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Abstract. Immunotherapy is currently revolutionizing the treatment of
cancer. Detailed analyses of tumor immune cell interaction in the tumor
microenvironment will facilitate an accurate prediction of a patient’s
clinical response. The automatic and reliable pre-screening of histolog-
ical tissue sections for tumor infiltrating immune cells (TILs) will sup-
port the development of TIL-based predictive biomarkers for checkpoint
immunotherapy. In this paper, a learning approach for image classifi-
cation is presented, which allows various pattern inquires for different
types of tissue section images. The underlying trainable reaction diffu-
sion model combines classification and denoising. The model is trained
using a stochastic generation of training data. The effectiveness of this
approach is demonstrated for immunofluorescent and for Hematoxylin
and Eosin (H&E) stained melanoma section images. A particular focus
is on the classification of TILs in the proximity to melanoma cells in
an experimental melanoma mouse model and in human melanoma. This
new learning approach for images of melanoma tissue sections will refine
the strategy for the practical clinical application of biomarker research.

1 Introduction

The clinical success of immune checkpoint inhibitors has proven the importance
of immune surveillance of tumors for the survival of patients with a variety of ma-
lignancies, particular with melanoma. However, primary and acquired resistance
to immunotherapy limit the therapeutic efficacy for many cancer patients. Thus,
there is a growing need to identify predictive biomarkers and to enhance our un-
derstanding of the complex interactions between the immune system and tumor
cells. Using melanoma tissue sections, it has been shown that tumor infiltrating
CD8+ immune cells and their distribution within the tumor microenvironment
are promising predictive biomarkers [1,2].
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This paper deals with a variational network learning approach for the de-
tection of these biomarkers. There are diverse deep learning approaches for the
automatic detection and classification of cell markers in the context of computer-
aided cancer diagnosis. E.g. in [3], Sirinukunwattana et al. employed a spatially
constrained convolutional neural network for the detection of relevant cell nuclei
using a neighboring ensemble predictor to incorporate the spatial structure of
the cells. In [4], a classification of epithelial and stromal cells based on a deep
convolutional neural network is performed, where the quality of the outcome is
compared to handcraft feature extracted datasets. For a recent overview of deep
learning methods for classification and segmentation tasks in digital pathology
we refer to [5].

In this paper, we take into account the trainable nonlinear reaction diffusion
model (TNRD) [6] from image denoising, where the parameters in each time step
are degrees of freedom. We minimize an L2 loss functional over these degrees
of freedom. The acquisition of training data from real histological sections is
out of reach, since for each section a substantial amount of user interaction of
an experienced pathologist would be needed and a robust loss function decay
requires large sample sizes of such tissue sections. Hence, we train the proposed
model with training data generated via a stochastic cell distribution algorithm,
mimicking structure, color distribution and noise of real histological sections of
cancer tissues.

2 Materials and Methods

In what follows, we will present the learning approach, the generator of training
data and the image acquisition.

2.1 A “deeper” variational network

Assume, we have given a blurry and noisy N1 × N2 color image urgb0 ∈ Urgb =
([0, 1]3)N1×N2 together with an initial segmentation mask um0 ∈ [0, 1]N1×N2 . Our
aim is to compute a combined color- and segmentation image u = (urgb, um) ∈
Urgbm = ([0, 1]4)N1×N2 by using a “deeper” extension of the TNRD model. The
proposed model performs Nt projected gradient steps of the form

ut+1 = projUrgbm(ut −∇Et(ut)) for t ∈ {0, . . . , Nt − 1}, (1)

where the projection operator projUrgbm refers to a simple pointwise truncation
to the interval [0, 1]. Observe that the effective step size of the gradient descent
will be defined by means of the parameters of the learned model. Since this model
evolves the gradient of a time-dependent variational model Et, it is also referred
to as “variational network” [7]. In this paper we propose to use the following
variational model:

Et(u) =
∑
F2

φ2t (K
2
t φ

1
t (K

1
t u)) + λt

2 ‖Ru− urgb0 ‖22. (2)
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The first term is a smoothness term, which is based on a composition of con-
volution operators and pointwise non-linear functions. The learned convolu-

tion operator K1
t = (K1,1

t , . . . ,K
1,Nf1
t ) : Urgbm 7→ F1 implements a set of

Nf1 2D convolutions to compute the feature space F1 = RN1×N2×Nf1 . Next,
learned non-linear functions φ1t : F1 7→ F1 are applied in a pointwise man-
ner in order to apply a non-linear transformation to the feature space F1. This
feature space is then again filtered by a second set of convolution operators

K2
t = (K2,1

t , . . . ,K
2,Nf2
t ) : F1 7→ F2 which implement Nf2 learned convolution

operators. This gives the second feature space F2 = RN1×N2×Nf2 which is once
more transformed by applying learned non-linear functions φ2t : F2 7→ F2. The
final regularization term is then given by taking the sum over all elements of F2.

The second term is a data fidelity term, which is given by the squared L2-
norm between the current image u and the initial image u0. The linear opera-
tor R : Urgbm 7→ Urgb is used to restrict the norm to the RGB channels of u.

In our iterative scheme (1), we evolve the gradient of the variational mo-
del (2). By virtue of the chain rule, the gradient is given by

∇Et(u) = (K1
t )>φ1′t (K1

t u)(K2
t )>φ2′t (K2

t φ
1
t (K

1
t u)) + λtR

>(Ru− urgb0 ) , (3)

where φ1′t and φ2′t denote the derivatives of the pointwise non-linear functions.
Similar to the TNRD model [6], the functions φit are parameterized using

Gaussian radial basis functions with weights wit ∈ RJ and the convolution oper-
ators K1

t and K2
t are given by small convolution kernels. Thus, the overall pa-

rameters for the model that have to be learned are θ = (K1
t , w

1
t ,K

2
t , w

2
t , λt)

Nt
t=1.

As initial data for the denoising and classification we consider u0 with uRGB0

being the actual tissue section image and um0 as uniformly distributed noise.
Let us now briefly describe our learning procedure. Given a set of sample

pairs ((urgb0 , um0 )s, (g
rgb, gm)s)

S
s=1, the training problem is defined as

min
θ∈T

S∑
s=1

1

6
‖(urgbT )s − (grgb)s‖22 +

1

2
‖(umT )s − (gm)s‖22 , (4)

where grgb and gm define the target images and masks, respectively. The set
T = {(K1

t , w
1
t ,K

2
t , w

2
t , λt) : ‖K1,i

t ‖2 ≤ 1, ‖K2,j
t ‖2 ≤ 1, λt ≥ 0, i = 1...Nf1 , j =

1...Nf2 , t = 1...Nt} is the set of admissible model parameters. Observe that these
constraints are essential to avoid a scaling problems between the filter and the
corresponding non-linear functions. The coefficients in (4) ensure a balance of the
loss between image reconstruction and cell detection. To solve this variational
problem, the Adam optimizer [8] is employed, where a projection of θ onto T is
performed after each gradient step.

2.2 Stochastic generator of training data

Our training data for the two prototypic scenarios considered here is based on a
comparably simply structural description: ellipsoidal shapes for the different cell
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Table 1. Cell specific data of all scenarios.

category mean color
semi axes

number/placement
(pixels)

(1)

tumor cell green 20 − 35 60 cells, random placement

tumor nucleus light blue 8 − 12 only 60% visible

immune cell red 8 − 20 40 cells, random placement,

no overlapping

immune cell nucleus blue 7 − 8 only 60% visible

stroma/ blue 5 − 15 40 cells, random placement,

dediff. melanoma no overlapping

(2)

tumor cell light purple 15 − 25 5 of 7 Voronoi regions filled,

no overlapping

tumor nucleus purple 3 − 10 only 60% visible

immune cell violet 4 − 8 2 of 7 Voronoi regions filled,

no overlapping

components, a stochastic placement of these primitives, and an additive noise
generation for the cells and background color. We consider two different tissue
section image classes:

The aim of scenario 1 is the detection of the direct contact of immune cells
with melanoma cells in immunofluorescent stained melanoma sections. Scenario 2
analyzes the pattern/invasion of tumor infiltrating immune cells in H&E stained
melanoma sections.

The essential guidelines for the data generation are (for details see Table 1):

– All cells and cell nuclei are modeled as ellipses, where both the length of the
semi axes and the inclination are drawn from a uniform distribution.

– The cells are placed randomly or in cells of a precomputed random Voronoi
tessellation.

– Overlapping of cells or the location of cell midpoints inside other cells can
be excluded for certain cell types.

– The colors of cells/nuclei are drawn from a multivariate normal distribution
with expectation/variance extracted from a small sample of real images.

– Realistic noise is added in the composition of the geometric primitives, with
covariance matrices estimated via a covariance analysis of the above sample.

– Finally, background noise is added with average color and variance again
extracted from this sample.

Examples of the training data for the two problem classes are shown in Fig. 2.

Our method classifies certain types of immune cells, depending on a fluo-
rescence marking and their local cell environment. Depending on the scenario,
immune cells are marked as classified if they are located in a proximity of tumor
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Fig. 1. Loss function (first column), PSNR for RGB channel (second column) and
masking channel (third column) for scenario 1.

cells (scenario 1) or if the concentration of immune cells in a neighborhood is
sufficiently large (scenario 2). Local cell concentrations are computed based on
the volumetric measure of cells in circular neighborhoods. A classified immune
cell is indicated with a value 1.0 in the marking channel at all underlying pixels
on a 0 background, i.e. for a circular cell concentration beyond a threshold 0.4
(scenario 1) or 0.2 (scenario 2). Since this measure is prone to small perturba-
tions of the cell structures, we could improve the stability of the classification
in scenario 1 by assigning to all pixels in the ground truth mask the value 0.5 if
the cell concentration is in the range [0.2, 0.4].

2.3 Acquisition of histological sections

To analyze immune cell and melanoma cell interactions, we used ten repre-
sentative immunofluorescent stains for the immune cell marker CD45 in red,
the melanocytic marker gp100 in green and the nuclei DAPI in blue of murine
melanomas (staining protocol has been described previously in [9]) and ten H&E
stained human melanoma metastases of the Skin Cancer Center Bonn of the Uni-
versity Hospital in Bonn. H&E stains were performed according to standard pro-
tocols. Stained sections were examined with a Leica DMBL immunofluorescence
microscope, all images were acquired with a JVC digital camera KY-75FU.

3 Results

We consider Nt = 10 steps in the TNRD model and 200 random 500 × 500
training images. In each step, Nf1 = 24 different filters of size 11 × 11 × 4 and
Nf2 = 24 filters of size 5 × 5 × 24, and for the activation function J = 31
Gaussian radial basis functions in the interval [−1.2, 1.2] were used. Following
[8], we performed 20000 iterations of the Adam optimizer with step size 0.001
using a batch size of 2 and the exponential decay rate parameters β1 = 0.9 and
β2 = 0.999. The plots of the associated loss function and the peak signal-to-noise
ratio (PSNR) for the RGB and the masking channel are shown in Fig. 1.

Fig. 2 depicts pairs of RGB images and associated masking channels for
training input data (first pair), computed pair of denoised image and estimated
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classification (second pair) and ground truth image and classification (third pair)
for scenario 1 (first row) and scenario 2 (fourth row). In the remaining rows, the
input data (first column), the denoised image (second column), and the corre-
sponding classification (third column) are shown for scenario 1 (second/third
row) and scenario 2 (fifth/sixth row). As an outcome, nearly all immune cells to
be classified are actually detected.

4 Discussion

In this work, we investigated a deep learning approach using variational networks
for joint image reconstruction and segmentation on melanoma tissue sections to
detect direct interactions of immune cells with melanoma cells and patterns of
tumor infiltrating immune cells. We were able to provide spatial localization
and distribution of immune cells within the tumor microenvironment. Obvious
limitations of the method are the restriction to ellipsoidal shaped cells and cell
nuclei and the currently small number of cell or nuclei types, e.g. in the first
image in Fig. 2 associated with scenario 2 small regions of extracellular matrix
structures are erroneously classified as immune cells, probably because these
structures are not treated explicitly as cell types in the data generation process.
Future analyses should consider the complex heterogeneity of tumor cells.
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Fig. 2. Training data (pairs of image and mask of input, output and ground truth) for
scenario 1 (first row) and scenario 2 (fourth row). uRGB,i

0 , uRGB,i
T and um,i

T (i = 0, 1)
for histological sections in scenario 1 (second/third row) with two representative images
of immunofluorescent stains of melanoma: with blue (DAPI, cell nuclei), red (CD45,
immune cell marker), green (gp100, melanocyte marker), and scenario 2 (fifth/sixth
row) H&E stains of melanoma.


