Image Registration by a Regularized Gradient Flow
A Streaming Implementation in DX9 Graphics Hardware

R. Strzodka, Bonn, M. Droske, Duisburg, and M. Rumpf, Duisburg

Abstract

The presented image registration method uses a regularized gradi-
ent flow to correlate the intensities in two images. Thereby, an energy
functional is successively minimized by descending along its regular-
ized gradient. The gradient flow formulation makes use of a robust
multi-scale regularization, an efficient multi-grid solver and an effec-
tive time-step control.

The data processing is arranged in streams and mapped onto the
functionality of a stream processor. This arrangement automatically
exploits the high data parallelism of the problem, and local data access
helps to maximize throughput and hide memory latency. Although
dedicated stream processors exist, we use a DX9 compatible graphics
card as a stream architecture because of its ideal price-performance
ratio. The new floating point number formats guarantee a sufficient
accuracy of the algorithm and eliminate previously present concerns
about the use of graphics hardware for medical computing. Therefore,
the implementation achieves reliable results at very high performance,
registering two 2572 images in approximately 3sec, such that it could
be used as an interactive tool in medical image analysis.

AMS Subject Classification (MSC 2000): 65K10, 65Y10
Key words: image registration, gradient flow, multi-scale, multi-grid, stream
processing, graphics hardware computing, DX9 graphics hardware

1 Introduction

Image registration deals with the correlation of the intensities in two images
via a usually non-rigid deformation. This deformation may reflect temporal
changes in the image source or can compensate for unknown deformation
effects of the image acquisition technology. The analysis of temporal changes
in anatomic structures in image assisted diagnostics and surgery planning
strongly depends on robust registration of images taken at different times.
The optimal correlation between two images depends on the definition
of a coherence measure, e.g. the energy E[u] = 3 [, [T'o¢— R|?, where T, R
are the intensity maps of two images and ¢ the deformation, is designed to
minimize intensity differences. However, there may be many minimizers to

such a measure. Therefore, many regularizations of the registration problem
have been discussed in the literature [3,5,8,12,16]. The graphics hardware
algorithm in this paper follows in its implementation the gradient flow reg-
istration presented in [4]. It incorporates the ideas of iterative Tikhonov
regularization methods [9], fast multi-grid smoothing [11], and multi-scale
use for large displacements [1]. The model will be summarized in the next
section. The implementation in this paper focuses on a basic intensity based
model. Morphological image matching is to be considered in the future.

Modern graphics hardware can be used for very complex procedural tex-
turing and shading [14, 15] allowing an enormous range of visual effects.
But optimization of graphics cards for the processing of large data volumes
made them also attractive for scientific computing. We refer to [7] for a
comprehensive overview of the literature on general purpose computations
on graphics hardware. The most related work in this context is that on
multi-grid solvers also discussed in [2,6], where they have been applied to
fluid dynamics. Here, we use the multi-grid hierarchy for both a fast linear
equation solver and as an efficient representation of our problem-regularizing
multi-scale hierarchy. We also pioneer the graphics hardware based adaptive
time-step control governed by Armijo’s rule.

Previously the application area of graphics hardware in scientific com-
puting was severly restricted by the low number precision (8 bit) and the
limited number of available operations. The DX9 generation has overcome
these problems by introducing a floating point number format and a set of
the most common mathematical operations. Together with an access from
high level languages to these features, most of the code running on common
micro-processors could be coded for graphics hardware as well. But this does
not mean that every problem can be accelerated in this way, rather the anal-
ysis of the problem structure must determine the choice of the appropriate
hardware architecture. So while in the past the challenge of graphics hard-
ware accelerated implementations lay in the pure realization of the problem
solver in the restricted functionality, today the challenge lies in the con-
struction of problem solvers whose data-flow structure ideally exploits the
parallel stream architecture of graphics hardware.

Image processing applications are perfectly suited for parallel streaming
implementations on graphics hardware. On the one hand, image sizes are
growing with ever higher resolution image acquisition devices, while near
real time performance is frequently required, in particular in medical imag-
ing, e.g. in intra surgical image guided diagnosis. On the other hand, in
contrast to many other simulation applications numerical accuracy is usually
not the ultimate goal in image processing. Instead, one aims for stability
of the algorithm and the preservation of the main qualitative effects of the
continuous models. This can usually be achieved with lower precision for-
mats, such that the lack of higher internal precision computation and the
double float format in graphics hardware is acceptable.

In this paper we prove that complex high level, multi-scale, PDE based
methods can be implemented efficiently on recent graphics hardware. Non-
rigid image registration is known to be one of the most cost intensive tasks.
Basically, all computations in the algorithm, in particular multi-grid V-
cycles, computation of energy functionals and their derivatives, time-step
control, and image prolongation and restriction are computed on the graph-
ics card, such that we constantly take advantage of its superior memory
bandwidth and throughput.

Even considering the newest features in the DX9 graphics hardware, how-
ever, graphics cards are still not the ideal platform for the implementation
of such stream based algorithms. Reconfigurable computing architectures
or dedicated stream processors offer more flexibility in the optimization of
the data pipeline for a given application and thus offer higher performance
for the same transistor count [10]. However, the price-performance ratio
is unrivaled for graphics cards as their mass production drives a constant
advancement similar to Moore’s Law known for micro-processors but at a
more than squared pace, doubling the performance of high-end products in
less than 9 months for the same price. Since this development will most
likely continue for at least several more years, graphics cards are an ideal
basis for inexpensive fast streaming implementations and may even become
the main target platform for such tasks, unless reconfigurable computing
platforms or dedicated stream processors become more cost efficient.

2 Gradient Flow Registration

2.1 Continuous Model

Given two images, a template and a reference T,R : Q@ — R, Q C R?, we
look for a deformation ¢ : — £ which maps the intensities of T via ¢ to
the intensities of R such that To¢ ~ R. Since ¢ will be small in comparison
to || it can be suitably expressed as ¢ = 14+ u, with a displacement function
u. The displacement u is sought as the minimum of the energy

Bl =5 [170 0+u)~RE.

A minimizer u in some Banach space V is characterized by the condition
E'[u] = 0, where the L2-representation of E' is given by

F'lul = (To(l+u)—R)VTo(ll+u). (1)

This gradient may be used as the descent direction towards a minimum
in a gradient descent method. But there may be many minima since any
displacements within a level-set of T' do not change the energy. Therefore the

descent along the gradient will be regularized by A(o)™!, with A(o):=1—
";A for some o € RT. Then the regularized gradient flow

O = —A(o) LE'[u]

with u(0) = up, has a unique solution u with u(t) € V, for some function
space V ([4, Theorem 3.1]).

Despite this uniqueness the gradient descent path may easily get trapped
in a local minimum instead of finding the global minimum of FE, since the
energy F is non-convex. Therefore, a continuous annealing method is used
by defining a multi-scale of image pairs

Te= S(e)T, Re=S(e)R, (2)

for € > 0 with a filter operator S(-). The choice S(¢) = A(e)~! corresponds
again to Gaussian filtering. The energy

am=§4uwa+m—mﬁ 3)

induces the corresponding gradient flow on scale €, which has the solution

Ue(+)-

2.2 Discretization

Time is discretized by the explicit Euler scheme

un—i—l —u? A
S = A B,

where 7" is determined by Armijo’s rule.

E. [u?] — Ee [U?+1]
T EL[ur], AT E [u?])

¢, (4)

for ¢ € (0, %) This allows an adaptive acceleration of the gradient descent
towards a minimum.

Finite-Elements are used for the discretization in space. Let {¥%};cs, be
the canonical nodal basis of the linear finite element space V". Suppose U™
is the nodal vector at the n-th time-step. Then we obtain the fully discrete
scheme

Urt =0 — 10 Ap(o) T E[U7], (5)

where the matrix Ay (o) is the discrete counterpart of the operator A(o) in
VP [4]. We apply this formula to compute an approximate solution UNe on

scale € by iterating it N, times until the update is sufficiently small in the
L? norm:

|7 A (o) ELON|S < 6. (6)

Since multi-grid solvers are the most efficient tools in solving linear sys-
tems of equations, the gradient smoothing Ay,(0)~tE/[U"] is performed as
a multi-grid V-cycle with Jacobi iterations as smoother and standard pro-
longation and restriction operators. Indeed, to ensure an appropriate regu-
larization it suffices to consider only a single multi-grid V-cycle

MGM(o) ~ Ap(o)™? (7)

with few intermediate Jacobi steps on each grid. The same applies to the
generation of the multi-scale of images (Eq. 2) with the filter operator
S() = A(e)™.

The image scales are chosen exponentially increasing, i. e. we consider
scales (eg)k=0,.. K, € N with g = 0 being the finest and ex the coarsest
scale. We reduce the number of necessary computations for large scales by
defining a pyramid of grids (Q,)i=o,....1, i = 2!=L and resolving the images
T¢, and R,, on the coarsest grid), for which

e > a-hy (8)
for some a € [35,2] still holds (cf. Figure 1), i.e. we have a monotone
mapping [: € — [(e;). Thus computations on coarse scales are performed
on small grids and only the last few scales represented on the finest grid p,

consume the full processing power. For very coarse scales the function [is
bounded from above

Vk:l(ex) <Ly < L, (9)

to avoid the computation of initial deformations on very small grids, e.g. €2},
is only a 2x2 grid. Typical choices for the initial grid are L — Ly € {2, 3}.
Naturally, the multi-grid V-cycle (Eq. 7) is not affected by this bound and
uses all grids in the hierarchy. For further details of the algorithm we refer
to [4].

3 Hardware Implementation

3.1 Some fundamentals

In the following we give a simplified view on the DX9 graphics pipeline to
facilitate the understanding of the implementation for those unfamiliar with
the architecture. The DX9 graphics pipeline contains two main distinct
programmable parts, the vertex and the fragment processor (Figure 2). The

Figure 1: The multi-grid hierarchy encoded in textures of different spatial
resolution. Each grid level serves for the representation of several scales of
the multi-scale hierarchy.

vertex
K fragments [.
dais ¥ ' =1L | pbuffer

TEXTIres

vertex plas
data

values

Figure 2: A simple diagram of the DX9 graphics pipeline. Light gray rep-
resents data containers, dark gray processing units. In each pass a different
texture can serve as the target pbuffer for the output data stream.

vertex processor takes input data associated with a vertex, such as vertex
and texture coordinates, normals, colors, lighting coefficients. Each vertex
is processed separately with no interaction to other vertices. The vertex
program uses the input values to compute the vertex window position, two
colors and eight texture coordinates. The hard-wired rasterizer interpolates
the above values for each pixel enclosed by the vertices of the figure which is
currently being drawn, e.g. a triangle. These interpolated values comprise
a fragment and are sent individually to the fragment processor.

The fragment processor can perform many mathematical operations on
the values and can also retrieve additional data from arbitrary positions
of up to 16 textures. The computations, however, cannot alter the window
position but only decide which final color will cover the pixel at that position
or choose to discard the fragment.

As the vertices and fragments are processed individually they form streams

of data which may be quickly processed in parallel. The processing of
streams achieves highest performance if the data streams are large and the
texture accesses in the fragment processor use only neighboring texture val-
ues, such that bandwidth-efficient memory burst-modes can be used and
latency can be hidden with small local caches. The ingredients of the gradi-
ent flow registration impose a data-flow which fulfills these conditions very
well.

3.2 Data-flow

The two dimensional input images 7" and R are represented as 2D textures
on the finest grid Qp,. The multi-grid hierarchy (£,);=0,... 1 corresponds
to textures of successively smaller size (Figure 1). Several such hierarchies
are reserved in graphics memory to store any intermediate results, because
once the two images T' and R are stored in graphics memory all operations
are performed on the graphics card. In the end the final result is displayed
directly from the graphics memory onto the screen, such that no image
transfer between the main memory and the graphics card takes place. This
is advantageous, since the memory bandwidth on-board is still much higher
than over the AGP bus.

All textures are implemented as floating point pbuffers, i.e. graphics
buffers which can be used alternately as a source or destination of a data
stream. Computations are performed by loading a computational kernel
to the programmable fragment processor, e.g. a prolongation kernel, and
streaming the texture operands through that kernel into a target pbuffer.
Thereby the vertex processor is used to generate the texture coordinates for
the access to neighboring values in textures. The target pbuffer can then be
used as a texture operand in the succeeding operation (Figure 2).

3.3 Algorithm

The algorithm consists of up to three nested loops, the scale loop (Eq. 10),
the update loop (Alg. 11), and the independent inner loops of the multi-grid
V-cycle (Eq. 7) and the energy evaluation by Armijo’s rule (Eq. 12).

The scale loop with index k runs from the coarse (ex) to the fine (eg)
scale representations and uses the prolongation operator to transfer data
onto finer grids. It starts by setting the initial displacement UEOK on the
coarsest scale €x to zero. Then the gradient flow (Alg. 11) at this scale

computes from this vector the approximate solution U,”*. This solution
is used as the initial displacement UBK—I at the next finer scale ex_;. This
process

o
vl = 0, (10)
g0 = T

continues for k = K, ..., 1 until the final solution Ug‘o on the finest scale ¢q
is obtained. If the scales €, €x_1 are represented on different grids (cf. Eq.
8), i.e. l(ex—1) < l(eg), then a prolongation operator is used to transfer the
vector from the coarser grid th(%) to the finer th(ek_ﬂ'

The update loop with index n performs the gradient descent on a fixed
scale € (we therefore omit the index k) until the change in data becomes
sufficiently small (Eq. 6). We list the implementation of the discrete scheme

(Eq. 5) for the gradient flow problem on scale € in pseudo-code notation:

gradient flow at scale € { B o) (11)
compute new image scales T, = MGM(e)T,R. = MGM(e)R;
for each n {

evaluate energy gradient E/[U"] (Eq. 1);

perform smoothing multi-grid V-cycle MGM(o) E/[U™];
evaluate 77" by Armijo’s rule (Eq. 12);

compute new solution U = U" — 7"MGM(o) E![U?];
break loop if ||[T"MGM(c)E" [U”]||2 < 6;

The first inner loop performs the multi-grid V-cycle (Eq. 7). Starting
on the current grid th(%) we apply the Jacobi smoother a few times to
the afore computed energy gradient (Eq. 1). Then the remaining residuum
is restricted onto the next coarser grid th<6k) .1~ This process of Jacobi
iterations with succeeding restriction of the remaining residuum to the next
coarser level continues until the coarsest grid level €}, is reached. Here we
can solve the linear equation system exactly. The solution is prolonged to
the next finer level and added to the result of the previous Jacobi iterations
on this level. The Jacobi smoother is then applied to the sum several times
and the result is again prolonged to the next finer level. We continue in this
way until we arrive at the grid €2y, () from which we started. The result of
the Jacobi smoother on this level is the final result of the multi- grid V-cycle.

The second inner loop, the energy loop, determines for each update the
maximal time-step width 70 which satisfies Armijo’s rule (Eq. 4), i.e. we
maximize 7 in

U] — Eq,, [U2 — TMGMy(, (o) EL, [U]] (12)

> or (B 021 MCMy (o) EL [O2)),,

In the above formula only the energy E, [U! — TMGM;(,)(o%)EL [U2]]

€k
which depends non-linearly on 7 needs to be recomputed iteratively.

3.4 Computational Kernels

The different parts of the algorithm are performed by streaming texture
operands through different fragment processor kernels:

1 FragOut
2 jacobiFP (Frag2din IN,

3 uniform sampler2d Tex B : texunitO,

4 uniform sampler2d Tex_ X : texunitl,

5 uniform float scale)

6 {

7 FragOut OUT;

8

9 float2 tex_B= f2texRECT(Tex_B, IN.cCoord.xy);

10 Stencil3z3r2 tex_X; texStar8(tex X, IN, Tex X);
11
12 float2 LN= (+ tex_X.mp + tex_X.cp + tex_X.pp

13 + tex_X.mc + + tex_X.pc

14 + tex X .mm + tex_X.cm + tex X.pm)x(1/8.);
15 OUT.col= lerp (LN, tex_B, scale);

16

17 return OUT;

18 }

Listing 1: Implementation of the kernel of the Jacobi solver for A;, X = B in the
graphics language Cg. Bold keywords belong to the language specification, italic
ones are predefined types and functions of a self-made library which facilitates the
access to neighboring nodes in a texture. Lines 9,10 assign local variables to data
elements of the input data streams (given by the textures Tex B, Tex X), and the fol-
lowing lines define the actual processing of the data elements with the computation
of the convolution and the linear interpolation: lerp(a,b,c) :=(1-c)a+cb.

e Smoothing with the multi-grid V-cycle MGM,(0):

— Prolongation operator.

— Restriction operator.

— Residuum computation U" — Aj, X..
— Jacobi iterations with Ay,.

e Energy functional:

— Computation of the error e.:= T, o (]l_—l— (:]6”) —R..
— Computation of the energy gradient E![U"].

o Utilities:

— Multiply and accumulate.
— Evaluation of the lumped L? scalar product (.,.),.

All these kernels have been programmed in Cg [13], a high level graphics
programming language. Listing 1 shows the implementation of the Jacobi
kernel for the fragment processor. A different program in the vertex pro-
cessor generates the texture coordinates in the structure Frag2dIn IN for
the access to the neighboring nodes. The other parameters of jacobiFP
are set in the application during the configuration process of the graphics
pipeline (Figure 2). Listing 2 shows the pipeline configuration in a C++

1 tex [TEXN].toTexture (MGlev);
2
3 cgGLSetStateMatrixParameter (ver Var [VPNEIGH2D | [VV.MVP] ,
4 CG.GLMODELVIEW PROJECTION MATRIX, CG_GLMATRIXIDENTITY);
5 cgGLSetParameterdfv(fragVar [FP_JJACOBI|[FVSCALE], scale);
6 cgGLBindProgram(verProg [VP NEIGH2D]);
7 cgGLBindProgram (fragProg [FP_.JACOBI]);
8
9 tex [TEXB].bind (MGlev, GL.TEXTUREOARB):;
10 tew [TEXX]. bind (MGlev, GL.TEXTURELARB);
11
12 drawTex(tex [TEXN].pos [MGlev], tez[TEXN]. size [MGlev],
13 tex [TEXB].pos[MGlev], tez[TEXB]. size [MGlev],
14 tex [TEXX].pos [MGlev], tez[TEXX].size [MGlev]);
15

16 tex [TEXN].fromTexture (MGlev);

Listing 2: Configuration of the graphics pipeline and data streams for the execution
of the Jacobi kernel in Listing 1. Bold keywords are functions of the Cg API,
italic once are predefined arrays pointing to texture objects, vertex and fragment
programs and their variables. The first line sets the target pbuffer for the output
data stream. At the end (line 16) we release the pbuffer, such that it can be used
as a texture operand in the next pass. Lines 6,7 configure the vertex and fragment
processor with the kernel programs. Line 5 sets the scale parameter, lines 9,10 bind
the textures TEX_B,TEX X as input data streams for jacobiFP (Listing 1). Finally,
line 12 sends the geometry of the current multi-grid level (MGlev) to the vertex
processor and thus initiates the execution of the Jacobi iteration in the graphics
pipeline (Figure 2).

program for the execution of one iteration of the Jacobi solver. This dual
programming model given by ’configware’ which configures the processing
elements, and 'flowware’ which prescribes the flow of the data streams is
typical for data stream based architectures [10]. It has the great advan-
tage that the individual elements of the data streams are assembled from
memory before the actual processing. This allows the optimization of the
memory access patterns, minimizing latencies and maximizing the sustained
bandwidth. Unimodal software programs used for instruction stream based
architectures, e.g. micro-processors, allow only a limited prefetch of the
input data, based on predictions of conditional jumps in the instruction
stream.

All kernels perform their task in one pass except for the lumped discrete
L? scalar product. Usually, it is evaluated by a component-wise multiplica-
tion and an iterative addition of local texels, but such a procedure involves
a global access to all texels of a texture and would need a global register
for accumulation, which is currently not supported in graphics hardware.
Hence, we consider a hierarchical implementation with several passes. After
the component-wise multiplication we consecutively halve the size of the re-

10

Figure 3: Elimination of low frequency deformations on 5132 images in
9.8sec. We see that apart from the image boundary where sufficient infor-
mation is missing, the deformation can be completely eliminated.

sulting texture by applying local filters which sum up the local texel values.
This step is repeated from the finest up to the coarsest grid level such that
the final result of this hierarchical summation can be retrieved from the
coarsest level as a single value for further processing by the CPU.

The energy computation E, [U" — 7MGM;,)(o%)E., [U]] required in
the evaluation of Armijo’s rule (Eq. 12) requires such a lumped discrete L?
scalar product. Thus we compute

Ve = Ul —7MGMy,)(ow)EL, [U2],
_ 1, - -
Efk [VT] - §<VT7 VT>hl(ek))

where the scalar product is implemented as the hierarchical summation de-
scribed above.

3.5 Results

Now, we present various results of our registration method. The correspond-
ing figures show six different tiles, which are are arranged in the following
way: on the upper left we see the template which should be deformed to fit
the reference image to the right of it; on the lower left we see the computed

11

Figure 4: Elimination of strong high frequency distortions on 5132 images
in 9.5sec. The algorithm performs well for high frequencies. Only some am-
biguous situations around the strongly deformed small dark squares cannot
be resolved.

deformation applied to a uniform grid and to the right the registration result,
i.e. the template after the deformation. The rightmost column shows the
quadratic difference between the template and the reference image before
(upper row) and after (lower row) the registration. With one exception the
differences are scaled with a factor 10 and grey values are clamped at black
and white, otherwise one would hardly see anything on the error images
after registration.

We have tested the algorithm with three different data sets: low and
high frequency distortions (Figures 3, 4), large rigid deformations (Figures
5, 6) and medical data sets (Figures 8, 9).

All examples use the same parameter set. Naturally the registration
results can be further improved or accelerated by optimizing the parameters
for a given problem, but then the time and quality necessary to obtain
certain registration results would depend on the hardly quantizable abilities
of the user to find the best parameters. The standard parameter set uses 15
different scales, up to 10 iterations of the update loop and up to 10 iterations
of the energy loop. We say 'up to’ because the loops are aborted if the update
is too small. The smoothing multi-grid V-cycle uses 3 Jacobi iterations on
each grid both up and down the V-cycle. During the registration process the

12

Figure 5: Registration of a large scale rigid deformation on 2572 images in
3sec. The multi-scale approach allows to reconstruct even large deforma-
tions. However, without additional assumptions on the deformation model,
the computed deformation might significantly differ from our expectations.

parameter oy, is exponentially decreasing similar to the scales €, such that
O’i/h?(%) € [1,4] and thus the condition of Ahye,) (0%) is uniformly bounded.

Figures 7 and 11 show the decrease of the energy against the overall
number of update iterations in the process of registering the examples 6
and 9 respectively. Each point in the graph stands for a gradient descent
step (Eq. 5), which includes the computation of the energy gradient, the
smoothing with the multi-grid V-cycle, evaluation of Armijo’s rule and the
update of the solution (cf. Alg. 11). The graph discontinuities indicate
scale changes (€x — €r—1), while the X’s on the x-axis represent changes of
the grid level in the multi-grid hierarchy (25, — Q4,_,). The number of the
X’s depends on the choice of the grid used for the computation of the initial
deformation (Eq. 9).

Usually each scale change increases the energy, because less smoother
data is used in the computation of the differences (Eq. 3). This effect can
be sometimes particularly large for the last scale change, because on scale
€0 = 0 no smoothing of the images takes place. Introducing more scales,
especially for the finest grid can lessen this effect, such that the energy
graph looks nicer, but since the overall energy is hardly reduced in this way,
we have not included these additional costly iterations on the finest grid

13

Figure 6: Registration of a rotated 2572 image in 5.9sec. This is a very
hard test for the non-rigid registration, which takes exceptionally long to
finish for this image size, since without any a priori knowledge about the
underlying rotation there are many possibilities to match the similar grey
levels against each other. Obviously in the area of the body the inverse
rotation could be identified by the algorithm, whereas the background is
rather poorly registered. This outlines that even without the guidance of a
concrete deformation model the method performs well for large deformation
if the structures to be matched are sufficiently pronounced.

in the standard parameter set. Sometimes we observe energy decreases at
the time we change the grid level in the multi-grid hierarchy (Figure 11).
We reckon that this effect is due to the additional smoothing caused by the
prolongation operator, which decreases the local error in areas of smooth
deformations.

3.6 Performance

The implementation depends on the programmability of the computational
kernels from Subsection 3.4 and thus requires a DX9 compatible graphics
card. We have used a card powered by the GeForceFX 5800 Ultra chip
from NVIDIA. The computations were performed either in the standard
s23e8 full float or a graphics specific s10e5 half float format. The results for
both formats are very similar which is an indicator for the stability of the

14

-4.5

log10 energy —&—

B4 r

B4

Figure 7: The decrease of the energy against the overall number of update
iterations (Eq. 5) in the process of registering the images from Figure 6.
The structure of the graph is explained at the end of Subsection 3.5.

algorithm. The performance also varies only slightly in favor of the smaller
format as there exists a sufficient bandwidth in comparison to the number
of operations in the kernels to transport the full float values.

The complete initialization of the program, including the reading of the
images from the hard disk and the configuration of the graphics hardware
takes up to bsec. The duration of the registration itself depends on the size
of the images and the number of actual passes, since several loops allow
adaptive loop abortion. In general, the registration of 2572 images takes
approx. 3sec and up to 10sec are needed for fully distorted 5132 images.
But for even larger (513 x 769) medical data, often less time is required
(8.5sec) because for such data the deformations are usually not so severe
(Figure 9). An estimated software performance for this data set based on
the highly optimized implementation in [4], which actually deals with 3D
data, would amount to 34sec and thus 4 times more time than the graphics
implementation requires.

We expect this factor to grow rapidly in the future, because graph-
ics hardware performance is increasing much faster than the predictions
of Moore’s Law for micro-processors. Beside higher clock frequencies and
wider data buses NVIDIA’s GeForce 6800 and ATI’s Radeon X800 already
execute up to eight times as many operations per clock cycle as the graphics

15

Figure 8: Elimination of a possible acquisition artifact for a medical 2572
image in 2.2sec. Here we have an example were some areas must expand
while others must shrink to fit the reference image. The matching works
well apart from the small fluctuation in the lower left part. Such deviations
are striking to our perception but have little effect on the overall energy,
because they reflect mismatches of the morphology rather than grey level
deviations. Therefore additional morphological energy components will be
considered in the future.

processor we used. Moreover, the performance of the algorithm is currently
also restricted by the lack of an appropriate functionality in the interface.
It is an known problem that switching between different pbuffers as des-
tinations requires a general context switch and is therefore unnecessarily
slow. This means that our algorithm is often busy switching context data,
instead of doing the actual computations, which themselves are very fast.
This bottleneck will disappear as soon as the currently developing mecha-
nism for pbuffer switches within a context has been included in the graphics
interface.

4 Conclusions

An implementation of the non-rigid gradient flow registration in DX9 graph-
ics hardware has been presented. The performance of such a stream archi-
tecture has been exploited by implementing the algorithm in the form of

16

computational kernels which operate on large streams of data coming from
and directed to pbuffers. Moreover, the multi-scale representation and the
multi-grid solvers can be realized very naturally in graphics hardware. The
use of floating point number formats also offers sufficient precision for the
implementation of an adaptive time-step control and early loop abortion.
Missing functionality in the graphics interface currently limits performance,
but even now large images can be registered in a few seconds, and image
assisted diagnostics could already benefit from this tool.

A transfer of the algorithm to 3 dimensional data sets is fairly straight
forward, however, in 3 dimensions even the high throughput of current
graphics processors cannot compensate the growth in data volume for high
resolution images. Hence, we are aiming for an adaptive image processing
in graphics hardware. Furthermore, we will consider the efficient matching
of image morphologies, which would enable the registration of images of
different image modalities, such as CT and MRI.

Acknowledgments

Marc Droske was supported by the DFG within the special research program
on time sequence analysis and image processing.

References

[1] L. Alvarez, J. Weickert, and J. Sdnchez. Reliable estimation of dense
optical flow fields with large displacements. International Journal of
Computer Vision, 39:41-56, 2000.

[2] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder. Sparse matrix solvers
on the GPU: Conjugate gradients and multigrid. In Proceedings of
SIGGRAPH 2003, 2003.

[3] G. E. Christensen, S. C. Joshi, and M. I. Miller. Volumetric trans-
formations of brain anatomy. IEFE Trans. Medical Imaging, 16, no.
6:864-877, 1997.

[4] U. Clarenz, M. Droske, and M. Rumpf. Towards fast non-rigid regis-
tration. In Z. Nashed and O. Scherzer, editors, Contemporary Mathe-
matics, Special Issue on Inverse Problems and Image Analysis. AMS,
2002.

[5] C. A. Davatzikos, R. N. Bryan, and J. L. Prince. Image registration
based on boundary mapping. IEEE Trans. Medical Imaging, 15, no.
1:112-115, 1996.

[6] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys.
A multigrid solver for boundary-value problems using programmable

17

[10]

[11]

[12]

graphics hardware. In Furographics/SIGGRAPH Workshop on Graph-
ics Hardware, 2003.

GPGPU. GPGPU - general purpose computation using graphics hard-
ware. http://www.gpgpu.org/. Mark J. Harris (Ed.).

U. Grenander and M. I. Miller. Computational anatomy: An emerging
discipline. Quarterly Appl. Math., LVI, no. 4:617-694, 1998.

M. Hanke and C. Groetsch. Nonstationary iterated Tikhonov regular-
ization. J. Optim. Theory and Applications, 98:37-53, 1998.

R. Hartenstein. Data-stream-based computing: Models and architec-
tural resources. In International Conference on Microelectronics, De-
vices and Materials (MIDEM 2003), Ptuj, Slovenia, Oct. 2003.

S. Henn and K. Witsch. Iterative multigrid regularization techniques
for image matching. SIAM J. Sci. Comput. (SISC), Vol. 23 no. 4:pp.
1077-1093, 2001.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens.
Multi-modal volume registration by maximization of mutual informa-

tion. IEEE Trans. Medical Imaging, 16, no. 7:187-198, 1997.

NVIDIA. Cg programming language.
http://developer.nvidia.com/view.asp?PAGE=cg_main, 2002.

M. S. Peercy, M. Olano, J. Airey, and P. J. Ungar. Interactive multi-pass
programmable shading. In K. Akeley, editor, Siggraph 2000, Computer
Graphics Proceedings,, Annual Conference Series, pages 425-432. ACM
Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan. A real-time
procedural shading system for programmable graphics. In E. Fiume, ed-
itor, SIGGRAPH 2001, Computer Graphics Proceedings, Annual Con-
ference Series, pages 159-170. ACM Press / ACM SIGGRAPH, 2001.

J. P. Thirion. Image matching as a diffusion process: An analogy with
Maxwell’s demon. Medical Imag. Analysis, 2:243-260, 1998.

18

Figure 9: Registration of two brain slices of the same patient taken at dif-
ferent times on 513 x 769 images in 8.5sec. As the slices were extracted from
3D volumes some anatomical structures are not present in both images and
lead necessarily to an error in the registration result, especially in the upper
right parts of the images. Also in contrast to the other examples the grey
values of the corresponding structures have not exactly the same value such
that a small error is present even in the case of perfect fit of image edges
(left scull). For this reason, here the error images on the right are not scaled.
The algorithm, however, is not distracted by the different grey levels and
complements missing data fairly smoothly. In particular the edges are
matched nicely. Figure 10 shows the scaled error in the interior of the
images.

19

Figure 10: These images show the enlarged central part of the error images
from Figure 9. Here the error has been multiplied by 10 again. The images
demonstrate that the algorithm does also a good job in matching the central

areas.

5.4

log10 energy —s—

BE5

higa s s VU

M%%m

- RM%M

75 F

Figure 11: The decrease of the energy against the overall number of update
iterations (Eq. 5) in the process of registering the images from Figure 9.
The structure of the graph is explained at the end of Subsection 3.5.

20

Robert Strzodka
caesar research center
Postfach 120 260
53044 Bonn
Germany
strzodka@caesar.de

Marc Droske

Universitat Duisburg-Essen
Lotharstr. 65

47048 Duisburg

Germany
droske@math.uni-duisburg.de

Martin Rumpf

Universitat Duisburg-Essen
Lotharstr. 65

47048 Duisburg

Germany
rumpf@math.uni-duisburg.de

21

