Foresight Social-aware Reinforcement Learning for
Robot Navigation

Yanying Zhou
Institute for Numerical Simulation
University of Bonn
Bonn, Germany
zhou@ins.uni-bonn.de

Abstract—When robots handle navigation tasks while avoiding
collisions, they perform in crowded and complex environments
not as good as in stable and homogeneous environments. This
often results in a low success rate and poor efficiency. Therefore,
we propose a novel Foresight Social-aware Reinforcement Learn-
ing (FSRL) framework for mobile robots to achieve collision-
free navigation. Compared to previous learning-based methods,
our approach is foresighted. It not only considers the current
human-robot interaction to avoid an immediate collision, but
also estimates upcoming social interactions to still keep distance
in the future. Furthermore, an efficiency constraint is introduced
in our approach that significantly reduces navigation time. Com-
parative experiments are performed to verify the effectiveness
and efficiency of our proposed method under more realistic and
challenging simulated environments.

Index Terms—Robot navigation, Deep reinforcement learning,
Foresight obstacle avoidance, Human-robot interaction

I. INTRODUCTION

With the uptake of artificial intelligence, robots play a more
and more important role in human life, for example as delivery
or service robots. Instead of working in a restricted space,
these robots share their working space with humans and have
frequent interactions, while they are expected to arrive at their
destinations without a negative impact on people.

As robot navigation can be formulated as a reinforcement
learning (RL) task, recently, more and more works apply
RL algorithms to utilize the strong decision-making ability
of RL [1]. Meanwhile, deep learning, with its excellent
representation ability, has achieved great success in many
areas, like computer vision and natural language processing.
Hence, some works [2]-[7] combine deep learning and RL
for social-aware robot navigation. In these approaches, an
effective policy is learned that implicitly models the complex
interactions and cooperation of agents. Specifically, a deep
neural network is adopted to approximate the value function
and the optimal action is then chosen based on this value
function. Although learning-based methods outperform non-
learning methods, these methods are still limited when mobile
robots navigate in more realistic complex environments.

A main issue in previous robot navigation works is that
they oversimplify the environment by only considering the

This work was supported by the China Scholarship Council (CSC).

Shijie Li
Institute for Computer Sciences
University of Bonn
Bonn, Germany
Isj@uni-bonn.de

Jochen Garcke
Institute for Numerical Simulation
University of Bonn
and Fraunhofer SCAI
Bonn, Germany
garcke@ins.uni-bonn.de

m

Collision

(11) al

(4

1
I
\ -
\
1
l

4 ._,.._

[|
Y

Bl

Fig. 1: In a realistic scenario, both standing (blue) and dy-
namic (grey) objects exist. Unlike oversimplified scenarios in
previous methods where only dynamic objects exist, traps or
blind spots will form more frequently and not disappear over
time. These will trap the robot in the crowd more easily.

avoidance of dynamic objects. In this scenario, the robot
usually learns a simple policy that achieves the goal by
bypassing all dynamic objects. First, it is problematic that
these previous methods can behave shortsighted. They make
the decision only according to the current interactions and
ignore possible future situations, which limits their navigation
ability in complex crowds. Additionally, note that previous
methods only implicitly penalize inefficient policies. Hence,
these approaches often lack the capability to navigate through
complex crowds and are in particular prone to bypass them
inefficiently by taking excessive detours to avoid collisions.
In more realistic scenarios where standing objects exist, these
problems deteriorate further, as illustrated in Fig. 1.

Another problem in many existing works is the assumption
that the robots have holonomic kinematics. It eases the robot
navigation task as the robots can freely move in any direction
at any timestep. Holonomic robots can perform large-angle
rotation actions to access their destination easily with non-
smooth navigation paths. However, most robots in daily life
have nonholonomic kinematics [8], such as service and deliv-
ery robots. It requires that the robots can only move smoothly,

g

a

F 9
Th

o,.
&5

Fig. 2: Previous methods (brown) only detect the collision
at time to hence turn around sharply to avoid a collision,
which is shortsighted. In contrast, our method (green) can
forecast potential collision at time ¢; within At (red) hence
can take action in advance to avoid collision smoothly, which
is foresighted. This is more important for nonholonomic robots
as they cannot get out of traps easily.

which intensifies the above problems. For example, for trapped
non-holonomic robots, it is hard to get out of their trap.
Based on the above limitations, we present a novel deep
reinforcement learning (DRL) approach for robot navigation
with collision avoidance. We enrich our RL method with the
ability to forecast future potential interactions based on the
current states. In other words, the robots are more foresighted,
which is shown in Fig. 2. The robot can make a decision
combining both current and predicted interactions, thereby
reacting earlier in advance of potential collisions. Hence,
no matter the complexity of environment, it is feasible for
the robot to move smoothly between successive timesteps.
In addition, our approach explicitly takes standing objects
into account. Specifically, unlike previous methods that ignore
the different kinematics between objects, we apply different
restrictions on obstacles according to their movement states.
Our method can detect future potential unsafety and take
corresponding actions in advance, which can be seen in Fig. 2.
Moreover, our method employs a constraint on the navigation
time, which enables the learning of a more efficient strategy.
As our method can forecast future collisions (foresighted),
we name it as Foresight Social-Aware Reinforcement Learning
(FSRL) algorithm. In summary, our contributions are:

o Our method can forecast potential collisions in the future
and can take actions in advance to avoid these collisions,
which improves the quality of navigation.

o Our method explicitly uses a constraint on the navigation
time, hence the learned strategy is more efficient.

o We perform experiments in complex environments with
dynamic and standing humans.

« Together, we introduce a foresighted navigation method

that achieves the best performance in different environ-
ments, which proves its effectiveness and robustness.

II. RELATED WORK

Robot navigation in pedestrian-rich environments is compli-
cated since human behavior is diverse and stochastic depend-
ing on human intent and social interactions. Earlier works on
robot navigation used reaction-based methods [9]-[14] that
choose the optimal action according to one-step interaction
rules. Social Force Model [9]-[11] models the interactions as
*forces’, such as attractive forces and repulsive forces, to drive
the agent to reach the goal while avoiding obstacles. Optimal
Reciprocal Collision Avoidance (ORCA) [12] and Reciprocal
Velocity Obstacle (RVO) [13] achieve collision-free navigation
under reciprocal assumption. Interacting Gaussian Process
(IGP) [14] presents an interaction potential function to couple
independent Gaussian Processes. However, these methods are
limited by their hand-crafted social functions that can only
capture simple interactions and are hard to be extended to
crowded situations. Also, they are prone to lack foresight and
have unnatural behaviors [7].

Trajectory-based methods [15]-[17] plan a proper path
for robots by predicting other agents’ trajectories from the
large-scale datasets. [16] combines Gaussian Processes with
Rapidly-exploring Random Trees to generate probabilistic safe
paths. [17] presents a spatially local interaction function to
predict the joint human motion. Although trajectory-based
methods are long-sighted, they are computationally expensive
and time-consuming by explicitly accounting evolution of joint
paths, especially when there are large teams. In addition, since
robots take overly conservative strategies, robots have less
planable navigation space and thus are more likely to face
the freezing robot problem [4].

Compared to these non-learning-based methods, learning-
based methods are more computationally efficient and can
perform much better. DRL methods [2]-[7] explore a com-
putationally efficient interaction rule by pre-training a value
function. The optimal actions can then be obtained based
on the currently observed states. The robot can thus avoid
collisions while planning the trajectory. In SA-CADRL [5] the
optimal action is chosen through a maxmin operation. SARL
[3] jointly models the human-robot interactions as well as
human-human interactions based on CADRL [4]. [6] proposes
a framework by combining ego-safety and social-safety in
mapless navigation.

However, current methods do not perform well in realistic
environments. It is because they oversimplify the environment
and robotics kinematics in robot navigation which are far
from realistic scenarios. This leads the robots are usually
shortsighted in crowded or movement restricted environments,
while lacking the ability to be aware of potential collisions. In
contrast, our method estimates not only the current interactions
but also predicts future potential situations. Hence, it can
navigate through complex crowds smoothly and balance safety
and efficiency. Furthermore, our method is more efficient by
explicitly introducing constraints on the navigation time.

(a) Effective range 7.

collision " - ®

(b) Static situation

(c) Dynamic situation

Fig. 3: (a) An illustration of the effective range r. of the robot. The blue and grey circles respectively represent the standing
and dynamic humans with radius ¢, where arrows indicate the moving direction. (b) By detecting potential collisions with
standing objects in AT}, the robot can take action in advance to avoid collisions. This is achieved by the reward component
R,;. (c) According to the comfortable distance r. within AT}, the robot chooses to detour the crowd instead of going through
it, which would annoy humans. This is achieved by the reward component g, .

III. APPROACH

A. Problem Formulation

We formulate social robot navigation in 2D space as a
sequential decision making problem in a RL framework, which
is a Partially Observable Markov Decision Process (POMDP).
At each time step ¢, for each agent (robot or human), we denote
its state and action as s; and a;, respectively. The state s; can
be divided into observed and hidden parts, that is s; = [§¢, §¢].
Here, the observable part is §; = [pg, Dy, Vs, Vy, 7| € RS,
where p = [pg,py], Vv = [vg,v,] and r are the agent’s
position, velocity, and radius, respectively. The hidden part
is 8¢ = [guy Gy, Vpref, 0] € R, where py = [gs, Gy, Vpres
and 6 are the goal position, preferred speed, and orientation
angle, respectively. We denote all humans’ observed state as
s = [8},82,...,8"] at time step t. For simplicity, we use s;
to denote the robot state. Thus, the joint state observed by the
robot is defined as S; = [s, S]]

Considering that the robot has unicycle nonholonomic kine-
matics, the action a; can be denoted by linear and angular
velocities, a; = [vg, wy] € R2. Following the RL methodol-
ogy [1], the robot will receive a reward R; when performing
an action to judge the quality of its decision. The goal is to
find an optimal policy 7* : S; — a; that assigns each state an
action to maximize the expected future cumulative reward of
the actions taken till the goal is reached. A value network is
designed to encode an estimate of the optimal value function:

V(S =E

T
Zwt/.vprEfR(st,,w*(St'))) (D

t'=t

where v € (0,1) is a discount factor, and R(S,a;) is the
received reward at time ¢. The optimal policy 7*(S;) can be
determined after computing the value function V*(S;):

7 (S¢) = argmax R(S;, a;)+

ag

2
’Ym'v"”f/ P(St,a4,St4at)V*(Star) dSitat,
Siiat

where At is the time step. P(S;,a;,S:+a¢) denotes the
transition probability between ¢ and ¢ + At.

B. Parametrization

We set the robot as the center of the coordinate system
with its first-person perspective as z-axis pointing towards the
goal. Based on this transformation, the states of the robot and

humans can be represented by:
St = [dgavp’l"ef7vt7wt7r]7
St = [pzv’py5vw7vy)r 7d 7’r +7ﬁ]7

3)

where d, = ||p — pyll2 and d' = ||p — p’||> respectively
represent the distance between the robot and its goal and the
distance between the robot and the human 3.

C. Reward Function

In previous methods [3], [4], the decision at each time step
is only determined using the current state, which is formulated
by the reward function R.(S;,a;):

—0.25 ifd, <0
0.25(—0.14d;/2) elseif dy < 7.
Re(Si,a) = { | (/%) L)
else if p = p,
0 otherwise,

where d; = min{d’ —r —r'} denotes the closest distance
from the robot to the other humans at time ¢. The comfortable
distance . = 0.2m is defined as the minimum comfort
distance between the humans and the robot.

One reason for the poor performance of previous methods in
complex environments is that they are easily trapped, mainly
since they cannot detect potential collisions in the future.
This deteriorates further when more realistic nonholonomic
kinematics are adopted as sharp movements are then forbid-
den. Thus, we propose a foresighted method, which means
to take actions in advance. Since in nonholonomic kinematics
the robot’s rotation angle is limited, its movement in a short
time period are smooth and can be seen as linear. Future
situations then can be estimated from the current state. Based

. N == Robot . N = Robot . . == Robot
. * Goal o o * Goal . * Goal
2 O O 2 O 2 O
O (ON©}
R o O _ _ O
Eo £o @) Eo O o
[©0e)
-2 -2 © o e} -2
OQ O O O
- o ® - © - ®
4 2 x((rhm 2 4 y 2 X(?“) 2 P oy =2 x(?ﬂ) 2 4
(a) Env.1 (b) Env.2 (c) Env.3

Fig. 4: Simulation environments. Hollow circles are dynamic objects, whereas solid grey circles are static standing agents.
(a) Env.1 has 10 dynamic objects. (b) Env.2 has 5 random standing objects and others are dynamic. (c) Env.3 has two group
barriers of 2 and 3 standing objects and others are also dynamic. Compared to the previous environment, robots are more
easily trapped and hard to detour in our latter two environments.

on this, we introduce a foresight penalty %y that penalizes
potential collisions in the future. Furthermore, in a realistic
environment, both dynamic and standing objects exist, which
we in contrast to previous methods distinguish. Our method
classifies them based on their velocities and treats them
differently. Hence an improved strategy can be learned.

The foresight penalty Ry is now formulated as:

R(St,a;) = Ray(s]",a;) + Rat(s1", ar), (5)

where g, and R are responsible for dynamic and standing
objects, respectively, and are introduced in the following.

As far objects have little influence on the current decisions,
we only take the objects within the effective range r. = 2m
into account, shown in Fig. 3(a). For standing objects in r,
the robot can only choose to bypass them as they will not
disappear over time. If the robot detects that there are potential
collisions with standing objects in ATy, = 2s according to
the current decision, a penalty is applied. This penalty is
proportional to the number of potential collisions with standing
objects, which reveals a crowding level, and is formulated as:

Ncol

RSt(St’at) - Nstatic

, (6)
where o« = 0.15. N, is the number of detected potential
collisions between standing objects (in 7.) and the robot in
ATgi. Ngtatic is the number of standing humans that are in
the effective range r. of the robot. By this reward penalty,
potential collision are encouraged to be avoided, while as an
effect of the foresight built into this penalty the robot also
shall take actions in advance to avoid sharp movements, hence
making the navigation more smooth, see Fig. 3(b).

As for dynamic objects, they easily gather into clusters and
thereby cause collisions. Different from the above scenario,
these clusters will disappear as time goes by. Thus the robot
needs to determine whether to wait and then go through or to
bypass clusters. Further, in a real-world application, the robot
and humans are expected to not influence each other. There-
fore, apart from navigating to the goal successfully, we also
care about the perceived quality of navigation. Since dynamic
humans would move to achieve a comfortable distance, an

additional penalty will be applied when the robot disturbs the
people (their distance is less than the comfortable distance).
This can be formulated as:

Rdy(st7 at) = B * (dATdy - TC)7 (7)

where 8 = 0.5, r. = 0.2m. dar,, is the minimum distance
between the dynamic humans and the robot after ATy, = 1s,
which is half of ATy, in Ry as dynamic objects move and
thus this time window needs to be shorter. By this reward
penalty, the robot shall avoid aggressive navigation, in other
words, it avoids disturbing people frequently, see Fig. 3(c).
Apart from the success rate of navigation, we also explicitly
model efficiency in the reward, which is often neglected in
previous methods. To achieve this, we add a constraint on the
navigation time and encourage efficient strategies by:

t
70 1 * trimit
-0.2

if p=py
else if ¢t >= tymit,

Rt(staat) = { ®)
where ¢, 1S the maximum navigation time, which is set as
tiimit = 25s in our experiments. By adding this term, detours
will be discouraged.

Together, the whole reward function R is defined as:

R(St,at) = Rc(St,at) + Rf(st,at) + Rt(St,at). (9)

D. Training the Policy

We train the policy using the proposed reward via a deep
V-learning algorithm [3]. The training process can be divided
into two stages. First, the policy is initialized via imitation
learning by collecting 3000 episodes demonstrations based
on the ORCA [12] policy, which is trained using the Adam
optimizer [18] with 50 epochs and a learning rate of 0.01.
Then, the policy is refined based on the proposed reward
functions with the learning rate set to 0.0001. In addition, the
discount factor v is 0.9. In a greedy fashion, the exploration
rate decays linearly from 0.5 to 0.1 in the first 4000 episodes
and remains at 0.1 for another 6000 episodes. We assume that
the robot has nonholonomic kinematics, which is a constraint
on the rotation angle. The robot’s velocity is exponentially

Env. 1 Env. 2 Env. 3

BN Success
- Collision
Timeout

0
ORCA LSTM-RL SARL FSRL(Ours) ORCA LSTM-RL SARL FSRL(Ours)

(a) Invisible Setting

ORCA LSTM-RL SARL FSRL(Ours)

Env. 1 Env. 2 Env. 3

100

BN Success
- Collision
Timeout

o
ORCA LSTM-RL SARL FSRL(Ours) ORCA LSTM-RL SARL FSRL(Ours)

(b) Visible Setting

Fig. 5: Quantitative evaluation among ORCA [12], LSTM-RL [2], SARL [3] and FSRL(Ours) methods in three environments:
(a) The three pictures on the left are with invisible setting; (b) The three pictures on the right are with visible setting.

discretized into 5 speeds between (0, V),..¢] and 10 headings
spaced between [—m/8, 7/8].

IV. EXPERIMENTS
A. Simulation Setup

We build the simulation environment using Gym [19]
and RVO [13] as in [3]. There is one robot and 10 dy-
namic/standing humans in the environment. Our goal is to
learn an optimal strategy to make the robot navigate to the
destination efficiently. In each experiment, the start and goal
position of the robot are set to (0, —4) and (0, 4), respectively.
Previous works adopt a circle-crossing where all humans
are dynamic and randomly placed on a circle with their
destinations on the opposite side. Further, all humans act fol-
lowing the ORCA policy [12]. As mentioned, this scenario is
oversimplified and objects can be easily bypassed, which is far
from a realistic environment. Hence, one can not demonstrate
the navigation ability of algorithms comprehensively.

To better show the navigation ability, we test all methods on
three increasingly challenging environments, shown in Fig.4.

e Env. 1 is the same as in previous works where only
dynamic agents exist.

o Env. 2 contains 5 dynamic and 5 standing agents. The
positions of the standing agents are distributed randomly
in the whole environment. We can see that traps and blind
areas are more easily formed in this environment.

e Env. 3 is an extreme version of Env. 2. The only
difference is that the standing agents form two fixed traps
and blind areas that will not disappear over time.

In addition, we perform experiments in two settings: one
sets the robot invisible to humans, which means that humans
do not react to the robot’s behavior, such as giving way; the
other is the visible setting, where the mutual human-robot
interactions increase the uncertainty of environments. In either
setting, the robot needs a more foresighted policy.

We compare our method with three state-of-the-art methods:
ORCA [12] is the typical reaction-based method and LSTM-
RL [2], SARL [3] are DRL methods. Specifically, for the
three environments and the two settings for each environment

(6 environments in total), we train the unicycle rotation-
constrained robot with all four algorithms separately and then
obtain the corresponding test results. To reduce the influence
of randomness, we conduct 3 experiments for each method on
each environment and report the average performance.

B. Metrics

For each environment, we obtain the quantitative evaluation
after 500 random test episodes based on the trained models.
There are five metrics used in the quantitative evaluation:

(1) ”’Succ.(%)”: the rate of success cases where the robot
reaches its goal without a collision in the maximum
allowed time t7;,,5¢-

(2) 7Coll.(%)”: the rate of collision cases where the robot
collides with other agents.

(3) “Timeout(%)”: the rate of timeout cases where the robot
neither collides with others nor reaches its goal in the
maximum allowed time %;;,,it.

(4) ”Nav. Time”: average navigation time of the above success
cases in seconds.

(5) “Disc. (%)”: average frequency of duration that the robot
has distances to any other agents less than comfortable
distance (0.2m).

C. Comparison with State-of-the-art Methods

We show the comparison of performance between FSRL
(ours) and state-of-the-art methods in Fig. 5 and Tab. I, II
under invisible and visible settings. We can easily find that
FSRL achieves the best performance on almost all scenarios.

Fig. 5 shows the success, collision and timeout rates. No
matter if in the invisible or visible setting, FSRL achieves
the highest success rates and the lowest rates of collision
and timeout. Since learning-based methods, such as LSTM-
RL or SARL, choose the optimal action only based on the
current states, they are usually short-sighted. In particular, a
nonholonomic robot, i.e. with limited rotations, cannot rotate
at a wide angle when meeting obstacles, so it needs longer
navigation time, easier gets trapped, or even fails. As shown in
Fig. 5, there also are more timeouts or collisions. As expected,
FSRL performs the best as it is foresighted and not only

ORCA LSTM-RL SARL FSRL(Ours)

considers the current state but also estimates future situations.
The nonholonomic robot thus can take proper actions in
advance to move smoothly and safely.

Table I: ”Nav. Time” quantitative results in 3 environments

Nav Time (invisible) Nav Time (visible)
Methods
Env.l | Env.2 | Env.3 | AVG | Env.l | Env.2 | Env.3 | AVG
ORCA [12] 1249 | 11.98 | 12.04 | 12.14 | 11.99 | 1097 | 10.74 | 11.23
LSTM-RL [2] | 15.52 | 14.12 | 12.81 | 14.15 | 11.01 | 10.96 | 12.32 | 11.29
SARL [3] 1225 | 11.39 | 11.15 | 11.60 | 9.85 | 10.33 | 10.01 | 10.06
FSRL(ours) 10.90 | 1092 | 11.69 11.04 | 11.08 10.32 | 11.60 | 11.00

Table II: ”Disc. (%)” quantitative results in 3 environments.

Disc(%) (invisible) Disc(%) (visible)
Methods
Env.l | Env.2 | Env.3 | AVG | Env.l | Env.2 | Env.3 | AVG
ORCA [12] 0.39 0.38 043 | 040 | 0.41 0.41 045 | 042
LSTM-RL [2] | 0.07 0.28 0.16 | 0.17 | 0.11 0.35 0.39 | 0.20
SARL [3] 0.01 0.06 0.06 | 0.04 | 0.09 0.11 0.10 | 0.10
FSRL(ours) 0.01 0.07 0.04 | 0.04 | 0.06 0.08 0.07 | 0.07

In the invisible setting, as anticipated, the ORCA method
seriously fails due to the violated reciprocal assumption.
However, it is interesting that the ORCA robot has much better
performance under Env. 2, 3 than under Env. 1. This is because
non-learning-based methods, like ORCA, are more sensitive to
dynamic objects. Hence, fewer dynamic objects will lead to
better performance.

In contrast, there is a significant performance drop for
learning-based methods (LSTM-RL, SARL) when Env. 1 is
transformed into Env. 2, 3. This is due to them having difficul-
ties to learn a good representation for a complex environment
where both standing and dynamic objects exist, compared to a
simpler environment where either standing or dynamic objects
exist. It demonstrates that previous learning-based methods are
usually suitable for simple scenarios and do not perform well
in a more complex environment. In comparison, the LSTM-
RL method is more conservative, which leads to timeout cases
increasing sharply and also to longer navigation times in
success cases (Tab. I) . In contrast, FSRL has the shortest
navigation time and the lowest discomfort rate. These results
demonstrate the foresightedness of FSRL, allowing for a better
balance between safety and efficiency.

In the visible setting, although the robot more easily nav-
igates through the crowd due to the aid by the give-way
behaviors of humans, it needs to understand more about
interactions with humans to face the increasing uncertainty.
For example, there is an increased likelihood that humans
with give-way behavior will enter the comfort zone of the
robot. In addition, due to the mutual human-robot interaction,
the robot is prone to take risky behaviors to achieve better
navigation. Thus, unlike in the invisible case, the performance
of all methods improves except for the discomfort rate.

For LSTM-RL and ORCA methods, they are shortsighted
and even fail to take standing agents into account in Env.

Re

R + Ry

Rc+R:

I Success
mmm Collision
Timeout

F T T T T T T T T
80.0 825 850 875 90.0 925 950 97.5 100.0

Fig. 6: Average quantitative results under three environments
of ablation experiments. (Invisible setting)

11.8 9.5
—— nav time 11.65 Disc(%)
116
11.6 1
r8
11.44
@ —_
£ S
£ i lee &
S 1.2 6.5 g
2 11.04 a
11.04 -~
85 ls.0
10.8 4
10.6 T T T — 3.5
R Re +Rr Re+R: ours

Fig. 7: Average "Nav. Time” and "Disc(%)” results under three
environments of ablation experiments. (Invisible setting)

2,3. They thus navigate unsafely as well as inefficiently, as
seen by a low success rate, a longer navigation time, and a
high discomfort rate. As shown in Fig. 5, FSRL performs as
well as the SARL method. Compared with SARL, although
FSRL takes longer (less than 1s on average) in terms of the
navigation time, it decreases the discomfort rate by 3% by
moving the robot more safely (Tab. II).

We can see the FSRL metrics in the visible cases are as well
as in the invisible cases. In an overall comparison to previous
methods, FSRL is more effective, efficient, and robust.

D. Ablation Study

We show the impact of each component of our reward R
in Fig. 6 and 7, where R, is the reward that only considers
the current state, Eq.(4), Ry is the foresight penalty, Eq.
(5), and R; is the efficiency constraint, Eq. (8). For clarity,
we take the average of the quantitative results under three
environments for comparison. In Fig. 6, we can observe that
both foresight penalty ([2;) and efficiency constraints ([2;)
can improve the success rate (Succ.) a lot. Furthermore,
for the efficiency constraint (R;), the improvement mainly
comes from shortening the navigation time shown in Fig.
7. In other words, some timeout cases are avoided due to
higher efficiency, as can be seen by the reduced navigation
time. However, this improvement is at the cost of aggressive
navigation, resulting in a much higher discomfort rate (Disc.),
which means the robot will disturb people intensively to
save navigation time. In contrast, the foresight penalty (I2y)

=3 Robot

= static 4 C)

== Robot
£ static

=3 Robot @ Robot
4 * [static 4 6 = Static
()
2 2 Q Y =
G000 @
®). e
_ LN OO0
£ o Eol @A @
= = o E 2
< oy ——)
e & \4%9
-2 -2 ~" -
I
4 @ -4 @
-4 -2 [2 4 -4 -2 0 2 2
x(m) x(m)

(a) SARL (t = 6) (b) SARL (t = 14.25)

Eo Eo
= =
-2 -2
4 15) -4 o
4 -2 0 2 3 -4 -2 0 2 4
x(m) x(m)

(c) FSRL (t = 6) (d) FSRL (t = 11.50)

Fig. 8: Qualitative results. We find our method (FSRL) can make robot (orange) navigate more smoothly and efficiently in a
complex environment compared to SARL [3] where standing (grey solid) and dynamic (other colors) objects exist.

can improve the success rate (Succ.) with less disturbance
by caring more about a comfortable distance. By combing
both foresight penalty ([2;) and efficiency constraints (R;),
our method can achieve the best success rate (Succ.), while
balancing efficiency and human feeling (less disturbance) well.
This demonstrates the effectiveness of our design.

E. Qualitative Evalutaion

We show qualitative results for Env. 2 (invisible setting) in
Fig. 8. At time ¢ = 6, SARL turns around sharply close to
people. It is because SARL makes decisions only according
to the current state, it hence neglects potential collisions in the
future. Furthermore, it also results in a longer navigation time
(14.25s) to arrive at the goal. As a comparison, the navigation
trajectory of FSRL is much more smooth. This is due to
FSRL’s capability to forecast potential collisions in the future
and to take corresponding actions in advance. The navigation
time is also shorter (¢ = 11.50), which shows the efficiency
of FSRL. Hence FSRL learns a better strategy that is more
effective and efficient.

V. CONCLUSIONS

In this work, we propose a novel Foresight Social-Aware
Reinforcement Learning (FSRL) framework for robotics nav-
igation. Our method can estimate potential collisions in the
future and hence takes action in advance to avoid collisions. In
contrast, previous methods only make the decision according
to the current state thus perform not well when the environ-
ment becomes complex. Furthermore, an efficiency constraint
is introduced in our work that reduces navigation time a lot.
We conduct experiments on three increasingly challenging
environments and our method achieves the best performance
regarding both effectiveness and efficiency.

REFERENCES

[11 R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2nd ed. MIT Press, 2018.

[2] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in /JEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 3052-3059.

[3] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement
learning,” in International Conference on Robotics and Automation
(ICRA), 2019, pp. 6015-6022.

[4] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 285-292.

[5] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in /[EEE/RSJ Internat. Conf.
on Intelligent Robots and Systems (IROS), 2017, pp. 1343-1350.

[6] J.Jin, N. M. Nguyen, N. Sakib, D. Graves, H. Yao, and M. Jagersand,
“Mapless navigation among dynamics with social-safety-awareness: a
reinforcement learning approach from 2d laser scans,” in /[EEE Internat.
Conf. on Robotics and Automation (ICRA), 2020, pp. 6979-6985.

[71 S. Liu, P. Chang, W. Liang, N. Chakraborty, and K. Driggs-Campbell,
“Decentralized structural-rnn for robot crowd navigation with deep
reinforcement learning,” in IEEE Internatational Conference on Robotics
and Automation (ICRA), 2021, pp. 3517-3524.

[8] X. Gao, R. Gao, P. Liang, Q. Zhang, R. Deng, and W. Zhu, “A
hybrid tracking control strategy for nonholonomic wheeled mobile robot
incorporating deep reinforcement learning approach,” IEEE Access,
vol. 9, pp. 15592-15602, 2021.

[91 G. Ferrer, A. Garrell, and A. Sanfeliu, “Social-aware robot navigation in
urban environments,” in European Conference on Mobile Robots, 2013,
pp- 331-336.

[10] G. Ferrer, A. G. Zulueta, F. H. Cotarelo, and A. Sanfeliu, “Robot
social-aware navigation framework to accompany people walking side-
by-side,” Autonomous robots, vol. 41, no. 4, pp. 775-793, 2017.

[11] X.-T. Truong and T. D. Ngo, “Toward socially aware robot navigation in
dynamic and crowded environments: A proactive social motion model,”
IEEE Transactions on Automation Science and Engineering, vol. 14,
no. 4, pp. 1743-1760, 2017.

[12] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in Robotics Research, C. Pradalier, R. Siegwart,
and G. Hirzinger, Eds. Springer Berlin Heidelberg, 2011, pp. 3-19.

[13] J. van den Berg, Ming Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in /EEE International
Conference on Robotics and Automation (ICRA), 2008, pp. 1928-1935.

[14] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense,
interacting crowds,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2010, pp. 797-803.

[15] K. Li, M. Shan, K. Narula, S. Worrall, and E. Nebot, “Socially
aware crowd navigation with multimodal pedestrian trajectory prediction
for autonomous vehicles,” in IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC), 2020, pp. 1-8.

[16] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How,
“Probabilistically safe motion planning to avoid dynamic obstacles with
uncertain motion patterns,” Autonomous Robots, vol. 35, no. 1, pp. 51—
76, 2013.

[17] A. Vemula, K. Muelling, and J. Oh, “Modeling cooperative navigation
in dense human crowds,” in IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 1685-1692.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[19] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

