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Abstract. A variational method to non rigid registration of multi-modal image data is pre-
sented. A suitable deformation will be determined via the minimization of a morphological, i.e.,
contrast invariant, matching functional along with an appropriate regularization energy. The aim is
to correlate the morphologies of a template and a reference image under the deformation. Mathe-
matically, the morphology of images can be described by the entity of level sets of the image and
hence by its Gauss map. A class of morphological matching functionals is presented which measure
the defect of the template Gauss map in the deformed state with respect to the deformed Gauss map
of the reference image. The problem is regularized by considering a nonlinear elastic regularization
energy. Existence of homeomorphic, minimizing deformation is proved under assumptions on the
class of admissible deformations. With respect to actual medical applications suitable generaliza-
tions of the matching energies and the boundary conditions are presented. Concerning the robust
implementation of the approach the problem is embedded in a multi-scale context. A discretization
based on multi-linear finite elements is discussed and first numerical results are presented.
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1. Introduction. Nowadays already classical image acquisition machinery such
as computer tomography and magnetic resonance tomography and a variety of novel
sources for images, such as functional MRI, 3D ultrasound or densiometric computer
tomography (DXA) deliver various 3D images of the same human body. Due to
different body positioning, temporal difference of the image generation and differences
in the measurement process the images frequently can not simply be overlayed. Indeed
corresponding structures are situated at usually nonlinearly transformed positions.
In case of intra-individual registration, the variability of the anatomy can not be
described by a rigid transformation, since many structures like, e. g., the brain cortex
may evolve very differently in the growing process. Frequently, if the image modality
differs there is also no correlation of image intensities at corresponding positions.
What still remains, at least partially, is the local image structure or “morphology”
of corresponding objects. Thus, the matching of 2D and especially 3D images –
also known as image registration – with respect to their morphology is one of the
fundamental tasks in image processing.

One aims to correlate two images – a reference image R and a template image T –
via an energy relaxation over a set of in general non-rigid spatial deformations. Let us
denote the reference image by R : Ω → R and the template image by T : Ω → R. Here,
both images are supposed to be defined on a bounded domain Ω ∈ R

d for d = 1, 2 or
3 with Lipschitz boundary and satisfying the cone condition (cf. e. g. [4]). We ask
for a deformation φ : Ω → Ω such that T ◦ φ is optimally correlated to R. There is a
large and diverse body of literature on registration. In particular Grenander, Miller
and co-workers contributed different physically motivated and mathematical profound
approaches [12, 11, 24, 21, 32]. For an overview in particular on the mathematical
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modeling see references therein. For unimodal images one defines similarity measures
for instance by the simple choice ‖T ◦ φ−R‖2

L2 [15, 28, 33, 41]. In case T and R are
images of different modality, we are left to define what is meant by the correlation of
local structures in the image.

Viola, Wells et al. [45, 47] and Collignon [16] presented a information theoretic
approach for registration of multi-modal images. It is based on the idea of max-
imizing the so called mutual information of the deformed template image and the
reference image. The mutual information consists of the entropies of both images
and the negative joint entropy. It can be interpreted as a measure of variability
and uncertainty. Thus, the joint entropy of the images is low, where one image can
stochastically be well described by the other and vice versa. Since the entropies of
random variables are integrals containing the corresponding density functions, here
the intensities, the corresponding local structure analysis is rather implicitly encoded
in the global functionals. Viola and Wells performed the maximization process by
using a stochastic descent method, in which the gradients are computed via a Parzen
windowing function, while Collignon used Powell’s method for the optimization. The
method is currently restricted to an expression in global parametric form such as rigid
transformations or a lower dimensional space of smooth deformations. A different ap-
proach of image registration via the matching of objects in images is due to Monasse
[35]. He classifies objects by moments and a registration is achieved by aligning these
moments under scaling and rigid body motion.

Here, we introduce a different approach based on the definition of a matching
energy, which effectively measures the local morphological “defect” of the deformed
template and the reference image. The congruence of the shapes instead of the equality
of the intensities is the main object of the registration approach presented here. At
first, let us define the morphology M [I] of an image I as the set of level sets of I:

M [I] := {MI
c | c ∈ R}, (1.1)

where MI
c := {x ∈ Ω | I(x) = c} is a single level set for the grey value c (For a general

overview on image morphology we refer to [40]). I.e. M [γ ◦ I] = M [I] for any
reparametrization γ : R → R of the grey values. Obviously, M [I] is uniquely identified
by the set of tangent spaces TxM

I
I(x) of all level sets MI

c or up to the orientation by

the normal field NI on MI
c . Hence, again up to the orientation the morphology M [I]

can be identified with the normal map (Gauss map)

NI : Ω → R
d ; x 7→

∇I

‖∇I‖
. (1.2)

Two images I1 and I2 are called morphologically equivalent if M [I1] = M [I2]. Let us
emphasize that we deal here with classical level sets, which might not be everywhere
defined. The problem related to vanishing image gradients and thus undefined normals
will be addressed in Section 4, where we allow for such singularities as long as the
measure of the corresponding set in appropriate terms is not too large. A weaker
definition of level sets has been introduced by Caselles, Coll and Morel [10]. They
consider the so called upper topographic map {{x |φ(x) ≥ λ} |λ ∈ R} to characterize
the morphology of an image φ. This map uniquely describes the morphology and they
prove stability with respect to discretization and quantization.

Morphological methods in image processing are characterized by an invariance
with respect to the morphology. Explicitly speaking, a method is called morpho-
logical, if applied to morphologically identical images the resulting images are still
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morphologically identical [1, 39, 43]. Hence, such methods only effect the morphology
of the image, which coincides with the geometry of the level sets. Now, aiming for
a morphological registration method, we will ask for a deformation φ : Ω → Ω such
that

M [T ◦ φ] = M [R] .

Thus, we try to align the normal fields (cf. Desolneux et al. [19] where tangent spaces
are identified in rigorous statistical terms). We set up a matching functional which
locally measures the twist of the tangent spaces of the template image at the deformed
position and the deformed reference image or the defect of the corresponding normal
fields.

As known from other approaches the corresponding minimization, if settled over
an infinite dimensional space of deformations and not ab initio restricted to a small
finite dimensional function space, turns out to be ill posed [8, 44]. Hence, we have
to ask for a suitable regularization. Various regularization approaches have been
considered in the literature [11, 12, 18, 26]. On one hand, a regularization of the
energy is taken into account, typically adding a convex energy functional based on
gradients to the actual matching energy. The regularization energy is regarded as
a penalty for “elastic stresses” resulting from the deformation of the images. This
competitive approach is related to the well known classical Tichonov regularization of
the originally ill-posed problem. On the other hand, viscous flow techniques are taken
into account. They compute smooth paths from some initial deformation towards the
set of minimizers of the matching energy [15, 27].

The paper is organized as follows. In Section 2 the morphological matching en-
ergies are discussed and in Section 3 the regularization via nonlinear elasticity func-
tionals will be introduced. Then, in Section 4 we prove existence of homeomorphic,
minimizing deformations. With respect to the actual application to medical data the
model is further generalized in Section 5 and 6, where an additional feature based
matching functional is introduced and generalized boundary conditions are discussed.
Finally in Section 7 we describe the finite element discretization and the minimization
algorithm.

In the present paper, we will prove the existence of a minimizing deformation for
a variational approach, which is formulated for 3D images. It is left to the reader
to transfer the assumptions and the existence results to the simpler two dimensional
case. Here and in what follows we make use of the summation convention. That is,
we implicitly sum over every index which appears twice in an expression.

Let us emphasize that the focus of the paper is on the presentation of a new
concept in morphological image registration. Details on the implementation will be
discussed in a forthcoming publication. Hence, the computational results are currently
still restricted to 2D.

2. A morphological registration energy. In this section we will construct a
suitable matching energy, which measures the defect of the morphology of the refer-
ence image R and the deformed template image T . Thus, with respect to the above
identification of morphologies and normal fields we ask for a deformation φ such that

NT ◦ φ | | Nφ
R , (2.1)

where Nφ
R is the transformed normal of the reference image R on Tφ(x)φ(MR

R(x)) at

position φ(x). From the transformation rule for the exterior vector product Dφu ∧
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Dφv = CofDφ(u ∧ v) for all v, w ∈ TxM
R
R(x) one derives

Nφ
R =

Cof DφNR

‖Cof DφNR‖

where Cof A = detA ·A−T for invertible A ∈ R
d,d. In a variational setting, optimality

can be expressed in terms of energy minimization. Hence, we consider a matching
energy

Em[φ] :=

∫

Ω

g(NT ◦ φ,NR,CofDφ) dµ

for some function g : Sd−1 × Sd−1 × R
d,d → R

+; (u, v, A) 7→ g(u, v, A). Here Sd−1

denotes the unit sphere in R
d and µ the Lebesgue measure. This matching energy

depends on the deformation of normal fields and we are going to relax the energy
via a minimizing deformation for fixed image morphologies and hence fixed normal
fields. Recently, in image restoration or inpainting energies have been introduced
which depend on the normal fields of images represented by BV functions [5, 6, 7].
There, the energy is minimized over an appropriate set of BV functions on a destroyed
image region.

As boundary condition we require φ = 1I on ∂Ω, where 1I indicates the identity
mapping on Ω and simultaneously the identity matrix. So far, we have assumed that
the normal fields NT and NR are well defined on the whole domain Ω. To be not too
restrictive with respect to the space of images we have to take into account the problem
of degenerate Gauss maps. Hence, let us define the set DI := {x ∈ Ω | ∇I = 0} for
I = T or R, where no image normal can be defined. At first, we resolve this problem
of undefined normals at least formally by introducing a 0-homogeneous extension
g0 : R

d × R
d × R

d,d → R
+ of g in the first and second argument:

g0(v, w,A) =

{

0 ; v = 0 or w = 0
g( v

‖v‖ ,
w

‖w‖ , A) ; else
. (2.2)

Based on g0 we can redefine the matching energy Em and obtain

Em[φ] :=

∫

Ω

g0(∇T ◦ φ,∇R,CofDφ) dµ. (2.3)

In the later analysis we have to take special care of the singularity of g0 for vanishing
first or second argument. Indeed, we will assume that the measure of DT and DR

is in a suitable sense sufficiently small. Furthermore, in the existence theory we will
explicitly control the impact of these sets on the energy. As a first choice for the
energy density g let us consider

g(v, w,A) :=

(

v −
Aw

‖Aw‖

)2

(2.4)

for v, w ∈ Sd−1, which corresponds to the energy

∫

Ω

‖NT ◦ φ−Nφ
R‖

2 .
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We observe that the energy Em vanishes if T ◦ φ = γ ◦ R for a monotone grey
value transformation γ : R → R. If we want Em to vanish also for non-monotone
transformations γ we are lead to the symmetry assumption:

g(v, w,A) = g(−v, w,A) = g(v,−w,A) . (2.5)

Example 2.1. A useful class of matching functionals Em is obtained choosing
functions g which depend on the scalar product v · u or alternatively on (1I − v ⊗ v)u
(where 1I − v ⊗ v = (δij − vi vj)ij denotes the projection of u onto the plane normal
to v) for u = Aw

‖Aw‖ and v, w ∈ Sd−1, i. e.,

g(v, w,A) = ĝ

(

(1I − v ⊗ v)
Aw

‖Aw‖

)

. (2.6)

Let us remark that ĝ((1I − v ⊗ v)u) is convex in u, if ĝ is convex. With respect to
arbitrary grey value transformations mapping morphologically identical images onto
each other, we might consider ĝ(s) = ‖s‖γ

for some γ ≥ 1.

3. Hyperelastic, polyconvex regularization. Suppose a minimizing defor-
mation φ of Em is given. Then, obviously for any deformation ψ which exchanges the
level sets MR

c of the image R, the concatenation ψ ◦φ still is a minimizer. But ψ can
be arbitrarily irregular. Hence, minimizing solely the matching energy is an ill-posed
problem. Thus, we consider a regularized energy

E[φ] = Em[φ] + Ereg[φ] . (3.1)

Due to the fact that the matching energy already includes first order derivatives of
the deformation φ, one might consider a regularization energy which involves higher
order derivatives of φ [34]. In particular, the existence of minimizers would basically
rely on usual compactness arguments. But on the background of elasticity theory, we
aim to model the image domain as an elastic body responding to forces induced by
the matching energy. Hence, we have to confine with energies as they appear in the
usual mechanical approach to elastic bodies. It will turn out in Section 4 that we
have nice consistency of the type of nonlinearity in the matching energy with respect
to the Jacobian of the deformation and the well-known structure of nonlinear elastic
functionals. We have to emphasize, that we do not attempt to model the actual
material of the objects represented by the image.

At first, let us briefly recall some background from elasticity. For details we
refer to the comprehensive introductions in the books by Ciarlet [13] and Marsden
& Hughes [31]. We interprete Ω as an isotropic elastic body and suppose that the
regularization energy plays the role of an elastic energy while the matching energy
can be regarded as an external potential contributing to the energy. Furthermore
we suppose φ = 1I to represent the stress free deformation. Let us consider the
deformation of length, area and volume under a deformation φ. It is well-known that
the norm of the Jacobian of the deformation ‖Dφ‖2 controls the isotropically averaged
change of length under the deformation, where ‖A‖2 := tr (ATA) =

∑

i,j AijAij

for A ∈ R
d,d. Secondly, the local volume transformation under a deformation φ is

represented by detDφ. If detDφ changes sign self-penetration may be observed.
Furthermore for d = 3, the norm of the matrix of the cofactors of the Jacobian of the
deformation ||CofDφ||2 = tr (Cof DφT CofDφ) is the proper measure for the averaged
change of area.
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Example 3.1. Based on these considerations we can define a simple physically
reasonable isotropic elastic energy for d = 3, which separately cares about length, area
and volume deformation and especially penalizes volume shrinkage:

Ereg[φ] :=

∫

Ω

a||Dφ||p2 + b||CofDφ||q2 + Γ(detDφ) dµ (3.2)

with Γ(D) → ∞ for D → 0,∞, e. g., Γ(D) = γD2 − δ lnD. In nonlinear elasticity
such material laws have been proposed by Ogden [38] and for p = q = 2 we obtain the
Mooney-Rivlin model [13]. More general than in the above example, we will consider
a so called polyconvex energy functional [17]

Ereg[φ] :=

∫

Ω

W (Dφ,CofDφ, detDφ) dµ (3.3)

where W : R
d,d × R

d,d × R → R is supposed to be convex. Besides suitable growth
conditions to be stated later, we furthermore assume that W and thereby Ereg[φ]

again penalizes volume shrinkage, i.e., W (A,C,D)
D→0
−→ ∞. This will enable us to

successfully control singularity sets. Such energies have already been introduced to
the related optical flow problem by Hinterberger et al. [29]. But their focus was
neither on morphological registration nor on the control of singularity sets.

4. An existence result. In this section we will discuss under which conditions
there exists a minimizing deformation of the total energy E[·]. Let us emphasize
that the problem stated here significantly differs from most other regularized image
registration problems, e. g., all intensity based approaches, where the matching energy
is defined solely in terms of the deformation φ and the regularization energy is of
higher order and considers the Jacobian Dφ of the deformation. In our case already
the matching energy incorporates the cofactor of the Jacobian. Thus, with respect to
the direct method in the calculus of variations, we can not use standard compactness
arguments due to Rellich’s Embedding Theorem to deal with the matching energy on
a minimizing sequence [17]. Instead, we will need suitable convexity assumptions on
the function g.

Remark 4.1 (Lack of lower semicontinuity for certain functionals Em). Re-
calling Example 2.1 we might wish to choose a matching energy with an integrand
g0(v, w,A) := ĝ((1I − v

‖v‖ ⊗ v
‖v‖ ) Aw

‖Aw‖ ) for ĝ ∈ C0(Rd,R+
0 ). It is well known that the

essential condition to ensure weak sequential lower semicontinuity of functionals de-
pending on the Jacobian of a deformation is quasiconvexity [36, 37]. With our special
choice of the class of energies (2.3) this requires the convexity of g in the argument A
(cf. [17] Section 5.1).

But, we easily verify that a function

f : R
d,d → R;A 7→ f(A)

which is 0-homogeneous on R
d,d and convex has to be constant and thus an existence

result for our image matching problem via the direct calculus of variations can only be
expected for trivial matching energies, i. e., for ĝ ≡ const. Indeed, suppose A,B ∈ R

d,d

with f(A) − f(B) = δ > 0 and define Aα,r := r A + α (A − B) for r > 0 and α > 0,
then for s = α

r
we obtain
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Fig. 3.1. Test example. Top left: reference image R = β ◦ T ◦ ψ, generated from the tem-
plate image by applying an artificial volume preserving distortion ψ and a non-monotone contrast
transformation β. Top right: template image T . Bottom left: reference image T ◦ ψ before contrast
transformation. Bottom right: registration result T ◦ φ, template image applied to the computed
deformation φ. All images have a resolution of 2572. Areas of special interest are marked by white
circles. See Figure 3 for the corresponding deformation.

f(Aα,r) = f(r A+ s r (A−B))

≥ f(r A) + s (f(r A) − f(r B))

= f(A) +
α

r
(f(A) − f(B)) = f(A) +

α δ

r
→ ∞
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Fig. 3.2. Exact deformation ψ (left) and computed deformation φ for the example in Figure 3.1.

for r → 0. Finally, we deduce f(A − B) = ∞ which contradicts our assumptions
on f . Thus, the definition of the matching energy via the above integrand ĝ((1I −
v ⊗ w) Aw

‖Aw‖ ) and especially our first choice of a matching energy in (2.4) is not

appropriate with respect to a positive answer to the question of existence of minimizers
via direct methods.

So far, we have not discussed the singulari-

A

0

B

Aα,1

rA

Aα,r

rB

ties of the normal fields. Hence, let us introduce
assumptions, which allow the normals to be unde-
fined on a small set. Indeed, we take into account
the space of bounded functions I, which are differ-
entiable and whose gradients are unequal to zero
on Ω \ DI . In particular, the set of degenerate
points is defined as DI := {x ∈ Ω | ∇I = 0}. We
suppose that for the Lebesgue measure µ

µ(Bε(DI))
ε→0
−→ 0 ,

where Bε(DI) :=
⋃

{Bε(x) |x ∈ DI}. Let us introduce a corresponding set of functions

I(Ω) :=
{

I : Ω → R

∣

∣

∣
I ∈ C1(Ω̄), ∃DI ⊂ Ω s. t. ∇I 6= 0 on Ω \ DI ,

µ(Bε(DI))
ε→0
−→ 0

}

.

The existence proof for minimizers of nonlinear elastic energies via the calculus
of variations and direct methods dates back to the work of J. Ball [3]. Especially
the incorporated control of the volume transformation in this theory turns out to be
the key to prove existence of minimizing, continuous and injective deformations for
the image matching problem discussed here. We consider the following energy (cf.
equations (2.3) and (3.3)):

E[φ] := Em[φ] + Ereg[φ] , (4.1)
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with

Ereg[φ] :=

∫

Ω

W (Dφ,CofDφ, detDφ) dµ

Em[φ] :=

∫

Ω

g0(∇T ◦ φ,∇R,CofDφ) dµ

for g0 defined in (2.2).
Let us denote by Lp for p ∈ [1,∞] the usual Lebesgue spaces of functions on Ω

into R, R
d and R

d,d respectively, by ‖·‖p the corresponding norm, and by H1,p the
Banach space of functions in Lp with weak first derivatives also in Lp. For the ease
of presentation, we do not exploit the full generality of the corresponding existence
theory. Here the reader is for instance referred to [3, 4, 14, 22, 23, 46]. We confine to
a basic model and state the following theorem:

Theorem 4.2 (Existence of minimizing deformations). Suppose d = 3, T,R ∈
I(Ω), and consider the total energy defined in (4.1) for deformations φ in the set of
admissible deformations

A := {φ : Ω → Ω
∣

∣ φ ∈ H1,p(Ω),CofDφ ∈ Lq(Ω),

detDφ ∈ Lr(Ω), detDφ > 0 a.e. in Ω, φ = 1I on ∂Ω}

where p, q > 3 and r > 1. Suppose W : R
3,3 × R

3,3 × R
+ → R is convex and there

exist constants β, s ∈ R, β > 0, and s > 2q
q−3 such that

W (A,C,D) ≥ β (‖A‖p
2 + ‖C‖q

2 +Dr +D−s) ∀A,C ∈ R
3,3, D ∈ R

+ (4.2)

Furthermore, assume that g0(v, w,A) = g( v
‖v‖ ,

w
‖w‖ , A), for some function g : S2 ×

S2 × R
3,3 → R

+
0 , which is continuous in v

‖v‖ ,
w

‖w‖ , convex in A and for a constant

m < q the estimate

g(v, w,A) − g(u,w,A) ≤ Cg ‖v − u‖ (1 + ‖A‖m
2 )

holds for all u, v, w ∈ S2 and A ∈ R
3,3. Then E[·] attains its minimum over all

deformations φ ∈ A and the minimizing deformation φ is a homeomorphism and in
particular detDφ > 0 a.e. in Ω.

Proof. The proof of this result is based on the well known weak continuity results
for the principle invariants of the Jacobian of the deformation. We observe that
the total energy is polyconvex. Furthermore the volume of the neighborhood sets
Bε(DT ) and Bε(DR) of the singularity sets DT and DR respectively can be controlled.
Hence, we can basically confine to a set, where the integrand fulfills Carathéodory’s
conditions. At first, let us recall some well known, fundamental weak convergence
results: Given a sequence of deformations (φk)k in H1,p, with Cof Dφk ∈ Lq and
detDφk ∈ Lr, such that the sequence converges weakly in the sense φk ⇀ φ in H1,p,
CofDφk ⇀ C in Lq, and detDφk ⇀ D in Lr, then C = CofDφ and D = detDφ
(weak continuity). For the proof we refer to Ball [3] or the book of Ciarlet [13] (Section
7.5, 7.6).

The proof of the theorem proceeds in 4 steps:
Step 1. Due to the assumption on the image set I(Ω) Em[φ] is well defined for

φ ∈ A. In particular g0(∇T ◦ φ,∇R,CofDφ) is measurable. Obviously 1I ∈ A and
E[1I] < ∞, thus E := infφ∈AE[φ] < ∞ and due to the growth conditions and the
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assumption of g we furthermore get E ≥ 0. Let us consider a minimizing sequence
(φk)k=0,1,··· ⊂ A with E[φk] → infφ∈AE[φ]. We denote by E an upper bound of
the energy E on this sequence. Due to the growth condition on W we get that
{(Dφk,CofDφk, detDφk)}k=0,1,··· is uniformly bounded in Lp(Ω) × Lq(Ω) × Lr(Ω).
By Poincaré’s inequality applied to (φk − 1I) we obtain that {φk}k=0,1,··· is uniformly
bounded in H1,p(Ω). Because of the reflexivity of Lp ×Lq ×Lr for p, q, r > 1 we can
extract a weakly convergent subsequence, again denoted by an index k, such that

(Dφk,CofDφk, detDφk) ⇀ (Dφ,C,D)

in Lp × Lq × Lr with C : Ω → R
3×3, D : Ω → R. Applying the above results

on weak convergence we achieve C = CofDφ and D = detDφ. In addition, by
Rellich’s embedding theorem we know that φk → φ strongly in Lp(Ω) and by Sobolev’s
embedding theorem we obtain φ ∈ C0(Ω̄).

Step 2. Next, we control the set where the volume shrinks by a factor of more
than ε for the limit deformation. Let us define

Sε = {x ∈ Ω | detDφ ≤ ε}

for ε ≥ 0. Let as assume without loss of generality that the sequence of energy values
E[φk] is monotone decreasing and that for given ε > 0 we denote by k(ε) the smallest
index such that

E[φk] ≤ E[φk(ε)] ≤ E + ε ∀k ≥ k(ε) .

From Step 1 we know that Ψk := (Dφk,CofDφk, detDφk) converges weakly to Ψ :=
(Dφ,CofDφ, detDφ) in Lp ×Lq ×Lr. Hence, applying Mazur’s Lemma we obtain a
sequence of convex combinations of Ψk and φk which converges strongly to Ψ and φ
in Lp ×Lq ×Lr ×Lp. Thus, there exists a family of weights ((λk

i )k(ε)≤i≤k)k≥k(ε) with

λk
i ≥ 0,

∑k
k(ε) λ

k
i = 1, such that

λk
i Ψi → Ψ and λk

i φ
i → φ .

Now, taking into account the growth conditions, the convexity of W and Fatou’s
lemma we estimate

βε−sµ(Sε) ≤ β

∫

Sε

(detDφ)−s dµ ≤

∫

Sε

W (Ψ) dµ

=

∫

Sε

lim inf
k→∞

W (λk
i Ψi) dµ ≤

∫

Sε

lim inf
k→∞

λk
iW (Ψi) dµ

≤ lim inf
k→∞

λk
i

∫

Sε

W (Ψi) dµ

≤ lim inf
k→∞

λk
i

∫

Ω

W (Ψi) + g0(∇T ◦ φi,∇R,CofDφi) dµ

≤ E

and claim µ(Sε) ≤ Ēεs

β
. As one consequence S0 is a null set and we know that

detDφ > 0 a. e. on Ω. Thus, together with the results form Step 1 we deduce that
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the limit deformation φ is in the set of admissible deformation A. Following Ball [4]
we furthermore obtain that φ is injective and φ is a homeomorphism.

Step 3. Now, we deal with the singularity set of the images T . By our assumption
on the image set I(Ω) we know that for given δ > 0 there exist εT > 0 such that
µ(BεT

(DT )) ≤ δ. From this and the injectivity (cf. Theorem 1 (ii) in [4]) we especially
deduce the estimate

µ
(

φ−1(BεT
(DT )) \ Sε

)

≤
1

ε

∫

φ−1(BεT
(DT ))

detDφ dµ =
1

ε

∫

BεT
(DT )

dµ ≤
δ

ε
.

Hence, we can control the preimage of Bε(DT ) with respect to φ but restricted to
Ω\Sε. Due to the continuous differentiability of both images T and R we can assume
that

‖∇T (x)‖ ≥ γ(ε) on Ω \Bε(DT ) (4.3)

where γ : R
+
0 → R is a strictly monotone function with γ(0) = 0.

Step 4. Due to Egorov’s theorem and the strong convergence of φk in Lp(Ω) there
is a set Kε with µ(Kε) < ε such that a subsequence, again denoted by φk, converges
uniformly on Ω \Kε. Let us now define the set

Rε,δ := φ−1(BεT
(DT )) ∪ Sε ∪Kε ,

whose measure can be estimated in terms of ε and δ, i.e.

µ(Rε,δ) ≤
δ

ε
+
Ēεs

β
+ ε .

On Ω\Rε,δ the sequence (∇T ◦φk)k=0,1,··· converges uniformly to ∇T ◦φ. Next, from
the assumption on g and the 0-homogeneous extension property of g0 we deduce that

|g0(u,w,A) − g0(v, w,A)| ≤ Cγ ‖u− v‖ (1 + ‖A‖m
2 ) (4.4)

for u, v, w ∈ R
3, A ∈ R

3,3 and ‖u‖ , ‖v‖ , ‖w‖ ≥ γ. To use this estimate for u = φk

and v = φ below, we assume that k(ε) is large enough, such that φk(x) ∈ Ω\B εT
2

(DT )

for x ∈ Ω \Rε,δ and

Cγ(
εT
2

)

∥

∥∇T ◦ φk −∇T ◦ φ
∥

∥

∞,Ω\Kε
≤ ε

for all k ≥ k(ε). Now we are able to estimate E[φ] using especially the convexity of
W and g(v, w, ·), the estimate (4.4), and Fatou’s lemma:

E[φ]=

∫

Ω

W (Ψ) + g0(∇T ◦ φ,∇R,CofDφ) dµ

≤

∫

Ω

lim inf
k→∞

λk
iW (Ψi) dµ+ 2Cg

∫

Rε,δ

1 + ‖CofDφ‖m
dµ

+

∫

Ω\Rε,δ

lim inf
k→∞

λk
i g0(∇T ◦ φ,∇R,CofDφi) dµ
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≤ lim inf
k→∞

λk
i

∫

Ω

W (Ψi) dµ+ b(µ(Rε,δ))

+ lim inf
k→∞

λk
i

∫

Ω\Rε,δ

g0(∇T ◦ φ,∇R,CofDφi) − g0(∇T ◦ φi,∇R,CofDφi)

+ g0(∇T ◦ φi,∇R,CofDφi) dµ

where b(s) := 2Cg(s + ( Ē
β

)
m
q s1−

m
q ). Here we have in particular used the a priori

estimate ‖Cof Dφ‖q,Ω ≤ ( Ē
β

)
1

q . We estimate further and obtain

E[φ] ≤ lim inf
k→∞

λk
i

∫

Ω

W (Ψi) + g0(∇T ◦ φi,∇R,CofDφi) dµ+ 2 b(µ(Rε,δ))

+Cγ(
εT
2

) sup
k→∞

∫

Ω\Rε,δ

∥

∥∇T ◦ φ−∇T ◦ φk
∥

∥

(

1 +
∥

∥CofDφk
∥

∥

m

2

)

dµ

≤ lim inf
k→∞

λk
iE[φi] + 2 b(µ(Rε,δ)) + ε b(µ(Ω))

≤ E + ε+ 2 b(µ(Rε,δ)) + ε b(µ(Ω)) .

Finally, for given ε̄ we choose ε and then δ and the dependent εT small enough and
k(ε̄) large enough to ensure that

ε+ 2 b(µ(Rε,δ)) + ε b(µ(Ω)) ≤ ε̄ .

and get E[φ] ≤ E + ε̄. This holds true for an arbitrary choice of ε̄. Thus we conclude

E[φ] ≤ E = inf
φ∈A

E[φ] ,

which is the desired result.

Remark 4.3. From the proof we have seen that the assumptions on the reference
image could be weakened considerably compared to the template image. With respect
to the applications we do not detail this difference here.

Example 4.4. Let us consider

g(v, w,A) = ‖(1I − v ⊗ v) ·Aw‖γ , (4.5)

for 1 ≤ γ < q: Hence, we obtain an admissible matching energy

Em[φ] =

∫

Ω

‖(1I − (NT ◦ φ) ⊗ (NT ◦ φ)) · CofDφNR‖
γ

(Cf. example 2.1). Applying Theorem 4.2 the existence of a minimizing deformation
can be established. Recalling Remark 4.1, we recognize that scaling the original en-
ergy density by an additional factor ‖CofDφNR‖

γ turns the minimization task into a
feasible problem. This corresponds to a modification of the area element on the level
sets MR

c . Indeed, ‖CofDφNR‖ is the change of the area element at a position x on
MR

R(x) under the deformation.
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5. An additional feature based registration energy. As the energy Em[φ]
depends on the directions of the image normals only, its minimization will lead to an
alignment of the level sets of the two images. However, the alignment of significant
level sets, which correspond to significant features is not taken into account by the
energy. In medical applications such features may be boundaries of organs, bones or
tissue structures. Hence, we will incorporate an additional energy which measures the
quality of the match of certain clearly detectable features. Suppose FT and FR are
corresponding selected feature sets in the images T and R. These feature sets, may
be computed in a previous segmentation step applying for instance an active contour
algorithm [9, 20]. We are aiming to penalize a non-proper match of these two sets by
a suitable energy. They would be ideally matched, if

FT = φ(FR)

The following energy measures the matching quality for a general deformation φ:

Ef [φ] =

∫

Ω

|d(φ(·),FT ) − d(·,FR)|2 dµ , (5.1)

where d(x,A) := d̂ ◦ dist(x,A) is a function d̂ of the distance of a point x from a set

A ⊂ Ω. We suppose d̂ : R
+
0 → R

+
0 to be monotone and d̂(0) = 0. In particular Ef

vanishes in case of a perfect match. A suitable choice is d̂(s) = αsδ with 0 < δ ≤ 1
and α > 0. We use this energy as a third term in the regularized problem (3.1).

Corollary 5.1 (Existence of minimizers in presence of a feature matching en-

ergy). Suppose the assumptions of Theorem 4.2 hold. Furthermore let d̂ : R
+
0 → R

+
0

be continuous and consider

E[φ] = Em[φ] + Ereg[φ] + Ef [φ] . (5.2)

Then E[·] attains its minimum over all deformations φ ∈ A and the minimizing
deformation φ is a homeomorphism and furthermore detDφ > 0 a.e. in Ω.

Proof. Due to the Lipschitz continuity of dist(·, A) for arbitrary sets A ⊂ Ω with

A 6= ∅ and the continuity of d̂, the integrand of Ef is uniformly continuous in φ.
Hence, the proof of Theorem 4.2 can easily be generalized.

The overall energy will therefore not only align the directions correctly, but also
penalize displaced features. In this setting it is thus possible to incorporate some a
priori knowledge to improve the matching results. Let us emphasize that the morpho-
logical registration provides good results if the morphologies encoded by the normal
fields of the two images actually coincide up to a deformation. But in cases where
the images of different modalities reveal similar but different geometrical structures,
which are not strictly equivalent in terms of mathematical morphology, a weak form
of “landmarks” is recommendable to support the matching.

6. Generalized boundary conditions. So far we have imposed boundary con-
ditions of Dirichlet type on ∂Ω for the deformation. This might be a reasonable as-
sumptions in case of objects located in the center of the image with a considerable
distance from the boundary (cf. Figure 3.1). If the objects cover the whole im-
age domain we can not assume that the requested deformation obeys these artificial
boundary conditions. In fact, structures visible close to the boundary in the reference
image R will not be present in the template image T and vice versa. Hence we ask for
more general boundary conditions. These applications in mind we have to tolerate
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Fig. 6.1. Feature sets FR and FT superimposed on darkened corresponding images for better
visibility (cf. Figure 7.2 for registration results.)

deformations φ(Ω) 6⊂ Ω in the admissible set of deformations. But the integrand of
the matching energy is only defined on φ−1(Im (φ) ∩ Ω). Hence, we replace

∫

Ω
g0(·)

by
∫

Ωφ g0(·), where Ωφ := {x ∈ Ω |φ(x) ∈ Ω} and obtain the new matching energy

Ẽm[φ] :=

∫

Ωφ

g0(∇T ◦ φ,∇R,Cof Dφ) dµ (6.1)

Taking into account this reformulated matching energy we are basically facing two
problems:

(i) Considering a total energy E[φ] = Ẽm[φ] + Ereg[φ] we are lead to irrele-
vant, trivial solutions. Indeed, taking into account a simple translation φtrans with
φtrans(Ω) ∩ Ω = ∅, one obtains Ẽm[φtrans] = 0. Hence, we no longer measure the
matching of relevant image features. We propose to avoid this problem by incorpo-
rating the above feature energy Ef [φ]. which can be regarded as a weak boundary
condition. Indeed, if α→ ∞ we enforce an interior boundary condition on the feature
sets, i. e. φ(FR) = FT .

(ii) Injectivity can no longer be expected for a minimizing deformation. It might
happen that parts of the domain Ω fold over each other under a deformation φ,
although φ is locally injective, i.e., detDφ > 0 (cf. the exposition of this problem
in [13] Section 7.9). Following Ciarlet and Necas [14] we introduce an additional
condition on the set of admissible deformations

∫

Ω

detDφ ≤ µ(φ(Ω)) .

Then, we expect the minimizer of the energy E = Ẽm+Ereg +Ef to be injective on Ω,
where as on ∂Ω we might observe self contact. In the actual applications considered
so far we have not detected any lack of global injectivity due to overlapping parts of
the deformed domain. Hence, there was no need, to incorporate this nonlinear contact
condition in the algorithm.

7. Multiscale-Minimization and Discretization. The total energy is highly
nonlinear. Especially the matching energy Em with the nonlinearity ∇T ◦ φ de-
pending on the complexity of image data will usually lead to multiple at least local
minima. Hence, in order to ensure a robust and efficient minimization, we have to con-
sider a global minimization strategy, which is capable to compute large deformation



NON-RIGID MORPHOLOGICAL REGISTRATION 15

which minimize the total registration energy. Here we propose a continuous annealing
method based on a scale of registration problems

Ẽσ[φ] := Ẽσ
m[φ] + Ereg[φ] + Ef [φ] ,

where σ > 0 is the scale parameter. This enables us to compute global instead of only
local deformations and usually avoids a tedious pre registration step. The definition
of the energy scales for the matching energy is based on a scale space approach for
the underlying images (cf. [2]). We choose

Eσ
m[φ] :=

∫

Ωφ

g0(∇T
σ ◦ φ,∇Rσ,CofDφ) dµ ,

where Iσ := Gσ[I] for I = T,R and Gσ denotes the convolution with a “Gaussian”
filter of width σ (cf. Figure 7.1 for a multiscale of images and the corresponding effect
on the Gauss maps Nσ

T and Nσ
R). In fact, we consider the heat equation semigroup

and set Iσ := u(σ2/2) where u is the solution of the initial boundary value problem

∂tu− ∆u = 0 in R
+ × Ω ,

∂νu(t, ·) = 0 on R
+ × ∂Ω , (7.1)

u(0, ·) = I in Ω ,

and ν denotes the outer normal on ∂Ω. Concerning the spatial discretization we deal
with images as piecewise bilinear, continuous functions on a regular quadrilateral grid.
We use the same discrete function space to define discrete non-rigid deformations.
Energy functionals and their gradients are numerically evaluated using a midpoint
quadrature rule on the grid cells. We assume Ω = [0, 1]2, and start with an initial
coarse mesh M0 = {Ω}, which is iteratively refined by uniform subdivision, where
each element is divided into 4 squares. This refinement process generates a sequences
of nested meshes Ml, with 0 ≤ l ≤ lmax, consisting of quadrilateral elements Ei

l

(0 ≤ i < 4l) of edge length hl = 2−l. The set of vertices of Ml is denoted by Nl.
Let Vl be the corresponding space of piecewise bilinear, continuous finite element
functions. Suppose {Ψi

l}i≤(2l+1)2 to be the nodal basis of Vl. The discrete gradient

gradVl
Ẽσ ∈ V 2

l of E on grid level l for a deformation Φ ∈ V 2
l is then defined by

(gradVl
Ẽσ[Φ],Ψj

l ek)h = 〈(Ẽσ)′[Φ],Ψj
l ek〉

for all j ≤ (2l + 1)2 and k = 1, 2. Here (·, ·)h denotes the usual lumped mass product
on Vl and ek the canonical basis in R

2. Then, on level l the necessary condition for
Φl ∈ V 2

l to be a minimizer of Ẽσ over Vl is given by

gradVl
Eσ[Φ] = 0 for Φ ∈ Vl

Now, we introduce multiple discrete scales. Therefore, we replace the filter Gσ by
its discrete counterpart, replacing problem (7.1) by a single implicit Euler time step

with time step size σ2

2 for a usual finite element discretization with lumped masses
(cf. [42]). We denote the corresponding solution operator on the finite element space
Vl by Gσ

l : Vl → Vl. On each scale, we apply a gradient descent algorithm to minimize
the energy. Here we might consider a sequence of scales

σk = 2−kσ0



16 M. DROSKE, M. RUMPF

Fig. 7.1. Image and the Gauss map and the corresponding grid for the brain slice at scales
σ = h, 2h, 8h.

for k = 0, . . . , n. Obviously, solving a coarse scale minimization process on a fine
grid introduces a serious amount of redundancy. It is much more efficient to perform
such computations also on coarse grid levels. Thus, we introduce a function lk which
selects for each scale an appropriate grid level. In particular, we choose

lk := min{l = 0, . . . , lmax |h(l) ≤ γσk},

for a scalar γ > 0, e. g., γ = 1, which controls the ratio of the cell size h(l) with respect
to a filter width σk. On each scale we compute the minimum Φk of Eσk over V 2

lk
by

a gradient descent method and consider the standard prolongation of Φk−1 ∈ Vlk−1

onto Vlk as the initial value if lk 6= lk−1. It turns out to be suitable to regularize
the contribution of the matching energy to the descent direction. Hence, a descent
direction d ∈ Vlk at a position Φ ∈ V 2

lk
is computed by

d := −Gα
lk

[gradVlk
Eσk

m [Φ]] − gradVlk
Ẽreg[Φ] − gradVlk

Ef [Φ]

where α > 0 controls the amount of smoothing of the gradient for the registration
energy. We have to ensure

(d, gradẼσk [Φ])h ≤ 0

in order to observe stable descent (cf. Table 7.1).
As step size control we consider Armijo’s rule [30]. Let us remark that the smooth-

ing by Gaussian convolution is solved efficiently and independently of the filter width
σ by a multigrid solver for the heat equation [25]. In the computation for the registra-
tion of real MR and CT images of a human spine (cf. Figures 7.2, 7.3, 7.4), we chose
the parameter α to be 5hlmax

. Furthermore, concerning the elastic regularization we
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scale α[hlmax
] 0.25 0.5 1.0 2.0 3.0 4.0 5.0

γmin 0.9954 0.9585 0.8265 0.6588 0.58481 0.5438 0.5171
γaverage 0.9951 0.9556 0.8177 0.6447 0.5586 0.5116 0.4825

Table 7.1
To obtain a stable descent in the gradient descent algorithm of the global energy Eσ, the

derivative in the direction of the descent direction d, i. e., (d, gradEσ [φ])h ought to be ≤ 0 in the
scalar product. We have shown the impact of the smoothing parameter α for different scales on
γ(−d, gradEσ [φ]), where γ(u, v) := u

‖u‖
· v
‖v‖

. These values have been determined considering the

first 50 steps of the gradient descent of the test example. We list the smallest value γmin and the
average value γaverage.

so far held on to the Mooney-Rivlin energy, i. e., p = 2, q does not have to be specified
since the second term of W is redundant in 2 dimensions. The choices for the further
parameters are a = 0.45, b = 0.2, γ = 1

2 , δ = 1. To improve the methods performance
we first relax the feature based energy Ef [·]+Ereg[·] to identify an appropriate initial
deformation. Then, we continue with the minimization of the global energy E[·].

Finally, the minimization algorithm can be written in pseudo code as follows:

Algorithm 7.1: multi-scale minimization algorithm

Φ0 := 1I
foreach k = 0, . . . , n do

set level to lk and grid Mlk

if k > 0 and lk > lk−1 then

1 prolongate Φk−1 on grid Mlk−1
to Φk,0 on grid Mlk

end

2 Tσk
:= Gσk

lk
[T ], Rσk

:= Gσk

lk
[R],

3 NTσk
:=

∇Tσk

‖∇Tσk
‖ , NRσk

:=
∇Rσk

‖∇Rσk
‖ ,

i = 0
repeat

4 dk,i := −Gα
lk

[gradVlk
Ẽσk

m [Φk,i]] − gradVlk
Ereg[Φ

k,i] − gradVlk
Ef [Φk,i]

5 line-search: choose step size δ by Armijo’s rule
6 Φk,i+1 := Φk,i + δ dk,i

i := i+ 1

until (‖dk,i‖ ≤ TOL or i > MAXITER);
Φk = Φk,i

end
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Fig. 7.2. Sectional morphological registration on a pair of MR and CT images of a human
spine. Dotted lines mark certain features visible in the reference image. There are repeatedly drawn
at the same position in the other images. Top Left: reference, CT, Top Right: template, MR, with
clearly visible misfit of structures marked by the dotted lines. Bottom Left: deformed template after
feature based registration T ◦φf , where φf is the result of a feature based pre-registration (cf. Figure
6.1 for the feature sets used in this example). Bottom Right: deformed template T ◦ φ after final
registration where the dotted feature lines nicely coincide with the same features in the deformed
template MR-image. All images have a resolution of 2572.
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