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ABSTRACT
We present a novel variational method to non rigid regis-
tration of multi-modal data. A suitable deformation will be
determined via the minimization of a morphological, i.e.,
contrast invariant, matching functional along with an appro-
priate regularization energy. Here we want to give special
focus on the practical issues involving scale-space methods,
regularization of the corresponding gradient flow and hy-
perelastic regularization.

1. INTRODUCTION

The process of registration aims to find a deformationφ de-
fined on a given domainΩ onto itself, such that an image
T : Ω → R correlates well under the deformation (T ◦ φ)
with another given imageR : Ω → R. It is a very difficult
and challenging problem, since the construction of similar-
ity measures for the registration of multi modal images is
very delicate. Naturally, such similarity measures can no
longer depend on entities which depend only on the grey
values, such as it is commonly done in the case of unimodal
registration. Different imaging devices focus on different
physical, chemical, functional or histological characteristics
of the underlying object, which also implies that the struc-
tural content of the images may differ significantly. Addi-
tionally, due to perturbations in the imaging process, exter-
nal forces or temporal changes one can often not assume the
deformation to be affine and in case of intra-individual reg-
istration, the variability of the anatomy can not be described
by a rigid transformation, since many structures like, e. g.,
the brain cortex may evolve very differently in the growing
process.

Currently, multi-modal registration of images has been
tackled mainly and most successfully by information theo-
retic approaches. In this context, the concept of maximizing
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themutual informationof a pair of images is widely known.
We want to follow a different approach and assume, that at
least partially, the local image structure or “morphology”
is very similar between the images. So the approach pre-
sented here therefore concentrates on aligning objects cor-
rectly from one image onto the other. In [5] the mathe-
matical foundations of the approach have been developed
and existence for a class of registration functionals has been
proved. Furthermore more references can be found therein.
In this paper, we first want to give a review of the original
method and finally to address practical issues of the method,
especially in Section 5 describing the actual minimization
algorithm.

2. REGISTRATION VIA GAUSS MAPS

At first, let us define the morphologyM [I] of an imageI as
the set of level sets ofI:

M [I] := {MI
c | c ∈ R}, (1)

whereMI
c := {x ∈ Ω | I(x) = c} is a single level set for

the grey valuec. I.e.M [γ◦I] = M [I] for any reparametriza-
tion γ : R → R of the grey values. Up to the orientation
the morphologyM [I] can be identified with the normal map
(Gauss map)

NI : Ω → Rd ; x 7→ ∇I

‖∇I‖ . (2)

Morphological methods in image processing are character-
ized by an invariance with respect to the morphology [7].
Now, aiming for a morphological registration method, we
will ask for a deformationφ : Ω → Ω such that

M [T ◦ φ] = M [R] .

Thus, we set up a matching functional which locally mea-
sures the twist of the tangent spaces of the template image
at the deformed position and the deformed reference image
or the defect of the corresponding normal fields.



Fig. 1. Morphological defect. The isoline ofR (dark gray)
and normalNR are transformed underφ and compared to
isoline ofT (light gray) and resp.NT ◦ φ.

We aim to minimize a suitable matching energy, which
measures the morphological defect of the reference imageR
and the deformed template imageT , i. e., we ask for a de-
formationφ such thatNT ◦φ | | Nφ

R, whereNφ
R is the trans-

formed normal of the reference imageR onTφ(x)φ(MR
R(x))

at positionφ(x). From the transformation rule for the exte-
rior vector productDφ u ∧Dφv = Cof Dφ(u ∧ v) for all
v, w ∈ TxMR

R(x) one derives

Nφ
R =

Cof Dφ NR

‖Cof Dφ NR‖
whereCof A = det A · A−T for invertibleA ∈ Rd,d is the
cofactor matrix ofA, a matrix of consisting of all(n − 1)-
minors ofA.

One might be tempted to define
∫
Ω
‖NT ◦φ−Nφ

R‖2dµ.
But, for theoretical reasons [5], we avoid the normalization
appearing inNφ

R and choose the following matching energy

Em[φ] :=
∫

Ω

g0(∇T ◦ φ,∇R, Cof Dφ) dµ. (3)

whereg0 is a 0-homogenous extension of a functiong :
Sd−1×Sd−1×Rd,d → R+, i. e.,g0(v, w, A) := 0 if v = 0
or w = 0 and g0(v, w, A) := g( v

‖v‖ ,
w
‖w‖ , A) otherwise.

If we want to achieve invariance of the energy under non-
monotone grey-value transformation, the symmetry condi-
tion g(v, w, A) = g(−v, w, A) = g(v,−w,A) has to be
fulfilled.

3. AN EXISTENCE RESULT

In this section we cite the existence result given in [5]. For
the existence of a minimizer to hold, we need to control
the singularities of the images and introduce the following
image space

I(Ω) :=
{

I : Ω → R
∣∣∣ I ∈ C1(Ω̄), ∃DI ⊂ Ω s. t.

∇I 6= 0 on Ω \ DI , µ(Bε(DI))
ε→0−→ 0

}
,

whereµ denotes the Lebesgue-measure. We then obtain the
following mathematical result [5].

Theorem 1 (Existence of minimizing deformations)
Supposed = 3, T, R ∈ I(Ω), and consider the total energy
for deformationsφ in the set of admissible deformations

A := {φ : Ω → Ω
∣∣ φ ∈ H1,p(Ω),Cof Dφ ∈ Lq(Ω),

detDφ ∈ Lr(Ω), detDφ > 0 a.e. in Ω,

φ = 1I on ∂Ω}
wherep, q > 3 and r > 1. SupposeW : R3,3 × R3,3 ×
R+ → R is convex and there exist constantsβ, s ∈ R,
β > 0, ands > 2q

q−3 such that

W (A,C, D) ≥ β (‖A‖p
2 + ‖C‖q

2 + Dr + D−s)
∀A,C ∈ R3,3, D ∈ R+

Furthermore, assume thatg0(v, w, A) = g( v
‖v‖ ,

w
‖w‖ , A),

for some functiong : S2 × S2 × R3,3 → R+
0 , which is

continuous in v
‖v‖ , w

‖w‖ , convex inA and for a constantm <

q the estimateg(v, w, A)− g(u,w, A) ≤ Cg ‖v − u‖ (1 +
‖A‖m

2 ) holds for all u, v, w ∈ S2 and A ∈ R3,3. Then
E[·] attains its minimum over all deformationsφ ∈ A and
the minimizing deformationφ is a homeomorphism and in
particular detDφ > 0 a.e. inΩ.

As a useful class of examples let us examine the follow-
ing functions.

• g(v, w, A) := 1− |v ·Aw|γ , with γ ≥ 1.

• g(v, w, A) := ‖(1I−v⊗v)·Aw‖γ , with γ ≥ 1. Recall
that1I− v⊗ v = (δij − vi vj)ij is the projection onto
the plane normal tov, provided‖v‖ = 1.

4. REGULARIZATION

The morphological energies introduced are invariant for pos-
sibly very irregular modifications of a minimizing deforma-
tion φ. This indicates, that the set of minimizers is very
irregular and hence, minimizing solely the matching energy
is an ill-posed problem. As a regularization, we interprete
Ω as an isotropic elastic body and incorporate an additional
hyperelastic energyEreg,

E[φ] = Em[φ] + Ereg[φ] , (4)

which controls length, area and volume deformations sepa-
rately:

Ereg[φ] :=
∫

Ω

a||Dφ||p2 (length control)

+ b||Cof Dφ||q2 (area control)

+ Γ(det Dφ) dµ (volume control),



with Γ(D) → ∞ for D → 0,∞, e. g.,Γ(D) = γD2 −
δ ln D. Let us remark, that we want to ensure certain es-
sential properties of the minimizing deformation, especially
that no interpenetration of matter occurs, which would be
impossible to rule out with linear elastic models. Here, the
matching energy may be interpreted as contributing external
forces to an elastic modeling problem.

Fig. 2. Axial MR-CT registration of a human spine. Dot-
ted lines mark certain features visible in the reference im-
age. They are repeatedly drawn at the same position in the
other images.Top Left: reference, CT,Top Right: tem-
plate, MR.Bottom Left: deformation plot of registration.
Bottom Right: deformed templateT ◦ φ after final regis-
tration. Results have been improved by an additional fea-
ture energy

∫
Ω
|d(φ(·),FT ) − d(·,FR)|2 dµ, whered is a

weighted distance function and the “feature sets”FT , FR

here roughly mark the boundary of the body (bottom) and
the upper round part of the vertebra’s border.

5. MINIMIZATION OF THE ENERGY

We want to minimize the combined energy by a classical
descent method, i. e.,

∂tφ = d(E′[φ])

where(d(E′[φ]), E′[φ]) ≤ 0, which means thatd produces
a suitable descent direction. Examining real images, we ex-
pect the energy landscape to be very irregular and since we
are furthermore extracting the normal fields of the images,

we have to be careful whenever we compute derivatives. In
what follows, we point out some important numerical is-
sues, details are however beyond the scope of this summary.

1. If one starts the minimization directly on the finest
scale of resolution, a stable computation can of course
not be expected. Representing the input dataNT , NR

in a convenientmorphological scale spaceallows to
begin the minimization of a coarse scale, where the
energy landscape is very regular and eventually of-
fers uniqueness and successively continue the compu-
tation by stepping over to finer scales. We can select
from a wide range of well-known filters on the images
itself or alternatively work on the Gauss maps them-
selves, privilegeing directions at locations, where the
image shows significant geometrical features. In the
paper we would like to present such techniques. Here,
also the “morphology” from a clinical viewpoint may
be taken into account.

2. Since the morphological energies are depending on
the normals of the input images and in the vicinity of
significant edges the normals can be expected to be
almost constant in the perpendicular direction, a dis-
placement of edges is hardly detected by the energy.
The minimization rather focuses on correct alignment.
Often, the descent direction is given by theL2-repre-
sentation of the Frechét-derivative ofE, given by

(gradE, θ) = 〈E′[u], θ〉.

But we may favor certain properties of the descent
direction, according to the intrinsic structure of the
formulated problem. We may for example in the early
stage of the minimization privilege translations, i. e.,
low frequency updates to the deformationφ. To this
end, given a metricg, we choseg-representations of
the gradient

g(gradgE, θ) = 〈E′[u], θ〉,

which hence can be able to control such properties for
special choices of metrics.

3. The nonlinear elastic energyEreg is, as it is formu-
lated above is homogenous and isotropic. Here, also
the morphological structure may be exploited to en-
hance for example the stability of curvilinear struc-
tures or other material properties that can be derived
directly from the geometry of the images.

4. The problem is discretized using multilinear Finite
Element spaces using a nested multilevel hierarchy
for the representation of the input and deformation on
different levels with a coupling to the scale parameter.



6. CONCLUSION

The novel geometric approach presented here is especially
characterized by the invariance to not necessarily monotone
locally invertible contrast transformations. It’s design al-
lows a good interpretation of the registration, since it is
based on simple geometric entities and is locally able to re-
cover even non-rigid misalignments of the data. It is thus
suitable for the registration of multi modal data, as con-
firmed by some numerical results. Unlike for several other
registration techniques, both the theory as well as practical
issues are developed. We think that this model bears a wide
range of potential for further improvement.

Fig. 3. An artificial test example: concentric, radial isolines.
Top row: reference (left) and shifted template image with
contrast change (right).Bottom row:Initial misfit (left) and
registration result (right), computed over several scales.
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