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Abstract Traditionally, different image processing tasks are
mainly considered on their own. The main aim of this pa-
per is a combination ofregistration[25,26,47,58–60], i. e.,
the spatial alignment of images andsegmentation[19,53,
17,18], i. e., the recognition of edges and object contours
in images. A proper registration depends on a good initial
segmentation and vice versa. In this paper it is proposed
to link these problems together by formulating a coupled
variational problem. The focus is on edge-based instead of
intensity-based methods and a variational model based on
the Mumford-Shah free discontinuity problem. In particular
this paper is devoted to the comparison of a sharp interface
approach with a phase field approach.

1 Introduction

In particular on the background of medical applications de-
noising, segmentation and registration are well established
as fundamental problems in image processing. An enormous
amount of state-of-the-art imaging methods enables precise
studies of the immensevariability of human anatomy. We
refer to the excellent reviews by Miller, Trouvé and Younes
[57] and the overview article of Grenander and Miller [44].
Frequently, different images show corresponding structures
at usually nonlinearly transformed positions [58,70,51].As
the image modality differs there is also no correlation of
image intensities at corresponding positions. But an at least
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partial correspondence of edge sets is feasible. Hence, edge
segmentation might help in the registration. On the other
hand, integrated knowledge from different image modalities
will lead to better segmentation. This circular dependence
of registration and edge segmentation is well-known. One
might think for example of a pairmagnetic resonance(MR)
andcomputed tomography(CT) images, or simply a color
image instead of a gray scale image. An alternative, global
morphological matching approach has been presented by Vi-
ola, Wells et al. [74,76] and Collignon et al. [55] based on a
information theoretic approach for the registration of multi-
modal images. Their information theoretic method is based
on a maximization of the so called mutual information of im-
ages of different modality. In [39] a variational approach not
relying on statistics is proposed for morphological matching
was presented. Both approaches do not make explicit use of
segmentation results.

Here, we focus on the registration of edges. The set of
detectable edges in the different images or color channels
is often disrupted and irregular. Furthermore they are most
often given by binary indicators, hence information about
weak edges is destroyed and often neglected. Let us first
assume that we enrich the image space by overlaying sev-
eral images, which have been registered perfectly in a pre-
processing step. Features which are very weak and hardly
visible in one of the images might be clear and salient in the
other image. A feature detection model may now exploit the
complementary information of both images

On the other hand, if a reliable segmentation of impor-
tant objects in two images is available, the process of regis-
tration can be aided significantly. Mapping the object con-
tours in the reference onto the contours in the template im-
age, significantly simplifies the search space. The deforma-
tion is already determined on these boundaries modulo tan-
gential distortion.

Due to this dependency it appears natural to combine
both problems into one model. From a more general point
of view, this would correspond to a simultaneous detection
of image features, that ought to be coupled by a deformation.
The subtlety of this approach is that edge contours as well
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as the deformation are unknowns. The whole process can be
described as follows:

Given a pair of images, a reference and a tem-
plate image, we aim to find a deformation and,
simultaneously, a set of edges in the reference
image, such that transformed edge set matches
the edges in the template image. Furthermore,
the deformation itself and the edge sets should
be regular.

In this formulation, the deformation is initially only de-
termined on the set itself. Eventually we aim at a smooth
extension of this deformation to the rest of the image do-
main in order to obtain a mapping of the images also away
from the feature sets. We are going to ensure smoothness of
the deformation and smoothness of the deformed edge set
incorporating an elastic variational model for the deforma-
tion.

To motivate our approach let us first briefly review the
variational approach presented by Mumford and Shah [62]
and thereby describe in more mathematical detail what is
meant by feature extraction and regularity of the edge set.

Mumford and Shah proposed to consider the following
functional

EMS[u,Γ ] =
1
2

∫

Ω
(u−u0)

2dx

+
µ
2

∫

Ω\Γ
‖∇u‖2 dx+νH

n−1(Γ ). (1)

The mathematical treatment of this energy is subtle. It has to
be minimized over the set of admissible curvesΓ and admis-
sibleu simultaneously. However, it is not possible to obtain
lower-semicontinuity of the Hausdorff measure within a rea-
sonable topology of subsets ofΩ .

The existence theory is established by DE GIORGI, CAR-
RIERO AND LEACI [33] who proposed to consider the min-
imization of the energy depending onu only, and the set
of admissible functions is chosen asSBV(Ω ), the space of
functions of bounded variationu for which the measureDu
can be written asDu = ∇uλ +(u+ −u−)nH

d−1|S(u). I. e.,
the Cantor part of the support of the singular part of the
measure known fromBV functions, is empty [3]. Here,u+

andu− denote the approximate limsup resp. liminf ofu. The
edge setΓ is now represented bySu the complement set of
Lebesgue points ofu, i. e. the measure theoretic discontinu-
ity set ofu. Using the compactness ofSBV(Ω ) (cf. AMBRO-
SIO, PALLARA , FUSCO [3,40]) and corresponding lower-
semicontinuity results, one proves under mild assumptions
that there exists a solutionu∈SBV(Ω ) with H n−1(Su)< ∞.
Especially due to the complexity of discretizing the singu-
larity set, various approximationsEε of the Mumford-Shah
functional have been introduced for whichΓ -convergence
results are known (cf. e. g. [4,5,8,66]). We also refer to
[1,71,27,29,43,13] for related topics and further extensions
based on the Mumford-Shah functional.

Now, given different images with non aligned edges we
can formulate a Mumford Shah type approach for both im-
ages with the constraint that the edge set in one images is

given as the deformed edge set of the other image, where the
deformation is controlled by an additional non linear elas-
tic energy. To ensure that this deformation is one-to-one we
consider a polyconvex elastic functional (cf. the work of Ball
[6] and the overview given in [24,30]):

Ereg[φ ] =

∫

Ω
Ŵ(Dφ ,CofDφ ,detDφ)dx (2)

whereŴ is convex andŴ → ∞ for detDφ → 0,+∞.

This overall concept has been worked out in [37] for a
level set formulation and in the thesis of one of the authors
[36], where in addition to the level set formulation the phase
field approach is already presented. In [38] the phase field
model for edge registration is combined with the morpholog-
ical matching approach - first presented in [39] - to achieve a
matching of the regular as well as singular image morpholo-
gies. In this paper, our focus is on the comparison of the
level set and the phase field approach for the simultaneous
segmentation and matching of edge sets.

Let us point out, that the free discontinuity based ap-
proach proposed here is only a template study which fits
into the general formulation of the joint feature extraction
and registration problem. Different classes of images may
require different models to drive the contourΓ towards the
significant features of the images, e. g. a geodesic active
contour model as proposed by CASELLES, K IMMEL AND

SAPIRO [19]. YEZZI, ZÖLLEI AND KAPUR [52]. have shown
results for the coupling of the geodesic contour model and
registration. (see also the related work on subjective surfaces
by MIKULA , SARTI & SGALLARI [56]) which would lead
to a coupled energy of the form

Eac[Γ ,φ ] =

∫

Γ
gRda+ν

∫

Ω
gRdx

+

∫

Γ φ
gT da+ν

∫

Ω
gTdx, (3)

wheregR andgT correspond to some suitable edge detectors
in the imagesuR anduT . A common choice is, for example,
gu(x) = (1+ s|∇u(x)|2)−1, s > 0 (see [48] for a Newton-
Type algorithm of the geodesic contour model). A related
algorithm is described by UNAL ET AL . [72], taking into
account a joint energy for contour curves in different im-
ages. F́ERON AND MOHAMMAD -DJAFARI [42] proposed a
Bayesian approach for the joint segmentation and fusion of
images via a coupling of suitable hidden Markov Models
for multi modal images. VEMURI ET AL . have used a level
set technique to exploit a reference segmentation in an atlas
[73]. We refer to [32] for further ideas.

2 A coupled Mumford-Shah model

Minimizing the Mumford-Shah functional we will obtain an
approximation of the discontinuity sets of a noisy initial im-
ageu0, usually supposed to be inL2. Now, we consider a
template imageuT and a reference imageuR at the same
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time. Furthermore, we ask for a deformationφ , which en-
sures that the discontinuity setS[uR,0] will be mapped onto
the discontinuity set ofuT , i. e., φ(S[uR,0]) = S[uT,0]. This
can be achieved considered the following functional [37]:

ẼMS[Γ ,φ ,uR,uT ] =

1
2

∫

Ω

(uR−uR,0)
2dx+

µ
2

∫

Ω\Γ

‖∇uR‖
2dx+νH

d−1(Γ )

+
1
2

∫

Ω

(uT −uT,0)
2dx+

µ
2

∫

Ω\Γ φ

‖∇uT‖
2dx+νH

d−1(Γ φ ).

HereΩ ⊂ R
d is the domain of definition of the images with

d = 2,3,uT,0,uR,0 ∈ L∞(Ω ) are the given initial template and
reference images,Γ ⊂ Ω is (an approximation of) the edge
set of the given imageuR,0 andΓ φ = φ(Γ ) is the transformed
edge-setΓ under the transformationφ .

The first line in the integral represents the usual Mumford-
Shah segmentation model for the reference imageuR,0, while
the second line adapts the same model for the template im-
ageuT,0, but with an edge set given as the image of the edge
set in the reference image under the deformationφ . Clearly,
if uT anduR are minimizers of the original Mumford-Shah
functional andφ is chosen such thatΓ φ = S(uT) this energy
is minimal. We see, that the deformation is obviously not
uniquely determined by this condition, not even on the edge
set itself, since reparametrization along the edge set doesnot
change the energy. Furthermore, the energy does not con-
sider the behavior ofφ away from the edge set. As pro-
posed above, we add the nonlinear elastic energyαEreg[φ ]
(2), which is supposed to control the regularity of the de-
formationφ and suitably extends deformations ontoΩ \Γ .
In order to avoid technical difficulties we avoid the length-
measurement ofΓ φ and solely measure the length ofΓ .
Thus, length ofΓ φ is only implicitly controlled by the length
of Γ and the regularity ofφ . Finally, we end up with the fol-
lowing variational model

E[Γ ,φ ,uR,uT ] = EMS[Γ ,φ ,uR,uT ]+αEreg[φ ] , (4)

where

EMS[Γ ,φ ,uR,uT ] =

1
2

∫

Ω

(uR−uR,0)
2dx+

µ
2

∫

Ω\Γ

‖∇uR‖
2dx+νH

d−1(Γ ).

+
1
2

∫

Ω

(uT −uT,0)
2dx+

µ
2

∫

Ω\Γ φ

‖∇uT‖
2dx.

(5)

3 A Level set method

In this section we will review a level set model for the cou-
pled free discontinuity problem (4). Thereby, we restrict our-
selves to edge sets which are the union of finitely many

Jordan-curves. In this case, the feature set can be viewed
as the boundary of detected segments, which are mapped
to similar segment boundaries in the second image. For a
large class of images, this is a very suitable and convenient
approach, since images can often be decomposed into a fi-
nite set of independent objects. However this is not always
the case. Crack tips might occur not only due to weak edge
information but due to the fact that the image contains dis-
rupted discontinuity sets (cf. the phase field approximation
below).

In a shape optimization framework [14,15], we start with
an initial shape describing the edge set and evolve it based
on a suitable energy descent. The edge set may be elegantly
described and propagated by the level set approach of OS-
HER and SETHIAN [64,65]. In [49] a level set based Newton-
Type regularized optimization algorithm has been derived
for the minimization the original Mumford-Shah functional.
That work is the algorithmical basis for our method. For re-
lated approaches we refer to [23,21,22,49]. In explicit, we
considerΓ to be given as the zero level set of the level set
functionvΓ : Ω → R, i. e.,

Γ = {x : vΓ (x) = 0} .

3.1 The reduced functional

The functional (4) depends on the variablesuR, uT , φ and
Γ . In the process of minimization we may devise different
strategies for the different variables. Fortunately the func-
tional is quadratic in the variablesuR anduT . Hence, we may
minimize the energy for fixedΓ andφ over image spaces of
uR anduT . Let us now denote byuR[Γ ] anduT [Γ ,φ ] the cor-
responding minimizers. They are obtained solving the Euler
Lagrange equations with respect touR anduT :

−µ∆uR+uR = uR,0 in Ω \Γ
∂nΓ uR = 0 on Γ φ

−µ∆uT +uT = uT,0 in Ω \Γ φ ,

∂nΓ uT = 0 on Γ .

(6)

It is obvious that the minimizer with respect touR depends
only on Γ , whereas the minimizer with respect touT de-
pends also onu via the domain of integrationΩ \Γ φ . Now
we can define thereducedfunctional

Ê[Γ ,φ ] = E[Γ ,φ ,uR[Γ ],uT [Γ ,φ ]]. (7)

To treat the optimization problem inΓ represented by the
level set functionv = vΓ we make use of nowadays clas-
sical shape sensitivity calculus. For details we refer to the
books of SOKOŁOWSKI & Z OLÉSIO [69] or DELFOUR &
ZOLÉSIO [34]. Furthermore the Appendix of [49] gives a
nice overview. For an energyE[Γ ] =

∫

Γ θ da depending on
a domain boundaryΓ we get

〈∂Γ E[Γ ];ζ 〉 =

∫

Γ
(∂nΓ θ +θh)ζ ·nΓ da (8)

whereΓ is supposed to be aC 1-hypersurface andζ is a
scalar perturbation ofΓ in normal direction. Furthermore,
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for an energyE[Ω ] =
∫

Ω θ(Ω ,x)dx depending on a domain
Ω the shape derivative is given by

〈∂Γ E[Ω ];ζ 〉=
∫

Ω
θ ′(Ω ;ζ )dx+

∫

Γ
θ ζ da, (9)

whereθ ′(Ω ) is the shape derivative of the integrandθ with
respect to a normal variationζ of the domain boundaryΓ
extended to the whole domain. For details we refer to [37].
With these tools available, we are now able to derive the first
variation of the reduced function̂E (7) with respect to the
shape variableΓ and with respect to the deformationφ . Via
a integral transform, we first decoupleΓ andφ and obtain

Ê(Γ ,φ) =

1
2

∫

Ω
(uR(Γ )−uR,0)

2dx+
µ
2

∫

Ω\Γ
‖∇uR(Γ )‖2 dx

+
1
2

∫

Ω

(

(uT(Γ ,φ)−uT,0)
2◦φ

)

|detDφ |dx

+
µ
2

∫

Ω\Γ

(

‖∇uT(Γ ,φ)‖2◦φ
)

|detDφ |dx

+νH
d−1(Γ )+αEreg[φ ].

Now we can apply (8) as well as (9), where we have to in-
tegrate along the boundaries from both sides of the contour,
which leads to corresponding jump terms. We obtain

〈

∂Γ Ê[Γ ,φ ];ζ
〉

=

1
2

∫

Γ

(

J(uR(Γ )−uR,0)
2K+ µJ‖∇uR(Γ )‖2K

)

ζ da

+
1
2

∫

Γ

(q
(uT(Γ ,φ)−uT,0)

2y

+µ
q
‖∇uT(Γ ,φ)‖2y)

◦φ |detDφ |ζ da

+ν
∫

Γ
hζ da. (10)

Recall thatuR[Γ ] anduT [Γ ,φ ] are defined as the solutions of
the corresponding elliptic boundary value problems (6). As
described in [49], the terms involving the shape derivatives
θ ′ disappear since they are derivatives of the energy w.r.t.
uR anduT in direction ofu′R resp.u′T and hence zero due to
local optimality.

For Frèchet derivative of̂E with respect to the deforma-
tion φ in a directionψ we obtain

〈

∂φ Ê[φ ];ψ
〉

=
1
2

∫

Γ φ

(

J|uT(Γ ,φ)−uT,0|
2K

+µJ|∇uT(Γ ,φ)|2K
)

(ψ ◦φ−1 ·nΓ φ )da

+
〈

∂φ Ereg[φ ];ψ
〉

, (11)

where the transformed normalnΓ φ is given by

nΓ φ =
CofDφnΓ
‖CofDφnΓ ‖

.

3.2 Regularized gradient descent

The first variations contain jump terms ofuT − uT,0 resp.
uR−uR,0, for in general noisy initial datauR,0 anduT,0. Hence
the regularity of the descent direction with respect to theL2

metric is expected to be low. Thus, we will incorporate a reg-
ularized gradient descent (cf. [25,26]) with respect to both
variables of the reduced functionalÊ.

As a metric on the space of deformationφ we consider

gσ
φ (ψ,ξ ) =

∫

Ω
ψ ·ξ +

σ2

2
∇ψ : ∇ξ ,

whereA : B = tr(ATB). Let us remark that the inverse of the
corresponding metric tensor is related to a Gaussian filtering
of the deformation with filter widthσ . Thus, the regularized
descent directionψ[Γ ,φ ] is given as a solution of the elliptic
problem

gσ
φ (ψ[Γ ,φ ],ξ ) = −

〈

∂φ Ê[Γ ,φ ];ξ
〉

(12)

for all variationsψ of φ .
Next, we discuss the regularization of the shape gradient

with respect to the geometric variableΓ . We aim at finding
a metric on normal variations ofΓ , such that this resulting
regularization is balanced with the regularized descent inthe
deformation. Hence, we ask for a suitable metricgσ

Γ and de-
fined a normal variationζ [Γ ,φ ] on Γ as the regularized de-
scent direction with respect toΓ by

gΓ (ζ [Γ ,φ ],θ) = −
〈

∂Γ Ê[Γ ,φ ];θ
〉

(13)

An H1,2 regular descent directiond[Γ ,φ ] as we obtain it
above, induces a motion of the transformed edge setΓ φ with
a speed in normal direction which is given byd◦φ−1nΓ φ ∈

H
1
2 (Γ φ ) for Γ φ sufficiently regular. This motivates us to

choose the shape gradient with respect to a suitableH
1
2 -

metric onΓ . By this choice we expect a reasonable balance
between the regularization of update directions for the func-
tional variableφ and the geometric variableΓ . In order to
define an inner product onH

1
2 (Γ ) let us consider the bound-

ary value problem

−
σ2

2
∆ζ +ζ = 0 in Ω ,

∂nΓ ζ = η onΓ , (14)

for a some functionalη ∈H− 1
2 (Γ ) given onΓ . Let us denote

by N : H− 1
2 (Γ ) → H

1
2 (Γ ) the linear operator representing

theNeumann-to-Dirichlet mapwhich mapsw in (14) to the
Dirichlet traceζ |Γ of the solution to (14). It is well known
(cf.[54]) thatN is an isomorphism. Finally, we define

gσ
Γ (ζ ,θ) :=

〈

N
−1ζ ;θ

〉

H− 1
2 (Γ )×H

1
2 (Γ )

.

Thus, to evaluate the regularized shape gradient, we have to
solve (14) withη = ∂Γ Ê and to evaluate the trace of the
solution onΓ .
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3.3 A level set shape gradient descent method

In what follows let us describe how the optimization, that
takes place over a shape and the deformation simultaneously,
can be performed algorithmically. The topology of the solu-
tionΓ of the optimization problem is not knowna-priori. On
the other hand, the gradient descent method depends on an
initial guess. Level set methods provide a convenient frame-
work for the representation and numerical evolution of sharp
interfaces, especially when topological changes come into
play. A detailed description of the finite element algorithm
can be found in [37]. Here, we only briefly describe the key
components in each step of the gradient descent:

• For given discrete deformationφ and level set function
v the finite element solution foruR anduT in (6) on both
sides of the interface is computed independently applying a
Composite Finite Elements (cf. [46,67,75]). Thus, we avoid
an explicit remeshing of the domains separated by the cur-
rent level set ofv representing the edge setΓ . Furthermore,
it allows for an efficient multigrid solution of these elliptic
problems, which leads leads to a significant speed-up of the
algorithm. The transformation vector fieldφ is discretized
using standard Finite Elements.

• Once finite element approximations ofuR anduT are
known, the shape gradient and the gradient with respect to
the deformation can be computed as finite element approxi-
mation on the domainΩ described by (13) and (12). Again
two linear elliptic problems have to be solved to evaluate
these regularized gradients.

• The gradient descent step in the deformation variable
φ is performed in a straightforward way.

• To evolve the level set function with a speed on the
contour given by the discreteζ [Γ ,φ ] on the discrete level set
Γ , we consider an extensioñζ onto a small neighborhood of
the contour. Here, we have the widely used approach based
on the solution of the transport equation

∇ζ̃ ·∇dΓ = 0 on Ω and ζ̃ = ζ [Γ ,φ ] on Γ ,

wheredΓ represents the signed distance function with re-
spect toΓ (cf. [63,68]). We used the method proposed by
BORNEMANN & RASCH [9].

• For the actual evolution of the level set functionv via

∂tv+ ζ̃‖∇v‖ = 0 on Ω (15)

we have applied a third-order accurate ENO-scheme (cf. [63]).

3.4 Numerical experiments

In Figure 1 we have applied the algorithm to a pair of brain
images. The top row shows aproton densityweighted MR
scan, while the bottom row shows a T1-weighted magnetic
resonance image of the same patient. The initial misfit con-
sists mainly of a shift and a small rotation. The algorithm
finds the brain structure in both images well after about 250
steps, and the resulting deformation consists mainly of a
shift enhanced by some minor local deformations.

-50

 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250  300

Fig. 1 Matching with the sharp interface Mumford-Shah model. TOP
ROW: Reference imageuR (proton density weighted MR-image (PD)
of a human brain) anuT (T1-weighted MR-image). MIDDLE ROW:
Deformation plot and the matching resultuT ◦φ . BOTTOM ROW: Ini-
tial misfit shown as an striped overlaid reference and template com-
pared to the final matching result. The parameters were chosen as
µ = 200, ν = 250 andα = 5000. The iteration converged after 250
iterations.

Figure 3 demonstrates the competing effect of the regu-
larization and the energy contributions which pull the con-
tour towards the edges. We can exploit this in order to map
an original reference shape (top row) to a given object, where
the shape is partially corrupted (bottom row). Apart from the
destroyed region the shapes differ also by a non-rigid defor-
mation plus a translation. This can be well observed in the
second column. At this stage, the regularization dominates
and prohibits the contour in the bottom row to evolve to-
wards the “visible” edge and prefers to adopt the contour
from the reference image. This yields a reconstruction of the
destroyed shape, which is optimal with respect to the regu-
larization energy.
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Fig. 2 Evolution of Γ in uR in the left column and the evolution of
φ(Γ ) in uT in the right column for iteration numbers 0, 50, 150 and
250 for the images and the problem setup as in Figure 1.

4 Phase-field approximation

Now, let us present an alternative to the previously described
sharp interface model. In [5] Ambrosio and Tortorelli pro-
posed a phase field approximation of theMumford-Shah[62]
functional (1). Before we revise the approximation, we rewrite

Fig. 3 Towards model-based reconstruction. The image at theTOP
LEFT shows an artificial reference model of a tooth. On theBOTTOM
LEFT a nonlinearly deformed version of the reference with a largede-
stroyed region is shown. Both images also show the initial contour
Γ . The sequence shows the evolution ofΓ and Γ φ for the iteration
numbers0,20,80,320, where the parameters were chosen asµ = 50,
α = 200andν = 5000.

the Mumford-Shah energy [31,61,5,12,2] to

F [u] =
1
2

∫

Ω
(u−u0)

2dx+
µ
2

∫

Ω\Γ
‖∇u‖2 dx+νH

d−1(Su)

on the space of piecewiseC 1 functions

PC1(Ω ) = {u∈ L∞(Ω )}
{

u∈ C
1(Ω \Su)

andH
d−1(Su∩Ω \Su) = 0

}

. (16)

Here, Su denotes the complement of the set of Lebesgue
points ofu. SincePC1 is not compact with respect to a suit-
able topology, the common approach is to relaxF to

F(u) = inf
{

liminf
s→∞

F(us) : us → u∈ L2(Ω ), us ∈ PC1(Ω )
}

.

The approximation proposed by AMBROSIO&T ORTORELLI

in [5] results from a minimization of the functional

Eε [u,v] =
∫

Ω

{

1
2
(u−u0)

2 +
µ
2

(v2+kε)‖∇u‖2
}

dx

+ν
∫

Ω

{

ε‖∇v‖2 +
(1−v)2

4ε

}

dx

for fixedε andkε > 0. Here,v is a phase field variable which
is supposed to be approximately 1 apart from the interface
and approximate 0 on the edge set with a transition region
of width 2ε. They have shown theΓ -convergence ofEε
to the functional defined byE[u,v] = F [u], iff v ≡ 1, and
E[u,v] = +∞ otherwise. TheΓ -convergence is respect with
to the strongL2 topology.

Now, we suggest for the joint segmentation and registra-
tion problem an analogous coupled phase-field formulation
by again introducing an auxiliary phase field variablev, de-
scribing the singularity setST of the imageuT , but at the
same timev◦ φ should energetically describe the edge set
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SR in the imageuR. A corresponding energy formulation is
then given by the minimization of

Eε
AT[uR,uT ,v,φ ] :=

1
2

∫

Ω

{

(uR−uR,0)
2 +(uT −uT,0)

2
}

dx

+
µ
2

∫

Ω

{

(v2◦φ +kε)‖∇uR‖
2 +(v2+kε)‖∇uT‖

2
}

dx

+
ν
2

∫

Ω

{

ε‖∇v‖2 +
1
4ε

(v−1)2
}

dx (17)

with kε = o(ε). Here, the phase field functionv corresponds
to the contourΓ φ and the contourΓ is described byv◦ φ .
The first integral measures the deviation ofuR anduT to the
data in theL2-sense. The second integral now forces the sig-
naturev2 to be small whereuT has steep gradients and, cor-
respondingly,v2◦φ to be small whereuR has steep gradients.
On the other hand, this determinesφ to align the signature
function in the reference domain to line up with the edges
of uR, and finally, for fixed signature and deformation, the
smoothness of the imagesuR anduT is controlled, i. e., steep
gradients ofuT are penalized wherev 6≈ 0 and analogously
for uR.

Again, the deformationφ will mainly be determined along
the discontinuity sets. Indeed, as outlined above, away from
the contours the phase fieldv will approximately be identical
to 1, and hence variations ofφ will not change the energy in
these regions. Hence, we again consider a nonlinear hypere-
lastic regularization given by the additional energy function
Ereg[φ ] (2) and finally define

Eε [uR,uT ,v,φ ] =:= Eε
AT[uR,uT ,v,φ ]+αEreg[φ ]

and ask for minimizers.
In contrast to the original approach of [4], where ap-

proximating elliptic but non-quadratic functionals have been
used, the approximation of (17) gives rise to practicable nu-
merical methodologies. We refer for instance to [7,66]. In
order to discretizeEATreg,ε , we follow the approach of BOUR-
DIN. In [10] he has proven theΓ -convergence of the dis-
cretized functionals against the functionalE. See also (cf.
[11,41,20,35]).

-50
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Fig. 4 Matching and results of the same problem set-up as in Figure 1.
TOP ROW: Initial imagesuR (PD) anduT (T1). MIDDLE ROW: Defor-
mation plot and matching resultsuT ◦φ . BOTTOM ROW: comparison
of initial misfit and final matching result against the reference image.

Fig. 5 Comparison of the phase-field functionv after the first iteration
(LEFT) and after the final iteration (RIGHT)
.
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4.1 First variation of the energy

Let us first calculate the variations with respect to the vari-
ablesuR, uT andv in directionsϑ , ξ , andζ , respectively:

〈∂uREε
AT[uR,uT ,v,φ ];ϑ〉 =

∫

Ω
(uR−uR,0)·ϑ dx+µ

∫

Ω
(v2◦φ +kε)∇uR·∇ϑ dx

〈∂uT Eε
AT[uR,uT ,v,φ ];ξ 〉 =

∫

Ω
(uT −uT,0) ·ξ dx+ µ

∫

Ω
(v2 +kε)∇uT ·∇ξ dx

〈∂vE
ε
AT[uR,uT ,v,φ ];ζ 〉=

µ
∫

Ω
‖∇uT‖

2v·ζ dx+µ
∫

Ω
‖∇uR‖

2(v◦φ) ·(ζ ◦φ)

+ν
∫

Ω
ε∇v ·∇ζ dx+ν

∫

Ω

1
4ε

(v−1)ζ dx. (18)

We rewrite (18) via the transformation formula:

〈∂vE
ε
AT[uR,uT ,v,φ ];ζ 〉= µ

∫

Ω
‖∇uT‖

2v ·ζ dx

+ µ
∫

Ω
‖∇uR‖

2◦φ−1v ·ζ detDφ−1dx

+ν
∫

Ω
ε∇v ·∇ζ dx+ν

∫

Ω

1
4ε

(v−1)ζ dx. (19)

Hence, for fixedv andφ the reconstructed imagesuR anduT
can be computed by solving the following elliptic problems

uR−µdiv
(

(v2◦φ +kε)∇uR
)

= IhuR,0,ε in Ω ,

∂νuR = 0 on∂ Ω
(20)

uT −µdiv
(

(v2+kε)∇uT
)

= IhuT,0,ε in Ω ,

∂νuT = 0 on∂ Ω .

(21)

Sincev ≥ 0 the corresponding bilinear-forms are coercive.
Furthermore, we are able to find for eachuT , uR andφ the
optimal phase fieldv as the solution of the Euler-Lagrange
equation with respect to the variation in the variablev, i. e.,

µ‖∇uT‖
2v+ µ‖∇uR‖

2◦φ−1vdetDφ−1

+
ν
4ε

(v−1)−νε∆v = 0 in Ω . (22)

and∂νv= 0 on∂ Ω . Finally, the variation of the energy with
respect to the deformation in a directionψ is given by

〈

∂φ Eε
AT[uR,uT ,v,φ ];ψ

〉

=

µ
∫

Ω
‖∇uR‖

2v◦φ (∇v◦φ ·ψ)dx

= µ
∫

Ω
‖∇uR‖

2◦φ−1v(∇v ·ψ ◦φ−1)detDφ−1dx.

(23)

Analogously to the approach chosen in the above sharp
interface model, the energy functional can be reduced to de-
pending only onφ , whereuR[φ ], uT [φ ] andv[φ ] are deter-
mined as the unique solutions to the quadratic minimization
problem for fixedφ :

Êε [φ ] = Eε [uR[φ ],uT [φ ],v[φ ],φ ]. (24)

4.2 Multiscale gradient descent

Different to the sharp interface approach above the phase
field approximation comes along with a natural scale param-
eter. As mentioned above the width of the diffusive interface
turns out to be 2ε. On the same scale the imagesuT and
uR are diffused close to edges of the initial imagesuT,0 and
uR,0. Hence, the smoothness of energy variations will also
depend on the scale parameterε. On coarser scales we ex-
pect smoother descend directions and larger displacement
can be rendered via the gradient descent. But, for decreas-
ing ε one observed successively irregular variations. Indeed,
the smoothness of∂φ Eε

AT is controlled by the smoothness of
φ−1, uR andv and the smoothness ofv is steered directly by
ε on account of the penalty termε‖∇v‖2. Furthermore, for
a smallε, v is close to 0 where‖∇uR‖

2◦φ−1 or ‖∇uT‖
2 are

large andv is forced to be close to 1 in the rest of the domain
on account of the amplified single well potential.

In summary, larger values ofε yield coarse and smooth
approximations of the images, the phase field and the de-
formation. Hence, one starts with coarse approximations, to
find a stationary point in the simplified energy landscape, it-
eratively reduces the approximation parameterε by taking
the solution of the previous scale as the new initial guess on
the next finer scale.

Then on finer scales for small values ofε, the discrete
descent direction tend to get irregular. Hence, it is again fea-
sible to consider a regularized gradient descent and we con-
sider the same regularized metric on variations of the defor-
mation as in the sharp interface case.

On each scale the resulting finite element algorithm con-
sists of a discrete gradient descent. Each gradient descent
step can be decomposed as follows. For givenφ compute
Composite Finite Element approximations foruT , uR and
v as discrete solutions of (20), (21), and (22), respectively.
Iterate these three solutions steps until convergence. Then
evaluate the descent direction in the deformation taking into
account Finally, perform an update of the deformationφ
based on a line-search strategy.

Let us remark that on the finest scaleε has to be of the
order of the grid size. Otherwise the transition zone cannot
be resolved by a Finite Element function.

4.3 Numerical experiments

In Figure 4, we test the phase field algorithm with the same
data as in the case of the sharp interface model. We observe
very similar results. In fact, the phase field model seems to
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perform a better alignment in the interior of the skull. The
phase field function captures edge details in the entire image,
while the sharp interface framework focuses on the evolu-
tion of the predefined contour. This leads to a positive effect
on the final alignment and to a slightly improved deforma-
tion. This can be seen very clearly in Figure 5. It shows the
phase field function at the initial stage and the final stage.
Since, the coupled discontinuity problems aims at keeping
the length of the interface short, the deformation will even-
tually try to map the edges inuR onto the edges ofuT .

5 The main differences between the two approaches

The aim of this comparison of the level set and the phase
field model is to illustrate and discuss the drawbacks and
benefits of both approaches in this particular application of
joint segmentation and registration. It naturally dependson
the computational considerations, the conceptual framework
and the specific application, which alternative will be the
method of choice. In the following we will point out some
fundamental differences.

5.1 Methodological differences

Both, the level set approach and the phase field approach are
famous for their topological flexibility. The process of split-
ting a curve into several curves is a smooth process in both
frameworks and does not cause any conceptual problems.

The representations of the discontinuity set are funda-
mentally different in type. The level set method elegantly
allows to represent, trace and evolve a given sharp inter-
face. This fits well to the framework of the calculus of shape
derivatives in which the current interface is given precisely.
To be more precise, the level set method is just one way of
evolving a sharp interface, in comparison to parametrizing
the interface. We consider parametric versions as not com-
petitive due to tremendous difficulties that arise at topology
changes. For the sake of completeness, let us mention that
one can also describe sharp interfaces by a phase field func-
tion by using suitable obstacle potentials. From the concep-
tional viewpoint of shape variation, those would then fall in
the same category, since the motion would result from the
shape variation of the shape functional. The AMBROSIO-
TORTORELLI-approximation is however a diffuse represen-
tation. Instead of precisely representing the position of the
interface, the phase-field functionv only indicates the posi-
tion of edges in a blurry way. This phase-field function has
to be defined on the entire domainΩ and results directly
from the solution of a simple elliptic PDE. The actual dis-
continuity set is then only given as minimizerΩ → {0,1}
of theΓ -limit of sequence of approximation functionals for
ε → 0. In actual computations however the phase field func-
tion has to be computed forε of the order of the grid size.
We conclude, that if the actual interface is of interest as the
result of the algorithm, a sharp interface model, represented
e. g. by a level set function is favorable.

The classical level set framework is restricted to closed
curves, and thus it does not allow to representcrack tipsby
a single level set function. Although this could be achieved
by combining several level set functions with boolean op-
erations, the phase field approach appears to be more flexi-
ble and practicable for the applications discussed here. The
same is true for generating holes. The phase field repre-
sentation is global by definition and respects the features
of the images in the entire domain, with requiring any ini-
tialization. For sharp interface models, let us mention the
concept oftopological derivatives[16]. By considering the
limit for the change of the energy functional for arbitrary
small holes, one can yield a descent of the functional with
respect to topology. This is of great importance for example
in structural mechanics. The sharp interface approach opti-
mizes with respect to a given initial shape, while the phase
field approach will try to align all dominant edges in the im-
ages simultaneously. In some cases however, when there are
no counterparts of strong edges in the other image, the si-
multaneous matching of all features may be a counterpro-
ductive aim. The restriction to certain features only may be
beneficial here.

The dependence on the initial condition in the case of
the sharp interface model, does not necessarily mean to be a
burden. Due to the non-convex structure of the joint discon-
tinuity problem, the initial shape and position of the contour
allows to give the user some kind of control over the match-
ing process.

5.2 Computational considerations

Let us now compare the algorithmical effort related to both
of the approaches. The phase field method can be set up
in a straightforward way by solving elliptic and parabolic
problems with coefficients which vary in space. Such prob-
lems are standard and can be solved with all PDE toolboxes.
Due to the fact that the interface is represented by a smooth
phase field function, the solution of the Helmholtz problems
in the domains, which are divided by the free discontinuity
is straightforward and does not require any additional effort
to take care about free boundaries.

The sharp interface approach is more complicated to im-
plement. The computation of the velocity requires to eval-
uate geometric entities and jumps of the traces of the func-
tionsuR anduT along the interface. In order to compute these
functions, an algorithmical tool like Composite Finite Ele-
ments, aShortley-Wellerdiscretization orWebsplines[50]
has to be incorporated. In order to improve efficiency multi-
grid methods [45] have been applied. All this effort is hon-
ored by yielding the true derivative and thus the correct dy-
namics of the gradient flow. However, for the task of image
registration, we are mainly interested in the minimizationof
the functional and not the evolution of the contour.
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6 Conclusion

We have compared a level set based and a phase field model
for simultaneous segmentation and registration of images by
incorporating a Mumford-Shah type energy on the reference
image as well as the template image, where the contour is
transformed into the template image by a regularized de-
formation. The work is motivated by the fact, that, given
an exact registration of two images of different modality,
edge-extraction and segmentation can be enhanced consider-
ably by combining complementary feature information from
both modalities. On the other hand the process of registering
a pair of images may rely on segmentations and feature-
extractions of both images, which is often a very tedious
process, especially if in some areas the feature information
is very weak. Due to the coupling of the edge sets by the
smooth deformation, the edge is driven to its correct shape.

Due to the regularization of the gradient flow, the min-
imization process has turned out to be stable and requires
only a small number of iterations until convergence. On the
other hand, the regularization and necessity of determining
the solutions of the Helmholtz equations in the regionsΩ1
andΩ2 requires the solution of elliptic PDEs.

The phase field method offers an interesting, convenient
and efficient alternative to the level set approach if the main
aim is registration and not segmentation. In contrast to the
level set function, the phase field parameter captures edge in-
formation in the entire domain. From an algorithmical point
of view, the phase field method is certainly much easier to
handle and only requires the solution of standard elliptical
problems.

Both methodologies are very flexible and allow a wide
range of extensions for model-based matching (introducing
a-priori knowledge into the functional as e. g. in [27,29]),
optical flow estimation with discontinuities (see also [28])
and other areas.
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17. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model
for active contours in image processing. Numer. Math.66, 1–31
(1993)

18. Caselles, V., Coll, B.: Snakes in movement. SIAM J. Numer.
Analy. 33(6), 2445–2456 (1996)

19. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours.
International Journal of Computer Vision22(1), 61–79 (1997)

20. Chambolle, A.: Image segmentation by variatonal methods:
Mumford-Shah functional and the discrete approximations.SIAM
J. Appl. Math.55(3), 827–863 (1995)

21. Chan, T.F., Vese, L.A.: Image segmentation using level sets and
the piecewise constant Mumford-Shah model. UCLA CAM Re-
port 00-14, University of California , Los Angeles (2000)

22. Chan, T.F., Vese, L.A.: A level set algorithm for minimizing the
Mumford-Shah functional in image processing. UCLA CAM Re-
port 00-13, University of California , Los Angeles (2000)

23. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE
Trans. Image Processing10(2), 266–277 (2001)

24. Ciarlet, P.G.: Three-Dimensional Elasticity. Elsevier, New York
(1988)

25. Clarenz, U., Droske, M., Rumpf, M.: Towards fast non–rigid reg-
istration. In: Inverse Problems, Image Analysis and Medical Imag-
ing, AMS Special Session Interaction of Inverse Problems and Im-
age Analysis, vol. 313, pp. 67–84. AMS (2002)

26. Clarenz, U., Henn, S., Rumpf M. Witsch, K.: Relations between
optimization and gradient flow methods with applications toim-
age registration. In: Proceedings of the 18th GAMM Seminar
Leipzig on Multigrid and Related Methods for Optimisation Prob-
lems, pp. 11–30 (2002)

27. Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear shape statis-
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75. Warnke, R.: Schnelle Löser für elliptische Randwertprobleme mit
springenden Koeffizienten. Dissertation, Zürich (2003)
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