Computing and Visualization in Science manuscript No.
(will be inserted by the editor)

Marc Droske - Wolfgang Ring - Martin Rumpf

Mumford-Shah based registration

A comparison of a level set and a phase field approach

Received: date / Accepted: date

Abstract Traditionally, differentimage processing tasks angartial correspondence of edge sets is feasible. Hence, edg
mainly considered on their own. The main aim of this paegmentation might help in the registration. On the other
per is a combination afegistration[25,26,47,58-60], i. e., hand, integrated knowledge from different image modaitie
the spatial alignment of images aségmentatiorf19,53, will lead to better segmentation. This circular dependence
17,18], i. e., the recognition of edges and object contous§ registration and edge segmentation is well-known. One
in images. A proper registration depends on a good initiadight think for example of a paimagnetic resonand@vR)
segmentation and vice versa. In this paper it is proposadd computed tomograph¢CT) images, or simply a color

to link these problems together by formulating a coupldthage instead of a gray scale image. An alternative, global
variational problem. The focus is on edge-based insteadnobrphological matching approach has been presented by Vi-
intensity-based methods and a variational model basedaa, Wells et al. [74,76] and Collignon et al. [55] based on a
the Mumford-Shah free discontinuity problem. In particulanformation theoretic approach for the registration of tiaul
this paper is devoted to the comparison of a sharp interfanedal images. Their information theoretic method is based
approach with a phase field approach. on a maximization of the so called mutual information of im-
ages of different modality. In [39] a variational approach n
relying on statistics is proposed for morphological matghi
was presented. Both approaches do not make explicit use of
segmentation results.

In particular on the background of medical applications de- Here, we focus on the registration of edges. The set of
noising, segmentation and registration are well estaitishdetectable edges in the different images or color channels
as fundamental problems in image processing. An enormasi®ften disrupted and irregular. Furthermore they are most
amount of state-of-the-art imaging methods enables mecidten given by binary indicators, hence information about
studies of the immenseariability of human anatomy. We weak edges is destroyed and often neglected. Let us first
refer to the excellent reviews by Miller, Trouvé and Youneassume that we enrich the image space by overlaying sev-
[57] and the overview article of Grenander and Miller [44]eral images, which have been registered perfectly in a pre-
Frequently, different images show corresponding strestuprocessing step. Features which are very weak and hardly
at usually nonlinearly transformed positions [58,70,%4. visible in one of the images might be clear and salient in the
the image modality differs there is also no correlation @fther image. A feature detection model may now exploit the
image intensities at corresponding positions. But an atleaomplementary information of both images

On the other hand, if a reliable segmentation of impor-
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as the deformation are unknowns. The whole process cargbeen as the deformed edge set of the other image, where the

described as follows: deformation is controlled by an additional non linear elas-
Given a pair of images, a reference and a tem- tic energy. To ensure that this deformation is one-to-one we
plate image, we aim to find a deformation and, consider a polyconvex elastic functional (cf. the work ofiBa

simultaneously, a set of edges in the reference  [6] and the overview given in [24,30]):

image, such that transformed edge set matches .

the edges in the template image. Furthermore, Eregl@] = /QW(DfP, CofDg,detDg) dx 2
the deformation itself and the edge sets should I .

be regular. whereW is convex andV — oo for detD¢@ — 0, +o.

In this formulation, the deformation is initially only de-  This overall concept has been worked out in [37] for a
termined on the set itself. Eventually we aim at a smootével set formulation and in the thesis of one of the authors
extension of this deformation to the rest of the image d{86], where in addition to the level set formulation the phas
main in order to obtain a mapping of the images also awéigld approach is already presented. In [38] the phase field
from the feature sets. We are going to ensure smoothnessaidel for edge registration is combined with the morpholog-
the deformation and smoothness of the deformed edge isat matching approach - first presented in [39] - to achieve a
incorporating an elastic variational model for the deformanatching of the regular as well as singular image morpholo-
tion. gies. In this paper, our focus is on the comparison of the

To motivate our approach let us first briefly review th&evel set and the phase field approach for the simultaneous
variational approach presented by Mumford and Shah [GHgmentation and matching of edge sets.
and thereby describe in more mathematical detail what is Let int out. that the f di tinuity based
meant by feature extraction and regularity of the edge set. €l us point out, that the free discontinuity based ap-

Mumford and Shah proposed to consider the folIowir’%roaCh proposed here iS. only a template Study WhiCh. fits
functional mto the general formulation of the joint feature extrantio

and registration problem. Different classes of images may
Ewslu, 7] = Z_L/ (U—u )gdx require different models to drive the contdtrtowards the
ms|U, 2 /o 0 significant features of the images, e. g. a geodesic active
u 2 N1 contour model as proposed byA€ELLES, KIMMEL AND
+§/Q\r 10u][“dx+ v (). (1) sapirO[19]. YEZZI, ZOLLEI AND KAPUR[52]. have shown
results for the coupling of the geodesic contour model and

The mathematical treatment of this energy is subtle. Itbasibgistration. (see also the related work on subjectivasesf
be minimized over the set of admissible curfeand admis- py"MikuLa, SARTI & SGALLARI [56]) which would lead

sibleu simultaneously. However, it is not possible to obtaig, 5 coupled energy of the form
lower-semicontinuity of the Hausdorff measure within area

sonable topology of subsets &f. : '
The existence theory is established by GIORGI, CAR- Eacll", 0] = /r grda-+ V/Q grdX
RIERO AND LEACI [33] who proposed to consider the min- : :
imization of the energy depending anonly, and the set +/WQT da+v/Q grdx, (3)

of admissible functions is chosen 88V(Q), the space of
functions of bounded variatiomfor which the measurBu Wheregg andgr correspond to some suitable edge detectors
can be written a®u = OuA + (u™ —u~)n9-1u). . e., inthe imagesir andur. A common choice is, for example,
the Cantor part of the support of the singular part of th€u(X) = (1+ s/0u(x)[?) ", s> 0 (see [48] for a Newton-
measure known fronBV functions, is empty [3]. Herey™ Type algorithm of the geodesic contour model). A related
andu~ denote the approximate limsup resp. liminioffhe algorithm is described by AL ET AL. [72], taking into
edge sef” is now represented b, the complement set of account a joint energy for contour curves in different im-
Lebesgue points af, i. e. the measure theoretic discontinuages. ERON AND MOHAMMAD -DJAFARI [42] proposed a
ity set ofu. Using the compactness 88V(Q) (cf. AMBRO-  Bayesian approach for the joint segmentation and fusion of
Sl0, PALLARA, Fusco [3,40]) and corresponding lower-images via a coupling of suitable hidden Markov Models
semicontinuity results, one proves under mild assumptiof® multi modal images. ¥MURI ET AL. have used a level
that there exists a solutiane SBV(Q) with s#"~1(S,) < ». set technique to exploit a reference segmentation in as atla
Especially due to the complexity of discretizing the singd/3]. We refer to [32] for further ideas.
larity set, various approximatiors: of the Mumford-Shah
functional have been introduced for whi¢hconvergence
results are known (cf. e. g. [4,5,8,66]). We also refer © A coupled Mumford-Shah model
[1,71,27,29,43,13] for related topics and further extensi
based on the Mumford-Shah functional. Minimizing the Mumford-Shah functional we will obtain an
Now, given different images with non aligned edges wapproximation of the discontinuity sets of a noisy initiaki
can formulate a Mumford Shah type approach for both inageug, usually supposed to be i?. Now, we consider a
ages with the constraint that the edge set in one imageseplate imagair and a reference images at the same
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time. Furthermore, we ask for a deformatipnwhich en- Jordan-curves. In this case, the feature set can be viewed
sures that the discontinuity s8furo] will be mapped onto as the boundary of detected segments, which are mapped
the discontinuity set ofir, i. e., (Suro]) = Sluro]. This to similar segment boundaries in the second image. For a
can be achieved considered the following functional [37]: large class of images, this is a very suitable and convenient
. approach, since images can often be decomposed into a fi-
Ems[l, @,ur,ut] = nite set of independent objects. However this is not always
1 r 5 u o 5 A1 Fhe case. Crack tips might occur not on!y due to We{_:lk ed_ge
5/(UR—UR,O) dx+ 5 / |Our||“dx+v2""*(')  information but due to the fact that the image contains dis-
Q

o\r rupted discontinuity sets (cf. the phase field approxinmatio
1 ) U ) i1 below).
+35 /(uT —ur,0) dx+ 5 / | Our |[|“dx+v22°*(C'?).  Inashape optimization framework [14, 15], we start with
a a\re an initial shape describing the edge set and evolve it based

on a suitable energy descent. The edge set may be elegantly

HereQ c RY is the domain of definition of the images withdescribed and propagated by the level set approachsef O
d=2,3,ur,Urp € L*(Q) are the given initial template andHER and ETHIAN [64,65]. In [49] a level set based Newton-
reference images, C Q is (an approximation of) the edgeType regularized optimization algorithm has been derived
set of the givenimager o andl” ¥ = @(I") is the transformed for the minimization the original Mumford-Shah functional
edge-sef” under the transformatiop. That work is the algorithmical basis for our method. For re-

The first line in the integral represents the usual Mumfolated approaches we refer to [23,21,22,49]. In explicit, we
Shah segmentation model for the reference imggewhile consider” to be given as the zero level set of the level set
the second line adapts the same model for the template famnctionvr : Q — R, i. e.,
ageur o, but with an edge set given as the image of the edge I ={x:vr(x) =0}
set in the reference image under the deformagio@learly, | '
if ur andug are minimizers of the original Mumford-Shah
functional andp is chosen such th#t? = S(ur) this energy 3 1 The reduced functional
is minimal. We see, that the deformation is obviously not

uniquely determined by this condition, not even on the edg®e functional (4) depends on the variabigs ur, ¢ and
setitself, since reparametrization along the edge settes | the process of minimization we may devise different
change the energy. Furthermore, the energy does not c@ategies for the different variables. Fortunately thectu
sider the behavior ofp away from the edge set. As projgna|is quadratic in the variables andur . Hence, we may
posed above, we add the nonlinear elastic eneryg(@] minimize the energy for fixef andg over image spaces of
(2), which is supposed to control the regularity of the d%—R andur. Let us now denote byg[I"] andur [I", ¢] the cor-

formationg and suitably extends deformations o3, I".  responding minimizers. They are obtained solving the Euler
In order to avoid technical difficulties we avoid the length agrange equations with respectigandur

measurement of ¢ and solely measure the length bt

Thus, length of ¢ is only implicitly controlled by the length ~~ —HAUR+Ur =Ugo  iIn Q\T
of " and the regularity of. Finally, we end up with the fol- OnrUr =0 onr® 5
lowing variational model —HAuUT+ur =urg in Q\TI¢, ©
E[ra(p7 UR,UT] = EMS[I_a (pa uRa UT} + aEreg[q’]a (4) 0n,— UT = 0 on I-
where It is obvious that the minimizer with respect tig depends
only on ", whereas the minimizer with respect tig de-
Enms[l, ¢,ur,ur] = pends also ow via the domain of integratio® \ I . Now
1 ) U ) 41 we can define theeducedfunctional
= [(ur—u dx+ = / Oug||“dx+ vz =(I). -
2!( ot [ 0 T g =Er.owirlulr gl ™)
1/ ' : To treat the optimization problem iR represented by the
+ —/(uT — uT_o)zdx+ H / ||DuT||2dx. level set functionv = v we make use of nowadays clas-
ZQ ’ 2 sical shape sensitivity calculus. For details we refer ® th

a\re books of S KOLowsKI & ZOLESIO [69] or DELFOUR &

(5) zoLEsio [34]. Furthermore the Appendix of [49] gives a
nice overview. For an enerdy(l"] = [ 6 da depending on
a domain boundary we get

<6rE[I'];Z>:/I_((9n,-9+ 6h)Z -nr da )

3 A Level set method

In this section we will review a level set model for the cou-
pled free discontinuity problem (4). Thereby, we restrioto where ™ is supposed to be @-hypersurface and is a
selves to edge sets which are the union of finitely masgalar perturbation of in normal direction. Furthermore,
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for an energyE[Q] = [, 6(Q,x)dx depending on a domain3.2 Regularized gradient descent
Q the shape derivative is given by

. . The first variations contain jump terms of — uro resp.

(OrE[Q]; ) = / 0'(Q;2) dx+/ 0 da, (9) ur—URy, forin general noisy initial datag o andur . Hence

Q r the regularity of the descent direction with respect tolthe
wheref’(Q) is the shape derivative of the integra@dvith metric is expected to be low. Thus, we will incorporate a reg-
respect to a normal variatiofi of the domain boundary  ularized gradient descent (cf. [25,26]) with respect tdhbot
extended to the whole domain. For details we refer to [3®jariables of the reduced functiorial
With these tools available, we are now able to derive the first As a metric on the space of deformatiprwe consider
variation of the reduced functiof (7) with respect to the o2
shape variabl€& and with respect to the deformatiqn Via o _ / e, 9T
a integral transform, we first decougleand @ and obtain gq,(l,U,E) Q et 2 Hy:be,

whereA: B =tr(ATB). Let us remark that the inverse of the

E(T,9) = corresponding metric tensor is related to a Gaussian fitieri
1/ 2 u r 2 of the deformation with filter widtlo. Thus, the regularized
2 /Q (UR(I") — URro)“dx+ 2 /Q\r 1BuR(r)|=ax descent directiog[I", @] is given as a solution of the elliptic
1 X problem
+5 [ ((wr(r )~ uro)o ) [detDgldx :
U
+5 /Q . (”DUT(I-» %o fP) detDg| dx for all variationsy of ¢.
72\ g1 Next, we discuss the regularization of the shape gradient
+ v () + aEreg @) with respect to the geometric varialife We aim at finding

~a metric on normal variations df, such that this resulting
Now we can apply (8) as well as (9), where we have to ifegularization is balanced with the regularized descetfitein
tegrate along the boundaries from both sides of the contog&formation. Hence, we ask for a suitable megficand de-
which leads to corresponding jump terms. We obtain  fined a normal variatiog [I", ¢] on I" as the regularized de-

. scent direction with respect 1o by

5 (1) ~ tro)?] + K1 Bus()|?]) ¢ da

An H? regular descent directiod[I", @] as we obtain it

1 > above, induces a motion of the transformed edgé $etith
+ 5/,. ([(ur(F, @) —uro)?] a speed in normal direction which is given 8y ¢~'nq, €
+u[||0ur (T, 9)|?]) o @|detDg| { da H%(F‘P) for " ? sufficiently regular. This motivates us to

- choose the shape gradient with respect to a suitkible
+ V/r h{da. (10) metric onr. By this choice we expect a reasonable balance
between the regularization of update directions for thefun
Recall thaug[I"] andur [, ¢] are defined as the solutions ofional variableg and the geometric variable. In order to
the corresponding elliptic boundary value problems (6). Atefine an inner product diz (") let us consider the bound-
described in [49], the terms involving the shape derivativary value problem
6’ disappear since they are derivatives of the energy w.r.t.

ur andur in direction ofug resp.u; and hence zero due to *U—AZ +7=0inQ
local optimality. A 2 ’
For Frechet derivative dt with respect to the deforma- On{=nonrl, (14)

tion ¢ in a directiony we obtain L
for a some functiona € H=z(I") given onl" . Let us denote

a1 2 by 4" : H*%(I') — H%(I') the linear operator representing
(0pE[q]; ) = > ./rw ([lur (', @) —ur |’ the Neumann-to-Dirichlet magrhich mapsw in (14) to the
+u[[|DUT(/',<P)|2ﬂ) (Lllo(p_l~nr¢)da Dirichlet trace(|r of the solution to (14). It is well known

(cf.[54]) that.4#" is an isomorphism. Finally, we define

97 (¢,0) = <W_15;9>H*%(r)xH%(r>'

+ <a(pEreg[‘p]; l.U> , (11)

where the transformed normigl , is given by

Thus, to evaluate the regularized shape gradient, we have to

Nro = M. solve (14) withn = drE and to evaluate the trace of the
|CofDenr|| solution onr".
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3.3 A level set shape gradient descent method

In what follows let us describe how the optimization, th
takes place over a shape and the deformation simultangeo
can be performed algorithmically. The topology of the sol
tionI” of the optimization problem is not knovazpriori. On
the other hand, the gradient descent method depends o
initial guess. Level set methods provide a convenient fra
work for the representation and numerical evolution of pha
interfaces, especially when topological changes come i
play. A detailed description of the finite element algorith
can be found in [37]. Here, we only briefly describe the key’
components in each step of the gradient descent:

e For given discrete deformatigmand level set function
v the finite element solution four andur in (6) on both =
sides of the interface is computed independently applying a i
Composite Finite Elements (cf. [46,67,75]). Thus, we avoid| & @i e i
an explicit remeshing of the domains separated by the cus:
rent level set of/ representing the edge det Furthermore,
it allows for an efficient multigrid solution of these ellipt * i
problems, which leads leads to a significant speed-up of the
algorithm. The transformation vector fietdis discretized
using standard Finite Elements.

e Once finite element approximations @t and ur are
known, the shape gradient and the gradient with respec
the deformation can be computed as finite element apprg
mation on the domai® described by (13) and (12). Again
two linear elliptic problems have to be solved to evalua
these regularized gradients.

e The gradient descent step in the deformation varial
@ is performed in a straightforward way.

e To evolve the level set function with a speed on t
contour given by the discretdl, ¢] on the discrete level setF_ L Matching with the sharo interface Mumf " chah modaeT

H ; H 1g. Ing wi rp inter mrora- m P
I, we consider an extensignonto a small neighborhood of o9 - Re"’f‘écrenge ir'}1agt;ai ?pfot%n geenf;‘fg/ nggh?ed Mlg-ima%e (PD)
the contour. Here, we have the widely used approach ba%?avhuman brain) amr (T1-weighted MR-image). MbDLE Row:

on the solution of the transport equation Deformation plot and the matching resutto @. BoTToM Row: Ini-
~ ~ tial misfit shown as an striped overlaid reference and teraptam-
0¢-0d-=0 on Q and {={[[,9 on I, pared to the final matching result. The parameters were ohase
) ) ] ] u = 200, v = 250 anda = 5000. The iteration converged after 250
wheredr represents the signed distance function with r@erations.

spect tol” (cf. [63,68]). We used the method proposed by
BORNEMANN & RASCH [9].
e For the actual evolution of the level set functiomia

dv+Z|Ov|=0 on Q (15)

we have applied a third-order accurate ENO-scheme (cf).[63] Figure 3 demonstrates the competing effect of the regu-
larization and the energy contributions which pull the con-
tour towards the edges. We can exploit this in order to map
3.4 Numerical experiments an original reference shape (top row) to a given object, ether
the shape is partially corrupted (bottom row). Apart frora th
In Figure 1 we have applied the algorithm to a pair of braidestroyed region the shapes differ also by a non-rigid defor
images. The top row showspaoton densityweighted MR mation plus a translation. This can be well observed in the
scan, while the bottom row shows a T1-weighted magnetecond column. At this stage, the regularization dominates
resonance image of the same patient. The initial misfit caamad prohibits the contour in the bottom row to evolve to-
sists mainly of a shift and a small rotation. The algorithwards the “visible” edge and prefers to adopt the contour
finds the brain structure in both images well after about 25®m the reference image. This yields a reconstructionef th
steps, and the resulting deformation consists mainly ofdastroyed shape, which is optimal with respect to the regu-
shift enhanced by some minor local deformations. larization energy.

20

L L L L L
0 E 100 150 20 50 £




6 Marc Droske et al.

Fig. 3 Towards model-based reconstruction. The image atTtbe
LEeFT shows an artificial reference model of a tooth. On BreTToM
LEFT a nonlinearly deformed version of the reference with a latge
stroyed region is shown. Both images also show the initiaitaar
. The sequence shows the evolution oénd I" ¢ for the iteration
numbers0, 20, 80,320, where the parameters were chosen.as: 50,
o =200andv = 5000Q

the Mumford-Shah energy [31,61,5,12,2] to
Flu = 3/ (u—uo)zderE/ 10Ul dx + v.ort-L(s,)
2Ja 2 Jo\r

on the space of piecewigé" functions

PCl(Q) = {ue L™(Q)} {u c Y\ T)
and 7 (S NQ\S) = o}. (16)
Here, S, denotes the complement of the set of Lebesgue
points ofu. SincePC! is not compact with respect to a suit-
able topology, the common approach is to retato

F(u) = inf{lisnliogf F(Us) : Us — U € L2(Q), us € Pcl(Q)}.

The approximation proposed byMBROSIO& T ORTORELLI
in [5] results from a minimization of the functional

Eulu = [ {5- w0+ Sz roioue) o

. 2

> (1-v)
Fig. 2 Evolution of " in ug in the left column and the evolution of + V/ {£DV + 4e } dx
@(I") in ur in the right column for iteration numbers 0, 50, 150 and Q

250 for the images and the problem setup as in Figure 1. . . . . .
for fixed € andk; > 0. Here v is a phase field variable which

is supposed to be approximately 1 apart from the interface
and approximate 0 on the edge set with a transition region
of width 2e. They have shown thé& -convergence of,
to the functional defined b¥[u,v] = F[u], iff v= 1, and
4 Phase-field approximation E[u,v] = +o otherwise. The -convergence is respect with
to the strond.? topology.

Now, we suggest for the joint segmentation and registra-
Now, let us present an alternative to the previously desdribtion problem an analogous coupled phase-field formulation
sharp interface model. In [5] Ambrosio and Tortorelli proby again introducing an auxiliary phase field variablele-
posed a phase field approximation of Memford-Shalj62] scribing the singularity se$r of the imageur, but at the
functional (1). Before we revise the approximation, we itvisame timevo ¢ should energetically describe the edge set
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Sk in the imageur. A corresponding energy formulation is
then given by the minimization of

E,iT[th ur,Vv, (0} =
1
> /Q {(uR —Uro)? + (ur — uTjo)z} dx

+5 [ {(Popke)|DuR? + (@ ke) | Dur | ox

+%/Q {£|Dv|2+ 4—18(v1)2} dx (17)

with ke = o(€). Here, the phase field functiarcorresponds
to the contour™ ® and the contouf is described by o .
The first integral measures the deviatiorugfandur to the .
data in the_?-sense. The second integral now forces the sig-
naturev? to be small whereir has steep gradients and, cor-* e
respondinglyy? o ¢ to be small wherer has steep gradients. i
On the other hand, this determin@go align the signature i
function in the reference domain to line up with the edges fithe
of ur, and finally, for fixed signature and deformation, the -
smoothness of the imagag andur is controlled, i. e., steep © = ® = = = =
gradients ofur are penalized wherez 0 and analogously
for ur.
Again, the deformatiorp will mainly be determined along
the discontinuity sets. Indeed, as outlined above, away fr(
the contours the phase fialavill approximately be identical
to 1, and hence variations gfwill not change the energy in
these regions. Hence, we again consider a nonlinear hyp4
lastic regularization given by the additional energy fimrct
Ereg[@] (2) and finally define

E®[Ur, ur,V, @] == E7[UR, U, V, @] + O Ereg[¢]

and ask for minimizers. 4 Match dresults of th o t e .

In contrast to the original approach of (4, where a5, A o ests e Same o secup oy e
proximating e”'pt,'c bu_t non'quadrf_it'c fqnctlonals h_a\&'eb mation plot and matching results o . BoTToM Row: comparison
used, the approximation of (17) gives rise to practicable ngk initial misfit and final matching result against the refeze image.
merical methodologies. We refer for instance to [7,66]. In
order to discretiz&arreq e, We follow the approach of BUr-
DIN. In [10] he has proven thé& -convergence of the dis-
cretized functionals against the functiortal See also (cf.
[11,41,20,35)).

Ed A

Fig. 5 Comparison of the phase-field functigmfter the first iteration
(LeFT) and after the final iteration (RHT)
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4.1 First variation of the energy Analogously to the approach chosen in the above sharp
interface model, the energy functional can be reduced to de-

Let us first calculate the variations with respect to the-vapending only ong, whereug|[¢], ur[¢@] andV|[g| are deter-

ablesug, ur andv in directionsd, &, and{, respectively:  mined as the unique solutions to the quadratic minimization

problem for fixed:
£ . . ~

(OueEar|U, ur,v. 9] 9) = E*[g] = E*[urlg]. Ur (@), VIg). ). (24)

/ (Ur—URo) -9 dX+ K / (Vo @-+ke ) Our- 09 dx
Ja Jo
(Our EAT[UR, U, V, ] §) = 4.2 Multiscale gradient descent

/ (ur —uT70)-de+u/ (v2+kg)DuT -O& dx Different to the sharp interface approach above the phase

Q . JQ field approximation comes along with a natural scale param-

(QEgxr[Ur,ur, v, ¢]; () = eter. As mentioned above the width of the diffusive integfac

turns out to be 2 On the same scale the images and
ur are diffused close to edges of the initial imageg and
1 Uro. Hence, the smoothness of energy variations will also
+v /Q e0v-0OJ dx+v /Q 2eV—Dddx. (18) depend on the scale parameteOn coarser scales we ex-
' ' pect smoother descend directions and larger displacement
We rewrite (18) via the transformation formula: can be rendered via the gradient descent. But, for decreas-
ing € one observed successively irregular variations. Indeed,
the smoothness @iyE%; is controlled by the smoothness of

¢, ug andv and the smoothness wvis steered directly by
€ on account of the penalty tersj|Ov||?. Furthermore, for
a smalle, vis close to 0 wherdOug||2o @~ or | DOur||? are
1 large andvis forced to be close to 1 in the rest of the domain
+v /Q elv-0ddx+v /Q E(V* 1)¢dx. (19) on account of the amplified single well potential.
' ' In summary, larger values @fyield coarse and smooth
Hence, for fixeds and ¢ the reconstructed imageg andur  approximations of the images, the phase field and the de-
can be computed by solving the following elliptic problemsormation. Hence, one starts with coarse approximatians, t
find a stationary point in the simplified energy landscape, it
Ur — Udiv (V2o @+ ke) OuR) = FhUro,e inQ, eratively reduces the approximation parametday taking
dyUr =0 ondo the solution of the previous scale as the new initial guess on
(20) the nextfiner scale.
] ) Then on finer scales for small values fthe discrete
ur — pdiv (v + ke) Our) = Shur o in Q, descent direction tend to get irregular. Hence, it is agean f
oyur =0 onoQ. sible to consider a regularized gradient descent and we con-
(21) sider the same regularized metric on variations of the defor
mation as in the sharp interface case.
Sincev > 0 the corresponding bilinear-forms are coercive. On each scale the resulting finite element algorithm con-
Furthermore, we are able to find for eaeh ur and @ the sists of a discrete gradient descent. Each gradient descent
optimal phase fiel& as the solution of the Euler-Lagrangetep can be decomposed as follows. For gigecompute
equation with respect to the variation in the variable e., Composite Finite Element approximations f@f, ur and
v as discrete solutions of (20), (21), and (22), respectively

i [ IBur v dxp TRl @) - (Co@)
JQ JQ

(OEir[ur,uT, Vv, ¢0]; ) = H/Q || Our][2v- Z dx

+ u/ 10uR|2 0 @ v-  detDg L dx
Q

|| Our ||2v+ p||Our||? 0 @ tvdetDg ™t Iterate these three solutions steps until convergencen The
v _ evaluate the descent direction in the deformation takitg in
+ E(V* 1) —veAv=0 inQ. (22) account Finally, perform an update of the deformatign

based on a line-search strategy.
andd,v = 0ondQ. Finally, the variation of the energy with  Let us remark that on the finest scaldéas to be of the
respect to the deformation in a directignis given by order of the grid size. Otherwise the transition zone cannot
be resolved by a Finite Element function.

<a(pE,§T[uRa ur, Vv, (p]’ L)U> =

u/ |0Our||?ve @(Ovo @- ) dx 4.3 Numerical experiments
Q
=pu / |0ur|?0 @ tv(Ov- o @~ 1)detDp tdx. In Figure 4, we test the phase field algorithm with the same
Q data as in the case of the sharp interface model. We observe

(23) very similar results. In fact, the phase field model seems to
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perform a better alignment in the interior of the skull. The The classical level set framework is restricted to closed
phase field function captures edge details in the entireénagurves, and thus it does not allow to represaack tipsby
while the sharp interface framework focuses on the evola-single level set function. Although this could be achieved
tion of the predefined contour. This leads to a positive ¢ffday combining several level set functions with boolean op-
on the final alignment and to a slightly improved deformaerations, the phase field approach appears to be more flexi-
tion. This can be seen very clearly in Figure 5. It shows tlie and practicable for the applications discussed here. Th
phase field function at the initial stage and the final staggame is true for generating holes. The phase field repre-
Since, the coupled discontinuity problems aims at keepisgntation is global by definition and respects the features
the length of the interface short, the deformation will evef the images in the entire domain, with requiring any ini-
tually try to map the edges i onto the edges afr. tialization. For sharp interface models, let us mention the
concept oftopological derivative$16]. By considering the
limit for the change of the energy functional for arbitrary
5 The main differences between the two approaches small holes, one can yield a descent of the functional with

respect to topology. This is of great importance for example
The aim of this comparison of the level set and the phaigestructural mechanics. The sharp interface approach opti
field model is to illustrate and discuss the drawbacks antlzes with respect to a given initial shape, while the phase
benefits of both approaches in this particular application field approach will try to align all dominant edges in the im-
joint segmentation and registration. It naturally depemls ages simultaneously. In some cases however, when there are
the computational considerations, the conceptual framewmo counterparts of strong edges in the other image, the si-
and the specific application, which alternative will be theultaneous matching of all features may be a counterpro-
method of choice. In the following we will point out someductive aim. The restriction to certain features only may be
fundamental differences. beneficial here.

The dependence on the initial condition in the case of
the sharp interface model, does not necessarily mean to be a
burden. Due to the non-convex structure of the joint discon-

Both, the level set approach and the phase field approachtHpeity problem, the initial shape and position of the camto
famous for their topological flexibility. The process ofispl &10Ws to give the user some kind of control over the match-
ting a curve into several curves is a smooth process in bdtf§ Process.
frameworks and does not cause any conceptual problems.
The representations of the discontinuity set are funda-
mentally different in type. The level set method elegantly
allows to represent, trace and evolve a given sharp inter-
fac_e. T_his fi_ts we!l to the framewprk of the_calc_:ulus of shap§2 Computational considerations
derivatives in which the current interface is given prelgise

To be more precise, the level set method is just one way of o
evolving a sharp interface, in comparison to parametrizi t us now compare the algorithmical effort related to both

the interface. We consider parametric versions as not cofi-the approaches. The phase field method can be set up
petitive due to tremendous difficulties that arise at togglo I" @ Straightforward way by solving elliptic and parabolic
changes. For the sake of completeness, let us mention #RPlems with coefficients which vary in space. Such prob-

one can also describe sharp interfaces by a phase field f§&2S are standard and can be solved with all PDE toolboxes.
tion by using suitable obstacle potentials. From the concepu® to the fact that the interface is represented by a smooth

tional viewpoint of shape variation, those would then fall i_phase field function, the solution of the Helmholtz problems

the same category, since the motion would result from tfethe domains, which are divided by the free discontinuity
shape variation of the shape functional. TheigRosIO- 1S straightforward and does not require any additionalreffo

TORTORELL-approximation is however a diffuse represer® take care about free boundaries.

tation. Instead of precisely representing the positiorhef t  The sharp interface approach is more complicated to im-
interface, the phase-field functiemonly indicates the posi- plement. The computation of the velocity requires to eval-
tion of edges in a blurry way. This phase-field function hasate geometric entities and jumps of the traces of the func-
to be defined on the entire domaéh and results directly tionsug andur along the interface. In order to compute these
from the solution of a simple elliptic PDE. The actual distunctions, an algorithmical tool like Composite Finite Ele
continuity set is then only given as minimiz& — {0,1} ments, aShortley-Wellerdiscretization oAWebsplined50]

of the I -limit of sequence of approximation functionals fohas to be incorporated. In order to improve efficiency multi-
€ — 0. In actual computations however the phase field fungrid methods [45] have been applied. All this effort is hon-
tion has to be computed far of the order of the grid size. ored by yielding the true derivative and thus the correct dy-
We conclude, that if the actual interface is of interest & thamics of the gradient flow. However, for the task of image
result of the algorithm, a sharp interface model, represkntegistration, we are mainly interested in the minimizatbn

e. g. by a level set function is favorable. the functional and not the evolution of the contour.

5.1 Methodological differences
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