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ABSTRACT:  Numerical computation of textile permeability is important for 

composite manufacturing. Using Darcy’s law, permeability can be derived from a 

simulation of the fluid flow, i.e. after solving the Stokes, Navier-Stokes or Brinkman 

equations. The latter allow to model intra-yarn flow in case of permeable yarns. In this 

paper we present a numerical method for the calculation of the permeability of textile 

models based on a finite difference discretisation of the partial differential equations. 

Two different formulas for the calculation of the local permeability are discussed. 

Theoretical, numerical and in particular experimental validation is presented. 
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INTRODUCTION 

 

For the manufacturing of composites with textile reinforcement, the permeability of the 

textile is a key characteristic and is of particular importance for the injection stage of 

Liquid Composite Moulding. The prediction of textile permeability is important due to 

the often encountered problems of non-uniform impregnation, which may even involve 

void and dry spot formation. Permeability is a geometric characteristic related to the 

structural features of the textile at several length scales. Textiles are porous media and 

the permeability tensor can be defined by Darcy’s law 
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Here, Re  denotes the Reynolds number, ( ), ,u u x y z=
� �

 the fluid velocity, ( ), ,P P x y z=  

the pressure, K the permeability tensor of the porous medium and  denotes volume 

averaging. Eqn. 1 is a homogenized equation, where information about the internal 

geometry of the reinforcement is taken into account in K . Finite element or finite 

difference Darcy solvers thus require K  as input. Since measurements of textile 

permeability are time- and resource-consuming, a reliable numerical prediction of K  is 

required.  

 

P
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Fig. 1  A unit cell setup 
 

For the calculation of K , we simulate the flow in a unit cell (Fig. 1) since textile has a 

periodic pattern. As textiles are also hierarchically structured materials, our model for 

fluid flow must also take into consideration the possible porosity of the yarns. Hence, in 

the following, if the yarns are porous, we will differentiate between inter-yarn flow and 

intra-yarn flow. The porosity is accounted for by the permeability tensor 
tow

K . In both 

cases we aim at the computation of the fluid velocity u
�

and the pressure P  in order to 

solve Darcy's law (1) for K . 

In the case that the model is limited to creeping, single-phase, isothermal, unidirectional 

saturated flow of a Newtonian fluid, the inter-yarn flow is described by the 

incompressible Navier-Stokes equations (here in dimensionless form), 
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Here, ( ), , ,u u x y z t=
� �

 and ( ), , ,P P x y z t= . If Re  is small, the convective term can be 

neglected, and Eqn. 2 result in the Stokes equations. Later in this paper, we show 

numerically that for our applications both the Navier-Stokes and the Stokes equations 

can be used.  

Intra-yarn flow depends on the local permeability tensor 
tow

K  of the tow, and is 

described by the Brinkman equations [5] satisfying  
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with the convection term included. 
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We develop numerical software for the calculation of the permeability of textiles, 

named FlowTex. The input of a single layer of the textile model is provided by the 

WiseTex software [11,13,19] which allows the characterisation of a single-layer of the 

reinforcement or a regularly or randomly nested laminate [12]. 

 

 

NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS 

 

For flow simulations in the irregular geometry of a textile, we have chosen to solve Eqn. 

(2) numerically on a regular staggered grid with a finite difference discretisation. An 

example of a textile geometry and its discretisation on a regular grid is shown in Fig. 2. 

 
 

Fig 2  A 3D and 2D voxel representation of a textile geometry 
 

In previous work the solution was performed using lattice Boltzmann algorithm [3]. The 

implementation described in this paper is based on the 3D finite difference Navier-

Stokes solver NaSt3DGP, developed at the Institute for Numerical Simulation of the 

University of Bonn [1,7]. In order to apply the code for the computation of the 

permeability of textiles, several extensions to the code have been made. An interface 

between FlowTex and NaSt3DGP allows the input of the voxel description of the textile 

geometry [13,19] provided by WiseTex (Fig. 2). For the unit cell setup, we implemented 

periodic boundary conditions in three directions for the velocity, and periodic boundary 

conditions up to a constant gradient for the pressure (Fig. 1). To account for intra-yarn 

flow, the code has been extended to solve the Brinkman equations: we solve Eqn. 3 on 

the whole domain with variable 0
tow

K< ≤ ∞ . It was shown by Angot [2] that this is a 

valid approach in which no extra interface conditions between the fluid and the porous 

part are required. This approach is a practical method to deal with the coupled problem 

of flow in a porous medium and flow in-between the yarns. An implicit treatment of the 

diffusive terms for the Navier-Stokes/Brinkman equations has substantially improved 

the speed of the permeability computations [17].  
 

 

ANALYTICAL VALIDATION 

 

In our previous papers [17,18] we presented numerical and experimental results that 

take the textile geometry at three different length scales into account: the macroscale of 

the textile part, the mesoscopic scale of the unit repeat cell, as well as the microscopic 

scale of the fibres within the yarns. In this section we give an analytical validation of the 

proposed Darcy’s law for the calculation of the inter-yarn permeability with the help of 
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homogenisation theory. Also, homogenisation theory provides us with a new possibility 

for the computation of the permeability tensor. Numerical validation of the latter 

approach will be given further in this paper. 

The direct numerical treatment of fluid flow in porous media is difficult and time 

consuming due to the rapid variations of the pore scale. However, when the 

characteristic size of the obstacles in a repeat cell of the medium, e.g. of the yarns, is 

small compared to the whole sample, homogenisation theory allows us to “average” or 

“upscale” the equations of fluid mechanics that hold on one scale of the porous medium 

to the next scales. Hence, we avoid the solution of the fluid equations in the complicated 

pore geometry  by merely studying  the geometry’s homogenised influence on these 

equations [14]. 

Several authors have dealt with the homogenisation of the Stokes or Navier-Stokes 

equations in a periodic porous medium [9,14,15] and derive Darcy’s law as the limiting 

equation in the homogenisation process. In Darcy’s law information about the structure 

of the pore scale is only kept through the effective quantity of permeability. The 

permeability tensor K  in homogenisation theory is given as 
1

d
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denotes the j -th component of the vectors i
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Here, i
e
�

 denotes the unit vector, Yτ ∈ , Y  the unit repeat cell of the porous medium 

and 
F

Y  and 
S

Y  its corresponding fluid and solid part. Furthermore, ( )w τ
�

 and ( )π τ  are 

comparable to the fluid velocity and pressure of the Stokes equation. 

From a numerical point of view, this offers a further possibility for the computation of 

the permeability tensor. The solution of  the above cell problems in 3D amounts to three 

Stokes equations with external forces ( )
1 3i i

e
≤ ≤

�

, from which we obtain ( )
1 3

i

i
w

≤ ≤

�

for the 

input of K . This leads to the same results as the computation of K  by Darcy’s law 

since in the unit repeat cell these are equivalent problems [14]. Note that this method 

gives a straightforward definition for the computation of all components of K  whereas 

the calculation of K  via Darcy’s law requires solving a 9x9 system of equations. 

However, for the calculation of e.g. 
xx

K , we neglect the influence of 
xy

K  and 
xz

K  in (1) 

which according to Table 1 is allowed and yields a direct calculation of 
xx

K . 

 

 

LOCAL PERMEABILITY 

 

If we want to include the intra-yarn flow into the flow simulations, we solve the 

Brinkman equations (3), which requires the local permeability in every grid point which 

lies inside the yarn. At micro-level, the fibres are considered as regularly packed 

cylinders. Gebart [6] presents analytical formulas for the permeability of a porous 

medium which consists of a quadratic packing of cylinders for both flow along and 

transversal to the cylinders  
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with Vf  the local volume fraction, r  the radius of the cylinders and max / 4fV π= . 

Berdichevsky et al. [4] on the other hand present formulas for the local permeability 
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Fig. 2 Comparison of the Gebart/Berdichevsky formulas with numerical results 
 

Fig. 2 shows a plot of the different formulas. We see that for the permeability along the 

fibres, the curves of Gebart and Berdichevsky show comparable results, although the 

formulas of Gebart give a higher permeability. For the permeability in the transversal 

direction, however, the formulas give different results for higher volume fractions. 

Fig. 2 also shows the results of our computations with the software described above for 

a parallel square array of cylinders. The formula of Berdichevsky matches better with 

the numerical results for the flow along the fibres, although not for higher volume 

fractions. However, for the flow in the transversal direction, clearly the formula of 

Gebart gives better results. The FlowTex software calculates the local permeability in 

(and transversal to) the direction of the fibres according to (7) and (6). Once 
A

K  and 
T

K  

are known, they are projected onto the main directions , ,X Y Z which then yields the 

local permeability tensor 
tow

K .  

 

 

VALIDATION 
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Analytical data 

 

In this section we compare the numerical results of the permeability of a cubic array of 

spheres with analytical results. On the one hand we can compute the flow field with the 

Stokes equations and obtain K  from the applied pressure drop P∇  and the average 

velocity field u
�

 in Darcy’s law (1) and on the other hand the same permeability will 

be obtained by solving the cell problems (4). For a periodic array of spheres Sangani and 

Acrivos [16] found general solutions of the Stokes equations in series formulation, 

whose coefficients are determined numerically. For several volume fractions Vf  the 

authors computed the dimensionless drag force F  to which the first entry of the 

permeability tensor is related by 1 6
xx

K rFπ= , with r  the sphere radius. 

Both the permeabilities from numerical simulations as well as the semi-analytical ones 

are listed in Table 1 for various values of ( )
1/ 3

maxVf Vfχ = , which is a scaled sphere 

volume fraction 3 34 3Vf r Lπ= , where max 6Vf π=  corresponds to the case where the 

spheres are in contact. First of all, we note that all the values are in good agreement with 

those obtained analytically by Sangani and Acrivos [16] and deviate no more than 0.5% 

from them. Furthermore, the results obtained from the cell problem and by Darcy’s law 

are equal. This was to be expected as in homogenisation theory the cell problem is just 

an auxiliary problem for the definition of the permeability tensor and the derivation of 

Darcy’s law. But also for actual text geometries, the permeability tensor obtained from 

the cell problem is accurate as shown in Table 2. Hence, homogenisation theory not only 

applies to our textiles but also offers an easier way to implement an efficient method for 

permeability computations. 

 

Table 1: Computation of the permeability 
xx

K for a simple cubic array of spheres 

χ  Resolution :  Darcy's Law
xx

K  :  Cell Problem
xx

K  :  Analytical
xx

K  

0.2 60
3 

3.8135 E-01 3.8135 E-01 3.8129 E-01 

0.4 60
3
 1.2314E-01 1.2314E-01 1.2327E-01 

0.8 80
3
 1.3118E-02 1.3118E-02 1.3197E-02 

1 100
3
 2.5083E-03 2.5083E-03 2.5203E-03 

 

Experimental validation 

 

A comparison between the results of the Navier-Stokes/Brinkman solver with 

experimental data is given in Table 2. Information on the Natte textile and the Carbon 

woven fabric can be found in [8,10]. The Numerical and experimental results are in 

good agreement for the Natte textile (Fig. 3) and give reasonable results for the Carbon 

woven fabric. Table 2 also shows the results for a Parallel Square Array (PSA) of 

cylinders.  

For a typical unit cell of textile, with a flow velocity typically used in Resin Transfer 

Moulding ( 310 /m s
− ), the Reynolds number is about 0.05. As flows with a low 

Reynolds number can be described by the Stokes equations, we compare the solution of 

the Navier-Stokes equations with the solution of the Stokes equations (Table 2).  

This shows that for our application, we do not have to solve the non-linear Navier-

Stokes equations with pseudo time-stepping, but can solve the steady Stokes equations 

with a preconditioned iterative solver instead. This can lead to a considerable speedup of 
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the permeability simulations in comparison with the time-stepping we use now to solve 

the Stokes equations. Such a sophisticated Stokes solver is presently under development.  

 

Table 2 Comparison between Navier-Stokes and Stokes calculations 

Setup 

Method 
PSA Vf 62% Natte Carbon woven fabric 

xx
K  Navier-Stokes (mm

2
) 3.4e-03 3.3e-04 4.2e-04 

xx
K  Stokes (mm

2
) 3.4e-03 3.3e-04 4.2e-04 

xx
K  Cell Problem (mm

2
) 3.4e-03 3.3e-04 4.2e-04 

xx
K  Experimental (mm

2
) - 2.7e-04 10%±  1.0e-04 10%±  

 

 
 

Fig. 3. 3D image  and a 2D cut of the calculated flow field in the Natte model 
 

CONCLUSIONS 

 

Two methods for the calculation of the permeability of textiles have been presented. The 

solution of the Navier-Stokes/Brinkman equations with a finite difference solver yields 

the velocity and pressure field for Darcy’s law. On the other hand, the permeability can 

be calculated via the definitions given by the theory of homogenisation. Both methods 

lead to the same numerical results, hence solving the Navier-Stokes/Brinkman equations 

on the unit-cell is a correct approach to obtain the textile permeability. Furthermore, the 

numerical results are in good agreement with experimental results.  

Two formulas for the local permeability term of the Brinkman equation were discussed 

and compared with numerical results.  
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