (V (t) ◦ pMt

) = 0 (7.2)

and moreover they have given a weak formulation for the evolution of the projection in time

d

dt

∫

Rn

pMt
· ψ dµ =

∫

Rn

(pMt
− �

)(V (t) ◦ pMt
)divψ dµ (7.3)
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Figure 7.2: Smoothing surfaces via Willmore flow. The sequence shows the evolution starting
on a noisy initial surface from the segmentation of a human brain from the top and the bottom.
Steps 0, 1, 5 and 30 are shown. See also Figure 7.7.

for all test functions ψ ∈ C ∞
0 (Rn; Rn). In the level set context, pMt

can be determined in a
constructive way from the knowledge of pMt

, in fact V (t) ◦ pMt
corresponds to the extension

of V in normal direction. This becomes clear by the observation that the characteristics along
∇d̄ are straight lines (from ‖∇d̄‖2 = 1 we infer D2d̄ · ∇d̄ = 0), where d̄ is sufficiently smooth
and that ∇d̄ is equal to the normal of the interface on M. If Mt is a smooth surface, then
there exists a tubular neighborhood, in which d̄Ωt

is smooth. Hence, also V ext(t) := V ◦ pMt

is constant on these trajectories. Note that this formulation only depends on the geometry of
Mt, more precisely, the evolution only depends on the velocity V (t) on the surfaceMt. In the
following, we focus on practical algorithms to evolve the geometry by evolution of its signed
distance function in a small neighborhood. In principle, the following approaches to solving the
coupled system consisting of equations (7.2) and (7.3) are imaginable.

(i) One may first compute the velocity V (t) on the interfaceMt, extend it to V ext(t) defined on
a small neighborhood, and finally compute an explicit timestep of the approximate signed-
distance function. [119, 168, 186] In practice higher order ENO schemes are advisable,
however, due to the fact that his approach is fully explicit, one is restricted to small time
steps to be τ ≤ Chk, where k is the order of the evolution equation.

(ii) A different approach would consist in first determining the projection from the knowledge
of the interface in a constructive way, e. g., via the computation of the signed distance
function and taking into account the relation (7.1). From this one could try to solve (7.2)
implicitly. However, the numerical computation of the projection by the relation (7.1)
should be avoided due to instabilities.

(iii) In order to avoid the prohibitive time step restrictions, one may aim to solve the system
(7.2)-(7.3) fully implicitly. Because these equations are nonlinear this system can however
not be implemented in a straightforward way.

In the following we will propose practical schemes to approximate the solution of the evolu-
tion of the signed distance function. The main idea is to iteratively solve the level set formulation
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of the corresponding evolution equation, and enforcing the level set function to remain close to
a signed distance function by an appropriate choice of boundary conditions. Furthermore we
will describe the efficient implementation of the solution of higher order PDEs on a thin discrete
subdomain which surrounds the discrete interfaceMt,h.

7.2 Iterative solution of the nonlinear evolution problem

Before we head onto the fully discrete scheme for narrow band methods we first discretize in
time. We consider a tubular neighborhood Bδ(M(t)) for δ > 0 and distinguish between the
level set function Φ(t) : Bδ(M(t)) → R and the exact signed distance function d̄Ω(t), where
Ω(t) := {Φ(t, ·) > 0}. In fact, since we are in interested in the evolution ofM(t) = M0[Φ(t)]. Φ
may differ from d̄ as long as the zero level set reflects the true shape.

7.2.1 Implicit time discretization and boundary conditions

We consider the following evolution equation for an initial surfaceM0 and an initial choice of
sign for the signed distance function d̄:

∂tφ+ V ext
φ(t)‖∇φ‖ = 0 in Bδ(M(t))

φ(0) = d̄Ω0
in Bδ(M0)

where we for now have left the boundary condition on (0, T ]× ∂Bδ(M(t)) unspecified. We now
consider a straightforward partition of [0, T ] into intervals of length τ > 0 and to approximate
the derivative with respect to time we use a forward difference quotient, i. e., ∂tφ ≈ Φk+1−Φk

τ ,
where again Φk := φ(τk). For the other occurrences of Φ we have to decide, whether to choose
the old value Φk or the unknown function Φk+1. For obvious reasons, it is not practicable to
solve the problem for a varying domain Bδ(M(t)), so we keep it fixed during one timestep and
treat the other terms implicit. We arrive at the following weak formulation

∫

Bδ(Mk)

(Φk+1 − Φk)ϑ

τ‖∇Φk+1‖ dµ+

∫

Bδ(Mk)

V ext
Φk+1ϑ dµ = 0 ∀ϑ ∈ C

∞
0 (Bδ(Mk)). (7.4)

The extended velocity ensures, that Φk+1 will remain a signed distance function. However, one
has to take the following significant subtlety into account: in order to obtain a fully implicit
scheme, the extension of the velocity has to be computed with respect to the yet unknown new
interface. The computation of pΓ or, directly the extended velocity V ext should extend the ve-
locity from Φk+1 otherwise the whole scheme remains explicit. However, this would make the
whole problem hardly handable in practice. Our approach is the following. We drop the exten-
sion of the velocity and compute the velocity from the neighboring level sets, which vary only
slightly in shape and ensure that Φ remains close to a distance function by suitable boundary
conditions. In fact, for mean curvature for example it is known that this scheme converges to
the exact solution i. e., the L2 error behaves is estimated by C(τ + h2) (cf. DECKELNICK&DZIUK

[88]).

Second order flows

Let us now consider the mean curvature motion as a prototype problem for second order Cauchy
problems to illustrate the different possible choices of boundary conditions. The velocity is
given by the negative mean curvature h = div(n), and hence, we obtain, with non-homogenous
Neumann boundary conditions

∫

Bδ(Mk)

(Φk+1 − Φk)ϑ

τ‖∇Φk+1‖ dµ+

∫

Bδ(Mk)

∇Φk+1 · ∇ϑ
‖∇Φk+1‖ dµ =

∫

∂Bδ(Mk)

γϑdA (7.5)

for all ϑ ∈ C ∞(Bδ(Mk)). The function γ (recall the consistency condition |γ| ≤ 1) prescribes
the normal component of ∇Φk+1/‖∇Φk+1‖. In order to keep Φk+1 close to a signed distance
function, we postulate:
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A natural choice of boundary conditions is given by the Neumann resp. Dirichlet data

induced by the signed distance function.

Hence, in the case of Neumann boundary conditions, we set γ = ∇d̄ · ν, which means nothing
else than

dΦ

dν
=

dd̄

dν
on ∂Bδ(Mk).

Here ν denotes the outer normal of Bδ(Mk). The geometric interpretation is that simply the
level lines of Φ are parallel to the level lines of d̄ along the boundary. Observe that for the choice
of the domain as a tubular neighborhood, we have γ = ∇d̄ · ν = 1, however this will change
as soon the domain deviates from Bδ(Mk) or the fact that Bδ(M(t)) changes in time and if the
problem is discretized in space.

The signed distance function also depends on Φ, in particular the level set M0[Φ]. After the
solution of (7.4), we obtain a new interface, which induces a new signed distance function. As
we aim towards the boundary condition dΦk+1

dν = dd̄k+1

dν , we propose an iterative scheme: for
i = 1, . . . solve

∫

Bδ(Mk)

(Φk+1
i+1 − Φk)ϑ

τ‖∇Φk+1
i ‖

dµ+

∫

Bδ(Mk)

∇Φk+1
i+1 · ∇ϑ
‖∇Φk+1

i ‖
dµ =

∫

∂Bδ(Mk)

(d̄k+1
i · ν)ϑdA (7.6)

for all ϑ ∈ C ∞(Bδ(Mk)) until convergence. Here, d̄k+1
i denotes the signed distance function for

the interface given by Φk+1
i , and set Φk+1

1 := Φk (the stationary point of the previous iteration).
A similar scenario can be obtained by prescribing Dirichlet boundary data. Here, the natural

choice is to use the boundary values given by the signed distance function, i. e.,

Φ = d̄ on ∂Bδ(Mk).

By the same reasoning as above, it may be useful to iterate over i and successively update the
boundary conditions according to the new signed distance function d̄.

The difference is fundamental: while the Neumann condition allows level sets to move out-
ward or inward as long as they stay parallel to the level sets of the signed distance function, the
Dirichlet condition allows directions of the level sets to vary freely along the boundary as long
as the position of the level sets along the boundary are the same as those of the signed distance
function.

Let us remark, that in the continuous formulation the boundary conditions should not influ-
ence the evolution of the interface in the interior, since in theory the motion of the level sets is
decoupled. However, the finite element discretization in space induces some numerical viscosity
also in normal direction, which has the effect of a local averaging.

Fourth order flows

For fourth order flows, we are left to choose two boundary conditions. Here, we will consider
the level set formulation of Willmore flow of section 6.2 as a prototype problem. In section 6.5
we have described the boundary conditions in detail.

(i) Neumann conditions—In the second equation for the weak formulation of the Willmore
flow, we can prescribe the normal component (with respect to boundary) of the normal
(of the level set) in the same manner as above for the mean curvature flow by choosing γ
appropriately. In the first equation, we end up with a Neumann condition for w, depending
on the boundary function η:

Pν · ∇w = η − h2

2
γ = η − w2

2‖∇Φ‖2 γ.

It is more intuitive to recall equation (6.20), which gives a relation between η and the
normal components of Φ.
∫

∂Ω

W k+1

2‖∇Φk‖ε

( ∇Φk+1

‖∇Φk‖ε
· ν
)

Θ dA−
∫

∂Ω

(
Pε[Φ

k]

‖∇Φk‖ε
∇W k+1 · ν

)

Θ dA =

∫

∂Ω

Ihη dA
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By inserting the corresponding normals and curvatures of the distance function, i. e., ∇d̄
resp. ∆d̄ instead of ∇Φk+1 resp. W k+1 into this integral, we obtain a natural choice for
the Neumann data, if we aim at keeping Φ compatible with the signed distance function.
These are 1st and 3rd order conditions for Φ.

(ii) First and second order conditions—A probably more intuitive pair of boundary condi-
tions is by choosing Neumann conditions in the second equation, resulting in ∂νΦ = ∂ν h̄
and Dirichlet conditions for Φ. Here, simultaneously the values and the directions of the
level set function are kept in accordance with the desired signed distance function. As
mentioned in the previous chapter, this pair of boundary conditions is the natural choice
on the boundary of the region to be restored in the inpainting problem. In this context, the
geometric meaning of this boundary condition can be interpreted by observing that one
time step corresponds to a time step of an inpainting problem, such that the level sets are
inpainted according to the distance function in the exterior. The boundary conditions are
adjusted in every timestep, to ensure that the interface is allowed to move freely and is
only driven by the evolution equation itself.

(iii) Dirichlet conditions in both equations—Alternatively, we may prescribe the exact data d̄
and ∆d along the boundary by considering Dirichlet conditions in both equations. These
are boundary conditions of zeroth and 2nd order.

7.2.2 Finite Element discretization in space

We start by defining subgrids of the triangulation Th which divides the entire domain Ω into
cells. These subgrids correspond to different regimes of the neighborhood.

For a given δ > 0 and a given surfaceM, we define

Th,δ = {T ∈ Th : T ∩Bδ(M) 6= ∅}

and call this set of triangles the discrete narrow band. Furthermore we define the inner narrow

band, as the set of cells which intersectsM by

Th,0 := {T ∈ Th : T ∩M 6= ∅} .

Moreover, for an arbitrary triangulation G we define the extension G + to a one-neighborhood,
by the union of all cells of which at least one vertex is contained in G by

G
+ := {T ∈ Th : N (T ) ∩ N (G ) 6= ∅} G

(L) = (G (L−1))+ G
(0) = G .

We consider two types of choices of the narrow band:

(i) The width of the narrow band is determined by δ > 0. We set Th,nb := Th,δ.

(ii) Alternatively we consider building the narrow band by a certain number L ∈ N of cell
layers around Th,0 and set Th,nb := T

(L)
h,0 .

Depending on the context, triangulations will also be understood as the interior of the corre-
sponding set

⋃

T∈G
T̄ . For a triangulation G , we define the finite element subspace

Vh(G ) :=
{

u ∈ C
0(G ) : u

∣
∣
∣
T

piecewise multilinear
}

.

7.2.3 Computation of the distance function and extension in normal di-
rection from a fixed interface

In this section, we will describe a finite element approach to the computation of the signed
distance function. The solution approach is based on the iterative solution scheme for Hamilton-
Jacobi equations which recently been introduced by BORNEMANN&RASCH [29].
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Here we will solve the Dirichlet problem for the eikonal equation

‖∇φ‖ = 1 in Th,∂ , φ
∣
∣
∂Th,0

= g (7.7)

where g will later be given by the trace of φ from the solution of the local interface scheme
in Th,0. The Hopf–Lax update function Λ : Vh,0 → Vh,0 of the corresponding Hamiltonian
H(x, p) = ‖p‖ − 1, is given by

(Λhφh)(xh) = min
y∈∂ωh(xh)

(φh(y) + ‖xh − y‖) , xh ∈ N (Th,∂), φ ∈ Th,∂ (7.8)

where ω(xh) is given by

ω(xh) := {C ∈ Th,∂ : xh ∈ N (C)} . (7.9)

In [29] monotone convergence for Jacobi or Gauss-Seidel type fixed point iterations φk+1
h =

Λhφ
k
h has been proved. Similar to simultaneous computation of a distance field and an extension

of a function given on the boundary in the fast marching method the iteration can be enhanced
by an extension update function Θh : Vh,0 → Vh,0. The pointwise update for the extension
equation

∇wk · ∇φ in Th,∂ , wk
∣
∣
∂Th,0

= h (7.10)

is then given by

Θhwk(xh) = wk(ỹ) where ỹ := arg min
y∈∂ωh(xh)

(φh(y) + ‖xh − y‖) (7.11)

For the computation of a signed distance function we slightly change the update function, where
the φ is negative

(Λhφh)(xh) =







miny∈∂ωh(xh)

(

φh(y) + ‖xh − y‖
)

, φ(xh) ≥ 0

maxy∈∂ωh(xh)

(

φh(y)− ‖xh − y‖
)

, φ(xh) < 0
(7.12)

for xh ∈ N (Th,∂), φ ∈ Th,∂ . For linear functions on triangular elements explicit formulas are
given in [29], which remain valid unchanged for bilinear quadrilateral elements, since also here
minima over line segments on which φh varies linearly is determined. For trilinear elements in
3D, the Hopf–Lax update means to find minima over a face on which the discrete function is
bilinear. In this case, the update function is given by

7.3 A narrow band algorithm for semi-implicit schemes of

geometric evolution equations

In this section we will describe the algorithmical details on how the narrow band method can
be implemented efficiently. We will throughout this chapter let the full index set of the finite
elements space unchanged and use subsets which correspond to the degrees of freedom within
the narrow band. For higher order evolution problems the main restricting factor is given by
speed, not by memory requirements. Furthermore, since the discrete narrow band is always
built around the moving interface, it has to be reconstructed frequently, which means that the
set of active degrees of freedoms has to be adjusted as well. The subsets of indices can be
constructed in a very efficient way. On the other hand, it would be very inefficient to reallocate
coefficient vectors in each iteration just to maintain a small index set.

The main algorithmical components of the narrow band method are:

(i) distance function computation

(ii) grid and boundary management

(iii) management of the corresponding degrees of freedom and efficient solvers

(iv) incorporation of boundary conditions

(v) the main iteration
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7.3.1 Distance function computation

During the startup, in order to construct the initial narrow band grid, we first to have to locate
the interface by finding all intersected cells, and construct a discrete neighborhood of cells. Even
though we have two possibilities to select the cells which should belong to the grid, namely by
extending a discrete sets of grids by layers of cells or, alternatively, to select all cells which
intersect the δ-neighborhood Bδ(Mh(t)), whereMh(t) denotes the discrete interface, which is
given by the zero level set of the finite element function Φ(t).

In either case we will need the distance function in order to prescribe boundary conditions.
A single traversal through the entire grid is necessary to locate Mh(0) at the beginning of the
algorithm in order to locate the set of intersected cells The union of these cells yields the tri-
angulation Th,0, which is algorithmically represented as an explicit storage container. This is
done in the fashion of the Marching Cubes algorithm proposed by LORENSEN & CLINE [75].
From then on, full traversals are no longer necessary, since the narrow band subgrid can be
used from then on. Hence, we can waive on more efficient multilevel techniques, based on
hierarchical estimators, which are very efficient for repeated extraction of iso-surfaces for static
data [117, 167, 166]. The Marching Cubes algorithm generates a triangulation of the inter-
face Mh(t). During the traversal, the boundary data of the distance function dh on the nodes
N (Th,0) is initialized by the distance of the corresponding node to the triangulation of the inter-
face of the intersected cell. This triangulation only has to be locally available and is generated
on the fly efficiently using lookup tables. We will not expand this in further detail here and refer
the reader to []. On these nodes we will now chose the same sign for d̄ as the sign of φ. Now,
we proceed by iterating over the update procedure of the Hopf-Lax-scheme (7.8). Here, we use
an Gauss-Seidel update, to chose an efficient ordering in the spirit of the Fast-Marching-method.
This technique maintains a heap structure which stores the set of “candidate” nodes, which are
to be updated and allows instant access on the node with the smallest value (cf. the book of
SETHIAN [186] and [29] for further details). Hence, we can safely stop the computation when
this value exceeds the threshold δ+ h in order to make sure that all values are computed on the
narrow band grid Tδ,h.

If we chose the narrow band by the construction of discrete layers, the threshold has to be
adjusted appropriately.

7.3.2 Grid and boundary management

Finite elements are always based on triangulations. In order to assemble finite element matrices,
the usual procedure is to traverse all elements, and to compute the integral contributions for all
possible pairs of local indices locally and add them into the matrix. It suffices to have knowledge
about the set of cells, their geometry and the mapping of local indices to global indices to
perform this procedure. This means that, algorithmically, the triangulation can be represented
as an unstructured set of cells. Since, the triangulation is based on equally shaped elements, the
cells are entirely described by their offset position.

Even though for the assembly itself neighborhood information is not required, we store all
elements in a

�����������	��

, which allows efficient traversal and fast random access. This allows the

fast extraction of the boundary by a simple single traversal of all elements in the narrow band.
For each cell, we traverse all faces and check if the neighboring element with respect to this face
is contained in the triangulation of the narrow band. If this is not the case, this face is obviously
a boundary element and is stored in a container which doesn’t require any special structure.

7.3.3 Degrees of freedom and efficient solvers

The choice of the narrow band grid determines the set of global indices of the finite element
space Vh(Th,nb). In the case of nodal basis functions, these correspond to the set of nodes
N (Th,nb). The entire set of global coefficients is stored in a large vector with dimension
dimVh(T ). However, for the computation on the narrow band the set unknowns is a frag-
mented subset of this set. Iterative solvers can be written in terms of local operations on the
coefficients and matrix rows. For instance, in a conjugate gradient solver, scalar products and
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321 NN − 1

N (Th)

N (Th,nb)

3

. . . . . .

Figure 7.3: Generation of a small set of coefficients by referencing the required indices from a larger
vector.

multiplications of a matrix row with the vector are computed. In order to ignore the coefficients
which are not in N (Th,nb), one might set the diagonal entries of the matrix to 1 and set the
right-hand side of the linear system to arbitrary values for coefficients α 6∈ N (Th,nb). However,
this would still require scalar products and matrix-vector products to be computed for the entire
set of coefficients (see Figure 7.3).

It is by far more efficient to perform the entire computations only on the set coefficients which
correspond to the finite element space of the narrow band. Immediately after the construction of
Th,nb, we determine its degrees of freedom and perform a run length encoding, which enables us
to iterate through N (Th,nb) efficiently in O(dimN (Th,nb)). Scalar products and matrix vector
products can now be implemented efficiently by iterating over the run length encoded set of
coefficients. The matrices are represented by a sparse matrix structure, consisting of sparse
rows. These rows only have to be initialized for indices in N (Th,nb), the other rows don’t
require any memory and are ignored during the matrix-vector multiplication.

7.3.4 Incorporation of boundary conditions

As described in Section 7.2.1, we have to prescribe boundary conditions in every time step of
the iteration.

General geometric problems of second order

Again we first consider second order PDEs for level set formulations of geometric flows and
assume they are given in the following divergence form

∂tφ− divRn

(
A(x, φ)∇φ

)
‖∇φ‖ = 0 in Bδ(M(t))

and hence the Neumann conditions are given by A(x, φ)∇φ · ν = γ on ∂Bδ(M(t)). The natural
choice for γ is then determined by the signed distance function, i. e., γ = A(x, φ)∇d̄ · ν and so
we obtain the corresponding backward Euler scheme in matrix formulation:

(M[‖∇φ‖−1] + τL[A(x, φ)])Φ̄k+1 = M[‖∇φ‖−1]Φ̄k + Rγ [d̄]

where we have set

(Rγ [d̄])α =

∫

∂Bδ(M(t))

IhγΨα dA α ∈ I(Vh).

For Dirichlet boundary conditions, one proceeds similarly as described in Section 6.6.3.

General geometric problems of fourth order

We consider general fourth order problems of the following form, where q1, q2 are either 0 or 1:

∂φ− div(A1∇φ−A2∇(div(B∇φ)‖∇φ‖q2 )‖∇φ‖q1 = 0 in Bδ(M(t))
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which can be written as two coupled second order equations. Here, for Neumann boundary
conditions, we obtain the weak formulation:

∫

Bδ(M(t))

∂tφϑ

‖∇φ‖q1 dµ+

∫

Bδ(M(t))

(A1∇φ · ∇ϑ+A2∇w · ∇ϑ) dµ =

∫

∂Bδ(M(t))

ηϑdA

∫

Bδ(M(t))

wψ

‖∇φ‖q2 dµ−
∫

Bδ(M(t))

B∇φ · ∇ψ dµ =

∫

∂Bδ(M(t))

γψ dA

for test functions ϑ, ψ ∈ C∞(Bδ(M(t))). As before, choosing γ and η means to prescribe the
boundary conditions

A1∇φ · ν +A2∇w · ν = η and B∇φ · ν = γ.

Remark 7.3.1. This formulation covers the geometric flows that we have already described in

Chapter 6:

• Willmore flow—Choose q1 = q2 = 1 and set A1 := w2

2‖∇φ‖3 , A2 := P [φ]
‖∇φ‖ and B := �

‖∇φ‖ .

• Surface diffusion—Choose q1 = q2 = 0 and set A1 := 0, A2 = P [φ] and B := �
‖∇φ‖ .

As always, Dirichlet conditions are incorporated by replacing the set of test functions by
C∞

0 (Bδ(M(t))) in one or both of the equations. After the discretization in time by a finite
difference approximation of the time derivative, and choosing the nonlinear terms to be explicit
one can decompose φ (or similarly w) into φ = φ0 + φ∂ , where φ∂ is an admissible function
attaining the desired Dirichlet values on the boundary.

In order to apply the boundary conditions, which we have discussed in Section 7.2.1 the
implementation of the Neumann conditions can be performed in a straightforward manner by
choosing η := A1∇d̄ ·ν+A2∇wd̄ ·ν and γ := −B∇d̄ ·ν, where wd̄ corresponds to the solution of

∫

Bδ(M(t))

wd̄ ψ

‖∇d̄‖q2 dµ−
∫

Bδ(M(t))

B∇d̄ · ∇ψ dµ =

∫

∂Bδ(M(t))

γψ dA (7.13)

In order to prescribe the Dirichlet conditions in the second equation, or Neumann conditions in
the first equation, it is required to determine the values of wd̄ resp. ∇wd̄ along the boundary.
However, this evaluation of wd̄ on a surface of co-dimension 1 leads to a loss of consistency ,
which is even worse, when derivatives of wd̄ have to be evaluated.

Dirichlet conditions in both equations with overlapping domains

We propose an alternative strategy to allow a convenient implicit evaluation of the second vari-
able on the boundary. It is easy to achieve that the signed distance function is also avail-
able in a slightly larger domain than Bδ(M(t)), say for δ+ > δ. In this case we may solve
(7.13) on Bδ+(M(t)) with homogeneous Neumann conditions to obtain w+

d̄
, so that we obtain

wd̄ = w+
d̄

∣
∣
Bδ(M(t))

. In order to discretize this approach we are dealing with the three index sets

I(Vh0 ) ⊂ I(Vh) ⊂ I(Vh,+).

On account of ‖∇d̄‖ = 1 a.e., this translates into

w̄d̄ = Restr[Vh](M+)−1
L

+[B]d̄+

where notations M
+ and L

+ correspond to assembly of the matrices on the discretization Tδ+,h

of the enlarged domain Bδ+(M(t)) and Restr[Vh] simply corresponds to the restriction of the
coefficient vector by dropping all coefficients, which are not available in the (smaller) index set
of the finite element space Vh.
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Figure 7.4: Th,δ (Left) vs. T
(L)
h,0 (Right).

Full system in matrix formulation

On account of the decomposition Φk+1 = Φk+1
0 +Φk+1

∂ , where Φk+1
∂ = D on ∂Th,nb and Φk+1

0 ∈
Vh0 and the notation that M0 and L0 correspond to the matrices obtained by pairing all basis
functions of Vh0 , we finally obtain the matrix formulation of the full Dirichlet problem:
(
M0[‖∇Φ‖q1 ] + τL0[A1] + τL0[A2]Restr[Vh0 ](M+[‖∇Φ‖q2 ])−1

L
+[A2]

)
Φ̄k+1

0 = (7.14)

M0[‖∇Φ‖q1 ]Φ̄k0 − τRestr[Vh0 ]
(
L[A1] + L[A2]Restr[Vh](M+[‖∇Φ‖q2 ])−1

L
+[A2]

)
Φ̄k∂ .

Here D denotes the discrete version of d̄ as computed by the Hopf-Lax update procedure. Finally
it has to be mentioned, that A1, A2 and B may explicitly depend on W and Φ (e.g. in the case of
Willmore flow, A1 = A1(w) and A2 = A2(φ). To obtain a semi-implicit time stepping scheme, we
insert the corresponding discrete functions from the previous time step. Here W k is computed
in the extended finite element space Vh,+ and subsequently restricted to Vh.

7.3.5 The main loop

Let us now turn to the description of the full algorithm. Hereby, we focus on the variant of
the Dirichlet conditions that has been described at the end of the previous section for fourth
order problems. Second order problems are implemented similarly in a straightforward way,
by discretizing the iteration (7.6) or an analogous variant in space with Dirichlet or Neumann

boundary conditions.
In order to consider an inner iteration, let us abbreviate the operators on left and right hand

side of the matrix formulation (7.14) by

A[W,Φ] := L[A1] + τL[A2]Restr[Vh](M+[‖∇Φ‖q2 ])−1
L

+[A2]

A0[W,Φ] := L0[A1] + τL0[A2]Restr[Vh0 ](M+[‖∇Φ‖q2 ])−1
L

+[A2]

so that, hence, a single implicit time step with fixed boundary conditions becomes
(
M0[‖∇Φ‖q1 ] + τA0[W

k,Φk])Φ̄k+1
0 = M0[‖∇Φ‖q1 ]Φ̄k0 − τRestr[Vh0 ]A[W k,Φk]Φ̄k.

But, as described before, it is recommendable to successively adjust the boundary conditions
according to the changing signed distance function of the evolving geometry. A convenient
way to achieve this is to iteratively update the distance function within the narrow band and
repeatedly solve the equation

(
M0[‖∇Φk+1

i ‖q1 ] + τA0[W
k+1
i ,Φk+1

i ])Φ̄k+1
0,l+1

= M0[‖∇Φk+1
i ‖q1 ]Φ̄k+1

0,i − τRestr[Vh0 ]A[W k+1
i ,Φk+1

i ]D̄k+1
i . (7.15)

for i = 1, . . . until convergence. Here, we have used the convention that for k ∈ � , we set
Φk to the function Φkimax

, assuming, that we stopped the inner iteration for the kth time step at
iteration number imax, Φk+1

1 := Φk and Φ0
0 := Φ0. For W we proceed analogously.
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This means, that all occurring matrices have to be reassembled in each step of the inner
iteration. In order to at least be able to use the same storage structure within the inner iteration,
we choose the narrow band to be thick enough to ensure that the interface M(τ(k + 1)) of
the new time step is still contained in the same grid. Furthermore, this allows an efficient
way to update the distance function in the narrow band: the required process of extracting
the distance of the vertices of the intersected cells to the interface prior to the Hopf-Lax-update

or Fast-Marching-Method can be achieved by traversal over the narrow band grid, instead of
traversing the cells of the entire domain.

From the kth to the (k+ 1)th time step, the narrow band grid is adjusted to the new position
of the interface; the domain on which the PDE is solved changes. Algorithmically, this requires
a discrete extension operator from Ωkh → Ωk+1

h . Since the approach is based on the idea of
keeping Φk+1 close to a signed distance function, an obvious choice would be to set Φk+1

0 to
Dk (discrete distance function with respect to the discrete interfaceM0,h[Φ

k]) after every time
step. On the other hand, this “redistancing” always introduces numerical errors. In fact, it is
in general impossible to update the finite element space, such that the zero level set remains
constant and that at the same time the values at the Lagrange points correspond to the signed
distance to the discrete interface. To avoid a significant impact of this numerical error, we
extend Φk+1 by this reinitialization only every kredist

th time step. For the remaining time steps,
the Hopf-Lax-update is only computed on nodes, which do not belong to interfaced cells.
Let us now summarize these considerations and formulate the main algorithm.

Iterative narrow band evolution of signed distance functions

Step 0 Set the level to k := 0, Φ0 = Ihφ0 and choose δ > 2h, Th,0 := ∅
Step 1 For all C ∈ Th check the condition C ∩Mh(Φ

0) 6= ∅ . In this case update Th,0 ←
Th,0 ∪ C.

Step 2 (main loop)

Step 2.1 (a) compute distance function Dk(Φk) by Gauss-Seidel iteration of (7.12) within
the band δ and collect swept cells into Th,nb on the fly

Step 2.1 (b) or alternatively Th,nb := T
(L)
h,0 by a L-neighborhoods of cells.

Step 2.2 if k mod kredist = 0 then perform reinitialization: Φk := Dk.

Step 2.3 determine the index sets I(Vh0 ), I(Vh) and I(Vh,+).

Step 2.4 Set i := 1, Φk+1
1 := Φk

Step 2.5( inner loop)

Step 2.5.1 compute W k+1
i from the knowledge of Φk+1

i by solving the second equa-
tion, e. g., W̄ k+1

i := Restr[Vh](M+[‖∇Φ‖q2 ])−1
L

+[A2]Φ̄
k+1
i

Step 2.5.2 assemble the required matrices on the narrow band (depending on W k+1
i

and Φk+1
i )

Step 2.5.3 compute the right hand side of the system w.r.t. the choice of boundary
conditions

Step 2.5.4 solve the linear system (7.15) for Φk+1
i+1 with a direct solver or cg.

Step 2.5.5 set i← i+ 1. If convergence has been reached leave loop.

Step 2.6 set Φk+1 := Φk+1
i−1

Let us emphasize that even though we don’t reallocate the vectors of coefficients every time
the finite elements space changes, the the required storage space is reduced enormously. The
dominating storage requirement is dictated by the matrices, which for require 9 or 27 times as
much space as a full vector of coefficients in two resp. three dimensions.

It is yet unclear under which conditions the inner iteration (7.15) converges. In some cases,
when the geometry lacked a “certain amount” of smoothness, the scheme has actually diverged.
This was not the case for Neumann boundary conditions in both equations and a sufficiently
large narrow band with of δ > 6h.
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M
Ω

Γ̃

Bδ(M)

Γnb

Ω̃

Figure 7.5: Restricting the evolution to a subdomain Ω̃. Here we consider two types of bound-
aries: the level set function is kept fixed on Γ̃ which is a subset of the boundary of Γ̃, while
on the remaining boundary (Γnb) the boundary conditions are iteratively adjusted to the signed
distance function.

7.4 Non-closed surfaces and inpainting

So far, we have based the formulation and the algorithm on the assumption that the surface
is closed. In this section we will describe how the evolution of a surface can be implemented,
while keeping the boundary fixed. Fortunately this can be achieved by only slight modifications
of the above algorithm.

Let us assume that we are only interested in the evolution ofM(t) in Ω̃ ⊂ Ω = [0, 1]d, which
is described by a level set function φ̃ such that Ω̃ = {φ̃ ≤ 0}, for instance, the signed distance
function (see Figure 7.5). We want to deal with the case

∂M0 ⊂ ∂Ω̃

and keepM0 fixed along the boundary.
As a consequence, Γ̃ := ∂(Bδ(M(t)) ∩ Ω̃) ∩ ∂Ω̃ 6= ∅. For convenience, we consider the

decomposition

∂(Bδ(M(t)) ∩ Ω̃) = Γ̃ ∪ Γnb (7.16)

into the relatively open (w.r.t. ∂(Bδ(M(t)) ∩ Ω̃)) sets Γ̃ and Γnb.
We have described how the various types of boundary conditions can be implemented along

the boundary of the narrowband by taking into account the signed distance function. Thus, we
have the entire algorithmical components at hand to prescribe different boundary conditions
on Γ̃ and Γnb (see Figure 7.5). All of those types have to implemented differently so we will
focus only on the most approriate one in order to use Willmore flow for surface inpainting. If
other boundary conditions are desired, one may proceed analogously by taking into account the
formulas of Section 7.3.4.

On Γ̃ we may want to prescribe fixed boundary conditions, e. g., the variant of Dirichlet

conditions with different domains as described at the end of Section 7.3.4. However, along Γ̃ we
do not want to update the boundary conditions according to the distance function. Instead we
choose the conditions once at start of the algorithm according to the initial values of φ0 in Ω \ Ω̃
or at least a small neighborhood of Ω̃ and keep it fixed during all time steps. Here we assume
that the level set function φ0 is not only given in Ω̃ but also in a small neighborhood, which is a
reasonable assumption in case of surface inpainting. For the remaining boundary, namely Γnb,
we can proceed the same way as for closed surfaces.

Now the sets of cells Th,δ and Th,0 are chosen accordingly to ensure that they are fully
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Figure 7.6: Discrete subdomain of computation for an inpainting problem. The blue faces of the
cell indicate the boundary Γnb which is allowed to move and readjust during the computation.
The faces marked in cyan mark the Dirichlet boundary Γ̃ on which the surface should is kept
fixed.

contained in Ω̃:

T̃h,δ(M) :=
{

T ∈ Th : T ⊂ Ω̃ and T ∩ Bδ(M) 6= ∅
}

,

T̃h,0(M) :=
{

T ∈ Th : T ⊂ Ω̃ and T ∩M 6= ∅
}

,

G̃
+ :=

{

T ∈ Th : T ⊂ Ω̃ and N (T ) ∩ N (G ) 6= ∅
}

.

Furthermore, we will need

Ĝ
+ :=

{

T ∈ Th : T ∩ Ω \ Ω̃ 6= ∅ and N (T ) ∩ N (G ) 6= ∅
}

,

as well as the analogous finite element spaces Ṽh0 , Ṽh0 and (Ṽh)+. As before we chose our narrow
band triangulation T̃nb to be either T̃h,δ+(M) or T̃

+
h,δ(M).

Here G stands for an arbitrary subgrid of Th. The main difference is now the assembly of
the matrices on the one-neighborhood of Th,nb. We define for Φ ∈ Ṽh the auxiliary extended
function Φ+ ∈ (Ṽh)+ by

Φ+
∣
∣
Th,nb

:= Φ Φ+
∣
∣
T̂

+

nb

:= Φ0

∣
∣
T̂

+

nb

Φ+
∣
∣
T̃

+

nb

:= D(Φ)
∣
∣
T̃

+

nb

To ensure that Φ+ is well-defined, we initially set Φ0 to a signed distance function.
The stiffness matrix and the mass matrix are now computed with respect to Φ+, i. e., L[‖∇Φ+‖]

resp. M[‖∇Φ+‖]. Now Φ+ takes the rôle of Φ∂ in the linear system 7.14. Furthermore, the

Dirichlet nodes along the discrete boundary which corresponds to Γ̃ namely T̂
+

nb ∩ (Th,nb ∪ T̃
+

nb)
are kept fixed to the values of Φ0.

7.5 Numerical Results

Inpainting of a sphere cap

As a first test of the narrow band algorithm we consider the reconstruction of a sphere (see Fig-
ure 7.1). The inpainting domain was chosen as Ω̃ :=

{
(x, y, z) ∈ R

3 : x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0
}

.
We have obtained an initial surface by running mean curvature on the full sphere with Dirichlet
boundary conditions in Ω̃ until the surface becomes stationary (in which case we obtain a mini-
mal surface). The computations were performed on a grid of resolution 653. The timestep was
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chosen as 20h4 and a reinitialization of the distance function was performed after every 10th

timestep of the evolution. Furthermore the narrowband was chosen as Th,5h. Figure 7.1 shows
the evolution at time steps 0, 10, 50 and 150. As expected the Willmore flow drives the surface
to the missing part of the sphere.

Willmore flow for smoothing of surfaces

The use of higher order methods for surface smoothing has already been suggested by TASDIZEN

ET AL. [191]. In contrast to the mean curvature flow which reduces noisy perturbations of
the surface by a steepest descent of the area, the Willmore flow reduces the bending energy of
the surface. A noisy surface naturally reveals a strong local bending due to local oscillations
of high frequency. This results in a high magnitude of curvature and is hence measured by the
Willmore energy. The steepest descent of the Willmore functional is expected to yield a smooth
the surface according to the elimination of high curvature magnitudes. Figure 7.2 shows a top
and a bottom view of a surface of a human brain, which is obtained by segmentation of an
MRT data set of resolution 1293. The timestep was chosen deliberately small (τ = h4) since for
smoothing purposes, one aims to eliminate noise while still remaining close to the initial surface.
After one timestep a significant smoothing can be observed. In Figure 7.7 the same results are
shown from a side perspective. A part of the surface has been removed to offer a view into the
interior structure of the surface which in particular shows the ventricle of the brain. On the
right the curvature of the surface is color-coded in order to demonstrate, that the Willmore flow
eliminates regions of high curvature quickly and tends to a surface with a uniform distribution
of the bending. For these computations we have chosen the width of the narrow band to be
δ = 5h and the level set function has been reinitialized to the distance function after every
second timestep.

Inpainting of a hole in the skull

As a third application we have tested the applicability of the Willmore flow to the inpainting of
a real CT data set which reveals a large hole in the skull (see Figure 1.2) for some slices through
the initial CT data set. Before one can start with the process of the actual inpainting one first has
to extract a surface from the data set as an initialization and to specify an inpainting domain Ω̃.
We have applied a multilevel level set based segmentation algorithm [99] in order to segment
the outside region of the skull by a region growing approach. By this procedure we obtain a first
guess of the initial surface in the interior of the hole. The tedios part of the inpainting process is
to specify the inpainting domain Ω̃. The choice of Ω̃ is crucial and has to be selected with care,
since on the surface along the boundary of the inpainting domain is used to specify the boundary
conditions for the inpainting process (see Figure 7.6). Here we used the Dirichlet conditions in
both equations with overlapping domains and in particular solved the semi-implicit scheme 7.14
in every time step. Figure 7.8 shows the final result of the inpainting versus the initial surface.
The computations have been performed on a resolution of 1293 with a timestep of τ = 2h4. The
overall duration was about 6 hours on an desktop PC with a AMD XP 2.5Ghz CPU with 1Gb of
RAM. The resulting surface gives a seamless reconstruction of the hole.

Growth of circles in 2D

Finally, as a further validation on the numerical accuracy of the narrowband approach, we have
compared the numerical growth of radially symmetric solutions of the Willmore flow to the
exact solution (see Figure 7.9). Here we again take into account the ODE which describes the
evolution of the radius (cf. Eq. 6.23). The regularization parameter ε was chosen as h and a
reinitialization has been performed after every 50 time steps. Furthermore the width of band
was chosen as δ = 4h and τ = 10h4. We observe a very high degree of accuracy even for long
times of execution. The dotted line shows the exact solution while the normal line shows the
numerical computation after 0, 100, 400 and 1200 iterations.
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Figure 7.7: A detailed view of the smoothing of Figure 7.2. Again, steps 0,1, 5 and 30 are shown.
To offer a view into the interior the surface has been opened. On the right the curvature is color
coded during the evolution (blue means negative curvature, read stands for positive curvature
while colors close to green indicate a low magnitude.
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(a) initial surface (top view) (b) initial surface (side view)

(c) inpainted surface (top view) (d) inpainted surface (side view)

Figure 7.8: Inpainting of a large surface hole in the skull of a patient using the narrow band
approach.
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Figure 7.9: Validation of the growth of circles under 2D narrow band Willmore flow.
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