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Abstract. An efficient adaptive multigrid level set method for front
propagation purposes in three dimensional medical image processing
and segmentation is presented. It is able to deal with non sharp seg-
ment boundaries. A flexible, interactive modulation of the front speed
depending on various boundary and regularization criteria ensure this
goal. Efficiency is due to a graded underlying mesh implicitly defined via
error or feature indicating values on the cells of the underlying hexahe-
dral grid. A suitable saturation condition ensures an important regularity
condition on the resulting adaptive grid. This simplifies the adaptive fast
marching method on the compressed data significantly. As an application
the segmentation of glioma is considered. Thus the clinician interactively
selects a few parameters describing the speed function and a few seed
points referring to a single slice of an MRI data set. Then the automatic
process of front propagation generates a family of segments correspond-
ing to the evolution of the front in time, from which the clinician finally
selects an appropriate segment covered by the gliom. This selection can
be based on a visual evaluation of the propagation on a reference slice
using the clinicians expert knowledge. Thus, the overall glioma segmen-
tation turns into an efficient, nearly real time process with intuitive and
usefully restricted user interaction.

1 Introduction

Robust and efficient segmentation algorithms on digital images are a
challenging research topic of increasing interest especially in the last
decade. Front propagation methods based on an implicit represen-
tation of the evolving front proved to lead to convincing results for
basic segmentation purposes [2, 12, 11, 16, 18]. Unfortunately, they
require considerable computing time to solve the underlying partial
differential equation especially on highly resolved 3D images. Adap-
tive grid techniques [14] allow to overcome this drawback usually at
the cost of storing large hierarchical grid structures explicitly. Hence,



the processing of large data sets on desktop computers is getting
question some. We present an alternative approach. It confines with
minimal additional data to be stored to describe an adaptive grid of
nice regularity properties. This allows the efficient, nearly real time
handling of grids larger than 2563 by an adaptive front propagation
algorithm. Furthermore, flexible criteria for the segment boundary
depending on a class of concrete segmentation problems can be coded
into the propagation speed of the front. Our method is not consid-
ered as fully automatic. Indeed, user input is required in advance to
fix a few parameters and to select seed points in the segment un-
der consideration. Finally, the user extracts from a resulting family
of segments calculated during the front propagation an appropriate
candidate. Here his expert knowledge is required to compare the evo-
lution results with the original image data on a suitable slice through
the segment. As an important case study we consider a segmentation
problem in brain surgery. In order to construct a reliable modeling
for tissue segmentation in the level set context, we need a profound
understanding about the delicate anatomical and histological struc-
tures. One of the major problems in the surgical treatment of intrin-
sic tumors of the brain is precise determination of the resection zone.
This is due to their infiltrative character, which itself correlates with
histological grade. In particular, low grade gliomas (WHO grades I
and II) and anaplastic gliomas (WHO grade III) may be well vi-
sualized on specific Magnetic Resonance Imaging (MRI) sequences,
but intraoperative resection control can be ambiguous with marginal
differences in consistency between tumor and the surrounding tissue
- sometimes even within the tumor itself. The decision as to resect
or not to resect certain areas depends mainly on the intraoperative
impression and the experience of the respective neurosurgeon. In elo-
quent brain regions, however, elaborate resection control determines
the functional outcome of the patient in an extreme manner, as only
few millimeters can be decisive for the further operative result. Refer
to [5, 23, 24] for further details.

For that purpose, image guided frameless neuronavigational devices
are being integrated into clinical routine at many neurosurgical cen-
ters worldwide. These systems allow for preoperative planning of the
procedure typically by segmentation of 2D imaging data for subse-
quent 3D rendering and precise orientation in space. The respective



intracranial lesions may be encircled manually and colour coded on
each image slice - if considered necessary. This information may be
retrieved during the procedure and serves for guidance and resection
control. This slice-by-slice segmentation, however, is time consuming,
complicated and error prone. Currently available automatic segmen-
tation tools, on the other hand, proved inaccurate. The ”ideal” brain
tumor to test the capability and usefulness of such a computerized
tool are gliomas, because of their frequent irregular shape.

We have used WHO grade II and III insular gliomas for that pur-
pose. These tumors may grow to considerable size prior to clinical
and radiological diagnosis. At a certain stage they may not only infil-
trate the insula itself and the adjacent frontal and temporal opercula
(types 3a and 3b), but the adjacent temporal, frontoorbital, paral-
imibic and limbic structures as well (types 5a and 5b). Thus, it is of
utmost importance to follow this complex 3D cytoarchitectonic infil-
trative order during surgery, and to avoid transgressing these borders
into the sensomotoric pathways within the central lobe and/or the
basal ganglia.

2 Review of related work

In computer vision literature various methods dealing with segmen-
tation and feature extraction are discussed. The well known tech-
nique of the morphological watershed transform [13] creates a tesse-
lation of the image domain Ω in several small regions by considering
the image values as intensity niveaus in a topographical landscape.
By simulating rainfall, the domain is grouped in catchment basins,
regions in which the water drains from all points to the same local
intensity minimum. Naturally this method is very sensitive to small
variations of the image magnitude and consequently the number of
generated regions is undesirably large. To overcome this problem of
identifying exhaustively many segments there have been efforts in
recent years to reduce the complexity of the tesselation by region
merging based on homogeneity criteria [8] or studying the evolution
of the catchment basins in Gaussian scalespace [6]. Such techniques
can generate unpredictable results and depend to a large extend on
user interaction and the quality of the initial partition. Although



improvements have been made [20], the creation of the watersheds
is still computationally demanding.
An entirely different and popular approach to visual shape analysis
is related to so called active contour models and snakes [2, 12, 21,
22]. It is based on a curve respective surface evolution, starting from
some initial curve or surface which is propagated to achieve a proper
approximation of the segment boundary. Active contour models may
incorporate a wide range of driving forces. Many of them are based
on minimization of combined energy functionals controlling the fair-
ness of the resulting curve on one hand and the attraction to areas
of interest such as object boundaries on the other hand. Weighting
parameters have to be carefully chosen to find a good balance be-
tween these terms. In early works explicit snakes with a standard
parametric curve representation were used. The key disadvantage
of this method is a topological constraint: the curve can not split
to approximate boundaries of not simply connected segments. Such
problems have been solved by introducing implicit snakes models[2,
12], in which the initial curve is interpreted as the zero level curve
of a function Φ(t, ·) : Ω → R. The evolution of these snakes is con-
trolled by a PDE [18]. An external term is considered to include
information about the initial image. Although contours are able to
split in this formulation there remains the problem that the result
of the segmentation relies significantly on a good initialization. Fur-
thermore many models have difficulties in progressing into boundary
concavities. Adressing these particular problems a new class of ex-
ternal forces has been proposed by deriving from the original image
a gradient vector flow field in a variational framework [22]. Sensitiv-
ity to initialization has been drastically reduced and contours have
a more sensible behaviour in the regions of concavities. Furthermore
a general variational framework for Mumford-Shah and Geman type
functionals [7, 15] has been introduced [9]. Edge boundaries are rep-
resented by a continuous function, yielded by the minimization of an
energy functional.

3 Levelset based segmentation

Our aim is the development of a robust and flexible segmentation
method on images with non sharp segment boundaries. First, let



us give a mathematical definition of a segment, which incorporates
sharp criteria for segment boundaries expressed in terms of a bound-
ary indicating function (cf. Section 1 for hints on such criteria in the
literature). Later on we will weaken this definition with respect to
a evolving scale of segmentation sets. Given a boundary indicator
function σ : Ω → R on the image domain Ω and a seed set A we can
define a segment S(A, σ) as the connected component of the seed set
A where σ(·) ≤ 0 holds. Explicitly, we obtain

S(A, σ) := {y ∈ Ω | ∃C0 curve γ : [0, 1]→ Ω, γ(0) ∈ Aγ(1) = y,

σ(γ(t)) ≤ 0 ∀ t ∈ [0, 1] } .

This definition implicitly assumes that a precise definition of the seg-
ment boundary can be coded in the sharp indicator criteria σ(·) = 0
for smooth σ on the boundary. Unfortunately, asking for segmenta-
tion of certain tissue types on 2D and 3D medical images there is
typically not such a precise knowledge of the boundary criteria and
location.
Often the identification of a segments requires a trained and experi-
enced clinician who selects an appropriate segment with boundaries
located in a transition region on the image. Thereby, it is reason-
able to expect the clinicians visual perception to start with some
save set A, which should surely be considered as being inside the
final segment, then expanded towards the unknown boundary. The
expansion is save and thus probably faster where certain criteria to
be inside the segment are surely fulfilled. More careful and slow ex-
pansion is considered in areas where the different criteria are only
partially fulfilled or a quantitative criteria becomes less significant.
Finally, the clinician has to decide then and where the criteria are
to week to consider a further expansion of the segment.
This observations motivates our effective semiautomatic procedure:

– At first the clinician selects a set A, e. g. picking some points on
a single or on a few image slices.

– Furthermore depending on the class of segment - in our appli-
cation example glioma in the human brain - the speed of front
propagation is modeled based on several suitable criteria. E. g.
we take into account the image intensity, the intensity gradient,



the curvature, and previous segmentation results on the expected
complement set.

– Based on these parameters the efficient adaptive level set algo-
rithm to be described here propagates the segment boundary
outwards, starting with the boundary of the set A. The adaptive
codes allows an almost real time performance of this algorithm
and enables a flexible adjustment of the selected steering param-
eters.

– Finally the clinician interactively inspects the generated family of
evolved segment sets S(A, σ)(t) and selects a proper time T and
a corresponding final segmentation result S:=S(A, σ)(T ). Visual-
izing 3D images image slices simultaneously with the 3D segment
sets can be considered as a reference for final decision.

Now, we consider the actual mathematical modeling of this proce-
dure. Let us consider a propagation of the boundary ∂S0 of the initial
set S0:=A in direction of the outer normal N with speed F , i. e. we
ask for evolution curves in 2D or surfaces in 3D ∂S(t) - bounding
our expanding segments S(t) - with parametrization x(t) with

∂

∂t
x = F (x)N(x) .

In case of a velocity F which is guaranteed to stay non–negative
during the evolution this problem can be reformulated in terms of
the time T at which the front reaches a certain position x (cf. [18]).
As segmentation is a process in which the front of the segment al-
ways propagates outward, we do not rely on negative values for F .
Thus, we ask for a function T : Ω → R

+
0 ; x 7→ T (x) such that the

generalized eikonal equation

‖∇T‖2F = 1 T |S0 = 0 (1)

holds. Here ‖ · ‖2 denotes the Euclidian norm. Hence, as the corre-
sponding segment at any time t we obtain

S(t):={x ∈ Ω | T (x) ≤ t}

There are in general no global, classical solutions. Therefore we con-
sider generalized viscosity solutions [3] and their numerical approxi-
mation in the next section. This solution concepts allows for instance



topology changes of the evolving sets, which is especially for our ap-
plication an important property. It is based on the theory of level
set methods. In what follows, we close our model specifying suitable
speed functions F : Ω → R

+
0 , which describe the front propagation.

We suppose the speed function F to depend on local image proper-
ties and the shape of the local front. This approach is very flexible
regarding the modeling of different homogeneity criteria, since arbi-
trary growing parameters can be very easily be considered to define
combined speed functions. They should naturally be modeled in a
way that they return high values for instance in areas of homogeneity
and very small values in areas where a segment boundary is likely
to be.

Suppose a boundary indicator function σ : Ω → R depending on the
image intensity I is given. Then σ(x) ≥ 0 indicates areas in which
homogeneity is lost. Thus, we simply choose F to be the character-
istic function F := χ{σ<0}, which would yield the desired segment
S(∞) (cf. [4]). As already discussed, it is locally not always clear
how to construct a reliable and robust indicator. Thus we have to
replace such a binary formulation. A suitable alternative is to give
homogeneity a measure, here in terms of the speed. Hence in areas
where the segment seems to stop, the propagation speed should de-
crease drastically. A straightforward modification of the above speed
function would be to convolute σ in advance with a smooth kernel,
but necessary information may lost.

Fig. 1. From left to right: original, gradient based speed, gray value based speed, min-
combination

Let us now list some more sophisticated possible choices for F :

– Analogously to a segmentation related to a range of gray-values

we set FI := e−
(I−µ)2

2σ2 with a maximum of 1 at a given “best”
reference gray value µ. Deviations |I(x) − µ| are penalized by a
decrease of FI . The parameter σ controls the sensitivity of FI to
this deviation.
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Fig. 2. The different gray value and gradient dependant speed functions.

– For larger gray value intervals [%−, %+] we consider a convolu-
tion of the corresponding characteristic function χ[%−,%+] by some
Gaussian kernel Gσ of width σ, i.e. we choose FI :=Gσ ∗ χ[%−,%+].

– Another well known segmentation method depicts large gradients
to define edges and segment boundaries respectively. Instead of a
fixed threshold for the gradient magnitude we again construct a F
which decreases substantially in areas of large gradients. Possible
choices are F 1

∇ := e−α||∇Gσ∗I|| and F 2
∇ := 1

1+
||∇Gσ∗I||22

λ2

, where the

parameters α, λ strengthen or weaken the build in edge indicator.

– In the evolution of interfaces under mean curvature [16] the speed
function F = −H is used, where H denotes the mean curvature

∇·
(
∇Φ
|∇Φ|

)
We incorporate this term into our speed function f̃ :=

max(f − εmax(H, 0), 0) for sufficiently small ε. This results in a
deceleration of the evolution in regions, where the curvature of the
interface is positive and large, preventing the growing into other
regions which are reachable only via small and narrow bands.

– In more complex and subtle applications it is in general appro-
priate to consider algebraic combinations of the latter indicators,
e. g. F1 · F2, min(F1, F2), max(F1, F2).

– Often certain segments have already been extracted from the
image, which are known not to intersect with the segment under
consideration. If we denote the union of these sets B, we can
modulate a given speed function F corresponding choosing F (1−
χB), where χB is the characteristic function of B. Examples in
tissue segmentation are bones, vessels an other tissue types.



In the application flexibility in the selection of criteria and the choice
of parameters is the key for a fast and successful automatic or at least
semiautomatic segmentation.

4 An adaptive algorithm based on hexahedral
and quadrilateral multilevel grids

Fig. 3. The adaptive grid grows along with the computation of new nodes. On the
bottom right different isolines of the solution are depicted.

One of the main contributions of this paper is the computational
speedup of the fast marching method [18] by using an adaptively
generated grid. Different from previous work this grid is implicitly
described by error indicator values η on elements. Due to a given
threshold value ε we locally stay on fine grid cells or we confine with
much coarser elements. As grids we consider in 2D quadrilateral and
in 3D hexahedral meshes. Our finest level grid corresponds to the
pixels or voxels of the original image. On top of this finest grid we
build a hierarchical grid, i.e. a quadtree or an octree respectively.



At least the original grid can be embedded in some regular (2lmax)d

grid, e.g. by filling the superficious cells with some background in-
tensity. Instead of some process solely on the finest grid level which
successively visits all fine grid cells inside the segment, our aim is to
compute the front propagation on coarse elements in the hierarchy
of nested grids whenever possible.
Let us denote by M := {Ml}l=1,...,lmax the family of nested grids,
each consisting of elements or cells E and nodes N (M) such that⋃
E∈Ml E = Ω for all l = 1, . . . , lmax. They are supposed to be nested

in the sense that for all El+1 ∈ Ml+1 there exists an El ∈ Ml such
that El+1 ⊂ El. Furthermore, let us suppose that an error function
η∗(·) is given as function a η∗ : Ω → R on the image depending
on the image intensity or some derived quantity. We can locally
evaluate this function at the centers of elements E on the finest grid
and obtain our initial error indicators on finest grid cells. Next, we
have to define error indicator values on the coarser parent element
in the tree structure.
To ensure that our grid hierarchy has only one–level transitions be-
tween neighboring cells - which turns out to be preferable concerning
the algorithm - we require the following properties:

η(E)≤ η(P(E)) for all E ∈M (2)

η(E)≤ η(P(Ẽ)) for all Ẽ ∈ adj(E) (3)

Here P(E) denotes the unique parent element of E in the grid hier-
archy, C(E) the set of children of E and adj(E) are the neighbouring
elements of E on the same hierarchical level. Later we will use adj(N)
where N ∈ N (M), as the set of all regular nodes connected to N
by an edge. Observe that the inequality (3) ensures the one–level
transitions between grid cells, whereas the saturation condition (2)
guarantees that the error indicator on coarse cells indicate details
on much finer cell. We ensure this property in a preroll step running
the following algorithm.

Algorithm: Preroll estimator saturation
for each E ∈Mlmax do η(E) := η∗(cE)

for l = lmax-1 to 0 step -1 do

for each element E of Ml do



A := C(E) ∪ adj(C(E))

η(E) := max (η(E),maxẼ∈Aη(Ẽ))

Here cE is the center of mass of the element E. Let us emphasize
that the level wise processing of elements from the finest up to the
coarsest level is essential to ensure properties (2, 3). A simple depth
first traversal of the tree structure doesn’t achieve this goal.
Starting with the finest grid Mlmax we can now recursively coarsen
elements E ∈Mlmax by checking the indicator η(E) < 0 for each ele-
ment. The result is an adaptive grid, which resembles the smoothness
properties of the underlying mesh. As a simple choice for the error
indicator function we choose the gradient of the image intensity

η∗(x) = ‖∇I(x)‖2.

Concerning the actual front propagation algorithm we consider a
modification of the fast marching method presented in [1]. We denote
by Tij nodal values approximating the true propagation time T at a
grid node xij and by Fij the speed of propagation. Such a node xij
appears on some grid level l for the first time. In what follows we
either indicate it by xij or by xl. Initially we suppose all T values
on the nodes except those on the seed points to be set to ∞. Given
all Fij > 0 let us now review the following 2D upwind-scheme [18]
– in the following the algorithm is described for simplicity in the
2D case, the 3D algorithm is formulated entirely analogous - for the
generalized eikonal equation (1)

max(Di− 1
2
,jT,−Di+ 1

2
,jT, 0)2 +

max(Di,j− 1
2
T,−Di,j+ 1

2
T, 0)2 =

1

F 2
ij

(4)

We define Di,j− 1
2
T := h−1(Tij − Ti−1,j), Di,j+ 1

2
T := h−1(Ti+1,j − Ti,j)

etc., where h denotes the gridsize. As described in detail in [18]
the upwind-character of this scheme and the positivity allows the
equation to be solved in a single expanding traversal of the grid nodes
using for each node only upwind-values. The resulting algorithm is
entirely nodal based. Once all the arrival times T (xl) at the nodes
xl ∈ N (El) are known for a given element El ∈Ml, all other values
can be computed by bi- or trilinear interpolation.



Denote by K the set of known nodes of M, i.e. the set of already
computed nodes on the grid, T the set of trial nodes of M along
the boundary of the area of computed values, D the set of downwind
side nodes of M, i.e. nodes with unknown arrival time values. We
now have to make some modifications to the standard fast marching
algorithm in order to implement adaptivity. Once the node N with
minimal time is extracted from T and made active, all neighbor-
ing nodes regarding the adaptive grid have to be found. The values
of these are updated if they are in T by solving the corresponding
quadratic equation (4) using as many contributing known values as
possible. Here we exploit the fact that our saturation generates only
one–level transitions between neighboring grid cells. The appearance
of hanging nodes can not be avoided in hexahedral and quadrilat-
eral grids. The time values at hanging nodes will be computed by
interpolation of all other known time values at the corresponding
edge/face, hence we have to make sure that no hanging nodes will
be added to T . For each newly accepted node in K we have to check
if there is a hanging node in the vicinity and interpolate it, if all
other arrival times of the edge/face are known as well. In this way
we have constructed an algorithm, which by only local operation
generates a fully computed grid in the inside of the segment. Cells
are marked and checked on the fly during the process of determining
new trial nodes along the current computation boundary. If we have
a bounding area B which surely contains the object of interest, we
can stop the computation when all nodal values for the propagation
time T are known in B. Now we can formulate the

Algorithm: Adaptive Fast Marching Method

while ( T 6= ∅ ) {

take smallest N with minimal time out of T
T = T \ {N} and K = K ∪ {N}
for all Ñ ∈ adj(N) ∩ Kc do {

if Ñ is no hanging node and Ñ ∈ B {

compute time value of Ñ according to (4)

if the Ñ is on a face/edge with a hanging node and

all time values on this face/edge are known {

interpolate the hanging node }



T = T ∪{Ñ} } } }

Here Kc denotes the complement set of K.

5 Application to medical data exploration

Fig. 4. Top: gliom boundary as evaluated from an experienced neurosurgeon. Bottom:
slices through the 3D segmentation result for comparison

We will now describe how this method actually comes into play for
a precise interactive segmentation process. The corresponding task
- the extraction of glioma in 3D MRI data sets - has already been
outlined in the introduction. Before the automatic segmentation by
front propagation takes place the user only has to control a few func-
tional parameters with an intuitive meaning. The gray value range
can be determined by simply choosing a few characteristic points in
the interior of the segment corresponding to a gray value. As shown
in figure 3 the user gets an instant visual feedback of the speed
function onto the original data slices, which allows a careful choice



of the adjustable parameters. The gradient parameters λ or α sel-
domly have to be changed and can be given a standard experience
based value. These parameters can as well be used for the adaptive
grid generation, which may be also based on the gray value inter-
val of interest and a gradient magnitude threshold. As sometimes
the speed function naturally has to respond to small variations of
local homogeneity and MRI imaging is due to background noise,
some anisotropic diffusion based prefiltering [21] significantly helps
to prevent the creation of small noise–like artefacts on the surface.

We use complement segmentation as another auxiliary method to
eventually avoid growth into areas of which we are sure to belong
to the segments complement and are easy and efficiently to segment
by the discrete multilevel segmentation method in [4]. We artificially
let the combined speed F tend nearly to zero in these areas, which
has shown to be helpful in some difficult cases.

After the computation of T is done around the segment, we have
a whole family of isosurfaces ∂S(t) at hand. The clinician is only
left to manually choose the desired isosurface by selecting a suitable
parameter T . Hence, the corresponding 3D tumor segments or slices
of it are visualized together with arbitrary slices of the original data
set. Then the clinician interactively navigates through the family of
tumors and selects a proper value T which best corresponds to his
expertise knowledge. To test our adaptive front propagation segmen-
tation method, we have compared its semi automatic segmentation
mode in type 5a and 5b insular gliomas with the slice-by-slice de-
marcation method as performed by experienced neurosurgeons. As
can be seen in figure 4 the segmentation results are very close to
manual evaluation by perception even in the extremely ambiguous
areas at the border of the tumor, where only marginal differences
in image intensities are crucial. Due to adaptivity we have a finely
resolved solution along the boundaries of the object.

The 3D segmentation based on our algorithm requires about 30 sec
including the required user interaction. The actual computation of
the front propagation takes about 5 seconds for the identification of
glioma as depicted in the figures throughout the paper. Compared
to this a manual segmentation on each slice by an experienced neu-
rosurgeon takes at least half an hour concentrated work.



Fig. 5. Left: a slice through the generated 3D-grid. Middle: The curvature criterion
will prevent the small structure on the right to leak out. Right: The final rendered
isosurface.

6 Conclusions

We have presented a multilevel front propagation algorithm for seg-
mentation purposes on medical images. It is based on the nowadays
widespread level set techniques and allows the robust and flexible
segmentation of regions with non sharp boundaries with only very
limited and intuitive user interaction. As an application we have
considered the extraction of glioma regions in the human brain.
The peculiarities of the presented method are the variety of crite-
ria which are considered to flexibly model the speed of propagation,
especially including curvature terms which avoid fingering artifacts
on the front, and the underlying adaptive grid concepts responsible
for the nearly real time performance of the algorithm. Thereby, our
adaptive method handles grids solely procedurally without storing
graphs for the underlying hierarchical grids. We confine with error
indicator values on the nodes of the image discretization to steer the
grid traversal appropriately. A saturation condition ensures sufficient
regularity of the grid. Some future research direction are

– the investigation on different, local filters which lead to additional
indicators for segment boundaries,

– the collection of a library of speed functions well suited for the
segmentation of different types of tumors and other tissue types,

– and the improvement of the currently experimental user interface.
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