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Abstract

The space of images can be equipped with a Riemannian metric measuring both the cost of transport of image intensities
and the variation of image intensities along motion lines. The resulting metamorphosis model was introduced and analyzed in
[19, 25] and a variational time discretization for the geodesic interpolation was proposed in [4]. In this paper, this time discrete
model is expanded and an image extrapolation via a discrete exponential map is consistently derived for the variational time
discretization. For a given weakly differentiable initial image and an initial image variation, the exponential map allows to
compute a discrete geodesic extrapolation path in the space of images. It is shown that a time step of this shooting method can
be formulated in the associated deformations only. For sufficiently small time steps local existence and uniqueness are proved
using a suitable fixed point formulation and the implicit function theorem. A spatial Galerkin discretization with cubic splines
on coarse meshes for the deformation and piecewise bilinear finite elements on fine meshes for the image intensities are used
to derive a fully practical algorithm. Different applications underline the efficiency and stability of the proposed approach.1

1 Introduction
Riemannian geometry has influenced imaging and computer vision tremendously in the past decades. In particular, many
methods in image processing have benefited from concepts emerging from Riemannian geometry like geodesic curves, the
logarithm, the exponential map, and parallel transport. For example, when considering the space of images as an infinite-
dimensional Riemannian manifold, the exponential map of an input image w.r.t. an initial variation corresponds to an image
extrapolation in the direction of this infinitesimal variation. In particular, the large deformation diffeomorphic metric mapping
(LDDMM) framework proved to be a powerful tool underpinned with the rigorous mathematical theory of diffeomorphic
flows. In fact, Dupuis et al. [6] showed that the resulting flow is actually a flow of diffeomorphism. Trouvé [22, 23] exploited
Lie group methods to construct a distance in the space of deformations. In [14], Joshi and Miller applied this framework
to (inexact and exact) landmark matching. Beg et al. [2] studied Euler–Lagrange equations for minimizing vector fields in
the LDDMM framework and proposed an efficient algorithm incorporating a gradient descent scheme and a semi-Lagrangian
method to integrate the velocity fields. Miller et al. [18] proved the conservation of the initial momentum in Lagrangian
coordinates associated with a geodesic in the LDDMM framework, which allows for the stable computation of geodesic
curves. Younes [29] used Jacobi fields in the flow of diffeomorphism approach to derive gradient descent methods for the
path energy. In [11], Hart et al. exploited the optimal control perspective to the LDDMM model with the motion field
as the underlying control. Vialard et al. [26, 27] studied methods from optimal control theory to accurately estimate this
initial momentum and to relate it to the Hamiltonian formulation of the geodesic flow. Furthermore, they used the associated
Karcher mean to compute intrinsic means of medical images. Vialard and Santambrogio investigated in [28] the flow of
diffeomorphism approach for images in the space of functions of bounded variation. In particular, they were able to rigorously
derive an Euler–Lagrange equation for the formulation with a matching energy. Lorenzi and Pennec [16] applied the LDDMM
framework to compute geodesics and parallel transport using Lie group methods.

The metamorphosis model [19, 25] generalizes the flow of diffeomorphism approach allowing for intensity variations
along transport paths and associated a corresponding cost functional with these variations. In [24], Trouvé and Younes
rigorously analyzed the local geometry of the resulting Riemannian manifold and proved the existence of geodesic curves

1This paper is an extension of the prior proceedings paper [7].
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for square-integrable images and the (local) existence as well as the uniqueness of solutions of the initial value problem for
the geodesic equation in the case of images with square-integrable weak derivatives. Holm et al. [12] studied a Lagrangian
formulation for the metamorphosis model and proved existence for both the boundary value and the initial value problem in
the case of measure-valued images. Hong et al. [13] proposed a metamorphic regression model and developed a shooting
method to reliably recover initial momenta.

A comprehensive overview of most of the aforementioned topics is given in the book by Younes [30], for a historic account
we additionally refer to [17].

In [4], a variational time discretization of the metamorphosis model based on a sequence of simple, elastic image matching
problems was introduced and Γ-convergence to the time continuous metamorphosis model was proven. Furthermore, using
a finite element discretization in space a robust algorithm was derived. Exploiting de Casteljau’s algorithm, this approach
could also be used to compute discrete Riemannian Bézier curves in the space of images [8]. In [3], the geodesic interpolation
proposed in [4] was employed to analyze the temporal evolution of a macular degeneration for medical images acquired
with an optical coherence tomography device, where an efficient GPU implementation is used to speed up the registration
subproblems.

In this paper, we focus on the discrete exponential map associated with the time discrete metamorphosis model. The
Euler–Lagrange equations of the discrete path energy proposed in [4] give rise to a set of equations, which characterize time
steps of a discrete initial value problem for a given initial image and a given initial image variation. We study this time
stepping problem both analytically and numerically. We will prove existence and uniqueness of solutions of the single time
step problem, which is guaranteed to generate time discrete geodesics in the sense of the time discrete variational approach.
A straightforward treatment, for instance via a Newton scheme, would lead to higher order derivatives of image functions
concatenated with diffeomorphic deformations, which are both theoretically and numerically very difficult to treat. We show
how to avoid these difficulties using a proper transformation of the defining Euler–Lagrange equations and reduce the number
of unknowns. With respect to the existence, we apply a fixed point argument based on Banach’s fixed point theorem for images
bounded in H1 and an initial variation, which is supposed to be small in L2. The uniqueness proof is based on an implicit
function theorem argument for initial variations, which are small in H1. Finally, the numerical algorithm picks up the fixed
point approach for another variant of the Euler–Lagrange equations.

Compared to the proceedings paper [7], which introduced the discrete exponential map in the context of the time discrete
metamorphosis model and the numerical optimization algorithm, we give in this paper the comprehensive derivation of the
method, formulate and prove the existence of the discrete exponential map. Furthermore, two additional applications are
presented.

The paper is organized as follows: In Section 2, we briefly recall the metamorphosis model in the time continuous and time
discrete setting, respectively. Departing from the Euler–Lagrange equations of a time discrete geodesic, a single time step of
the discrete exponential map is derived in Section 3. Then the discrete geodesic shooting relies on the iterative application of
the one step extrapolation. In Section 4, local existence and local uniqueness of this discrete exponential map are proven based
on a suitable combination of the implicit function theorem and Banach’s fixed point theorem. The fixed point formulation
is also used in Section 5 to derive an efficient and stable algorithm. Finally, numerical results for different applications are
presented in Section 6.

We use standard notation for Lebesgue and Sobolev spaces on the image domain Ω, i.e. Lp(Ω) and Hm(Ω) = Wm,2(Ω).
The associated norms are denoted by ‖·‖Lp(Ω) and ‖·‖Hm(Ω), respectively, and the seminorm inHm(Ω) is given by |·|Hm(Ω).
Furthermore,Hm

0 (Ω) is the closure ofC∞(Ω) functions with compact support w.r.t. the norm ‖·‖Hm(Ω) and its dual is denoted
by H−m(Ω). For any f, g ∈ Hm(Ω), m ≥ 1, we set

Dmf ·Dmg =

n∑
i1,...,im=1

∂mf

∂xi1
· · · ∂xim

· ∂mg

∂xi1
· · · ∂xim

, |Dmf | = (Dmf ·Dmf)
1
2 .

The polyharmonic operator is inductively defined by ∆mf := ∆(∆m−1f) for f ∈ H2m(Ω) with m ≥ 2. Depending on the
context, 1 denotes either the identity mapping or the identity matrix. For a matrix A ∈ Rn,n, we refer to Asym = 1

2 (A+AT )
as the symmetric part of A. The symbol “:” indicates the sum over all pairwise products of two tensors. Finally, we denote
the variational derivative of a functional J at a point A in a direction B by ∂AJ [A](B) = d

dεJ [A+ εB]
∣∣
ε=0

.
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2 Review of the metamorphosis model and its time discretization
In this section, we briefly recall in a non-rigorous fashion the Riemannian geometry of the space of images based on the
flow of diffeomorphism and its extension, the metamorphosis model. For a detailed exposition of these models we refer to
[6, 19, 25, 12, 24].

Throughout this paper, we suppose that the image domain Ω ⊂ Rn for n ∈ {2, 3} has Lipschitz boundary. For a flow of
diffeomorphisms φ(t) : Ω → Rn for t ∈ [0, 1] driven by the Eulerian velocity v(t) = φ̇(t) ◦ φ−1(t) we take into account a
quadratic form L subjected to certain growth and consistency conditions, which can be considered as a Riemannian metric on
the space of diffeomorphisms and thus on the space of diffeomorphic transformations u(t) = u0 ◦φ−1(t) of a given reference
image u0. Based on these ingredients one can define the associated (continuous) path energy

Ẽ [(φ(t))t∈[0,1]] =

∫ 1

0

∫
Ω

L[v, v] dxdt .

By construction, this model comes with the brightness constancy assumption in the sense that the material derivative D
∂tu =

u̇+v ·∇u vanishes along the motion paths. Contrary to this, the metamorphosis approach allows for image intensity variations
along motion paths and penalizes the integral over the squared material derivative as an additional term in the metric. Hence,
the path energy in the metamorphosis model for an image curve u ∈ L2((0, 1), L2(Ω)) and δ > 0 is defined as

E [u] :=

∫ 1

0

inf
(v,z)

∫
Ω

L[v, v] +
1

δ
z2 dxdt , (2.1)

where the infimum is taken over all pairs (v, z) which fulfill the transport equation D
∂tu = u̇+ v · ∇u = z. Here, we consider

L[v, v] := Dv : Dv + γ∆mv ·∆mv

with γ > 0 and 2m > 1 + n
2 . To formulate this rigorously, one has to take into account the weak material derivative

z ∈ L2((0, 1), L2(Ω)) defined via the equation∫ 1

0

∫
Ω

ηz dxdt = −
∫ 1

0

∫
Ω

(∂tη + div(vη))udxdt

for all η ∈ C∞c ((0, 1)×Ω). Geodesic curves are defined as minimizers of the path energy (2.1). Under suitable assumptions,
one can prove the existence of a geodesic curve in the class of all regular curves with prescribed initial and end image. For the
definition of regular curves and the existence proof we refer to [24].

In what follows, we consider the time discretization of the path energy (2.1) proposed in [4] adapted to the slightly simpler
transport cost L[ · , · ]. To this end, we define for arbitrary images u, ũ ∈ L2(Ω) the discrete matching energy

W[u, ũ] := min
φ∈A

{
WD[u, ũ, φ] :=

∫
Ω

|Dφ− 1|2 + γ|∆mφ|2 +
1

δ
(ũ ◦ φ− u)2 dx

}
, (2.2)

which is composed of a rescaled thin plate regularization term (first two terms) and a quadratic L2(Ω)-mismatch measure
(cf . [4, (6.2)]). The set of admissible deformations A is defined as

A :=
{
φ ∈ H2m(Ω,Ω) : φ− 1 ∈ H2m

0 (Ω,Ω)
}
.

Remark. In [4], for every admissible deformation φ the weaker boundary condition φ = 1 on ∂Ω instead of φ − 1 ∈
H2m

0 (Ω,Ω) was assumed. Here, this stronger condition is required for both a higher regularity result (cf . Proposition 3.2) and
a higher order control of the deformations (cf . (4.1)). With these altered boundary conditions the equality∫

Ω

|∆mψ|2 dx =

∫
Ω

|D2mψ|2 dx for all ψ ∈ H2m
0 (Ω,Ω) (2.3)

holds true for all m ≥ 1 (cf . [9, Section 2.2]). In fact, using integration by parts we exemplarily obtain for m = 1∫
Ω

|∆ψ|2 dx =

∫
Ω

n∑
i,j=1

∂2
i ψ · ∂2

jψ dx =

∫
Ω

n∑
i,j=1

∂i∂jψ · ∂i∂jψ dx =

∫
Ω

|D2ψ|2 dx .
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In what follows, we need the existence of minimizers of this particular matching energyW for input images u, ũ ∈ L2(Ω)
with ‖ũ− u‖L2(Ω) sufficiently small.

Proposition 2.1 (Existence of a minimizing deformation for W). Let u ∈ L2(Ω) and 2m − n
2 > 1. Then there exists a

constant CW > 0 that solely depends on γ, δ, Ω and m such that for every ũ ∈ L2(Ω) with ‖ũ − u‖L2(Ω) ≤ CW there is a
minimizing deformation φ ∈ A forW , i.e.W[u, ũ] =WD[u, ũ, φ], and φ is a C1(Ω)-diffeomorphism.

Proof. The proof is based on the direct method in the calculus of variations. Let (φj)j∈N ⊂ A be a minimizing sequence for
WD[u, ũ, φj ] with monotonously decreasing energy and

0 ≤ inf
φ̃∈A
WD[u, ũ, φ̃] = lim

j→∞
WD[u, ũ, φj ] ≤W :=WD[u, ũ,1] = 1

δ ‖ũ− u‖
2
L2(Ω) . (2.4)

Since φj − 1 ∈ H2m
0 (Ω), (2.3) and (2.4) imply∫

Ω

γ|D2m(φj − 1)|2 dx =

∫
Ω

γ|∆m(φj − 1)|2 dx =

∫
Ω

γ|∆mφj |2 dx ≤ 1

δ
‖ũ− u‖2L2(Ω) ≤

C2
W
δ

.

Thus, the norm equivalence of ‖ · ‖H2m(Ω) and | · |H2m(Ω) for the space H2m
0 (Ω), which follows by an iterative application of

the Poincaré inequality (cf . [1, Corollary 6.31]), yields

‖φj − 1‖H2m(Ω) ≤ C‖ũ− u‖L2(Ω) ≤ CCW . (2.5)

By taking into account the embedding H2m(Ω) ↪→ C1(Ω) and considering a smaller CW if necessary we can assume

‖det(Dφj)− 1‖L∞(Ω) ≤ Cd

for a constantCd ∈ (0, 1), which implies that φj isC1(Ω)-diffeomorphism (see [5, Theorem 5.5-2]). Moreover, since (φj)j∈N
are uniformly bounded in H2m(Ω) (cf . (2.5)), a subsequence (also denoted by φj) converges weakly in H2m(Ω) due to the
reflexivity of this space and (strongly) in C1,α(Ω) for α ∈ (0, 2m− 1− n

2 ) to a C1(Ω)-diffeomorphism φ ∈ A.
Next, we prove the convergence of the L2(Ω)-mismatch terms. To this end, we estimate∣∣∣∣∫

Ω

|ũ ◦ φj − u|2 − |ũ ◦ φ− u|2 dx

∣∣∣∣ ≤ ∫
Ω

(|ũ ◦ φj − u|+ |ũ ◦ φ− u|)|ũ ◦ φj − ũ ◦ φ|dx

≤
(
‖ũ ◦ φj − u‖L2(Ω) + ‖ũ ◦ φ− u‖L2(Ω)

)
‖ũ ◦ φj − ũ ◦ φ‖L2(Ω) ≤ 2

√
δW‖ũ ◦ φj − ũ ◦ φ‖L2(Ω) .

Now, we approximate ũ in L2(Ω) by a sequence of smooth functions (ũi)i∈N such that ‖ũ− ũi‖L2(Ω) ≤ 2−i. Then,

‖ũ ◦ φj − ũ ◦ φ‖L2(Ω) ≤ ‖ũ ◦ φj − ũi ◦ φj‖L2(Ω) + ‖ũi ◦ φj − ũi ◦ φ‖L2(Ω) + ‖ũi ◦ φ− ũ ◦ φ‖L2(Ω) . (2.6)

Next, applying the transformation formula yields

‖ũ ◦ φj − ũi ◦ φj‖L2(Ω) ≤ ‖(det(Dφj) ◦ (φj)−1)−1‖
1
2

L∞(Ω)‖ũ− ũi‖L2(Ω) ≤
1

(1− Cd)
1
2

‖ũ− ũi‖L2(Ω) .

Likewise, we can deduce ‖ũ ◦ φ− ũi ◦ φ‖L2(Ω) ≤ C‖ũ− ũi‖L2(Ω). Furthermore, the middle term in (2.6) vanishes for fixed
i as j →∞. Finally, using the lower semicontinuity of the first two terms of the energy we get

WD[u, ũ, φ] ≤ lim inf
j→∞

WD[u, ũ, φj ] ,

which proves this proposition.

Following the general approach for the variational time discretization of geodesic calculus in [21] and the particular
discretization of the metamorphosis model in [4], we define the discrete path energy EK on a sequence of K + 1 images
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(u0, . . . , uK) ∈ (L2(Ω))K+1 with K ≥ 2 as the weighted sum of the discrete matching energy evaluated at consecutive
images, i.e.

EK [u0, . . . , uK ] := K

K∑
k=1

W[uk−1, uk] . (2.7)

A (K + 1)-tuple (u0, . . . , uK) ∈ (L2(Ω))K+1 with given images u0 and uK is defined to be a discrete geodesic curve
connecting u0 and uK if it minimizes EK w.r.t. all other (K + 1)-tuples with u0 and uK fixed. For the proof of the existence
of discrete geodesics we refer to [4]. It is also shown in [4] that a suitable extension of the discrete path energy EK Γ-
convergences to the continuous path energy E . Let us finally mention that neither the matching deformation in (2.2) nor the
discrete geodesic curve defined as the minimizer of (2.7) for given input images u0 and uK are necessarily unique.

3 The time discrete exponential map
In this section, we define the discrete exponential map and derive optimality as well as regularity results, on which the study
of existence and uniqueness in Section 4 and the algorithm introduced in Section 5 will be based.

Let us briefly recall the definition of the continuous exponential map on a Riemannian manifold. Let y : [0, 1] → M
be the unique geodesic curve for a prescribed initial position y(0) = yA and an initial velocity ẏ(0) = v on a Rieman-
nian manifold (M, g). The exponential map is then defined as expyA(v) = y(1). Furthermore, one easily checks that
expyA( kK v) = y( kK ) for 0 ≤ k ≤ K. We refer to the textbook [15] for a detailed discussion of the (continuous) exponential
map. Now, we ask for a time discrete counterpart of the exponential map in the metamorphosis model. To this end, we
consider an image u0 as the initial data and a second image u1 such that ζ1 = u1 − u0 represents a small variation of the
image u0. This variation ζ1 is the discrete counterpart of the infinitesimal variation given by the velocity v in the continuous
case. For varying values of K ≥ 2 we now ask for a discrete geodesic (u0, u1, u2, . . . , uK) described as the minimizer of the
discrete path energy (2.7). Let us for the time being suppose that this geodesic is unique – a property to be verified later. Based
on our above observation for the continuous exponential map we define EXPk∗( · ) as the discrete counterpart of exp∗(

k
K · ),

i.e. we set
EXPku0

(ζ1) := uk

for k = 1, . . . ,K. The definition of the exponential map EXPku0
(ζ1) does not depend on the number of time steps K. Indeed,

if (u0, u1, u2, . . . , uK) is a discrete geodesic, then (u0, u1, u2, . . . , uL) with L ≤ K is also a geodesic. Taking into account
k = 2 we immediately observe that the sequence of discrete exponential maps (EXPku0

(ζ1))k=1,... can iteratively be defined
as follows

EXPku0
(ζ1) = uk := EXP2

uk−2
(ζk−1) (3.1)

for k ≥ 2, where ζk−1 = uk−1 − uk−2, and for the sake of completeness we define EXP0
u0

(ζ1) = u0 and EXP1
u0

(ζ1) =

u1 = u0 + ζ1. Thus, it essentially remains to compute EXP2 for a given input image uk−2 and an image variation ζk−1 =
uk−1−uk−2 (see Figure 1). For a detailed discussion of the discrete exponential map in the simpler model of Hilbert manifolds
we refer to [21]. The particular challenge here is that the matching energy W cannot be evaluated directly, but requires to
solve the variational problem (2.2) for the matching deformation.

u0

u1
u2

u3

u4 . . . uk−3
uk−2

uk−1 uk . . .

ζ1
ζ2

ζ3 ζ4
ζk−2 ζk−1

ζk

Figure 1: Schematic drawing of EXPku0
(ζ1), k = 1, . . . ,K, the input data is highlighted in red.

There are two major restrictions regarding the input images u0 and u1:

Firstly, the existence and uniqueness result for the discrete exponential map (cf . Section 4) will require weakly differen-
tiable input images. These weak derivatives of images naturally arise in the Euler–Lagrange equations for EXP2 w.r.t. the
deformations (see (3.5) and (3.6) below). Let us remark that the weak differentiability of the input data for the exponential map
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is also a crucial requirement in the initial value problem for the geodesic equation in [24]. Furthermore, the H1(Ω)-regularity
property is inherited along discrete geodesics, i.e. EXPku0

(u1 − u0) ∈ H1(Ω) for any k ≥ 1 provided that u0, u1 ∈ H1(Ω)
(cf . [4, Remark 3.3 and Equation (3.2)]).

Secondly, the initial variation ζ1 = u1 − u0 is assumed to be sufficiently small in L2(Ω) in order to ensure the existence
of the initial deformation φ1 and guarantee the convergence of a suitable fixed point algorithm – a property which appears to
be natural in light of the analogue assumption for the continuous exponential map [15]. We will also see that for fixed K the
variations uk−1 − uk−2 for k ≤ K will remain small provided that ζ1 is small. Thus, for fixed K the discrete exponential
map EXPku0

( · ) will be well-posed for a sufficiently small initial variation ζ1.

Hence, in what follows we consider images in H1(Ω) and define uk := EXP2
uk−2

(ζk−1) as the (unique) image in H1(Ω)
such that

uk−1 = argmin
u∈H1(Ω)

min
φk−1,φk∈A

WD[uk−2, u, φk−1] +WD[u, uk, φk] . (3.2)

For the sake of simplicity, we restrict to the first step in the iterative computation of the discrete exponential map with k = 2.
Given u0, u1 ∈ H1(Ω) the first order optimality conditions for (3.2) for u2 ∈ H1(Ω) and φ1, φ2 ∈ A read as

∂u1
(WD[u0, u1, φ1] +WD[u1, u2, φ2])(v) = 0 ,

∂φ1
WD[u0, u1, φ1](ψ) = 0 ,

∂φ2WD[u1, u2, φ2](ψ) = 0 ,

(3.3)

for all v ∈ H1(Ω) and all ψ ∈ H2m
0 (Ω) for 2m− n

2 > 2. The system (3.3) is equivalent to∫
Ω

(u1 ◦ φ1 − u0)v ◦ φ1 − (u2 ◦ φ2 − u1)v dx = 0 , (3.4)∫
Ω

2Dφ1 : Dψ + 2γ∆mφ1 ·∆mψ +
2

δ
(u1 ◦ φ1 − u0)(∇u1 ◦ φ1) · ψ dx = 0 , (3.5)∫

Ω

2Dφ2 : Dψ + 2γ∆mφ2 ·∆mψ +
2

δ
(u2 ◦ φ2 − u1)(∇u2 ◦ φ2) · ψ dx = 0 . (3.6)

The subsequent lemma provides a reformulation of the above system of equations, in which the dependency of the unknown
function u2 in (3.6) is removed and in addition solely the function u1 and no longer derivatives of u1 appear.

Lemma 3.1 (Reformulation of the Euler–Lagrange equation for φ2). Let u0, u1, u2 ∈ H1(Ω) such that (cf. Proposition 2.1)

‖u1 − u0‖L2(Ω), ‖u2 − u1‖L2(Ω) ≤ CW ,

2m − n
2 > 2, and assume that (3.4) and (3.5) hold true. Let φi with i = 1, 2 be the minimizer of WD[ui−1, ui, · ] on A

according to Proposition 2.1.

(i) Then (3.6) is equivalent to∫
Ω

2γ∆mφ2 ·∆mψ + 2Dφ2 : Dψ +
2

δ
(u1 ◦ φ1 − u0)(∇u1 · (Dφ2)−1ψ) ◦ φ1

+
1

δ

(u1 ◦ φ1 − u0)2

detDφ1

(
(Dφ2)−T : (D2φ2(Dφ2)−1ψ)− (Dφ2)−T : Dψ

)
◦ φ1 dx = 0

(3.7)

for all ψ ∈ H2m
0 (Ω).

(ii) Under the additional assumptions that ∂Ω ∈ C4m and u0, u1, u2 ∈ L∞(Ω) ∩H1(Ω) the equation (3.6) is equivalent
to ∫

Ω

2γ∆mφ2 ·∆mψ + 2Dφ2 : Dψ dx

=

∫
Ω

2γ∆mφ1 ·∆m(((Dφ2)−1ψ) ◦ φ1) + 2Dφ1 : D(((Dφ2)−1ψ) ◦ φ1)

− 1

δ

(u1 ◦ φ1 − u0)2

detDφ1

(
(Dφ2)−T : (D2φ2(Dφ2)−1ψ)− (Dφ2)−T : Dψ

)
◦ φ1 dx .

(3.8)

6



Here, the notation (D2φ2(Dφ2)−1ψ)jk =
∑n
i,l=1 ∂j∂kφ

i
2(Dφ2)−1

il ψl is used.

Proof. By using the transformation formula the energyWD can be rewritten as follows

WD[u1, u2, φ2] =

∫
Ω

|Dφ2 − 1|2 + γ|∆mφ2|2 +
1

δ

(u2 − u1 ◦ φ−1
2 )2

det(Dφ2) ◦ φ−1
2

dx ,

since φ2 ∈ A is a diffeomorphism (see Proposition 2.1). As a next step, we rewrite the Euler–Lagrange equation w.r.t. φ2

of WD[u1, u2, · ]. To this end, we use the identities ∂φ2φ
−1
2 (ψ) = −((Dφ2)−1ψ) ◦ φ−1

2 , which follows by differentiating
(φ2 + εψ) ◦ (φ2 + εψ)−1 = 1 w.r.t. ε, and ∂A det(A)(B) = cof(A) : B for A ∈ GL(n) and B ∈ Rn,n with cof A =
(detA)A−T . Thus, we obtain∫

Ω

2Dφ2 : Dψ + 2γ∆mφ2 ·∆mψ +
2

δ
(u2 − u1 ◦ φ−1

2 )
(∇u1 · (Dφ2)−1ψ) ◦ φ−1

2

det(Dφ2) ◦ φ−1
2

+
1

δ

(u2 − u1 ◦ φ−1
2 )2

(detDφ2)2 ◦ φ−1
2

(
cof Dφ2 : (D2φ2(Dφ2)−1ψ)− cof Dφ2 : Dψ

)
◦ φ−1

2 dx = 0 .

A further application of the transformation formula w.r.t. φ2 yields∫
Ω

2Dφ2 : Dψ + 2γ∆mφ2 ·∆mψ +
2

δ
(u2 ◦ φ2 − u1)∇u1 · (Dφ2)−1ψ

+
1

δ

(u2 ◦ φ2 − u1)2

detDφ2

(
cof Dφ2 : (D2φ2(Dφ2)−1ψ)− cof Dφ2 : Dψ

)
dx = 0 . (3.9)

To remove the dependency of the function u2 above, we employ the pointwise condition

u2 ◦ φ2 − u1 =
u1 − u0 ◦ φ−1

1

det(Dφ1) ◦ φ−1
1

(3.10)

for a.e. x ∈ Ω, which follows directly from (3.4). Inserting this in (3.9) and using the integral transformation formula we
achieve ∫

Ω

2Dφ2 : Dψ + 2γ∆mφ2 ·∆mψ +
2

δ
(u1 ◦ φ1 − u0)(∇u1 · (Dφ2)−1ψ) ◦ φ1

+
1

δ

(u1 ◦ φ1 − u0)2

detDφ1

(
cof Dφ2 : (D2φ2(Dφ2)−1ψ)− cof Dφ2 : Dψ

detDφ2

)
◦ φ1 dx = 0 .

The identity cof(A) = det(A)A−T for A ∈ GL(n) implies (i).
To show (ii), we take into account the test function ζ := ((Dφ2)−1ψ) ◦ φ1 in (3.5). To justify this, we have to show that

ζ ∈ H2m
0 (Ω). To this end, we require H2m+1(Ω)-regularity of φ2, which will follow from Proposition 3.2, and classical

differential calculus for Sobolev functions [1]. Inserting ζ into (3.5) we get

−
∫

Ω

2

δ
(u1 ◦φ1−u0)(∇u1 ·(Dφ2)−1ψ)◦φ1 dx =

∫
Ω

2γ∆mφ1 ·∆m(((Dφ2)−1ψ)◦φ1)+2Dφ1 : D(((Dφ2)−1ψ)◦φ1) dx .

By adding the above equation to (3.7) we have proven (ii).

Proposition 3.2 (Maximal regularity of the deformations). Let 2m − n
2 > 2 and ∂Ω ∈ C4m. Furthermore, let u0, u1, u2 ∈

L∞(Ω) ∩ H1(Ω) and suppose that φ1, φ2 ∈ A are minimizers of WD[u0, u1, · ] and WD[u1, u2, · ], respectively. Then
φ1, φ2 ∈ A ∩H4m(Ω).

Proof. We only prove the result for φ2, for φ1 one proceeds analogously. Let w be the displacement associated with φ2, i.e.
w = φ2 − 1 ∈ H2m

0 (Ω). Using integration by parts in (3.6) we obtain for a test function ψ ∈ H2m
0 (Ω)∫

Ω

∆mw ·∆mψ dx = −
∫

Ω

1
γδ (u2 ◦ φ2 − u1)((∇u2 ◦ φ2) · ψ) + 1

γDφ2 : Dψ dx

= −
∫

Ω

1
γδ (u2 ◦ φ2 − u1)((∇u2 ◦ φ2) · ψ)− 1

γ∆φ2 · ψ dx =:

∫
Ω

f · ψ dx

7



with f ∈ L2(Ω,Rn). Then, the assertion follows from the general L2-regularity theory for polyharmonic equations as
presented in [9, Section 2.5.2].

Remark. Since φ2 is a diffeomorphism, (3.10) is equivalent to

u2 =

(
u1 − u0 ◦ φ−1

1

det(Dφ1) ◦ φ−1
1

)
◦ φ−1

2 + u1 ◦ φ−1
2 . (3.11)

Here, the first summand reflects the intensity modulation along the geodesic, the second summand quantifies the contribution
due to the transport.

We will use the first reformulation (3.7) (Lemma 3.1 (i)) of the Euler–Lagrange equation (3.6) with respect to φ2 to
derive a fixed point iteration in the existence proof for the time discrete exponential map. The second reformulation (3.8)
(Lemma 3.1 (ii)) will later be used in a modified and spatially discrete fixed point iteration in the numerical algorithm.

4 Local existence and uniqueness of the discrete exponential map
In this section, we prove local existence and local uniqueness for the discrete exponential map. At first, we make use of
an argument based on Banach’s fixed point theorem applied to the reformulation of the Euler–Lagrange equation given in
Lemma 3.1 (i) for a discrete geodesic (u0, u1, u2) with deformations φ1 and φ2. For image pairs (u0, u1) we establish the
existence of a solution (u2, φ1, φ2) to the system of equations (3.4), (3.5) and (3.6) provided that u0 and u1 are bounded in
H1(Ω) and close in L2(Ω). This does not necessarily imply that for given u0 and u1 the resulting discrete path (u0, u1, u2)
is the unique discrete geodesic connecting u0 and u2. Thus, in a second step we will show that this indeed holds true if the
images u0 and u1 are close in H1(Ω). To this end, we apply an implicit function theorem argument (cf . the corresponding
proof for the discrete exponential map on Hilbert manifolds given in [21]). Let us remark that this argument also allows to
establish existence, but under the stronger assumption that the input images are close in H1(Ω) compared to the requirement
of closeness in L2(Ω) and boundedness in H1(Ω) for the existence proof via the fixed point theorem. Furthermore, the fixed
point approach will be taken into account for the numerical approximation of the time discrete exponential map.

Theorem 4.1 (Existence of solutions of the Euler–Lagrange equations). Let 2m − n
2 > 2, u0 ∈ H1(Ω). Then there are

constants Cu, cu > 0 such that for every u1 ∈
{
u ∈ H1(Ω) : |u|H1(Ω) ≤ Cu, ‖u− u0‖L2(Ω) ≤ cu

}
there exists a solution

(u2, φ1, φ2) ∈ H1(Ω)×A×A of (3.4), (3.5) and (3.6). In particular, the defining system of equations for u2 = EXP2
u0

(u1−
u0) is solved.

Proof. We begin with some preparatory considerations. Let cu ≤ CW and φ1 ∈ argminφ∈AWD[u0, u1, φ] be a minimizing
deformation (cf . Proposition 2.1). Following the same line of arguments as for the estimate (2.5) in the proof of Proposition 2.1
we obtain

‖φ1 − 1‖H2m(Ω) ≤ C‖u1 − u0‖L2(Ω) ≤ Ccu . (4.1)

Furthermore, taking into accountWD[u0, u1, φ1] ≤ WD[u0, u1,1] we infer

‖u1 ◦ φ1 − u0‖L2(Ω) ≤
√
δWD[u0, u1, φ1] ≤

√
δWD[u0, u1,1] = ‖u1 − u0‖L2(Ω) ≤ cu . (4.2)

Now, we define the fixed point iteration and prove the contraction property in several steps:

(i) Defining the fixed point mapping F . Using Lemma 3.1 (i) we define for a fixed deformation φ1 the operators T ,R : A →
H−2m(Ω) as

T [φ](ψ) =

∫
Ω

− 2

δ
(u1 ◦ φ1 − u0)(∇u1 · (Dφ)−1ψ) ◦ φ1

− 1

δ

(u1 ◦ φ1 − u0)2

detDφ1

(
(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ)−T : Dψ

)
◦ φ1 dx ,

R[φ](ψ) =

∫
Ω

2γ∆mφ ·∆mψ + 2Dφ : Dψ dx

8



for a diffeomorphism φ ∈ A and all ψ ∈ H2m
0 (Ω), which allows us to reformulate the Euler–Lagrange equation w.r.t. the

deformation φ2 in (3.7) as
T [φ2](ψ) = R[φ2](ψ) .

Next, we will study the invertibility of the linear operatorR and the Lipschitz continuity of T with a Lipschitz constant which
depends monotonically on cu and vanishes for cu ↘ 0. This will imply that F := R−1 ◦ T is a contraction for sufficiently
small cu. The fixed point iteration to compute the unknown deformation φ2 reads as φj+1 = F [φj ] for j ∈ N and φ0 = 1.

(ii) Lipschitz continuity of T . In what follows, we assume that

φ, φ̃ ∈ Bε(1) :=
{
φ : φ− 1 ∈ H2m

0 (Ω), ‖φ− 1‖H2m(Ω) < ε
}

for a sufficiently small ε > 0, the dependency of ε on Cu and cu is discussed below. By the embedding H2m(Ω) ↪→ C2(Ω)
and for ε sufficiently small we may assume that

‖Dφ− 1‖L∞(Ω) <
1

2
, ‖ det(Dφ)− 1‖L∞(Ω) <

1

2
(4.3)

for all deformations φ considered. Since det(Dφ(x)) ≥ 1
2 for all x ∈ Ω, this ensures that such deformations are in A and

C1(Ω)-diffeomorphisms (see [5, Theorem 5.5-2]). Furthermore, we obtain

‖ det(Dφ−1)‖L∞(Ω) ≤
(

1− ‖ det(Dφ)− 1‖L∞(Ω)

)−1

< 2 , ‖ cof(Dφ)‖L∞(Ω) ≤ C , ‖(Dφ)−1‖L∞(Ω) ≤ C ,

and deduce from (Dφ)−1 = (det(Dφ))−1 cof(Dφ)T

‖(Dφ)−1 − (Dφ̃)−1‖L∞(Ω) = ‖(det(Dφ))−1 cof(Dφ)T − (det(Dφ̃))−1 cof(Dφ̃)T ‖L∞(Ω)

≤
∥∥∥ (cof(Dφ))T

det(Dφ) det(Dφ̃)

∥∥∥
L∞(Ω)

‖ det(Dφ)− det(Dφ̃)‖L∞(Ω) + ‖(det(Dφ̃))−1‖L∞(Ω)‖ cof(Dφ)T − cof(Dφ̃)T ‖L∞(Ω)

≤ C‖φ− φ̃‖H2m(Ω) (4.4)

for deformations φ, φ̃ ∈ Bε(1). Thus, using the Cauchy-Schwarz inequality, the transformation formula, (4.2), (4.3) and (4.4)
we achieve the following estimate corresponding to the first term of T :∣∣∣ ∫

Ω

(u1 ◦ φ1 − u0)(∇u1 ◦ φ1) · ((Dφ)−1ψ) ◦ φ1 − (u1 ◦ φ1 − u0)(∇u1 ◦ φ1) · ((Dφ̃)−1ψ) ◦ φ1 dx
∣∣∣

≤ C‖u1 ◦ φ1 − u0‖L2(Ω)|u1|H1(Ω)‖ detD(φ−1
1 )‖L∞(Ω)‖(Dφ)−1 − (Dφ̃)−1‖L∞(Ω)‖ψ‖L∞(Ω)

≤ CCucu‖φ− φ̃‖H2m(Ω)‖ψ‖H2m(Ω) .

Likewise, for the second term of T we obtain by the transformation formula and by the embedding H2m(Ω) ↪→ C2(Ω)∣∣∣ ∫
Ω

(u1 ◦ φ1 − u0)2

detDφ1

(
(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ̃)−T : (D2φ̃(Dφ̃)−1ψ)

− (Dφ)−T : Dψ + (Dφ̃)−T : Dψ
)
◦ φ1 dx

∣∣∣
≤ Cc2u‖(detDφ1)−1‖L∞(Ω)

(∥∥∥(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ̃)−T : (D2φ̃(Dφ̃)−1ψ)
∥∥∥
L∞(Ω)

+
∥∥∥(Dφ)−T : Dψ − (Dφ̃)−T : Dψ

∥∥∥
L∞(Ω)

)
≤ Cc2u‖φ− φ̃‖H2m(Ω)‖ψ‖H2m(Ω) .

To conclude, for ‖u1 − u0‖L2(Ω) ≤ cu and |u1|H1(Ω) ≤ Cu the mapping T is indeed Lipschitz continuous on Bε(1) ⊂ A
and the Lipschitz constant is bounded by C(Cucu + c2u).

(iii) Invertibility ofR. The bilinear form

R̃ : H2m
0 (Ω)×H2m

0 (Ω)→ R , (ζ, ψ) 7→
∫

Ω

2γ∆mζ ·∆mψ + 2Dζ : Dψ dx
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is bounded in H2m
0 (Ω). Furthermore, R̃ is coercive since for any ψ ∈ H2m

0 (Ω) we obtain

‖ψ‖2H2m(Ω) ≤ C|ψ|
2
H2m(Ω) = C

∫
Ω

∆mψ ·∆mψ dx

due to (2.3) and the iterative application of the Poincaré inequality (cf . [1, Corollary 6.31]). Hence, by the Lax-Milgram
Theorem (cf . [10]) there exists for each z ∈ H−2m(Ω) a unique ζ ∈ H2m

0 (Ω) such that R̃[ζ](ψ) = z(ψ) and R̃−1 :

H−2m(Ω)→ H2m
0 (Ω) is a bounded operator. Finally, sinceR[φ] = R̃[φ−1] we can infer thatR is a bounded and invertible

operator with inverseR−1[z] = 1 + R̃−1[z].
(iv) Contraction property of F . Using the boundedness ofR−1 and the Lipschitz-continuity of T we obtain for F := R−1◦T

‖F [φ]−F [φ̃]‖H2m(Ω) ≤ C‖T [φ]− T [φ̃]‖H−2m(Ω) ≤ C(Cucu + c2u)‖φ− φ̃‖H2m(Ω)

for φ, φ̃ ∈ Bε(1), which proves that F is contractive for sufficiently small Cu, cu and ε.
Next, we prove F : Bε(1)→ Bε(1) for a proper choice of Cu, cu and ε. By using the boundedness ofR−1 andR[1] = 0

one can infer

‖F [1]− 1‖H2m(Ω) = ‖R−1 ◦ T [1]−R−1 ◦ R[1]‖H2m(Ω) ≤ C‖(T −R)[1]‖H−2m(Ω) ≤ C(Cucu + c2u) .

Thus, for any φ ∈ Bε(1) one gets

‖F [φ]− 1‖H2m(Ω) ≤ ‖F [φ]−F [1]‖H2m(Ω) + ‖F [1]− 1‖H2m(Ω)

≤ C(Cucu + c2u)‖φ− 1‖H2m(Ω) + C(Cucu + c2u) ≤ C(Cucu + c2u)ε+ C(Cucu + c2u) .

Now, choosing Cu, cu small enough and ε such that the conditions in (4.3) are satisfied for any φ ∈ Bε(1) and for φ1, F maps
Bε(1) onto Bε(1).

Hence, the application of Banach’s fixed point theorem proves the existence of a unique deformation φ2 in Bε(1) ⊂ A
solving (3.7). Then, the unique image u2 associated with (φ1, φ2) can be computed using the formula (3.11). Thus, there
exists a solution (u2, φ1, φ2) ∈ H1(Ω)×A×A of (3.4), (3.5) and (3.6), and this solution is unique in a small neighborhood
around (u0,1,1).

Theorem 4.2 (Local uniqueness and well-posedness of the discrete exponential map). Let 2m− n
2 > 2 and u0 ∈ H1(Ω). Then

there exist neighborhoods U ⊂ H1(Ω) of u0 and D ⊂ A of 1 such that for every u2 ∈ U there exists at most one solution
(u1, φ1, φ2) ∈ U×D×D of the equations (3.4)-(3.6). In particular, the discrete exponential map is locally well-posed and

u2 = EXP2
u0

(u1 − u0) .

Proof. At first, we get rid of the unknown image u1. To this end, we observe that the sum of the two matching terms in
WD[u0, u1, φ1] +WD[u1, u2, φ2] can be rewritten as follows:∫

Ω

(u1 ◦ φ1 − u0)2 + (u2 ◦ φ2 − u1)2 dx =

∫
Ω

(u1 ◦ φ1 − u0)2 + (u2 ◦ φ2 ◦ φ1 − u1 ◦ φ1)2 detDφ1 dx .

Therefore, the image u1 minimizing the above integral is characterized pointwise a.e. on Ω by

u1 ◦ φ1 =
u0 + (u2 ◦ φ2 ◦ φ1) detDφ1

1 + detDφ1

and can thus be written as a function u1(u2, φ1, φ2) of the image u2 and the deformations φ1 and φ2 (we omit the dependence
on the image u0). Hence, the Euler–Lagrange equations (3.4)-(3.6) can be reformulated as

0 = K[u2, φ1, φ2] := ∂(φ1,φ2)J [u2, φ1, φ2] ,

where J is a functional on H1(Ω)×A×A with

J [u2, φ1, φ2] =WD[u0, u1(u2, φ1, φ2), φ1] +WD[u1(u2, φ1, φ2), u2, φ2]

=

∫
Ω

|Dφ1 − 1|2 + γ|∆mφ1|2 + |Dφ2 − 1|2 + γ|∆mφ2|2 +
h(Dφ1)

δ
(u2 ◦ φ2 ◦ φ1 − u0)2 dx
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for h(A) = detA
1+detA and K : H1(Ω) × A × A → (H2m

0 (Ω) × H2m
0 (Ω))′. Now, we will show that in a neighborhood

of (u0,1,1) one obtains an explicit representation (φ1, φ2)[u2] for the implicit equation 0 = K[u2, φ1, φ2] via the implicit
function theorem. Hence, for every u2, which is close to u0 in H1(Ω), there exists in a small neighborhood ofA×A a unique
tuple (φ1, φ2), which solves the above implicit equation. This indeed proves the claim. To apply the implicit function theorem,
we have to show that ∂(φ1,φ2)K[u0,1,1] = ∂2

(φ1,φ2)J [u0,1,1] is invertible with bounded inverse. At first, we compute the
different components of ∂2

(φ1,φ2)J [u2, φ1, φ2]. For this reason, we focus here on the variation of

J̃ [u2, φ1, φ2] =

∫
Ω

h(Dφ1)(u2 ◦ φ2 ◦ φ1 − u0)2 dx ,

the derivatives of the other components of J are straightforward. We use integration by parts to avoid derivatives of the
involved image intensities. For the first variation with respect to φ1 and φ2 we obtain

∂φ1
J̃ [u2, φ1, φ2](ψ) =

∫
Ω

(u2 ◦ φ2 ◦ φ1 − u0)2Dh(Dφ1) : Dψ

+ 2h(Dφ1)(u2 ◦ φ2 ◦ φ1 − u0)∇(u2 ◦ φ2 ◦ φ1) · (Dφ1)−1ψ dx

=

∫
Ω

(u2 ◦ φ2 ◦ φ1 − u0)2Dh(Dφ1) : Dψ − (u2 ◦ φ2 ◦ φ1)2 div
(
h(Dφ1)(Dφ1)−1ψ

)
+ 2(u2 ◦ φ2 ◦ φ1) div

(
u0h(Dφ1)(Dφ1)−1ψ

)
dx ,

∂φ2
J̃ [u2, φ1, φ2](ψ) =

∫
Ω

2h(Dφ1)(u2 ◦ φ2 ◦ φ1 − u0)∇(u2 ◦ φ2 ◦ φ1) · (D(φ2 ◦ φ1))−1(ψ ◦ φ1) dx

=

∫
Ω

2(u2 ◦ φ2 ◦ φ1) div
(
u0h(Dφ1)(D(φ2 ◦ φ1))−1(ψ ◦ φ1)

)
− (u2 ◦ φ2 ◦ φ1)2 div

(
h(Dφ1)(D(φ2 ◦ φ1))−1(ψ ◦ φ1)

)
dx

using the following different versions of the chain rule:

(∇(u2 ◦ φ2 ◦ φ1))T = (∇(u2 ◦ φ2) ◦ φ1)TDφ1 ,

∇(u2 ◦ φ2 ◦ φ1)2 = 2(u2 ◦ φ2 ◦ φ1)∇(u2 ◦ φ2 ◦ φ1) ,

(∇(u2 ◦ φ2 ◦ φ1))T = (∇u2 ◦ (φ2 ◦ φ1))TD(φ2 ◦ φ1) .

Then, for the second order variations one gets

∂2
φ1
J̃ [u2, φ1, φ2](ψ, ζ) =

∫
Ω

2(u2 ◦ φ2 ◦ φ1 − u0)∇(u2 ◦ φ2) ◦ φ1 · ζ(Dh(Dφ1) : Dψ)

+ (u2 ◦ φ2 ◦ φ1 − u0)2D2h(Dφ1)(Dψ,Dζ)

− 2(u2 ◦ φ2 ◦ φ1)∇(u2 ◦ φ2) ◦ φ1 · ζ div
(
h(Dφ1)(Dφ1)−1ψ

)
− (u2 ◦ φ2 ◦ φ1)2 div

(
∂φ1

(h(Dφ1)(Dφ1)−1)(ζ)ψ
)

+ 2∇(u2 ◦ φ2) ◦ φ1 · ζ div
(
u0h(Dφ1)(Dφ1)−1ψ

)
+ 2(u2 ◦ φ2 ◦ φ1) div

(
u0∂φ1

(h(Dφ1)(Dφ1)−1)(ζ)ψ
)

dx ,

∂2
φ2
J̃ [u2, φ1, φ2](ψ, ζ) =

∫
Ω

2∇u2 ◦ (φ2 ◦ φ1) · (ζ ◦ φ1) div
(
u0h(Dφ1)(D(φ2 ◦ φ1))−1(ψ ◦ φ1)

)
+ 2(u2 ◦ φ2 ◦ φ1) div

(
u0h(Dφ1)∂φ2((D(φ2 ◦ φ1))−1)(ζ)(ψ ◦ φ1)

)
− 2(u2 ◦ φ2 ◦ φ1)∇u2 ◦ (φ2 ◦ φ1) · (ζ ◦ φ1) div

(
h(Dφ1)(D(φ2 ◦ φ1))−1(ψ ◦ φ1)

)
− (u2 ◦ φ2 ◦ φ1)2 div

(
h(Dφ1)∂φ2

((D(φ2 ◦ φ1))−1)(ζ)(ψ ◦ φ1)
)

dx ,

∂φ1
∂φ2
J̃ [u2, φ1, φ2](ψ, ζ) =

∫
Ω

2∇(u2 ◦ φ2) ◦ φ1 · ψ div
(
u0h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1)

)
+ 2(u2 ◦ φ2 ◦ φ1) div

(
u0∂φ1

(h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1))(ψ)
)

− 2(u2 ◦ φ2 ◦ φ1)∇(u2 ◦ φ2) ◦ φ1 · ψ div
(
h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1)

)
− (u2 ◦ φ2 ◦ φ1)2 div

(
∂φ1

(h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1))(ψ)
)

dx .
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Evaluating the second order variational derivatives at the point (u0,1,1) yields

∂2
φ1
J̃ [u0,1,1](ψ, ζ) =

∫
Ω

−u0∇u0 · ζ div(ψ)− u2
0 div(∂φ1

(h(Dφ1)(Dφ1)−1)|φ1=1(ζ)ψ)

+∇u0 · ζ div(u0ψ) + 2u0 div(u0∂φ1(h(Dφ1)(Dφ1)−1)|φ1=1(ζ)ψ) dx

=

∫
Ω

ζT∇u0∇uT0 ψ dx ,

∂2
φ2
J̃ [u0,1,1](ψ, ζ) =

∫
Ω

∇u0 · ζ div(u0ψ) + u0 div(u0∂φ2
((D(φ2 ◦ φ1))−1)|φ2=1(ζ)(ψ ◦ φ1))

− u0∇u0 · ζ div(ψ)− 1
2u

2
0 div(∂φ2

((D(φ2 ◦ φ1))−1)|φ2=1(ζ)(ψ ◦ φ1)) dx

=

∫
Ω

ζT∇u0∇uT0 ψ dx ,

∂φ1
∂φ2
J̃ [u0,1,1](ψ, ζ) =

∫
Ω

∇u0 · ψ div(u0ζ) + 2u0 div(u0∂φ1
(h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1))|φ1=1(ψ))

− u0∇u0 · ψ div(ζ)− u2
0 div(∂φ1

(h(Dφ1)(D(φ2 ◦ φ1))−1(ζ ◦ φ1))|φ1=1(ψ)) dx

=

∫
Ω

ζT∇u0∇uT0 ψ dx .

Here, we have used the following identities, which rely on integration by parts,∫
Ω

u2
0 divv − 2u0 div(u0v) dx =

∫
Ω

−∇u2
0 · v − 2u0 div(u0v) dx

=

∫
Ω

−2∇u0 · (u0v)− 2u0 div(u0v) dx =

∫
Ω

2u0 div(u0v)− 2u0 div(u0v) dx = 0

for any vector field v ∈ H1
0 (Ω,Rn). Altogether, taking also into account the second order variation of the remaining terms of

J we obtain

∂2
(φ1,φ2)J [u0,1,1]((ψ1, ψ2), (ζ1, ζ2)) =

∫
Ω

2γ∆mψ1 ·∆mζ1 + 2Dψ1 : Dζ1 + 2γ∆mψ2 ·∆mζ2

+ 2Dψ2 : Dζ2 +
1

δ
(ψ1 + ψ2)T∇u0∇uT0 (ζ1 + ζ2) dx .

It is straightforward to verify that ∂2
(φ1,φ2)J [u0,1,1] is a continuous bilinear form on H2m

0 (Ω) × H2m
0 (Ω) by taking into

account the estimate∣∣∣∣∫
Ω

(ψ1 + ψ2)T∇u0∇uT0 (ζ1 + ζ2) dx

∣∣∣∣ ≤ C‖u0‖2H1(Ω)‖(ψ1, ψ2)‖H2m(Ω)‖(ζ1, ζ2)‖H2m(Ω) ,

the coercivity follows by analogous arguments as in the proof of the coercivity ofR (cf . Theorem 4.1). Thus, the Lax-Milgram
Theorem ensures the required invertibility.

5 Spatial discretization and fixed point algorithm
In what follows, we introduce a spatial discretization scheme as well as an algorithm to compute the discrete exponential map
based on the time discrete operator EXP2

u0
(u1− u0) for given images u0 and u1. Let us recall that the computation of EXPk

for k > 2 requires the iterative application of EXP2 as defined in (3.1). In explicit, we ask for a numerical approximation of
the matching deformations φ1, φ2 and the actual succeeding image u2 = EXP2

u0
(u1−u0) along the shot discrete path. Here,

we restrict to two dimensional images and for the sake of simplicity we assume that the image domain is the unit square, i.e.
Ω = (0, 1)2. Conceptually, the generalization to three dimensions is straightforward. As a simplification for the numerical
implementation, we restrict to the case m = 1 despite the theoretical requirement that m > 1 + n

4 = 3
2 . Below, we will

introduce the space of tensor product cubic splines for the discretization of deformations. For such discrete deformations the
reformulation in Lemma 3.1 (ii) holds true (the regularity result in Proposition 3.2 is only required for the reformulation in

12



the spatially continuous case). We experimentally observed that the spatially discretized model ensures sufficient regularity
of the deformations to reliably solve the Euler–Lagrange equations numerically. To sum up, the discrete energy density that
we will employ in all numerical computations is given by

WD[u, ũ, φ] =

∫
Ω

|Dφ− 1|2 + γ∆φ ·∆φ+
1

δ
(ũ ◦ φ− u)2 dx

for u, ũ ∈ H1(Ω) and φ ∈ A.
The algorithm to compute φ2 is based on a spatially discrete fixed point iteration similar to the one used in proof of

Theorem 4.1. In explicit, we follow the derivation of the fixed point mapping in this proof using now the reformulation (ii)
instead of (i) in Lemma 3.1 as a starting point and define

T̃ [φ](ψ) =

∫
Ω

2γ∆φ1 ·∆(((Dφ)−1ψ) ◦ φ1) + 2Dφ1 : D(((Dφ)−1ψ) ◦ φ1)

− 1

δ

(u1 ◦ φ1 − u0)2

detDφ1

(
(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ)−T : Dψ

)
◦ φ1 dx

=

∫
Ω

− 2γD∆φ1 : (D((Dφ)−1ψ) ◦ φ1)− 2∆φ1 · ((Dφ)−1ψ) ◦ φ1

− 1

δ

(u1 ◦ φ1 − u0)2

detDφ1

(
(Dφ)−T : (D2φ(Dφ)−1ψ)− (Dφ)−T : Dψ

)
◦ φ1 dx

for all ψ ∈ H2m
0 (Ω). Here, we used integration by parts to get the second equality. This ansatz is numerically beneficial

because it avoids the evaluation of gradients of image intensities. In fact, we experimentally observed that the evaluation of
the expression

∫
Ω

(u1◦φ1−u0)(∇u1 ·(Dφ)−1ψ)◦φ1 dx appearing in the definition of T in proof of Theorem 4.1 suffers from
accuracy problems in the proximity of interfaces of u1 due to the approximate numerical quadrature. To further improve the
stability of the numerical algorithm with respect to the evaluation of the first integrand, we additionally rewrite this expression
by making use of A : B = tr(ATB) as follows∫

Ω

D∆φ1 : D((Dφ)−1ψ) ◦ φ1) dx =

∫
Ω

D∆φ1 : ((Dφ)−1 ◦ φ1)D(ψ ◦ φ1) +D∆φ1 : D((Dφ)−1 ◦ φ1)(ψ ◦ φ1) dx

=

∫
Ω

((Dφ)−T ◦ φ1)D∆φ1 : D(ψ ◦ φ1) +D∆φ1 : D((Dφ)−1 ◦ φ1)(ψ ◦ φ1) dx .

The second operator R is chosen identically to the one in the proof of Theorem 4.1. Then, taking into account the identity
T̃ [φ2](ψ) = R[φ2](ψ) for all test functions ψ ∈ H2m

0 (Ω) the modified fixed point equation based on (3.8) reads as

φj+1 = R−1 ◦ T̃ [φj ]

for j ∈ N.
We use different discrete ansatz spaces for the deformations and the images. As the discrete ansatz space for deformations

we choose the conforming space of cubic splines SH ⊂ C2(Ω). Here, H = 2−N with N ∈ N denotes the grid size
of the underlying uniform and rectangular mesh, and the basis functions are vector-valued B-splines. Moreover, we only
impose the Dirichlet boundary condition Φ = 1 on ∂Ω instead of the stronger boundary conditions Φ − 1 ∈ H2

0 (Ω) for
the discrete deformations Φ ∈ SH . Indeed, we experimentally observed that these Dirichlet boundary conditions allow to
reliably compute proper deformations. The gray value images are approximated with finite element functions in the space Vh
of piecewise bilinear and globally continuous functions on Ω with input intensities in the range [0, 1]. The underlying grid
consists of uniform and quadratic cells with mesh size h = 2−M with M > N , the index set of all grid nodes is denoted
by INVh . We take into account the usual Lagrange basis functions {Θi}i∈INVh to represent image intensities U ∈ Vh. In our
numerical experiments we set M = N + 1.

Now, we are in the position to define spatially discrete counterparts of the energy and the operators involved in the fixed
point iteration. We apply a Gaussian quadrature of order 5 on both meshes. The discrete energy for U, Ũ ∈ Vh and Φ ∈ SH
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is defined as (cf . (2.2))

WD[U, Ũ,Φ] =
∑
cH

∑
qH

ωcHqH
(
(DΦ− 1)(xcHqH ) : (DΦ− 1)(xcHqH ) + γ∆Φ(xcHqH ) ·∆Φ(xcHqH )

)
+

1

δ

∑
ch

∑
qh

ωchqh

(
Ũ(Φ(xchqh))−U(xchqh)

)2

,

where we sum over all grid cells cH of the spline mesh and all local quadrature points within these cells indexed by qH with
respect to the deformation energy and over all grid cells ch of the finer finite element mesh and all local quadrature points
within these cells indexed by qh. Here, (ωcHqH ,x

cH
qH ) and (ωchqh ,x

ch
qh

) are the pairs of quadrature weights and points on the spline
mesh and the finite element mesh, respectively. For the fully discrete counterparts of the operators T̃ andR one gets

T̃[Φ](Ψ) =
∑
cH

∑
qH

ωcHqH

(
− 2γ((DΦ)−T ◦Φ1(xcHqH ))D∆Φ1(xcHqH ) : D(Ψ ◦Φ1(xcHqH ))

− 2γD∆Φ1(xcHqH ) : D((DΦ)−1 ◦Φ1(xcHqH ))(Ψ ◦Φ1(xcHqH ))

− 2∆Φ1(xcHqH ) · ((DΦ)−1Ψ) ◦Φ1(xcHqH )
)

−
∑
ch

∑
qh

ωchqh
δ

(U1 ◦Φ1(xchqh)−U0(xchqh))2

detDΦ1(xchqh)

·
(
(DΦ)−T : (D2Φ(DΦ)−1Ψ)− (DΦ)−T : DΨ

)
◦Φ1(xchqh) ,

R[Φ](Ψ) =
∑
cH

∑
qH

ωcHqH
(
2γ∆Φ(xcHqH ) ·∆Ψ(xcHqH ) + 2DΦ(xcHqH ) : DΨ(xcHqH )

)
for Ψ ∈ SH with Ψ = 0 on ∂Ω. Finally, one obtains the following fixed point iteration to compute the spatially discrete Φ2

Φj+1 = R−1 ◦ T̃[Φj ] (5.1)

for all j ≥ 0 and initial data Φ0 = 1. The application of R−1 requires the solution of the associated linear system of
equations.

In a preparatory step, the deformation Φ1 ∈ argminΦ∈SH WD[U0,U1,Φ], which is used in the first step of a time
discrete geodesic shooting, is calculated using a Fletcher-Reeves nonlinear conjugate gradient descent multilevel scheme with
an Armijo step size control.

Then, the deformation in the current step is computed using the fixed point iteration (5.1), which is stopped if the L∞-
difference of the deformations in two consecutive iterations is below the threshold value THRESHOLD = 10−12. To
compute U2, we employ the spatially discrete analog of the update formula (3.11)

U2(x) =

(
U1 −U0 ◦Φ−1

1

det(DΦ1) ◦Φ−1
1

)
◦Φ−1

2 (x) + U1 ◦Φ−1
2 (x) . (5.2)

Here, we evaluate (5.2) at all grid nodes of the finite element grid. To compute approximate inverse deformations Φ−1
i ∈ SH ,

i ∈ {1, 2}, all cells of the grid associated with SH are traversed and the deformed positions Φi(xj) for all vertices xj ,
j ∈ {1, . . . , 4}, of the current element are computed. Then, we use a bilinear interpolation of these deformed positions to
define an approximation of Φ−1

i (x) for x ∈ Ω. Furthermore, we explicitly ensure the boundary condition Φ−1
i (x) = x for

x ∈ ∂Ω.
In our numerical experiments on real image data, we observed slight local oscillations emerging from the inexact evaluation

of the expression Jk = Uk(x)−Uk−1◦Φ−1
k (x) in the quadrature of the intensity modulation. Since the calculation of EXPk

requires a recursive application of EXP2, these oscillations turn out to be sensitive to error propagation, and it is advantageous
to apply in a post-processing step one iteration of the anisotropic diffusion filter (Mh + τSh[Jk, λ])−1Mh to Jk for weight
parameters τ, λ > 0 (see [20]). Here, Mh is the usual mass matrix and Sh[Jk, λ] the anisotropic stiffness matrix associated
with Vh, i.e. (Sh[Jk, λ])i,j =

∑
ch,qh

ωchqh (1 + λ−2‖∇Jk(xchqh)‖2)−1∇Θi(xchqh) · ∇Θj(xchqh) for i, j ∈ INVh . Furthermore, in
all following applications except the first test case (Figure 2) we choose τ = βk−2 · 10−3 as the exponentially decaying time
step size (k denoting the index of the image in the sequence and β = 0.8) and λ = 0.5 as the smoothing parameter along the
discrete geodesic. The impact of this filtering can be seen for instance in Figure 3.
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6 Numerical results
In this section, we present applications of the fully discrete exponential map. In all computations, we use the parameters
γ = 10−4 and δ = 10−2.

U0 U1 U2 U3 U6 U9

−0.07 0 0.02

I1

v1

I2

v2

I3

v3

I6

v6

I9

v9

Figure 2: First row: The discrete exponential map EXPkU0
(U1 − U0) with k = 0, 1, 2, 3, 6, 9 for images showing three

ellipses (input images are framed in red). Second row: the associated intensity modulations Ik. Third row: the discrete
velocity fields vk (the hue refers to the direction, the intensity is proportional to its norm).

As a first example, we investigate an artificial test case consisting of an input image U0 with three ellipses of different
intensities and an associated variation U1 − U0. The first row in Figure 2 depicts distinct images of the image sequence
EXPkU0

(U1 −U0) for time steps k = 0, 1, 2, 3, 6, 9, the input images U0 and U1 with resolution 257 × 257 are framed in
red. In the initial variation U1 −U0 underlying the exponential shooting, the upper left ellipse is slightly translated to the
bottom and simultaneously expanded. The upper right ellipse is undergoing a small rotation and the third one is also slightly
translated with some modulation of the shading. The initial variation encoded in the image pair (U0,U1) is prolongated
along the sequence generated by an iterative application of the discrete exponential map EXP2. In the second row, for each
k > 0 the discrete intensity modulations Ik = Uk ◦Φk −Uk−1 are visualized. Here, on the left the color bar with bounds
coinciding with the extremal values for this image sequence is displayed. The third row depicts the discrete velocity fields
vk = 1

τ (Φk − 1) for each k, where τ = 1
K is the associated time step size. Here, the hue refers to the direction and the color

intensity is proportional to the local norm of vk as represented by the leftmost color wheel. In particular, one observes that
the resulting underlying velocity field vk is not constant in time.

In [4, Figure 6.2], a geodesic sequence between two female portrait paintings2 was computed using the finite element
discretization for both the images and the deformations on the same grid. The image resolution is 257 × 257 (M = 8). We
recomputed this geodesic sequence (Ũ0, Ũ1, . . . , Ũ16) with K = 16 for the discrete function spaces Vh and SH with N = 7,
the resulting sequence is shown in the first row of Figure 3 with framed input images Ũ0 and Ũ16. This is compared with
the discrete exponential shooting for the initial image pair U0, U1 taken from this geodesic sequence. One observes that
the discrete exponential map is capable to recover the original geodesic sequence for small time steps k. Only in late stages
visible differences become apparent. Again, we highlight that the discrete motion fields significantly alter in time.

2first painting by A. Kauffmann (public domain, see http://commons.wikimedia.org/wiki/File:Angelika_Kauffmann_-_Self_
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Figure 4 depicts a picture details for the time steps k = 0, 1, 2, 4, 8, 16 of the discrete exponential map applied to two
different pairs of photos. These photos show human faces and small variations of them and the resolution of the underlying
full images is 1025 × 1025. The red boxes indicate these input images (first and third row), which are consecutive photos of
a series at 5 and 7 fps, respectively, taken with a digital camera. We observe that small initial variations result in a nonlinear
deformation of the lips (first row) and of the lips, the cheeks and the eyes (third row), respectively. Furthermore, the textures
are transported along the sequence. The second and fourth row depict the color coded time varying velocity fields.

Figure 5 shows the discrete exponential map for k = 0, . . . , 7 applied to a pair of images of a dog for a resolution of
1025 × 1025. Again, the input pictures are consecutive photos of a series with 7 fps taken with a digital camera. The initial
image pair shows a slight rotation of the dog’s head and a small opening of its eyes. The proposed algorithm generates a
extrapolation of this movement. As a consequence in particular of the rotation, the method fills in reasonable image features
below the mouth and right to the ear which correspond to hidden object regions in U0 and U1.

Supplementary material. The supplementary material of this publication includes video sequences with animations of the
discrete exponential map shown in Figure 3 (together with the discrete geodesic interpolation), Figure 4 and Figure 5.
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Figure 3: The first row depicts distinct images of the discrete geodesic sequence associated with the input images Ũ0 and
Ũ16 (in red boxes). The discrete exponential map for distinct time steps k is shown in the second and third row, where the
input images U0 and U1 coincide with Ũ0 and Ũ1 from the geodesic sequence, respectively. In addition, the corresponding
intensity modulations as well as the discrete velocity fields (fourth and fifth row) are shown for some time steps k.
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Figure 4: First/third row: picture details of EXPkU0
(U1 −U0) applied to two pairs of photos of human faces for time steps

k = 0, 1, 2, 4, 8, 16. Second/fourth row: the associated discrete velocity fields vk.
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Figure 5: The discrete exponential map for time steps k = 0, . . . , 7 with two photos of a dog as initial data (first and second
row). Third/fourth row: the associated intensity modulations and velocity fields for distinct time steps.
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