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Multi Scale Joint Segmentation and Registration of
Image Morphology

Marc Droske, Martin Rumpf

Abstract— Multimodal image registration significantly bene-
fits from previous denoising and structure segmentation and vice
versa. In particular combined information of different image
modalities makes segmentation significantly more robust. Indeed,
fundamental tasks in image processing are highly interdependent.
A variational approach is presented, which combines the detec-
tion of corresponding edges, an edge preserving denoising and
the morphological registration via a non-rigid deformation for a
pair of images with structural correspondence. The morphology
of an image function is split into a singular part consisting of the
edge set and a regular part represented by the field of normals
on the ensemble of level sets. A Mumford-Shah type free discon-
tinuity problem is applied to treat the singular morphology and
the matching of corresponding edges under the deformation. The
matching of the regular morphology is quantified by a second con-
tribution which compares deformed normals and normals at de-
formed positions. Finally, a nonlinear elastic energy controls the
deformation itself and ensures smoothness and injectivity. A multi
scale approach that is based on a phase field approximation leads
to an effective and efficient algorithm. Numerical experiments un-
derline the robustness of the presented approach and show appli-
cations on medical images.

Keywords: image morphology, non–rigid multimodal regis-
tration, nonlinear elasticity,
Mumford–Shah approach, multiscale phase field approxima-
tion, finite element discretization.

I. INTRODUCTION

Denoising, segmentation and registration are well estab-
lished as fundamental tools in image processing. For in-
stance, the revolutionary advances in the development of imag-
ing modalities has enabled clinical researchers to perform pre-
cise studies of the immense variability of human anatomy. As
described in the excellent review by Miller, Trouvé and Younes
[1] and the overview article of Grenander and Miller [2], this
field aims at automatic detection of anatomical structures and
their evaluation and comparison. Different images show cor-
responding structures at usually nonlinearly transformed posi-
tions [3], [4]. As the image modality differs there is usually
no correlation of image intensities at corresponding positions.
What still remains, at least partially, is the local geometric im-
age structure or “morphology” of corresponding objects. Viola,
Wells et al. [5], [6] and Collignon [7] presented an information
theoretic approach for the registration of multi-modal images.
Their statistical method is based on a maximization of mutual
information of images of different modality. Recently, Mel-
lor and Brady [8] presented a multi modal matching algorithm
based on a statistical search for relationships between feature

University of California, Los Angeles, email: droske@math.ucla.edu
Bonn University, email: martin.rumpf@ins.uni-bonn.de

Fig. 1
MORPHOLOGICAL REGISTRATION OF TWO TEST IMAGES. THE TEMPLATE

IMAGE IS GENERATED VIA TRANSLATION, NONLINEAR DEFORMATION

AND CONTRAST CHANCE OF A REFERENCE IMAGE. THE TOP ROW SHOWS

REFERENCE IMAGE u0
R

AND TEMPLATE IMAGE u0
T

. ON THE BOTTOM LEFT

THE MATCHING RESULT SOLELY BASED ON THE ALIGNMENT OF

DEFORMED REFERENCE EDGES AND TEMPLATE EDGES IS DEPICTED. AN

OVERLAID PATTERN RENDERS THE DEFORMATION OF A CHECKER BOARD

ON THE TEMPLATE DOMAIN. ON THE BOTTOM RIGHT PURE EDGE

MATCHING IS COMBINED WITH THE REGISTRATION OF THE REGULAR

MORPHOLOGY AND ITS ALIGNMENT OF NORMAL FIELDS.

appearances. In [9] a variational approach not relying on statis-
tics is proposed for morphological image registration. Both ap-
proaches do not make explicit use of the segmentation of edges.

Traditionally, the different tools in image processing have
been tackled independently. But in fact, robustness and effec-
tiveness of methods can be enhanced significantly by a coupling
of these methods. In this paper we will couple edge segmenta-
tion and denoising with morphological registration (cf. Fig. 1).
Already stated by D’Arcy Thompson in 1917 (cf. [1]), “in a
very large part of morphology, our essential task lies in the
comparison of related forms rather than the precise definition
of each; and the deformation of a complicated figure may be
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a phenomenon easy of comprehension, though the figure itself
may have left to be unanalyzed and undefined.”

In the last decade, different approaches to couple segmenta-
tion with registration have been proposed. Young and Levy [10]
used segmentation results for one image to guide the search for
edges in consecutive images to resolve boundaries even though
they are not well defined in all images. Instead of contour sur-
faces, Thirion and Gourdan [11] extracted crest lines based on
differential characteristics and used them for surface matching.
Yezzi, Zöllei and Kapur [12] have simultaneously segmented
contours in different images based on an affine matching defor-
mation and an active contour model for the segmentation of im-
plicit curves and surfaces in images similar to the one proposed
by Vese and Chan [13]. A related algorithm is described by
Unal et al. [14]. They take into account a joint energy for con-
tour curves in different images and relax the curve geometry via
a gradient flow. Pre-segmented contours were applied to regis-
ter functional MR images in an image sequences by Chen et al.
[15]. Wyatt and Noble [16] considered Markov random fields in
a maximum a posteriori model of joint segmentation and regis-
tration. Recently, Feron and Mohammad-Djafari [17] proposed
a Bayesian approach for the joint segmentation and fusion of
images via a coupling of suitable hidden Markov Models for
multi modal images. Applications of joint segmentation and
registration were considered by Dohi and Kikinis already in
2001 [18].

In this paper we aim for a variational approach which con-
nects the classification of different portions of image morphol-
ogy and their proper matching. Two images are called morpho-
logically equivalent, if they only differ by a change of contrast.
What structurally remains if we introduce this invariance is the
geometry of all level sets of an image. A strict notion of mor-
phology was originally introduced by Matheron [19] and con-
sidered further by Caselles, Coll and Morel [20]. They stud-
ied the so called upper topographic map (see below). For the
morphological registration to be presented here, a proper de-
composition of image morphology which distinguishes regular
contour surfaces and edge sets is crucial. Furthermore, robust-
ness can be improved by an appropriate edge sensitive image
regularization. Thus, we base our approach on the nowadays
classical Mumford-Shah approach for image denoising and seg-
mentation in the sense of edge identification. In their pioneer-
ing paper, Mumford and Shah [21] proposed the minimization
of the following energy functional:

EMS [u, Su] =

∫

Ω

(u− u0)
2 dL

+
µ

2

∫

Ω\Su

‖∇u‖2 dL+ ηHd−1(Su) , (1)

where u0 is the initial image defined on an image domain
Ω ⊂ R

d and µ, η are positive weights. Here, one asks for a
piecewise smooth representation u of u0 and a singularity set
Su consisting of the image edges, such that u approximates
u0 in a least–squares sense. The intensity function u ought
to be smooth apart from the free discontinuity Su and in ad-
dition Su should be small with respect to the d−1-dimensional

Hausdorff-measure [22]. Here, we will make use of this ap-
proach to regularize images in a suitable way prior to the match-
ing and simultaneously to split image morphology into a regu-
lar part related to contour sets of the piecewise smooth por-
tions of an image and a singular part consisting of the edge
set. Even though the Mumford-Shah approach itself is not mor-
phological (e.g. intensity scaling may lead to an identifica-
tion of previously overlooked edges) prominent edges are ex-
pected to be uniformly identified basically independent of the
image contrast. Mathematically, this Mumford-Shah problem
has been treated in the space of functions of bounded vari-
ations BV , more precisely in the specific subset SBV [22],
[23]. A related, alternative decomposition has been proposed
by Rudin, Osher and Fatemi [24]. They suggested to minimize
‖u‖BV + λ‖u− u0‖

2
L2 .

The free discontinuity set Su which represents edges is a
morphological quantity. From the regular part of the image, we
can extract a second morphological entity representing the en-
semble of all level sets. This decomposition of the morphology
can be seen as a refinement of the above definition. It will en-
able us to treat the matching problem for both parts separately
incorporating our approach for the registration of normal fields
[9]. In particular, the combination prevents us from neglect-
ing strong edges and their proper correlation. In this paper, we
will pick up a phase field approximation for the Mumford-Shah
functional (1), originally proposed by Ambrosio and Tortorelli
[25]. They describe the edge set Su by a phase field function v,
which is supposed to be small on Su and close to 1 elsewhere.
Phase field models are widespread in physics, where they rep-
resent a material order parameter and thus describe interfaces
in solids or fluids. One asks for minimizers of the energy func-
tional

Eε
AT

[u, v] =

∫

Ω

(

(u− u0)
2 +

µ

2
(v2 + kε)‖∇u‖

2+

η ε ‖∇v‖2 +
η

4ε
(1− v)2

)

dL , (2)

where ε is a scaling parameter and kε = o(ε) a small positive
regularizing parameter. For larger ε one obtains coarse, blurred
representations of the edge sets and corresponding smoother
images u. For decreasing ε the representation of the edges is
successively refined and more and more image details are in-
cluded. We will make use of this inherent multi scale in a cas-
cadic minimization algorithm. On each scale the regular image
morphology is computed on the current image representation.
These representations result from the corresponding Ambrosio-
Tortorelli approximation.

Eventually, a variational formulation for image registration
on a space of general non-rigid deformations leads to an ill-
posed problem [26], [27]. This is generally addressed by choos-
ing a suitable regularization. Regularized metrics on infinites-
imal deformations of images can be used to define geodesics
between images as proposed by Trouvé [28] or more recently
by Beg et al. [29]. Alternatively, one can model registration
itself as a physically motivated diffusion process as proposed
by Thirion [28]. Finally, picking by models from continuum
mechanics, one may ask for a deformation that is additionally
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controlled by elastic stresses. For example see the early work of
Bajcsy and Broit [30] and significant extensions in more recent
literature [31], [32], [33], [34]. In particular, if large displace-
ments are necessary to ensure a proper match, a regularization
based on non-linear elasticity with its built-in control of length,
area and volume changes is indispensable. Cohen [35] consid-
ered polyconvex elastic functionals and Droske and Rumpf [9]
as well as Litke et al. [36] used this type of regularization to
guarantee global injectivity and well-posedness. Here, we will
incorporate these ideas to avoid local folding in our deforma-
tion.

The paper is organized as follows. In Section 2 we present
a generalized notion of morphology, which will be used to in
Section 3 to present a novel variational approach for image reg-
istration, that is based on a phase-field technique and takes into
account edges as well as classical morphology. In Section 4
we describe the multiscale approach, which is induced by the
phase-field approach and is crucial for the energy minimiza-
tion. Section 5 gives comprehensive details for the required
building-blocks for the numerical treatment of the energy re-
laxation. Section 6 discusses our numerical experiments and
results, and Section 7 concludes the paper with final remarks.

II. REGULAR AND SINGULAR IMAGE MORPHOLOGY

Let us consider different notions of image morphology and
develop here a new one that is appropriate for our morpho-
logical matching purposes. In mathematical terms, two images
u, v : Ω → R with Ω ⊂ R

d for d = 2, 3 are called morpho-
logically equivalent, if they only differ by a change of contrast,
i. e., if u(x) = (β◦v)(x) for all x ∈ Ω and for some function
β : R → R [37], [38]. Here, one usually restricts to contrast
changes β : R → R, which are strictly monotone and con-
tinuous functions. Obviously, such a contrast modulation does
not change the order and the shape of level sets. Due to the
enforced monotonicity, the same holds for the super level sets
l+c [u] = {x : u(x) ≥ c} . Thus, a usual description of the mor-
phologyM[u] of an image u is given by the upper topographic
map, defined as the set of all these sets

M[u] :=
{

l+c [u] : c ∈ R
}

.

Unfortunately, this set based definition is not feasible for a vari-
ational approach we intend to develop here. Furthermore, the
restriction to monotone contrast changes conflicts with medi-
cal applications and medical morphology. In what follows, we
derive an alternative notion based on a regular and a singular
morphology. It will directly lead to a variational approach for
image matching and allows to get rid of the monotonicity as-
sumption. Let us suppose the image function u : Ω→ R on an
image domain Ω ⊂ R

n to be in SBV [22]. Hence, we consider
functions u ∈ L1(Ω) of which the derivative Du is a vector-
valued Radon measure with vanishing Cantor part [23]. In fact
at edges we allow for jumps and thus infinitely steep gradients
concentrated on a sufficiently regular, lower dimensional set,
but not for jumps on sets of fractal dimensions. We consider
the usual splitting Du = Dacu + Dsu [22], where Dacu is
the regular part, which is the usual image gradient apart from
edges and absolutely continuous with respect to the Lebesgue

φ

nac
T

TR

nac
R

ns
R

ns
T

Fig. 2
THE CONCEPT BEHIND MORPHOLOGICAL REGISTRATION: LEVEL SETS OF

THE REGULAR MORPHOLOGY OF uR CHARACTERIZED BY nac
R (WHITE)

ARE MAPPED ONTO THE DOMAIN OF uT AND COMPARED TO THE

REGULAR MORPHOLOGY VIA THE NORMALS nac
T . ON THE OTHER HAND

MORPHOLOGICAL MATCHING AIMS AT ALIGNING EDGES OF THE

SINGULAR MORPHOLOGIES (DASHED) CHARACTERIZED BY ns
R AND ns

T

RESPECTIVELY. THE ALIGNMENT IS ILLUSTRATED BY A NON-RIGID

ELASTIC DEFORMATION φ.

measure L on Ω ⊂ R
d, and a singular part Dsu, which repre-

sents the jump and is defined on the edge set S, which consists
of the edges of an image. We denote by ns the vector valued
measure representing the normal field on S, such that the rep-
resentation Dsu = (u+ − u−)ns holds for the singular part
of the derivative. Here u+ and u− are the upper and the lower
(approximate lim sup and lim inf [23]) values at the edge S,
respectively. This normal field is defined Hd−1 a.e. on S. Ob-
viously, ns is a morphological invariant as long as we consider
continuous strictly monotone contrast modulating functions β.

Now, we focus on the regular part of the derivative. First,
we adopt the classical gradient notion ∇acu for the L density
of Dacu, i. e., Dacu = ∇acuL [22]. As long as it is de-
fined, the normalized gradient ∇acu(x)

‖∇acu(x)‖ is the outer normal

on the upper topographic set l+
u(x)[u] and thus again a mor-

phological quantity. It is undefined on the flat image region
F [u] := {x ∈ Ω : ∇acu(x) = 0} . We introduce nac as the
normalized regular part of the gradient

nac = χ
Ω\F [u]

∇acu

‖∇acu‖
(3)

with support Ω\F and denote it the Gauss map of the image u.
With the regular normal nac and the singular normal measure

ns at hand, we are now able to redefine the morphologyM[u]
of an image u as a unit length vector valued Radon measure on
Ω with

M[u] = nacL+ ns . (4)

We call nacL the regular morphology and ns the singular mor-
phology (cf. Fig. 2). It turns out that this new notion is equiv-
alent to the above definition on sufficiently regular image func-
tions. It completely describes the topographical shape informa-
tion of the image u. If we skip the orientation of the vectors
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nac and ns in (4) and replace them by the corresponding line
subspaces we are able to treat general not only monotone con-
trast changes. This is actually reflected by our algorithm. In
the next section, we aim to measure congruence of two image
morphologies with respect to a matching deformation. In par-
ticular, we will make explicit use of the decomposition of image
morphology derived here.

III. THE VARIATIONAL APPROACH

Let us suppose that an initial template image u0
T
∈ L2(Ω)

and an initial reference image u0
R
∈ L2(Ω) are given on an

image domain Ω ⊂ R
d. Both images are assumed to be noisy.

We aim for a simultaneous robust identification of smoothed
and structural enhanced representations uT , uR ∈ SBV and a
deformation φ, which properly matches the underlying image
morphologies (4), such that

M[uT◦φ] =M[uR] .

Thus, we proceed as follows. The expected edge set in the ref-
erence image SR := SuR

is simultaneously treated as the pre
image of the expected template edge set ST := SuT

under the
deformation φ, i. e.,

φ(SR) = ST .

This will imply in the variational formulation that up to the ori-
entation the singular morphologies have to be matched prop-
erly. The regular morphologies, which are also to be matched
by the deformation, will be evaluated on the smoothed image
representations uT and uR of both images. Thus, we consider
as set of unknowns

uT , uR, ST , φ

and define three energy contributions, which together result in
the actual variational formulation for a simultaneous edge seg-
mentation, denoising and matching of images:

• a Mumford-Shah type energy EMS [uR, uT , ST , φ] con-
cerning about the actual edge segmentation and the proper
correspondence of the singular morphologies,

• an energy EGM [uR, uT , φ] dealing with the alignment of
the regular morphologies in terms of the Gauss maps of
the smoothed image intensities uR and uT under the de-
formation φ, and

• an energy Ereg[φ] controlling the regularity of the defor-
mation φ.

With respect to the algorithmical realization we later consider
a phase field approximation of the Mumford Shah energy EMS

picking up the approach by Ambrosio and Tortorelli [25]. The
edge set ST in the template image will be represented by a
phase field function v, hence v◦φ can be regarded as the edge
representation in the reference. In what follows let us consider
the different energy contributions separately:

Segmentation and matching of the singular morphology. If
we would minimize the Mumford-Shah functional (1) for u0

T

and u0
R

separately, we would obtain smooth representations uT

and uR together with singularity sets ST and SR. Instead, we
sum up these two functionals and replace the reference image
edge set SR by the pull back φ−1(ST ) of the template image
edge set. Thus, a deformation φ with SR = φ−1(ST ) con-
tributes to the minimization of the resulting combined energy.
For any smooth deformationφ theHd−1 measure [23] ofSR can
be controlled by the Hd−1 measure of ST and the deformation
φ, i. e., Hd−1(SR) =

∫

ST
detDφ−1

∥

∥DφDφTns
T
· ns

T

∥

∥ dHd−1

[39]. Indeed, the control of the deformation on such lower di-
mensional sets is analytically and numerically difficult. Hence,
we omit the corresponding energy term here. Finally, the en-
ergy for the coupled Mumford-Shah segmentation in the refer-
ence and the template image is given by

EMS[uR, uT , ST , φ] =
1

2

∫

Ω

(uR − u
0
R
)2 dL

+
µ

2

∫

Ω\φ−1(ST )

‖∇uR‖
2 dL+ ηHd−1(ST )

+
1

2

∫

Ω

(uT − u
0
T
)2 dL+

µ

2

∫

Ω\ST

‖∇uT‖
2 dL (5)

with µ, η > 0. Let us remark that this energy does not care
about the orientation of the normals on the singularity sets
ST and SR. Thus, it is invariant not only under monotone
contrast changes. So far, the deformation φ is needed only
on the singularity set ST and thus it is highly under determined.

Matching the regular image morphology. The regular image
morphology consists of the normal field nac. Hence, given arbi-
trary images uT and uR – later to be chosen as regularized rep-
resentation of noisy initial images – we observe a perfect match
of the regular morphology, if the deformation of the reference
normal field nac

R
:= ∇acuR

‖∇acuR‖ (3) coincides with the template

normals field nac
T

:= ∇acuT

‖∇acuT ‖ at the deformed position. In fact,
all level sets of the pull back template image uT◦φ and the refer-
ence image uR would then be nicely aligned (see Fig. 2). Let us
denote by nac,φ

R the transformation of the normal with respect
to the deformation φ. From the condition nac,φ

R ·Dφw = 0 for
tangent vectorsw on level sets and the definition of the cofactor
matrix Cof A := detAA−T [39] we deduce that

nac,φ
R

=
Cof Dφnac

R

‖Cof Dφnac
R
‖

=
CofDφ∇acuR

‖CofDφ∇acuR‖
. (6)

Now, we ask for a deformation φ : Ω → R
d, such that

nac
T

◦φ = n
ac,φ
R (cf. Figure 2). Let us phrase this in terms of an

energy integrand g : Sd−1 × Sd−1 → R
+
0 , which measures the

misalignment of vectors on Sd−1. For instance, we might con-
sider g(w, z) := γ ‖(

�
− w ⊗ w)z‖

m for γ > 0 and m ≥ 2,
a ⊗ b = abT . Let us emphasize that the resulting integrand is
invariant with respect to the orientation of the normals and thus
we are no longer restricted to monotone contrast changes in our
notion of morphological equivalence. Thus, in a first attempt
we consider the morphological registration energy

∫

Ω

g(nac
T

◦φ, nac,φ
R

) dL ,
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where normals are evaluated on the initial images. Here, we
face different problems, which have already been discussed in
detail in [9]:

• Image normals nac are only defined apart from flat regions
F and the above energy density turns out to be discontin-
uous at ∂F .

• Due to the renormalization of nac,φ
R (6) by the factor

‖CofDφnac
R
‖, the matching energy EGM in general fails

to be weakly lower semi–continuous on a suitable set of
admissible deformations, a crucial condition to prove ex-
istence of minimizers in the so called direct method in the
calculus of variations [39], [40].

• The evaluation of the regular morphology nac involves
gradients. A direct computation of these gradients on
noisy initial images u0

T
and u0

R
is surely questionable.

Thus, an edge sensitive regularization is required to ensure
robustness.

To avoid these shortcomings we modify the energy. At first,
we use the regular image functions uT and uR from the above
Mumford-Shah model for the computation of the regular image
normal fields. Hence, the functional to be defined will depend
on these unknowns as well. Furthermore, we take into account
a new energy integrand g0, which is a zero homogeneous ex-
tension of the integrand from our first trial, where we skip the
above mentioned renormalization. We define

g0(w, z,A) :=

{

g( w
‖w‖ , A

z
‖z‖ ), w 6= 0 and z 6= 0,

0, otherwise,
(7)

for v, z ∈ R
d and A ∈ R

d,d. Based on this function we finally
define the regular matching energy

EGM [uT , uR, φ] =

∫

Ω

g0(∇
acuT◦φ,∇acuR,CofDφ) dL . (8)

Let us emphasize that this energy is still not con-
tinuous in φ. The set of discontinuity is given by
DGM := DR ∪ φ−1(DT ) ∪ ∂FR ∪ ∂

(

φ−1(FT )
)

, where
DR and DT are the discontinuity sets of the regular image
gradients ∇acuR are ∇acuT , respectively. Furthermore,
FR := F [uR], FT := F [uT ] are the flat regions in the reference
and the template image, respectively. For the analytical
treatment of these discontinuities we refer to [9].

Controlling regularity of the deformation. In a variational
setting neither the matching energy for the singular morphology
nor the one for the regular morphology uniquely identify the de-
formation φ. Indeed, the problem is ill-posed. For instance, ar-
bitrary reparametrizations of the level sets ∂l+c or the edge set S,
and an exchange of level sets induced by the deformation do not
change the energy. Thus, we have to regularize the variational
problem. On the background of elasticity theory, we aim to
model the image domain as an elastic body responding to forces
induced by the matching energy. We have to emphasize, that
we do not attempt to model the actual material of the objects
represented by the image. Concerning the structure of the re-
sulting functionals, the nonlinear elastic energy we are going to
consider will be consistent with the nonlinearity in the regular
matching energy. At first, let us briefly recall some background

from elasticity. For details we refer to the comprehensive intro-
ductions in the books by Ciarlet [41] and Marsden & Hughes
[42]. We interpret Ω as an isotropic elastic body and suppose
that the regularization energy plays the role of an elastic energy
while the matching energy can be regarded as an external poten-
tial. Furthermore we suppose φ =

�
to represent the stress free

deformation. Let us consider the deformation of length, vol-
ume and for d = 3 also area under a deformation φ. It is well-
known that the norm of the Jacobian of the deformation ‖Dφ‖2
controls the isotropically averaged change of length under the
deformation, where ‖A‖2 := tr (ATA)

1

2 = (
∑

i,j AijAij)
1

2

forA ∈ R
d,d. Secondly, the local volume transformation under

a deformation φ is represented by detDφ. If detDφ changes
sign local self-penetration may be observed. Furthermore for
d = 3, ||Cof Dφ||2 is a proper measure for the averaged change
of area. In general, we consider a so called polyconvex energy
functional [39]

Ereg [φ] :=

∫

Ω

W (Dφ,CofDφ, detDφ) dL , (9)

where W : R
d,d × R

d,d × R → R is supposed to be convex.
In particular, the built-in penalization of volume shrinkage, i. e.,

W (A,C,D)
D→0
−→ ∞, enables us to successfully control singu-

larity sets (cf. [9]). Such energies have already been introduced
to the related optical flow problem by Hinterberger et al. [43].
But their focus was neither on morphological registration nor
on the control of singularity sets. As an example, we can de-
fine a simple physically reasonable isotropic elastic energy for
d = 3, which separately cares about length, area and volume
deformation:

W (A,C,D) = αl ‖A‖
p

+ αa ‖C‖
q
+ αv

[

Dr + βD−s
]

(10)

with αl, αa, αv > 0, β implicitly defined by the property, that
isometries minimize the energy, and r, s > 0. In nonlinear
elasticity such material laws have been proposed by Ogden
[44] and for p = q = 2 we obtain the Mooney-Rivlin model
[41]. We actually consider p = q = 2 and r = s = 1.

Collecting the different energy contributions. Now, we have
all the ingredients at hand to formulate the variational problem
for a matching of the singular and regular image morphology
combined with a simultaneous edge segmentation and denois-
ing in the template and the reference image. We collect the
matching energy (5) for the singular morphology, the matching
energy (8) for the regular morphology, the elastic regularization
energy (9) and define the global energy

E[uR, uT , ST , φ] := EMS[uR, uT , ST , φ]

+EGM [uR, uT , φ] +Ereg [φ] . (11)

Even for very simple image pairs u0
R

and u0
T

we expect the re-
sulting energy landscape to be very complicated. To address
this issue, we will not restrict to a single fine scale problem but
consider an embedding into a scale of problems to be solved
from coarse to fine. This scale will be induced by a phase field
approximation of the energy EMS. The scale parameter will
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correspond to the width of the phase transition region. In par-
ticular, we will make use of the multiple scales in the numerical
algorithm. Together with a corresponding hierarchy of func-
tion space this will enable us to derive an effective and efficient
algorithm.

IV. MULTIPLE SCALES INDUCED BY A PHASE-FIELD

APPROXIMATION

The singularity set ST as an explicit argument is difficult to
treat algorithmically. For the approximation of the edge set ST

in [45] a level set formulation has been proposed. This ap-
proach is in particular well-suited as long as the edge set is
closed and topologically simple. Whereas this may be conve-
nient in some cases, for example, when the initialization allows
a certain degree of user control to preselect certain features, it
may also be ambiguous and tedious in other cases. Here, we
propose a phase-field formulation (2) in the spirit of Ambro-
sio and Tortorelli [25] to gain more flexibility and in addition
to incorporate a simple multi scale into the model. Concerning
the coupling of the edge segmentation in the reference and the
template image we proceed analogously to the Mumford Shah
model above. Let us introduce an auxiliary variable v, describ-
ing the singularity set ST of the image uT . At the same time
v◦φ is taken into account to describe the edge set SR in the im-
age uR. Apart from ST and SR = φ−1(ST ) we aim for v ≈ 1.
The phase field should vanish on ST and φ−1(ST ), respectively.
As in the original segmentation approach [25] a scale parame-
ter ε controls the thickness of the region with small phase field
values. These requirements are reflected by the energy

Eε
AT

[uR, uT , v, φ] :=

1

2

∫

Ω

(

(uR − u
0
R
)2 + (uT − u

0
T
)2

)

dL

+
µ

2

∫

Ω

(

(v2
◦φ+ kε) ‖∇uR‖

2
+ (v2 + kε) ‖∇uT‖

2
)

dL

+

∫

Ω

(

ηε‖∇v‖2 +
η

4ε
(v − 1)2

)

dL , (12)

where kε = o(ε). The first integral measures the deviation of uR

and uT to the data in L2 and can be regarded as a fidelity term
as in the Mumford Shah approach. The second integral forces
the signature v2 to be small where uT has steep gradients and,
correspondingly, v2

◦φ to be small where∇uR is large. Further-
more, for fixed signature and fixed deformation, the smoothness
of the images uR and uT is controlled apart from the edge sets,
i. e., steep gradients of uT are penalized where v 6≈ 0 and analo-
gously for uR. Finally, the third integral approximates theHd−1

measure of the edge set and forces v ≈ 1 apart from edges. Not
aligning edges in uR with edges in uT ◦φ would result in a v
which reflects both edge sets separately (cf. Fig. 9 and Fig. 15).

In that case we would count them twice with respect to the
length measurement. Hence, it is preferable to align them as
long as the cost for the elastic deformation measured in terms
of Ereg is relatively low.

As already mentioned, the total energy E[·] is highly non-
linear and the energy landscape will be very complicated. Thus,
minimizing already on the highest resolution with the fully de-
veloped deformation is not feasible. In particular the energies

Fig. 3
CONTRAST INVARIANT MATCHING: WE HAVE INVERTED, MOVED AND

DISTORTED THE PEPPERS IMAGE (LEFT) TO OBTAIN A TEMPLATE IMAGE

(MIDDLE). ON THE RIGHT THE INITIAL MISFIT IS SHOWN.

controlling the registration of regular and singular morphology
cause many local minima in the energy landscape. We take a
multiscale approach, solving a sequence of matching problems
ranging from coarse to fine scales. This type of method is fre-
quently applied and well understood in image processing [46].
It remains for us to define a scale of energies. Thus, we consider
the parameter ε in the phase field approximation Eε

AT
as scale

parameter. The width of the edge regions indicated by small
values of v is expected to be proportional to ε. For decreasing ε
we will obtain successively sharper regularized images uT and
uR. This implicitly introduces a scale in the energy EGM as
well. In explicit the gradients ∇uT and ∇uR corresponding to
uT and uR are expected to be smoother for larger ε. Thus, we
no longer have to distinguish regular and singular gradients. To
focus only on the regular morphology in this energy contribu-
tion - in particular not measuring edges - we mask out a gradient
comparison in the vicinity of edges. Therefore, the integrand is
multiplied by v2

◦φ and we obtain

Eε
GM

[uT , uR, v, φ] =

∫

Ω

v2
◦φ g0(∇uT◦φ,∇uR,Cof Dφ) dL . (13)

Finally, gathering the energy contributions from (12), (13) and
(9) we define a scale of global approximate energies

Eε[uR, uT , v, φ] := Eε
AT

[uR, uT , v, φ]

+Eε
GM

[uR, uT , v, φ] +Ereg [φ] . (14)

depending on the scale parameter ε. We refer to Fig. 3 and 4 for
results achieved via a relaxation of this energy. Furthermore,
Fig. 5 shows the decay of the L2 difference of the computed
deformation and the prescribed deformation - which we have
chosen in the construction of this test case - depending on the
iteration counter of our numerical algorithm. We expect the
computed solution to minimize the elastic energy over all de-
formations which match the two image morphologies. But our
prescribed deformation is not chosen as this optimal elastic de-
formation. Thus, it will not coincide with the prescribed one
and a residual difference in the deformation remains.

Now, we consider a sequence of regularization parameters
(εk)k=1,··· ,K . On the coarsest scale, we start with εK of the
order 1 and consider successively refined εk = 1

2εk+1. In the
numerical algorithm, the parameter ε1 is supposed to be of the
order of the pixel or voxel size. In essence, the energy land-
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Fig. 4
REGISTRATION RESULT FOR INPUT DATA FROM FIG. 3: THE FINAL PHASE

FIELD FUNCTION v IS DEPICTED ON THE LEFT. THE IMAGE IN THE

MIDDLE SHOWS A PLOT OF THE DEFORMATION DUE TO A RELAXATION OF

THE COMBINED ENERGY Eε
AT + Ereg + Eε

GM , I. E., THE REGISTRATION

OF DISCONTINUITY SETS AND LEVEL SETS. ON THE RIGHT ALTERNATING

SLICES OF THE REFERENCE AND THE PULLED BACK TEMPLATE IMAGE

ALLOW A VISUAL VALIDATION OF THE MATCHING RESULT.

scape is smoothed, enabling “basin catching” at coarse levels to
provide good starting guesses for subsequently finer levels.
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Fig. 5
LEFT: ENERGY DECAY PLOT THE TOTAL ENERGY, REGULAR

MORPHOLOGICAL ENERGY, SINGULAR MORPHOLOGICAL ENERGY AND

THE REGULARIZATION ENERGY. ALL ENERGIES ARE EVALUATED ON THE

FINEST GRID LEVEL AFTER PROLONGATING THE CURRENTLY COMPUTED

DEFORMATION IN EACH STEP. RIGHT: TOTAL ENERGY EVALUATED ON

THE CURRENT LEVEL USED FOR ADAPTIVE STEP-SIZE CONTROL.
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Fig. 6
LEFT: PLOT OF THE DECAY OF THE L2 DIFFERENCE BETWEEN THE

COMPUTED DEFORMATION AND THE KNOWN EXACT DEFORMATION FOR

THE SEQUENCE OF DEFORMATIONS COMPUTED IN THE MINIMIZATION

ALGORITHM ON MULTIPLE SCALES. THE MIDDLE AND RIGHT IMAGES

SHOW THE ERROR DENSITY OF THE DEFORMATION BEFORE AND AFTER

THE MINIMIZATION, SCALED BETWEEN 0 (BLACK) AND 0.26(WHITE).

Note, that it is not necessary to compute the exact minimizer
on coarse scales. Instead we apply a descent method (cf. Sec-
tion V) and stop iterating as soon as the update is sufficiently
small. In practice this proves to be a good heuristic to ensure

that at the time we stop on level k with a deformation φk, this
deformation is already in the contraction region of the global
minimum on the next finer scale k + 1. Furthermore, in the fi-
nite element algorithm we will resolve coarse scales on coarse
grids (cf. Section V). Consequently most iterations of the algo-
rithm are spent on coarse grids with corresponding performance
benefits.

V. ENERGY RELAXATION AND NUMERICAL

IMPLEMENTATION

The energy introduced above depends on four unknown func-
tions, the scalar valued regularized images uT , uR, the scalar
phase field v and the vector valued deformation φ. In what fol-
lows, we will outline an energy relaxation method in the con-
tinuous setting. Secondly, we will briefly describe how to dis-
cretize this approach based on finite elements. Furthermore, for
the convenience of the reader, a comprehensive collection of
variations of the different energy contributions with respect to
the different unknown is given in the appendix.

Apart fromEGM the energy depends quadratically on uT , uR

and v. Thus, the corresponding necessary conditions to be ful-
filled by a minimizer, i. e., the Euler Lagrange equations with
respect to these variables, turn into linear problems. Indeed, in
contrast to the original approach of [47], where approximating
elliptic but non-quadratic functionals have been used, our ap-
proximation of the Mumford Shah type energy for the match-
ing of the singular morphology follows (2) and gives rise for
this simplification. We refer for instance to [48], [49] and for
the numerical treatment to [50].

In the relaxation scheme for the deformation, which actually
describes the image matching, we treat uT , uR, and v in a quasi
stationary way. In fact, the iterative relaxation proceeds as fol-
lows:

For given images and deformation, we optimize w.r.t. the
phase field v. In a next step, we then optimize for the regu-
larized images uT and uR for given φ and already optimized
v. Finally, we consider one gradient descent step for the global
energy w.r.t. the deformation. This procedure is repeated until
convergence.

The variation δφEε of the global energy in φ is a functional
acting on infinitesimal deformations. We apply a regularizing
operator A to map this energy variation onto a regularized di-
rection in the space of deformation. In abstract terms this regu-
larized direction is the gradient direction with respect to a reg-
ularized metric (·, ·)A on the space of deformation, where A
is essentially the inverse of the corresponding metric tensor.
This approach differs from the “natural gradient“ approach by
Trouvé [28], where the definition of a metric on infinitesimal
deformations along geodesics in shape space (cf. also Miller,
Trouvé and Younes [1]) has a strong direct impact on the re-
sulting matching. In our context, which is more related to the
early approach of Christensen, Miller and Rabbitt, the metric on
variations of the matching functional is applied to stabilize the
numerical relaxation via a gradient descent and does not influ-
ence the minimizer of the functional itself. For details we refer
to [51]. In the actual implementation we consider a multigrid
approximation ofA = (

�
− σ2

2 ∆)−1, with
�

being the identity
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matrix, similar to the one proposed in [52]. We treat this as an
approximation of a Gaussian filter, or in terms of a regulariz-
ing metric we choose (ψ, ζ)A =

∫

Ω
ψ · ζ + σ2

2 Dψ : Dζ dL,
where “·” indicates the Euclidean scalar product in R

d and
“:” is a scalar product on matrices with A : C = tr(ATB)
for A,B ∈ R

d,d. As step size control in the descent step
we consider Armijo’s rule [53]. For the sake of simplicity of
the exposition we might assume Dirichlet boundary conditions
φ(x) = x on the image domain boundary ∂Ω. We refer to [54]
and [36] for an attenuation towards an only partial correspon-
dence of the images. Next, let us sketch the method in pseudo
code notation:

Energy-Relaxation(u0
T
, u0

R
) {

initialize (uK,0
T , u

K,0
R , φK,0)← (u0

T
, u0

R
,

�
) ;

for k = K, · · · , 1 do {
l = 0 ;
do {

vk,l+1 = argmin
v

Eεk [uk,l
T , u

k,l
R , v, φk,l] ;

(uk,l+1
T , u

k,l+1
R ) = argmin

uT ,uR

Eεk [uT , uR, v
k,l+1, φk,l] ;

For given smoothing operatorA update
φk,l+1 = φk,l − τ lA δφE

εk [uk,l+1
T , u

k,l+1
R , vk,l+1, φk,l]

for a suitable time step τ l ;
l← l + 1 ;

} until (
∥

∥φk,l − φk,l−1
∥

∥ ≤ δk );
set (uk−1,0

T , u
k−1,0
R , φk−1,0)← (uk,l

T , u
k,l
R , φk,l) ;

}
}

Here, k is the current scale, l the number of already executed
relaxation steps on this scale, and ‖·‖ the usual L2 norm on the
space of deformations. All functions are indexed by the scale
k and the relaxation step l. On the coarse scale we initialize
the deformation φK,0 with the identity deformation

�
(x) = x.

We stop the inner iteration on each scale, if the norm of the
deformation update φk,l − φk,l−1 is below a threshold δk =
Cεk.

To break down the different steps, we have to consider the
variations of the different energy contributions. The computa-
tion of these derivatives is a straightforward, albeit involved,
application of the chain rule. For the readers convenience we
provide this calculations in full detail in the appendix below.

Governing partial differential equations. From δvE
εk = 0,

we deduce that for given images uT , uR and deformation φ the
updated phase field v solves the linear, elliptic partial differen-
tial equation

0 = −2ηε∆v +
η

2ε
(v − 1) + µ‖∇uT‖

2 v

+
µ‖∇uR◦φ−1‖2 + 2 g0(∇uT ,∇uR◦φ−1,CofDφ ◦ φ−1)

detDφ◦φ−1
v ,

with homogeneous Neumann boundary condition ∇v · n = 0,
where n is the outer normal on the image domain boundary ∂Ω.

Furthermore, for fixed v and φ the reconstructed images uR

and uT are solutions of the following non linear PDEs derived

from the necessary conditions 0 = δuR
Eεk = δuT

Eεk .

0 = uR − u
0
R
− µ div

(

(v2
◦φ+ kε)∇uR

)

−div
(

v2
◦φ ∂zg0(∇uT◦φ,∇uR,CofDφ)

)

,

0 = uT − u
0
T − µ div

(

(v2 + kε)∇uT

)

−div

(

v2 ∂wg0(∇uT ,∇uR◦φ−1,CofDφ◦φ−1)

detDφ◦φ−1

)

,

where ∂z and ∂w denote the variations of g0 w.r.t. its first and
second arguments. Again, we assume natural boundary condi-
tions ∇uT · n = ∇uR · n = 0 on the image domain boundary.
For details on the derivation of these differential equations we
refer to Chapter 5.5 in [54]. In the current implementation we
neglect the impact of the ongoing segmentation process on the
variation of the energy concerned with the regular morphology
and consider the following simplification in the method:

(uk,l+1
T

, uk,l+1
R

) = arg min
uT ,uR

Eε
AT

[uT , uR, v
k,l+1, φk,l]

Thus, the last term on the right hand side is skipped in both
equations above and uT and uR turn out to be solution of the
linear PDEs:

0 = uR − u
0
R
− µdiv

(

(v2
◦φ+ kε)∇uR

)

0 = uT − u
0
T − µdiv

(

(v2 + kε)∇uT

)

.

Even though, we no longer actually minimize the global en-
ergy, the proposed restricted energy relaxation already leads to
satisfying edge segmentation and matching results.

Spatial discretization by finite elements. Now, we describe
the actual spatial discretization by finite elements and the con-
struction of a discrete multi scale. We consider images as piece-
wise multilinear (bilinear in our 2D applications) finite element
functions on a regular image domain. Each pixel or voxel value
corresponds to a node of the regular mesh. For the ease of im-
plementation we suppose dyadic resolutions of the images with
2L + 1 pixels or voxels in each direction. Thus, we are able to
build a hierarchy on grids with 2l + 1 nodes in each direction
for l = L, · · · , 0. We restrict every finite element function via
a trivial restriction operation to any of these coarse grid spaces.
We apply these finite element space not only for the represen-
tation of discrete images but also for the discretization of the
phase field v and the d components of the deformation φ. The
construction of the multigrid hierarchy allows to solve coarse
scale problems in our multi scale approach on coarse grids. In-
deed, scale k is resolved on the corresponding l(k)th grid level
(e.g. with l(k) = k). From the above still continuous relax-
ation scheme, we derive a fully practical numerical algorithm
in a straightforward way. Following the general finite element
procedure, the discretization of the PDEs for the phase field
v and the regularized images uT , uR leads to linear systems of
equations, which are solved via a preconditioned conjugate gra-
dient method [55]. In the assembly of these linear systems we
apply on each grid cell a third order Gaussian quadrature rule.

For the variation of the energy with respect to φ, we consider
the same quadrature rule and assemble a vector of variations
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in all basis directions on the space of discrete deformations.
Next, this vector is smoothed applying one multigrid V cycle
corresponding to a standard finite element implementation of
the differential operator

�
− σ2

2 ∆ . For details we refer to [51],
[9].

At various places, we have to evaluate discrete functions U
at pushed forward or pulled back positions under a discrete de-
formation Φ. In both cases we replace the exact evaluation of
these functions by a simple and effective interpolation. Indeed,
we replace U ◦ Φ by I(U ◦ Φ), where I is the classical La-
grangian interpolation on the grid nodes. Thus, each grid node
is mapped under the deformation Φ onto the image domain, U
is evaluated at these positions and these values define our new
finite element function. Analogously, U ◦ Φ−1 is replaced by
I(U ◦ (I ◦ Φ)−1). Here, we proceed as follows. We map each
grid cell under the deformation onto the image domain. Next
we identify all grid nodes, which are located on this deformed
cell. These grid nodes are then mapped back under the inverse
local deformation. Now, interpolation is applied to retrieve re-
quested values of the finite element function U . Inversion of
multilinear deformation leads to nonlinear equations. To avoid
this shortcoming, we cut each cell virtually into simplices. On
these simplices affine functions approximate in a straightfor-
ward way the multilinear functions. Thus, we replace the regu-
lar cells in the retrieval algorithm by the simplices and end up
with piecewise affine inverse mappings.

Fig. 7
THE REGISTRATION OF FLAIR AND T1-WEIGHTED MAGNETIC

RESONANCE BRAIN IMAGES IS CONSIDERED. THE INITIAL DATA, A

REFERENCE T1 IMAGE (LEFT) AND A TEMPLATE FLAIR IMAGE (MIDDLE)

AND THE INITIAL MISMATCH (RIGHT) ARE SHOWN. THE MISFIT IS

ILLUSTRATED BY OVERLAYING THE REFERENCE WITH STRIPES OF THE

TEMPLATE.

VI. RESULTS

We have applied the relaxation algorithm to several different
scenarios in order to underline the importance of coupling the
different energy contributions. As our first example, shown in
Fig 1, we have considered a square on a white background as
the reference image. As the template we consider this square
shifted to the bottom right but with an additional non-rigid
but smooth deformation in the interior. The object has strong
edges on the outline, that correspond to the singular morphol-
ogy, while in the interior the morphology is completely regular

Fig. 8
FOR THE INITIAL DATA SHOWN IN FIG. 7, THE LEFT IMAGE SHOWS THE

RESULTING REGISTRATION RESULT ONLY TAKING INTO ACCOUNT THE

REGULARIZATION AND THE REGULAR MORPHOLOGY ENERGY

Eε
GM + Ereg . IN PARTICULAR REGIONS WITH SMOOTHLY VARYING

INTENSITY ARE ALREADY IN GOOD CORRESPONDENCE, BUT STRONG

EDGES IN THE INTERIOR AND CLOSE TO THE SKULL ARE NOT MATCHED

PROPERLY. THE RESULTS CAN BE SIGNIFICANTLY IMPROVED BY A

RELAXATION OF THE TOTAL ENERGY Eε
GM + Eε

AT + Ereg SHOWN ON

THE RIGHT. WE OBSERVE A GOOD REGISTRATION ALREADY IN THE FIRST

CASE. MEASURED IN IMAGE PIXELS, SEVERAL, ANATOMICALLY DISTINCT

DISCONTINUITIES ARE VERY CLOSE TO EACH OTHER AT THE SKULL

OUTLINE, WHICH CAUSES THE PARTICULAR DIFFICULTY IN THIS EXAMPLE

AND ALSO LEADS TO THE REMAINING ARTIFACT ON THE TOP OF THE

IMAGE.

and characterized by the geometry of the level sets. After relax-
ation of the Mumford Shah type energy in combination with the
hyperelastic regularization energy, it is possible to recover the
simple translation, while the interior remains completely rigid.
After adding the energy term Eε

GM
, which cares about a proper

matching of the regular morphology, it is also possible to re-
cover the interior deformation. In these computations we have
set µ = η = 0.1, γ = 0 resp. 100, µ = η = 0.1, αl = 10,
αv = 40, σk = 3hk and εk = 1

20hk. Another example in the
same spirit is shown in Fig. 3 and 4, where a reference and a
template image that differs by a large distortion and a contrast
change are registered properly.

As a first real world example we have considered the match-
ing of two magnetic resonance images of the human brain:
the reference in a standard T1-weighting and the template as
a FLAIR weighted MR image. To render the test problem even
more difficult, we have in addition artificially deformed the
FLAIR image by a rotational twist in the interior of the skull.
Figures 7 shows the the initial images and the initial mismatch
on the right. Figure 8 compares the registration results with and
without the energy Eε

AT
. The combined method clearly outper-

forms the registration solely based on a matching of the regular
morphology. The regular morphology however takes care of
alignment of low-contrast shape information such as in the re-
gion of the ventricle, which is characterized by level set geom-
etry rather than strong contrast. Figure 9 shows a comparison
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Fig. 9
THE PHASE FIELD v CORRESPONDING TO THE REGISTRATION IN

FIGURE 7. LEFT: INITIAL PHASE FIELD. RIGHT: PHASE FIELD AFTER

ALIGNMENT.

of the initial phase field function evaluated on the finest reso-
lution after the first iteration of the relaxation algorithm with
the final phase field. The initial mismatch can be observed in v
by the fact that edges from both images are visible separately,
while in the final result v represents coinciding edges of uT

and uR◦φ−1. Hence, in the latter case the overall length of
the joint discontinuity set is shorter. These computations were
performed with parameters µ = η = 0.1, γ = 0 resp. 100,
αl = 200, αv = 40, σk = 5hk and εk = 1

20hk.
We have applied our method also to 3D medical image reg-

istration problems and present here first results, where we con-
centrate on a matching only of the singular morphology. In
particular in 3D a cascadic multiscale approach turned out to be
indispensable to ensure an efficient numerical implementation.
Fig. 10 depicts an application where brain structures of MR
scans of two different patients with varying image contrast are
to be matched. The underlying 3D images consist of 2573 vox-
els and thus 3 · 2573 unknowns in the nodal vector of deforma-
tion. Our results demonstrate that without any pre–registration
the algorithm is able to generate a fairly good match. Neverthe-
less, due to the structural differences in the two brains the capa-
bilities of the algorithm are locally limited basically by the built
in regularity control of the elastic deformation. Furthermore,
Fig. 11 actually deals with multimodal matching. It shows the
matching of a pair of 3D MR T1-weighted and positron density
images. The underlying image resolution is 129× 257× 257.
This application in particular shows the limitation of our ap-
proach based on a mathematical notion of morphology in case
of significantly different medical image morphologies. The al-
gorithm applied to raw data without any preprocessing is still
capable to generate a reasonable overall matching for instance
of the cortex outline or of the skull. But it significantly suf-
fers from the local deviation of medical morphology which re-
quires prior knowledge on non local anatomy from the under-
lying mathematical morphology with its purely local definition.
In both 3D applications we have chosen a slightly different sets
of model parameters: µ = 16, η = 1.6, γ = 0, αl = 1, αv = 1,

Fig. 10
ON THE LEFT THE 3D PHASEFIELD CORRESPONDING TO AN MR IMAGE IS

SHOWN. FURTHERMORE, THE MATCHING OF TWO MR BRAIN IMAGES OF

DIFFERENT PATIENTS IS DEPICTED. WE USE A VOLUME RENDERER BASED

ON RAY CASTING (VTK) FOR A 3D CHECKERBOARD WITH ALTERNATING

BOXES OF THE REFERENCE AND THE PULL BACK OF THE TEMPLATE

IMAGE TO SHOW THE INITIAL MISMATCH OF MR BRAIN IMAGES OF TWO

DIFFERENT PATIENTS (MIDDLE) AND THE RESULTS OF OUR MATCHING

ALGORITHM (RIGHT).

Fig. 11
A PAIR OF 3D T1-WEIGHTED MR AND POSITRON DENSITY IMAGES IS

REGISTERED. THE TWO IMAGES ARE RENDERED AGAIN USING RAY

CASTING OF A SLICED 3D CHECKERBOARD WITH ALTERNATING BOXES

CORRESPONDING TO THE DIFFERENT IMAGES . THE INITIAL MISMATCH

(UPPER LEFT AND MIDDLE) IS COMPARED WITH THE FINAL MATCHING

RESULT (LOWER LEFT AND RIGHT) ON AN AXIAL SLICE AND A SAGITTAL

SLICE.

compared to the 2D case. The numerical parameter σk and εk
are the same.

This application in particular underlines that edge segmen-
tation not only helps image matching but vice versa matching
can help edge segmentation. To emphasize this, we compute a
matching of a pair of 2D slides of the pair of T1-weighted MR
and positron density images. In Fig. 12 we compare the phase
field in the first iteration of our algorithm with its clearly visi-
ble mismatch of the two morphologies and the final joint phase
field function. The latter indicates that weaker edges in partic-
ular in the positron density image are strengthened via a pull
back of edges from the MR image onto to the positron density
image.

Finally, we demonstrate the applicability of the method by
registering two different facial texture maps. Figure 13 shows
again the reference and template images in the top row, while
in the bottom row we compare registration based on the full
model and a restricted energy Eεk

AT
+ Eεk

reg
neglecting the regu-
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Fig. 12
A PAIR OF 2D SLICES THROUGH THE 3D POSITRON DENSITY (TOP LEFT)

AND THE T1-WEIGHTED MR IMAGE (TOP RIGHT LEFT) IS REGISTERED.

THE PHASE FIELD COMPUTED IN THE FIRST ITERATION OF OUR

ALGORITHM (BOTTOM LEFT) SHOWS THE INITIAL MISMATCH AND IN

PARTICULAR FOR THE POSITRON DENSITY IMAGE LOCALLY WEAK EDGE

SEGMENTATION. ON THE BOTTOM RIGHT THE JOINT PHASEFIELD OF THE

TWO IMAGES AFTER THE REGISTRATION IS DEPICTED. HERE, WEAK

POSITRON DENSITY EDGES ARE MATCHED ONTO STRONG MR EDGES.

lar morphology. In the restricted case, we observe an acceptable
match of the outline at sharp edges in the region of the mouth,
the eyebrows and the eyes. However, the full method ensures
a much better registration capturing further geometric informa-
tion. The deformation plots in the top row underline this im-
provement. Figure 14 pinpoints the differences of the different
matching approaches. As in the previous example, Figure 15
illustrates the energetic improvement due to the interplay of the
deformation and the phase-field function, reducing the length
of the overall interface by alignment of edges. In these compu-
tations the chosen parameters are µ = η = 0.1,γ = 0 resp. 10,
αl = 10, αv = 5, σk = 5hk and εk = 1

20hk.

VII. CONCLUSIONS

We have introduced a generalized notion of image morphol-
ogy which distinguishes regular contour sets encoded by the
regular field of image normals from edge sets represented by
a concentrated measure valued normal field. Based on this
concept a variational approach for multi modal image registra-
tion has been introduced and various applications in 2D and
3D demonstrate the capabilities of this new method. Its major
characteristic is that we jointly segment edges via a Mumford–
Shah approach and register image morphologies. This direct
combination of two imaging tasks ensures not only that prior

Fig. 13
A FACIAL TEXTURE MATCHING PROBLEM. INITIAL REFERENCE TEXTURE

MAP uR (LEFT), INITIAL TEMPLATE uT (MIDDLE) AND THE INITIAL

MISFIT PLOT ON THE (RIGHT).

knowledge on edges improved the registration results but at the
same time registration can improve locally weak edge segmen-
tation via a correspondence to stronger edges in the other image.
The variational approach comes along with phase field approx-
imations for the Mumford–Shah functional simultaneously for
both images, where the edge set of one image is implicitly rep-
resented by the pull back of the edge set from the other image
under the deformation. Picking up concepts from rational me-
chanics a third, polyconvex, elastic energy cares about the reg-
istration of the regular normal fields and finally regularity of the
deformation is ensured by a fourth, nonlinear, again polyconvex
elastic energy, which is also known to guarantee a one-to-one
deformation [57]. The phase field approximation introduces a
multiscale parameter, which is coupled with the image resolu-
tion in a cascadic finite element algorithm. Interesting research
perspectives are

• a detailed comparison of our variational method based on a
local energy density with the non local, long range interac-
tion encoded in the joint histogram analysis of mutual in-
formation statistics and a combination of both algorithms,

• a definition of metrics in shape space which reflects our
refined notion of morphology and would allow us to com-
pute geodesic paths and not only matching deformations,
and

• a detailed comparison of medical and mathematical mor-
phology, which might help to better apply concepts devel-
oped here to complex, multimodal registration problems
in medical imaging which go beyond the principle study
of applicability investigated here.
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APPENDIX: ENERGY VARIATIONS

Here, we give explicit formulas for the variation of the different
energy contributions in directions of the unknown functions uR, uT , v,
φ required in the algorithm above. We denote by 〈δwE,ψ〉 a variation
of an energy E with respect to a parameter function w in a direction
ψ. The variation of Eε

AT (12) with respect to v in direction ζ is given

by

〈δvE
ε
AT , ζ〉 = µ

Z

Ω

‖∇uT ‖
2
v ζ dL +

‖∇uR◦φ−1‖2

detDφ◦φ−1
v ζ dL

+ η

Z

Ω

2ε∇v · ∇ζ +
1

2ε
(v − 1)ζ dL . (15)

Here, on account of the hyperelastic regularization Ereg we assume
that φ is invertible [58] and have applied an integral transform. Fur-
thermore, for Eε

GM (13) one achieves

〈δvE
ε
GM , ζ〉 =

Z

Ω

2 (v◦φ) (ζ◦φ) g0(∇uT ◦φ,∇uR,Cof Dφ) dL

=

Z

Ω

2 v ζ
g0(∇uT ,∇uR◦φ−1,Cof Dφ◦φ−1)

detDφ◦φ−1
dL .

Next, we consider variations of the energies (12) and (13) with respect
to uT and uR and get

〈δuR
E

ε
AT , ϑ〉 =

Z

Ω

(uR − u
0
R)ϑ+ µ(v2

◦φ+ kε)∇uR · ∇ϑ dL ,

〈δuT
E

ε
AT , ϑ〉 =

Z

Ω

(uT − u
0
T )ϑ+ µ(v2 + kε)∇uT · ∇ϑ dL ,

〈δuT
E

ε
GM , ϑ〉 =

Z

Ω

v
2
◦φ∂wg0(∇uT ◦φ,∇uR,Cof Dφ)(∇ϑ◦φ) dL ,

=

Z

Ω

v
2 ∂wg0(∇uT ,∇uR◦φ−1,Cof Dφ◦φ−1)(∇ϑ)

detDφ◦φ−1
dL ,

〈∂uR
E

ε
GM , ϑ〉 =

Z

Ω

v
2
◦φ∂zg0(∇uT ◦φ,∇uR,Cof Dφ)(∇ϑ) dL .

For the derivatives of the zero-homogeneous integrand g0 (7) in direc-
tions y occurring above, we evaluate

∂wg0(w, z,A)(y) = ∂wg(w,Az)(P [w] ‖w‖−1
y) ,

∂zg0(w, z,A)(y) = ∂zg(w,Az)(x)(AP [z] ‖z‖−1
y) .

Here, we have taken into account that Dw
w

‖w‖
= 1

‖w‖
P [w] where

P [w] is the projection matrix ( � − w
‖w‖

⊗ w
‖w‖

). In case of the integrand

g(w, z) = γ ‖P [w]z‖2 we observe

∂zg(w, z)(y) = 2 γ P [w]z · y

∂wg(w, z)(y) = −2 γ

„

P [w]y

‖w‖
⊗

w

‖w‖
+

w

‖w‖
⊗
P [w]y

‖w‖

«

z · z

Finally, for the gradient descent step with respect to the deformation,
we have to evaluate the variation of the energy (14) in φ and compute

〈δφE
ε
AT , ψ〉 = µ

Z

Ω

‖∇uR‖
2
v◦φ (∇v◦φ) · ψ dL ,

〈δφE
ε
GM , ψ〉 =

Z

Ω

2 (v◦φ) (∇v◦φ) · ψ g0(M) dL

+

Z

Ω

(v2
◦φ)∂Ag0(M)(∂ACof (Dφ)(Dψ)) dL

+

Z

Ω

(v2
◦φ)∂wg0(M)(D2

uT ◦φ) · ψ) dL ,

〈δφEreg, ψ〉 =

Z

Ω

∂AW (Q) : Dψ + ∂CW (Q) : ∂ACof (Dφ)(Dψ) dL

+

Z

Ω

∂DW (Q)∂Adet (Dφ)(Dψ) dL ,

where we have used the abbreviations M = (∇uT ◦φ,∇uR,Cof Dφ)
and Q = (Dφ,Cof Dφ, detDφ). Consistent to the above proposed
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simplification we again neglect the impact of the edge segmentation on
the regular morphology extraction and hence skip the last term on the
right hand side of the equation for δφE

ε
GM in the concrete implemen-

tation. Furthermore, we apply the following formulas for derivatives

∂Ag0(w, z,A)(C) = ∂zg

„

w

‖w‖
, A

z

‖z‖

« „

C
z

‖z‖

«

,

∂ACof (A)(C) = detA (tr(A−1
C)A−T −A

−T
C

T
A

−T ) ,

∂Adet (A)(C) = detA tr(A−1
C)

In case of the concrete example (10) for the regularization energy (9)
we calculate

∂AW (A,C,D) = pαl ‖A‖
p−2

A ,

∂CW (A,C,D) = q αa ‖C‖q−2
C ,

∂DW (A,C,D) = αv(rDr−1 − βsD
−(s+1)) .
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