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Abstract

Segmentation is an essential ingredient in a
wide range of image processing tasks and a
building block of many visualization environ-
ments. Many known segmentation techniques
suffer from being computationally exhaustive
and thus decreasing interactivity, especially
when considering volume data sets. Multilevel
methods have proved to be a powerful ma-
chinery to speed up applications which incor-
porate some hierarchical structure. So does
segmentation when considered on quadtree re-
spectively octree data sets. Here we present a
new approach which combines a discrete and
a continuous multilevel segmentation model.

In figure 1 four different grid segments are
depicted which resulted from the multilevel
segmentation by using combinations of dif-
ferent boundary indicators which will be de-
scribed later in detail. At first, the discrete
method enables a fast segmentation depend-
ing on possibly multiple parameters describ-
ing the segment boundary and on selected
seed points inside a segment. In an inter-
active process the user is able to ajust seed
points which steer the automatic discrete seg-
mentation process. Furthermore fast multi-
level splatting techniques simultaneously en-
able interactive frame rates in the visualiza-
tion to validate the obtained results. Thus,
the user is effectively supported in the selec-
tion of appropriate parameters for the seg-
mentation. Once an acceptable voxel discrete
approximation is found a second segmentation
and smoothing method based on a continuous
model comes into play. It can be regarded

Figure 1: Segmentation Results by greyvalue
and gradient magnitude thresholding and the
exclusion indicator σ = −χGc to prevent the
algorihm to grow into Lena’s hat. Efficiency:
0.152.

as an suitable postprocessing step. Hence,
solving an appropriate diffusion problem the
boundary approximation of the already ob-
tained segment is improved including a suit-
able tangential smoothing.

1 Introduction

Multilevel techniques in scientific comput-
ing [14, 2, 3], computer vision [1, 31] and
visualization [17, 25, 13, 20, 12] have be-
come successful approaches to overcome com-
putational capacity problems and to achieve
fast processing times up to interactive per-
formance. Especially when considering large



three-dimensional data sets, adaptivity and
multiresolution techniques can drastically in-
crease the interactivity of many applications
[5, 7].

One of the fundamental tasks in computer
vision is to automatically detect connected
visually perceptable objects – segments –
underlying some mathematical segmentation
model. Afterwards, based on the segmen-
tation either an appropriate visualization or
quantitative respectively qualitative measure-
ments can be considered and the knowledge
on segments can be used as an essential input
for physical process simulation.

The underlying model for our segmentation
is to find from a given set A the region of
all points in a 2D or 3D domain Ω that can
be connected continuously by a curve to A
along which a given homogeneity condition is
true. This condition is determined by par-
ticularly thresholding a general function on
the spatial domain which indicates the bound-
ary. We denote this boundary indicator by
σ : Ω → R. Whenever σ becomes non–
negative homogeneity is lost. Typically such
boundary indicators represent derived quan-
tities from given functions on the domain,
which can be physical quantities or simply
some grayscale (d = 1) or color valued (d > 1)
image intensity I : Ω→ R

d. The homogeneity
need not necessarily be considered as low vari-
ation of the intensities of the data. The num-
ber of connected components of the segmenta-
tion is less or equal the number of connected
components of A. By defining the starting
set A, not necessarily a single seed point, we
can permit our algorithm to grow in several
disjunct regions simultanously which may or
may not join during the segmentation process
or to consider some coarser inner approxima-
tion of the true segment as starting set. A
boundary indicator can be interpreted as an
indicator of regions where homogeneity is lost.
Lateron, we will discuss how to combine dif-
ferent homogeneity criteria. At first we will
developed a hybrid formulation, allowing ar-
bitrary combinations of different homogeneity
criteria.

There are several ways of defining homo-
geneity, many of them are based on the detec-
tion of image edges, that represent the bound-
aries of the segment, calculated for example
by evaluating the image gradient or the zero-
crossings of the Laplacian [22] or the local
maximum of the gradient along its own direc-
tion. The latter technique is known as Canny-
edge-detection [9]. As most edge-detection
techniques are very sensitive to image noise,
the segmentation results can be improved sig-
nificantly by an effective noise reduction fil-
ter. In the context of anisotropic diffusion,
new robust noise filters have been presented
recently, which produce very good results in
terms of edge preservation and coherence pro-
motion [31, 6, 26].

In what follows let us be more precise in the
formulation of the problem setting and intro-
duce some basic notation. We define an ab-
stract segment S(A, σ) with starting set A de-
pending on the indicator function σ : Ω → R

by

S(A, σ):=
{
y ∈ Ω

∣∣ ∃C0 curve γ : [0, 1]→ Ω,

γ(0) ∈ A, γ(1) = y,

σ(γ(t)) < 0 ∀t ∈ [0, 1]
}
.

Given a scalar valued image intensity I, im-
portant examples of boundary indicators σ are
the following:
• σ = −χ[%−,%+]◦I (image magnitude inter-

val)
• σ = ‖∇I‖ −M (image gradient thresh-

old)
• σ = −χS(Ã,σ̃)

c (other segment bound-
aries)
• σ = λcrit− (K ◦ I)(·) (local filter results,

for instance wavelet filters, which identify
local frequencies of a certain intensity)

These indicator functions may be composed to
build new boundary indicator functions. E.g.
this can be done by
• linear combination σ =

∑d
i=1 ωiσi steered

by weights ωi, or
• by the intersection of two segments

which corresponds to the choice σ =
max{σ1, σ2}.



Figure 2: A comparison of a grey value indi-
cator (left) and a gradient threshold indicator
(right) on a 2D slice of an MR-scan.

So far our segmentation model considers con-
tinuous underlying images or data sets. Let
us now focus on a discrete data base. Thus,
we interpret our data as piecewise constant
of bilinear, respectively trilinear on a regular
cell subdivision of our domain. Then a seg-
mentatin algorithm turns out to be quite sim-
ple, when we only operate on the finest grid,
whose nodes represent the pixels or voxels of
the image. From the starting set A we just
have to apply a standard recursive filling al-
gorithm by testing at each voxel or pixel (cell)
the boundary indicator. When we reach a cell
with σ ≥ 0 we know that we have reached
the boundary of the segment and stop grow-
ing from this point on. We recognize that the
filling algorithm has to traverse through every
cell contained in the segment and therefore
has an execution time of O(nd) if A is a single
cell and S(A, σ) is a “thick” set of diameter n,
measured in cells. With respect to interactive
response for the user’s segmentation queries
with varying segmentation parameters this is
much too expensive.

We will present a discrete algorithm on a
quadtree, respectively an octree which sig-
nificantly increased performance. In a pre-
computing step we once evaluate error indica-
tors corresponding to the physical functions
on which the definition of the boundary indi-
cator is based. Afterwards, in the user guided
process of seed point selection and parameter
adjustment for the selected single or combined
boundary indicator we can ensure interactive

response times. A further advantage of our
method is that we can adjust the level of de-
tail, respectively the depth of the hierarchical
grid on which we want to extract an approxi-
mation of the actual discrete segment first.

All query results obtained so far are sets
of voxels on a certain grid level. Cells are
either completely inside or completely out-
side a segment. This leads to non smooth
segment boundaries and requires an improve-
ment to guarantee a proper visual perception
and still to respect the given boundary indi-
cator. Thus, we consider the characteristic
function of the obtained, proper discrete seg-
ment as initial value for a diffusion process
proposed first by Weickert [31], which incor-
porates tangential smoothing on a continuous
segment boundary. We apply a finite element
discretization based on highly graded meshes
for the efficient solution of this diffusion prob-
lem. Finally this second method can be re-
garded as a postprocessing of the previously
selected discrete segments and it delivers a
new segment which is now nicely shaped by
a smooth level set, without destroying its cor-
respondence to the actual segment.

2 Review of related work

In computer vision literature various methods
dealing with segmentation and feature extrac-
tion are discussed. The well known technique
of the morphological watershed transform [23]
creates a tesselation of the image domain Ω in
several small regions by considering the image
values as intensity niveaus in a topographical
landscape. By simulating rainfall, the domain
is grouped in catchment basins, regions in
which the water drains from all points to the
same local intensity minimum. Naturally this
method is very sensitive to small variations
of the image magnitude and consequently the
number of generated regions is undesirably
large. To overcome this problem of identifying
exhaustively many segments there have been
efforts in recent years to reduce the complex-
ity of the tesselation by region merging based
on homogeneity criteria [15] or studying the



evolution of the catchment basins in Gaussian
scalespace [10]. Such techniques can generate
unpredictable results and depend to a large
extend on user interaction and the quality of
the initial partition. Although improvements
have been made [30], the creation of the wa-
tersheds is still computationally demanding.

An entirely different and popular approach
to visual shape analysis is related to so called
active contour models and snakes [31, 21, 32,
8]. It is based on a curve respectively surface
evolution, starting from some initial curve
or surface which is propagated to achieve a
proper approximation of the segment bound-
ary. Active contour models incorporate a
wide range of driving forces. Many of them
are based on minimization of combined en-
ergy functionals controlling the fairness of the
resulting curve on one hand and the attrac-
tion to areas of interest such as object bound-
aries on the other hand. Weighting param-
eters have to be carefully chosen to find a
good balance between these terms. In early
works explicit snakes with a standard para-
metric curve representation were used. The
key disadvantage of this method is a topolog-
ical constraint: the curve can not split to ap-
proximate boundaries of not simply connected
segments. Such problems have been solved by
introducing implicit snakes models[8, 21], in
which the initial curve is interpreted as the
zero level curve of a function Φ(t, ·) : Ω→ R.
The evolution of these snakes is controlled by
a PDE. An external term is considered to in-
clude information about the initial image. Al-
though contours are able to split in this formu-
lation there remains the problem that the re-
sult of the segmentation relies significantly on
a good initialization. Furthermore many mod-
els have difficulties in progressing into bound-
ary concavities. Adressing these particular
problems a new class of external forces has
been proposed by deriving from the original
image a gradient vector flow field in a varia-
tional framework [32]. Sensitivity to initial-
ization has been drastically reduced and con-
tours have a more sensible behaviour in the
regions of concavities.

Furthermore a general variational frame-
work for Mumford-Shah and Geman type
functionals [24, 11] has been introduced [16].
Edge boundaries are represented by continu-
ous function, yielded by the minimization of
an energy functional.

3 Discrete multilevel seg-

mentation

Let us suppose an intensity function, respec-
tively a derived boundary indicator to be
given on a m × n grid. Furthermore let us
assume we can interprete our discrete domain
as a hierarchical grid, i.e. a quadtree or an
octree respectively. At least it can be embed-
ded in some regular (2lmax)d grid, e.g. filling
the superficious cells with some background
intensity. Instead of some process solely on
the finest grid level which successively visits
all fine grid cells inside the segment, our aim
is to detect coarse elements inside the seg-
ment in the hierarchy of nested grids. By
adding such a elements we implicitly add all
its child cells at the same time and thus in-
crease the algorithms performance. Let us
denote by M := {Ml}l=1,...,lmax the family
of nested grids, each consisting of elements
or cells E such that

⋃
E∈Ml E = Ω for all

l = 1, . . . , lmax. They are supposed to be
nested in the sense that for all El+1 ∈ Ml+1

there exists an El ∈Ml such that El+1 ⊂ El.
Instead of checking the segment boundary cri-
terion σ for each of the child elements con-
tained in the element El ∈ Ml, we introduce
a levelwise saturated segment indicating func-
tion

σh :
⋃

l=1,...,lmax

Ml → R ,

which replaces the continuous σ on every cell
in the hierarchy. Here we proceed in anal-
ogy to the saturation approach in [25] based
on grid nodes. Instead of error indicators
on nodes we now deal with values on grid
cells. Hence saturation of σh means, that
σh(E) ≥ supE σ for each E ∈ M in order
to construct a robust indicator.



Figure 3: As illustrated, saturation implies ro-
bustness, thus small objects will be detected.

To define an analogue for our segment for-
mulation we need the following notation. For
each element E ∈ M we define P(E) and
C(E) to be the parent element respectively
the set of child elements of E. We denote by
adj(E) the set of adjacent cells of E. We now
focus on σh as the only function and define a
discrete segment as

Sh(A, σh):=
{
E ∈M

∣∣ ∃ (Ei)i=1...m

E1 ∈ A, Em = E, Ei+1 ∈ adj(Ei),

σh(Ei) < 0, for i = 1, . . . ,m
}
.

In order to construct an efficient growing
algorithm we shall collect cells as coarse as
possible to minimize the number of adjacent
cells needed to build a path from a seed cell
to the segment boundary. We measure effi-
ciency by the ratio of the cells visited on the
grid hierarchy compared to the number of pix-
els/voxels which belong to segment. We now
have to give a constructive definition for the
discrete indicator function σh given the con-
tinuous σ. As an obvious choice we obtain
σh(E) := supE σ, which is naturally saturated
by the definition above, but it is clear in this
case, that we have no knowledge about the
difference of grid levels of neighboring cells in
our hierarchy.

To ensure that our grid hierarchy has
only one–level transitions between neighbor-
ing cells - which turns out to be preferable
concerning the algorithm - we require the fol-
lowing properties:

σh(E) ≤ σh(P(E)) for all E ∈M,

σh(E) ≤ σh(P(Ẽ)) for all Ẽ ∈ adj(E).

Thus we begin with the following pre-roll step
to obtain an upwards saturated indicator σh

(see below how to proceed in case of pa-
rameter dependent multiple segment indica-
tor functions):

for each E ∈Mlmax do σh(E) := supE σ
for l = lmax-1 to 0 step -1 do

for each element E of Ml do

A := C(E) ∪ adj(C(E))
σh(E) := max (σh(E), maxẼ∈Aσh(Ẽ))

Analogously we introduce for later usage a
downwards saturated indicator σh.

So far we have only considered a sin-
gle parameter-independent indicator function.
We observe, that combinations of saturated
indicators are also saturated, therefore we can
combine our precalculated discrete indicators
in and efficient way. Hence we only need to
saturate each single indicator once on startup
and can interactively change parameters and
choose different combinations on the fly. Let
us study this in more detail for two significant
cases:
• To incorporate the grey value indicator
−χ[%−,%+] ◦ I we need an upwards satu-
rated indicator σIh and a downwards sat-
urated indicator σIh both initialized with
discrete approximations of the original
image intensities I. Now we can check
the intersections for the element E by
testing

(
σIh(E) ≤ %+

)
∧
(
σIh(E) ≥ %−

)
.

• The image gradient indicator ‖∇I‖ −M
is incorporated by an upwards saturated
σgradh which is initialized on the finest grid
with some approximation of the gradient
magnitude and checked by

σgradh (E) ≤M .

• In case of weighted combinations of seg-
ment indicators the saturated indicator
is obviously the weighted combination of
the corresponding primal indicators in
case of positive weights.
• Finally we have to assemble these indica-

tors into one saturated negative charac-
teristic function σh : M → {−1, 0}, by
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Figure 4: Three possible local configurations
which show up in the algorithm. From left to
right: element coarsening, shifting, refining.
The candidate cell is shaded.

asking for any desired intersection and
combination of the indicators described
above. This function is used in the al-
gorithm to test the grid cells during the
segment growing process. As explained
above, this function can be easily ad-
justed without requiring another satura-
tion.

Thus, based on the required precomputa-
tion of saturated segment indicators we can af-
terwards in the interactive segmentation pro-
cess reuse these saturated values on the cells
for robust and fast response while selecting
suitable parameters.

Starting with the finest grid Mlmax we can
now recursively coarsen elements E ∈ Mlmax

by checking the indicator σh(E) < 0 for each
element. The result is an adaptive grid, which
is fine along boundaries and coarse in areas
of candidate inner segment cells, where the
indicator function is < 0. However, in the
concrete implementation we do not need a–
priori knowledge of the entire grid during the
segmentation algorithm, but grow in all direc-
tions locally from the already segmented area
starting with the set of seed cells A. Thus
only parent or neighboring elements are eval-
uated in each step. The one-level transitions
ensure that only three cases are relevant by
growing from one element to a an adjacent
cell, namely as illustrated in figure 4, a neigh-
boring element may be coarsened, have the
same level or be refined. The priority is to
coarsen elements as soon as possible.

We will now present the formulation of the
algorithm, with a given a saturated boolean
indicator σh as described above.

Figure 5: For thin, delicate structures, we
can get a coarse approximation, by starting a
segmentation process of the complement. Ef-
ficiencies from left to right: 0.0049, 0.0109,
0.027953, 0.058.

Figure 6: In this series of successive segmen-
tation steps it can be clearly observed, that
priority lies on growing in areas of coarse grid
cells. At the final stage, the small detailed
structures are processed.



F := A; S = ∅;
do {

take coarsest E from F
if σh(E) < 0 {

S = S ∪ E
F =

(
F ∪ P(E) ∪ adj(E)

)
\ S;

} else {

F =
(
F ∪ {Ê ∈ C(E) | Ê ∩ S 6= ∅}

)
\ S;

}

} while (F 6= ∅);
where F is the set of candidate cells, S the
union of segmented cells. The selection of the
coarsest element out of F can be efficiently
implemented by separating F levelwise, i.e.
we have F l, l = 0, . . . , lmax, so one of the
coarsest elements can be quickly extracted by
searching in increasing order the sets F l and
pick one element as soon as F l 6= ∅. The seg-
ment S can be represented as a levelwise bit
field. During the filling algorithm at level l
we might eventually collide with a cell which
already belongs to the segment or at least
has already been checked, so we do not have
to grow anymore in this direction. Because
we have one-level transitions, we just have to
check for neighbors on the three different grid
levels l − 1, l, l + 1.

4 Continuous segmenta-

tion and post processing

by anisotropic diffusion

In comparison to the discrete segmentation
algorithm, we will briefly outline a continu-
ous watershed algorithm. The region growing
process of the segment is simulated by linear
diffusion, with a diffusion coefficient that de-
pends on local image properties similar to the
boundary indicator criteria. A diffusive wa-
tershed algorithm consists of solving the fol-
lowing diffusion problem:

∂tρ− div (A(σ)∇ρ) = f(ρ) in R+ × Ω ,

ρ(0) = ρ0 on Ω ,

∂ν ρ = 0 on R+ × ∂Ω ,

ρ

f(ρ)

0.0                                1.0σ

a(σ)
amax

Figure 7: The diffusion coefficient and the
right hand side in the continuous segmenta-
tion algorithm.

where ρ0 is the initial distribution, a posi-
tive function with compact support in the set
A. Thereby the diffusion coefficient A(σ) is
positive inside the segment and vanishes at
the segment boundary. Now the segmenta-
tion function can be considered as a continu-
ous function – no longer piecewise constant on
fine grid cells as in the case of σh above. Con-
sidering in addition an anisotropic diffusion
model [31, 27], tangential smoothing along the
segment boundary can be incorporated.

We solve this problem numerically by ap-
plying a bilinear, respectively trilinear con-
forming finite element discretization on an
adaptive quadrilateral, respectively hexahe-
dral grid. In time a semi-implicit second order
Euler scheme is used. As it has become stan-
dard [4, 19] the scheme is semi-implicit with
respect to the evaluation of the nonlinear dif-
fusion coefficient g and the right hand side.
In the ith timestep we have to solve the linear
system

(M + τL)ρ̄i = Mρ̄i−1 + F ,

where ρ̄i is the corresponding solution vector
consisting of the nodal values, τ the current
timestep, M is the lumped mass matrix, L
the weighted stiffness matrix and F the vec-
tor representation of the right hand side. The
stiffness matrix and the right hand side are
computed by applying the midpoint quadra-
ture rule.

The above linear system is solved by a
multigrid method suitable for problems with
jumping coefficients.



5 Interactive visualisation

aspects

During the interactive stage of experimenting
with different control parameters and weights
of the indicating functions the visualization
has to be fast and meaningful enough to give
a good impression of the final result. The seg-
ment is visualized by drawing the outer ele-
ments, which still will be O(n2). Instead of
drawing all boundary faces of each boundary
cell, the number of graphic primitives to be
drawn can be significantly decreased by us-
ing texture–splats. Here we precomputed a
m × m-texture for some fixed m represent-
ing a ball shaded under an arbitrary light-
ing model. Then drawing it for each cell at
the smallest possible radius such that the cell
is entirely included in this ball, the shading
of the ball leads to an approximative shading
of the entire surface. Once the user is satis-
fied with his choice of parameters the segment
may be stored as a characteristic function for
later continuous segmentation improvement
and tangential smoothing, or to extract iso-
surfaces.

Figure 8 shows the results of the segmen-
tation of a ball having radius 1/2 and holes
along the coordinate axes. The results of the
succeeding tangential smoothing and isosur-
face extraction is shown in figure 9.

In figure 10 we have segmented the cortex of
a human brain from a 3D MRI data set. The
segmentation criterion was solely gray value
based.

6 Conclusions

We have presented a multilevel segmentation
algorithm which ensures interactive response
times in a user guided inspection especially
of large 3D data sets. Based on a priori sat-
urated indicators for image intensities a ro-
bust estimation of derived boundary indica-
tor functions on a underlying hierarchical grid
is ensured. This allows to classify preferably
coarser cells of the hierarchical grid as being

Figure 8: Segmentation efficiencies at differ-
ent levels. From top left to bottom right:
0.0002, 0.001, 0.0042, 0.017. Final efficiency:
0.05 (see figure 9).

Figure 9: Final segmentation on the finest
level (left) and tangential smoothing (right)
of the object segmented in figure 8.

Figure 10: A final segmentation of the brain
and the eyes together with a slice through an
MRI volume data set.



contained in the segment set without travers-
ing all its finer child cells. Thus, an interactive
adjustment of seed points and indicator pa-
rameters in the search for appropriate param-
eters characterizing interesting segment sets is
possible. Multilevel splatting techniques for a
fast preview support the actual segmentation
algorithm. Once a suitable set is extracted
its approximation properties and the smooth-
ness of the boundary shape are improved solv-
ing a diffusion problem which especially incor-
porates tangential smoothing on the segment
boundary surface. The algorithms was tested
on typical test data sets as well as on real im-
ages. Future research perspectives are
• to derive useful combined indicator func-

tions, with an intuitive meaning for the
user,
• to consider more than one image intensity

overlaying 3D images of the same data set
but obtained by different methods, e.g.
CT or MRT, and
• to carry over the same multilevel method-

ology to the solution of generalized dis-
tance map problems by the level set
method, which delivers additional useful
information on distances.
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