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Abstract. The Riemannian metamorphosis model introduced and analyzed in
[8,13] is taken into account to develop an image extrapolation tool in the space
of images. To this end, the variational time discretization for the geodesic inter-
polation proposed in [2] is picked up to define a discrete exponential map. For
a given weakly differentiable initial image and a sufficiently small initial image
variation it is shown how to compute a discrete geodesic extrapolation path in the
space of images. The resulting discrete paths are indeed local minimizers of the
corresponding discrete path energy. A spatial Galerkin discretization with cubic
splines on coarse meshes for image deformations and piecewise bilinear finite
elements on fine meshes for image intensity functions is used to derive a fully
practical algorithm. The method is applied to real images and image variations
recorded with a digital camera.

Keywords: image extrapolation, shape space, elastic registration, exponential
map

1 Introduction

Riemannian geometry has influenced imaging and computer vision tremendously in
the past decades. In particular, many methods in image processing have benefited from
concepts emerging from Riemannian geometry like geodesic curves, the logarithm, the
exponential map, and parallel transport. For example, when considering the space of im-
ages as an infinite-dimensional Riemannian manifold, the exponential map of an input
image w.r.t. an initial variation corresponds to an image extrapolation in the direction
of this infinitesimal variation. In particular, the large deformation diffeomorphic met-
ric mapping (LDDMM) framework proved to be a powerful tool underpinned with the
rigorous mathematical theory of diffeomorphic flows. In fact, Dupuis et al. [3] showed
that the resulting flow is actually a flow of diffeomorphism. Trouvé [11] exploited Lie
group methods to construct a distance in the space of deformations. Vialard et al. [14,15]
studied methods from optimal control theory to accurately estimate this initial momen-
tum and to relate it to the Hamiltonian formulation of the geodesic flow. Furthermore,
they used the associated Karcher mean to compute intrinsic means of medical images.
Lorenzi and Pennec [7] applied the LDDMM framework to compute geodesics and
parallel transport using Lie group methods.



2 Alexander Effland, Martin Rumpf, Florian Schäfer

The metamorphosis model [8,13] generalizes the flow of diffeomorphism approach
allowing for intensity variations along transport paths and associated a corresponding
cost functional with these variations. In [12], Trouvé and Younes rigorously analyzed
the local geometry of the resulting Riemannian manifold and proved the existence of
geodesic curves for square-integrable images and the (local) existence as well as the
uniqueness of solutions of the initial value problem for the geodesic equation in the case
of images with square-integrable weak derivatives. Holm et al. [5] studied a Lagrangian
formulation for the metamorphosis model and proved existence both for the boundary
value and the initial value problem in the case of measure-valued images.

In [2], a variational time discretization of the metamorphosis model based on a se-
quence of simple, elastic image matching problems was introduced and Γ -convergence
to the time continuous metamorphosis model was proven. Furthermore, using a finite
element discretization in space a robust algorithm was derived.

Here, we pick up this approach and use it to develop a discrete exponential map in
the space of images. In fact, the Euler-Lagrange equations of the discrete path energy
proposed in [2] give rise to a set of equations, which characterize time steps of a discrete
initial value problem for a given initial image and a given initial image variation. A
straightforward treatment, for instance via a Newton scheme, would lead to higher order
derivatives of image functions concatenated with diffeomorphic deformations, which
are both theoretically and numerically very difficult to treat. We show how to avoid these
difficulties using a proper transformation of the defining Euler-Lagrange equations via
integral transformations, integration by parts, and suitable choices of test functions, and
reduce the number of unknowns. To this end, we derive a fixed point algorithm based
on a suitable variant of the Euler-Lagrange equations.

The paper is organized as follows: In Section 2, we briefly recall the metamorphosis
model in the time continuous and time discrete setting, respectively. Departing from the
Euler-Lagrange equations of a time discrete geodesic, a single time step of the discrete
exponential map is derived in Section 3. Then the discrete geodesic shooting relies
on the iterative application of the one step extrapolation. In Section 4, the associated
Euler-Lagrange equations are rewritten as a fixed point problem. Using suitable discrete
ansatz spaces an efficient and stable algorithm is derived in Section 5. Finally, numerical
results for different applications are presented in Section 6.

2 Review of the metamorphosis model and its time discretization

In this section, we briefly recall in a non-rigorous fashion the Riemannian geometry of
the space of images based on the flow of diffeomorphism and its extension, the meta-
morphosis model. For a detailed exposition of these models we refer to [3,8,13,5,12].

Throughout this paper, we suppose that the image domain Ω ⊂ Rn for n ∈ {2, 3}
has Lipschitz boundary. For a flow of diffeomorphism φ(t) : Ω̄ → Rn for t ∈ [0, 1]
driven by the Eulerian velocity v(t) = φ̇(t) ◦ φ−1(t) we take into account a quadratic
formL subjected to certain growth and consistency conditions, which can be considered
as a Riemannian metric on the space of diffeomorphisms and thus on the space of
diffeomorphic transformations u(t) = u0◦φ−1(t) of a given reference image u0. Based
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on these ingredients one can define the associated (continuous) path energy

Ẽ [(φ(t))t∈[0,1]] =

∫ 1

0

∫
Ω

L[v, v] dxdt .

By construction, this model comes with the brightness constancy assumption in the
sense that the material derivative D

∂tu = u̇+v·∇u vanishes along the motion paths. Con-
trary to this, the metamorphosis approach allows for image intensity variations along
motion paths and penalizes the integral over the squared material derivative as an ad-
ditional term in the metric. Hence, the path energy in the metamorphosis model for an
image curve u ∈ L2((0, 1), L2(Ω)) and δ > 0 is defined as

E [u] :=

∫ 1

0

inf
(v,z)

∫
Ω

L[v, v] +
1

δ
z2 dxdt , (1)

where the infimum is taken over all pairs (v, z) ∈ H2m
0 (Ω,Rn) × L2(Ω,R) which

fulfill the transport equation D
∂tu = u̇ + v · ∇u = z. Here, we consider L[v, v] :=

Dv : Dv + γ∆mv · ∆mv with γ > 0 and 2m > 1 + n
2 , where we use the notation

A : B = tr(ATB). To formulate this rigorously, one has to take into account the weak
material derivative z ∈ L2((0, 1), L2(Ω)) defined via the equation

∫ 1

0

∫
Ω
ηz dxdt =

−
∫ 1

0

∫
Ω

(∂tη + div(vη))udxdt for all η ∈ C∞c ((0, 1) × Ω). Geodesic curves are
defined as minimizers of the path energy (1). Under suitable assumptions, one can prove
the existence of a geodesic curve in the class of all regular curves with prescribed initial
and end image. For the definition of regular curves and the existence proof we refer to
[12].

In what follows, we consider the time discretization of the path energy (1) proposed
in [2] adapted to the slightly simpler transport cost L[ · , · ]. To this end, we define for
arbitrary images u, ũ ∈ L2(Ω) the time discrete matching energy

W[u, ũ] :=min
φ∈A

{
WD[u, ũ, φ] :=

∫
Ω

|Dφ− 1|2+γ|∆mφ|2+
1

δ
(ũ ◦ φ−u)2 dx

}
, (2)

which is composed of a rescaled thin plate regularization term (first two terms) and a
quadratic L2(Ω)-mismatch measure (cf. [2, (6.2)]). Here, we define the set of admissi-
ble deformations A :=

{
φ ∈ H2m(Ω,Ω) : φ− 1 ∈ H2m

0 (Ω,Ω)
}

.
Using the direct method in the calculus of variations it is easy to show that for u ∈

L2(Ω) and 2m− n
2 > 1, which ensures the continuity of the deformations via Sobolev

embedding, there exists a constant CW > 0 that solely depends on γ, δ, Ω and m, such
that for every ũ ∈ L2(Ω) with ‖ũ− u‖L2(Ω) ≤ CW there is a minimizing deformation
φ ∈ A forW , i.e.W[u, ũ] =WD[u, ũ, φ], and φ is a C1(Ω)-diffeomorphism.

Following the general approach for the variational time discretization of geodesic
calculus in [10] and the particular discretization of the metamorphosis model in [2], we
define the discrete path energy EK on a sequence of K + 1 images (u0, . . . , uK) ∈
(L2(Ω))K+1 with K ≥ 2 as the weighted sum of the discrete matching energy evalu-
ated at consecutive images, i.e.

EK [u0, . . . , uK ] := K

K∑
k=1

W[uk−1, uk] . (3)
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Then, a (K + 1)-tuple (u0, . . . , uK) ∈ (L2(Ω))K+1 with given images u0 and uK is
defined to be a discrete geodesic curve connecting u0 and uK if it minimizes EK w.r.t.
all other (K+1)-tuples with u0 and uK fixed. It is shown in [2] that a suitable extension
of the discrete path energy EK Γ -convergences to the continuous path energy E . Let us
finally mention that neither the matching deformation in (2) nor the discrete geodesic
curve defined as the minimizer of (3) for given input images u0 and uK are necessarily
unique.

3 The time discrete exponential map

Before we define the discrete exponential map let us briefly recall the definition of the
continuous exponential map on a Riemannian manifold. Let y : [0, 1] → M be the
unique geodesic curve for a prescribed initial position y(0) = yA and an initial velocity
ẏ(0) = v on a Riemannian manifold (M, g). The exponential map is then defined
as expyA(v) = y(1). Furthermore, one easily checks that expyA( kK v) = y( kK ) for
0 ≤ k ≤ K. We refer to the textbook [6] for a detailed discussion of the (continuous)
exponential map. Now, we ask for a time discrete counterpart of the exponential map in
the metamorphosis model. To this end, we consider an image u0 as the initial data and
a second image u1 such that ζ1 = u1− u0 represents a small variation of the image u0.
This variation ζ1 is the discrete counterpart of the infinitesimal variation given by the
velocity v in the continuous case. For varying values ofK ≥ 2 we now ask for a discrete
geodesic (u0, u1, . . . , uK) defined as the minimizer of the discrete path energy (3). For
simplicity, let us suppose that this discrete geodesic curve is unique, which is indeed
true for short discrete geodesics. Based on our above observation for the continuous
exponential map we then define EXPk∗( · ) as the discrete counterpart of exp∗(

k
K · ), i.e.

we set
EXPku0

(ζ1) := uk

for k = 1, . . . ,K. The definition of the exponential map EXPku0
(ζ1) does not de-

pend on the number of time steps K. Indeed, if (u0, u1, u2, . . . , uK) is a discrete
geodesic, then (u0, u1, u2, . . . , uk) with k ≤ K is also a geodesic. Taking into ac-
count k = 2 we immediately observe that the sequence of discrete exponential maps
(EXPku0

(ζ1))k=1,... can iteratively be defined as follows

EXPku0
(ζ1) = uk := EXP2

uk−2
(ζk−1) (4)

for k ≥ 2, where ζk−1 = uk−1 − uk−2, and for the sake of completeness we define
EXP0

u0
(ζ1) = u0 and EXP1

u0
(ζ1) = u1 = u0 + ζ1. Thus, it essentially remains to

compute EXP2 for a given input image uk−2 and an image variation ζk−1 = uk−1 −
uk−2 (see Figure 1). For a detailed discussion of the discrete exponential map in the
simpler model of Hilbert manifolds we refer to [10]. The particular challenge here is that
the matching energyW cannot be evaluated directly, but requires to solve the variational
problem (2) for the matching deformation.

There are two major restrictions regarding the input images u0 and u1: we require
input images with square-integrable weak derivatives and we assume that the initial
variation is sufficiently small in L2(Ω). Both properties are kept along the extrapolated
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u0

u1
u2

u3
. . . uk−2

uk−1
uk . . .

ζ1
ζ2

ζ3 ζk−1 ζk

Fig. 1. Schematic drawing of EXPk
u0
(ζ1), k = 1, . . . ,K, the input data is highlighted in red.

image sequence, i.e. EXPku0
(u1 − u0) ∈ H1(Ω) for any k ≥ 1 and uk−1 − uk−2 for

k ≥ 2 will remain small provided that ζ1 is small.
Hence, in what follows we consider images in H1(Ω) and define for any k ≥ 2

uk := EXP2
uk−2

(ζk−1) as the (unique) image in H1(Ω) such that

uk−1 = argmin
u∈H1(Ω)

min
φk−1,φk∈A

WD[uk−2, u, φk−1] +WD[u, uk, φk] . (5)

For the sake of simplicity, we restrict to the first step in the iterative computation of the
discrete exponential map with k = 2. Given u0, u1 ∈ H1(Ω) the first order optimality
conditions for (5) for u2 ∈ H1(Ω) and φ1, φ2 ∈ A read as∫

Ω

(u1 ◦ φ1 − u0)v ◦ φ1 − (u2 ◦ φ2 − u1)v dx = 0 , (6)∫
Ω

2Dφ1 : Dψ + 2γ∆mφ1 ·∆mψ +
2

δ
(u1 ◦ φ1 − u0)(∇u1 ◦ φ1) · ψ dx = 0 , (7)∫

Ω

2Dφ2 : Dψ + 2γ∆mφ2 ·∆mψ +
2

δ
(u2 ◦ φ2 − u1)(∇u2 ◦ φ2) · ψ dx = 0 (8)

for all v ∈ H1(Ω) and all ψ ∈ H2m
0 (Ω) for 2m− n

2 > 2.
Next, we reformulate (8), remove the dependency on the unknown function u2 and

in addition restrict to function evaluations of u1 and thereby avoid evaluations of deriva-
tives of u1. Under the assumptions that (6) and (7) hold true, ∂Ω ∈ C4m and for
u0, u1, u2 ∈ L∞(Ω) ∩H1(Ω) equation (8) is equivalent to∫

Ω

2γ∆mφ2 ·∆mψ + 2Dφ2 : Dψ dx =∫
Ω

2γ∆mφ1 ·∆m(((Dφ2)−1ψ) ◦ φ1) + 2Dφ1 : D(((Dφ2)−1ψ) ◦ φ1)

− (u1 ◦ φ1−u0)2

δ detDφ1

(
(Dφ2)−T : (D2φ2(Dφ2)−1ψ)−(Dφ2)−T :Dψ

)
◦ φ1 dx . (9)

The proof of this reformulation is based on a repeated application of the transformation
formula and a regularity result for polyharmonic equations (see the appendix). We will
use it to define a fully discrete fixed point iteration to compute the deformation φ2
numerically. Once φ2 is available the image u2 can be calculated via the equation

u2 =

(
u1 − u0 ◦ φ−11

det(Dφ1) ◦ φ−11

)
◦ φ−12 + u1 ◦ φ−12 , (10)
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which directly follows from (6) by the transformation rule taking into account the dif-
feomorphism property of φ2. Here, the first summand reflects the intensity modulation
along the geodesic, the second summand quantifies the contribution due to the transport.

Concerning a theoretical foundation of this approach, it can be shown that there
exists a solution (u2, φ1, φ2) to the system of equations (6), (7) and (8) for image
pairs (u0, u1) provided that u0 and u1 are bounded in H1(Ω) and sufficiently close
in L2(Ω). This does not necessarily imply that for given u0 and u1 the resulting dis-
crete path (u0, u1, u2) is the unique discrete geodesic connecting u0 and u2. However,
if the images u0 and u1 are sufficiently close inH1(Ω), then a unique discrete geodesic
connecting u0 and u2 exists. Existence can be established using a variant of the above
fixed point argument and uniqueness under the stronger assumptions can be established
by an implicit function theorem argument (cf. the corresponding proof for the discrete
exponential map on Hilbert manifolds given in [10]). The presentation of the proofs
goes beyond the scope of this paper.

4 Fixed point formulation

In what follows, we introduce a spatial discretization scheme as well as an algorithm to
compute the discrete exponential map based on the time discrete operator EXP2

u0
(u1−

u0) for given images u0 and u1. Let us recall that the computation of EXPk for k > 2
requires the iterative application of EXP2 as defined in (4). In explicit, we ask for a nu-
merical approximation of the matching deformations φ1, φ2 and the current succeeding
image u2 = EXP2

u0
(u1 − u0) along the (extrapolated) discrete path. Here, we restrict

to two dimensional images and for the sake of simplicity we assume that the image
domain is the unit square, i.e. Ω = (0, 1)2. Conceptually, the generalization to three
dimensions is straightforward. As a simplification for the numerical implementation,
we restrict to the case m = 1 despite the theoretical requirement that m > 1 + n

4 = 3
2 .

To set up the fixed point iteration in light of (9) we define a nonlinear operator
T : A → H−2m(Ω) and a linear operatorR : A → H−2m(Ω) with

T [φ](ψ) =

∫
Ω

−2γD∆φ1 : (D((Dφ)−1ψ) ◦ φ1)− 2∆φ1 · ((Dφ)−1ψ) ◦ φ1

− (u1 ◦ φ1−u0)2

δ detDφ1

(
(Dφ)−T : (D2φ(Dφ)−1ψ)−(Dφ)−T :Dψ

)
◦φ1 dx

R[φ](ψ) =

∫
Ω

2γ∆mφ ·∆mψ + 2Dφ : Dψ dx

for all ψ ∈ H2m
0 (Ω). The linear operator R has a bounded inverse by means of the

Lax-Milgram theorem. Thus, we can rewrite (9) as a fixed point equation as follows

φ2 =
(
R−1 ◦ T

)
[φ2] (11)

and more explicitly T [φ2](ψ) = R[φ2](ψ) for all test functions ψ ∈ H2m
0 (Ω). A

core property of this formulation is that it does not require any evaluation of image
intensity gradients. To improve the stability of the numerical algorithm with respect to
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the evaluation of the first integrand of T [φ](ψ) we additionally rewrite this expression
by making use of A : B = tr(ATB) as follows∫

Ω

D∆φ1 : D((Dφ)−1ψ) ◦ φ1) dx

=

∫
Ω

((Dφ)−T ◦ φ1)D∆φ1 : D(ψ ◦ φ1) +D∆φ1 : D((Dφ)−1 ◦ φ1)(ψ ◦ φ1) dx .

5 Space discretization

We use different discrete ansatz spaces for the deformations and the images reflecting
the different regularity requirements of the fixed point formulation (11). As the discrete
ansatz space for the deformations we choose the conforming space of cubic splines
SH ⊂ C2(Ω) in order to evaluate weak derivatives up to third order. Furthermore, this
already ensures smoothness of the deformations independent of the regularization en-
ergy. Here, H = 2−N with N ∈ N denotes the grid size of the underlying uniform and
quadratic mesh. The associated basis functions are vector-valued B-splines. Moreover,
we only impose the Dirichlet boundary condition Φ = 1 on ∂Ω instead of the stronger
boundary conditions Φ− 1 ∈ H2

0 (Ω) for the discrete deformations Φ ∈ SH since we
experimentally observed that these Dirichlet boundary conditions appear to be sufficient
to reliably compute proper deformations. The gray value images are approximated via
finite element functions in the space Vh of piecewise bilinear and globally continuous
functions on Ω with input intensities in the range [0, 1]. The underlying grid consists
of uniform quadratic cells with mesh size h = 2−M with M ∈ N and M > N . We
take into account the usual Lagrange basis functions and represent image intensities by
functions U ∈ Vh. In our numerical experiments we set M = N + 1.

Now, we are in the position to define spatially discrete counterparts of the operators
involved in the fixed point iteration. We apply a Gaussian quadrature of order 5 on both
meshes. For the fully discrete counterparts of the operators T andR one gets

T[Φ](Ψ) =
∑
cH ,qH

ωcHqH

(
− 2γ((DΦ)−T ◦Φ1(xcHqH ))D∆Φ1(xcHqH ) : D(Ψ ◦Φ1(xcHqH ))

− 2γD∆Φ1(xcHqH ) : D((DΦ)−1 ◦Φ1(xcHqH ))(Ψ ◦Φ1(xcHqH ))

− 2∆Φ1(xcHqH ) · ((DΦ)−1Ψ) ◦Φ1(xcHqH )
)

−
∑
ch,qh

ωchqh
δ

(U1 ◦Φ1(xchqh)−U0(xchqh))2

detDΦ1(xchqh)

·
(
(DΦ)−T : (D2Φ(DΦ)−1Ψ)− (DΦ)−T : DΨ

)
◦Φ1(xchqh) ,

R[Φ](Ψ) =
∑
cH ,qH

ωcHqH
(
2γ∆Φ(xcHqH ) ·∆Ψ(xcHqH ) + 2DΦ(xcHqH ) : DΨ(xcHqH )

)
for Ψ ∈ SH with Ψ = 0 on ∂Ω. Here, we sum over all grid cells cH of the spline
mesh and all local quadrature points within these cells indexed by qH with respect
to the deformation energy and over all grid cells ch of the finer finite element mesh
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and all local quadrature points within these cells indexed by qh. Here, (ωcHqH ,x
cH
qH ) and

(ωchqh ,x
ch
qh

) are the pairs of quadrature weights and points on the spline mesh and the
finite element mesh, respectively. Moreover, we set Ui = Ih(ui) for i = 0, 1 with Ih
representing the Lagrange interpolation on Vh.

Finally, one obtains the following fixed point iteration to compute the spatially dis-
crete deformation Φ2

Φj+1 =
(
R−1 ◦T

)
[Φj ]

for all j ≥ 0 and initial data Φ0 = 1. The application of R−1 requires the solution
of the associated linear system of equations. In a preparatory step, the deformation
Φ1 ∈ argminΦ∈SH WD[U0,U1,Φ], which is used in the first step of a time discrete
geodesic shooting, is calculated using a Fletcher-Reeves nonlinear conjugate gradient
descent multilevel scheme with an Armijo step size control.

Then, the deformation in the current step is computed using the aforementioned
fixed point iteration, which is stopped if the L∞-difference of the deformations in two
consecutive iterations is below the threshold value THRESHOLD = 10−12. To com-
pute U2, we employ the spatially discrete analog of the update formula (10)

U2(x) =

(
U1 −U0 ◦Φ−11

det(DΦ1) ◦Φ−11

)
◦Φ−12 (x) + U1 ◦Φ−12 (x) . (12)

Here, we evaluate (12) at all grid nodes of the finite element grid. To compute approx-
imate inverse deformations Φ−1i ∈ SH , i ∈ {1, 2}, all cells of the grid associated with
SH are traversed and the deformed positions Φi(xj) for all vertices xj , j ∈ {1, . . . , 4},
of the current element are computed. Then, we use a bilinear interpolation of these de-
formed positions to define an approximation of Φ−1i (x) for x ∈ Ω. Furthermore, we
explicitly ensure the boundary condition Φ−1i (x) = x for x ∈ ∂Ω.

In our numerical experiments on real image data, we observed slight local oscilla-
tions emerging from the inexact evaluation of the expression U1(x) − U0 ◦ Φ−11 (x)
in the quadrature of the intensity modulation. Since the calculation of EXPk requires a
recursive application of EXP2, these oscillations turn out to be sensitive to error propa-
gation, and it is advantageous to apply in each step a post-processing by an anisotropic
diffusion filtering (see [9]). Alternatively, one could replace the squared weak material
derivative by a term ((1− σ2

2 ∆)z)2 for a small filter width σ << 1.

6 Numerical results

In this section, we present applications of the fully discrete exponential map proposed
in Section 4. In all computations, we used the parameters γ = 10−4 and δ = 10−2.

In [2, Fig. 6.2], a geodesic sequence between two female portrait paintings3 was
computed using the finite element discretization for both the images and the defor-

3 first painting by A. Kauffmann (public domain, see http://commons.wikimedia.
org/wiki/File:Angelika_Kauffmann_-_Self_Portrait_-_1784.jpg),
second painting by R. Peale (GFDL, see http://en.wikipedia.org/wiki/File:
Mary_Denison.jpg)
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Ũ0 Ũ4 Ũ8 Ũ12 Ũ16

U0 U1 U2 U4 U6

U8 U10 U12 U14 U16

v1 v5 v10 v16

I1 I5 I10 I16

−0.01 0 0.02

Fig. 2. The first row depicts distinct images of the discrete geodesic sequence associated with the
input images Ũ0 and Ũ16 (in red boxes). The discrete exponential map for distinct time steps is
shown in the second and third row, where the input images U0 and U1 coincide with Ũ0 and Ũ1

from the geodesic sequence, respectively. In addition, the corresponding discrete velocity field as
well as the intensity modulation (fourth and fifth row) are shown.

mations on the same grid. The image resolution is 257 × 257 (M = 8). We recom-
puted this geodesic sequence (Ũ0, Ũ1, . . . , Ũ16) with K = 16 for the discrete func-
tion spaces Vh and SH with N = 7, the resulting sequence is shown in the first row
of Figure 2 with framed input images Ũ0 and Ũ16. Afterwards, a discrete exponential
shooting was computed with an initial image U0 and an initial variation U1 − U0

taken from this geodesic sequence. In the fourth and fifth row, the discrete motion
field vk = 1

τ (Φk − 1), which significantly alters in time, and the intensity modulation
Ik = Uk ◦ Φk − Uk−1 (postprocessed via anisotropic diffusion) are shown, respec-
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tively. Furthermore, Figure 3 illustrates the effect of the anisotropic diffusion filtering
on the intensity modulation for k ∈ {4, 8}.

k = 4 k = 8

Fig. 3. Comparison of the intensity modulations in the application shown in Figure 2 in the case
of no post-processing (left) and with the implemented post processing via anisotropic diffusion
filtering (right) for k = 4 (first image pair) and k = 8 (second image pair).

Figure 4 depicts a picture detail of the discrete exponential map for time steps
k = 0, 1, 2, 4, 8, 16 applied to two pairs of photos of human faces with a resolution
of 1025× 1025 of the full images. The red boxes indicate input images (first and third
row). The input pictures are consecutive photos of a series at 5 and 7 fps, respectively,
taken with a digital camera. Due to the higher resolution texture of the images the inten-
sity modulations tend to slightly stronger local oscillations, which are damped with a
slightly stronger anisotropic diffusion filtering. We observe that small initial variations
result in a nonlinear deformation of the lips (first row) and of the lips, the cheeks and the
eyes (third row), respectively. Furthermore, the textures are reliably transported along
the sequence. The second and fourth row depict the color coded time varying velocity
fields.

Appendix

Here, we derive equation (9) from the system of Euler-Lagrange equations (6), (7) and
(8). By using the transformation formula the energyWD can be rewritten as follows

WD[u1, u2, φ2] =

∫
Ω

|Dφ2 − 1|2 + γ|∆mφ2|2 +
1

δ

(u2 − u1 ◦ φ−12 )2

det(Dφ2) ◦ φ−12

dx .

Now we rewrite the Euler-Lagrange equation (8). To this end, we use that

∂φ2
φ−12 (ψ) = −((Dφ2)−1ψ) ◦ φ−12 ,

which follows by differentiating (φ2 + εψ) ◦ (φ2 + εψ)−1 = 1 with respect to ε, and
that ∂A det(A)(B) = cof(A) : B for A ∈ GL(n) and B ∈ Rn,n with cof A =
(detA)A−T . Thus, we obtain∫
Ω

2Dφ2 : Dψ + 2γ∆mφ2 ·∆mψ +
2

δ
(u2 − u1 ◦ φ−12 )

(∇u1 · (Dφ2)−1ψ) ◦ φ−12

det(Dφ2) ◦ φ−12

+
(u2 − u1 ◦ φ−12 )2

δ(detDφ2)2 ◦ φ−12

(
cof Dφ2 : (D2φ2(Dφ2)−1ψ)− cof Dφ2 :Dψ

)
◦ φ−12 dx = 0 .
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U0 U1 U2 U4 U8 U16

v1 v2 v4 v8 v16

U0 U1 U2 U4 U8 U16

v1 v2 v4 v8 v16

Fig. 4. First/third row: picture details of EXPk
U0

(U1 − U0) applied to two pairs of photos of
human faces for the time steps k = 0, 1, 2, 4, 8, 16. Second/fourth row: the associated discrete
velocity fields vk.

A further application of the transformation formula with respect to φ2 yields∫
Ω

2Dφ2 : Dψ + 2γ∆mφ2 ·∆mψ +
2

δ
(u2 ◦ φ2 − u1)∇u1 · (Dφ2)−1ψ

+
1

δ

(u2 ◦ φ2 − u1)2

detDφ2

(
cof Dφ2 : (D2φ2(Dφ2)−1ψ)− cof Dφ2 : Dψ

)
dx = 0 . (13)

To remove the dependency of the function u2 above, we employ the pointwise condition

u2 ◦ φ2 − u1 =
u1 − u0 ◦ φ−11

det(Dφ1) ◦ φ−11

for a.e. x ∈ Ω, which directly follows from (6). Inserting this in (13) and using the
integral transformation formula we achieve∫
Ω

2Dφ2 : Dψ + 2γ∆mφ2 ·∆mψ +
2

δ
(u1 ◦ φ1 − u0)(∇u1 · (Dφ2)−1ψ) ◦ φ1

+
1

δ

(u1 ◦ φ1 − u0)2

detDφ1

(
cof Dφ2 : (D2φ2(Dφ2)−1ψ)− cof Dφ2 : Dψ

detDφ2

)
◦ φ1 dx = 0 .

Here, we take into account the identity cof(A) = det(A)A−T . Next, we consider the
test function ζ := ((Dφ2)−1ψ) ◦ φ1 in (7). To justify this, we need a regularity result
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for polyharmonic PDEs to show ζ ∈ H2m
0 (Ω). Inserting ζ into (7) we get

−
∫
Ω

2

δ
(u1 ◦ φ1 − u0)(∇u1 · (Dφ2)−1ψ) ◦ φ1 dx

=

∫
Ω

2γ∆mφ1 ·∆m(((Dφ2)−1ψ) ◦ φ1) + 2Dφ1 : D(((Dφ2)−1ψ) ◦ φ1) dx .

By adding this identity to the above equation we finally obtain (9).
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12. A. Trouvé and L. Younes. Local geometry of deformable templates. SIAM J. Math. Anal.,
37(1):17–59, 2005.
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