
Wegelerstraße  •  Bonn • Germany
phone +  - • fax +  -

www.ins.uni-bonn.de

M. Griebel, D. Wissel

Fast Approximation of the Discrete Gauss
Transform in Higher Dimensions

INS Preprint No. 1111

October 2011

Fast Approximation of the Discrete Gauss Transform in
Higher Dimensions

Michael Griebel · Daniel Wissel

October 2011

Abstract We present a novel approach for the fast approximation of the discrete
Gauss transform in higher dimensions. The algorithm is based on the dual-tree tech-
nique and introduces a new Taylor series expansion. It compares favorably to existing
methods especially when it comes to higher dimensions and a broad range of band-
widths. Numerical results with different datasets in up to 62 dimensions demonstrate
its performance.

Keywords Gauss transform · fast approximation algorithms · high-dimensional

Mathematics Subject Classification (2000) 65R10 · 65D15 · 35K05 · 41A58

1 Introduction

The Gauss transform is an important numerical tool with many applications in, e.g.,
image manipulation [1,4] option pricing [5,6] and data mining including classifica-
tion, regression and density estimation [7,17,22].

The d-dimensional Gaussian kernel kh :Rd×Rd →R is defined as

kh(t,s) = e−‖t−s‖2/h2
, (1)

where the parameter h ∈R denotes the bandwidth and ‖ ·‖ is the Euclidean distance.
The Gauss integral transform is then given by

G f (t) =
∫

Ω

f (s) · kh(t,s)ds, (2)

Michael Griebel
Institute for Numerical Simulation, University of Bonn, Wegelerstr. 6, D–53115 Bonn
Tel.: +49-228-733437
E-mail: griebel@ins.uni-bonn.de

Daniel Wissel
Institute for Numerical Simulation, University of Bonn, Wegelerstr. 6, D–53115 Bonn
Tel.: +49-228-733486
E-mail: wissel@ins.uni-bonn.de

2 Michael Griebel, Daniel Wissel

where the function f is given on Ω ⊆Rd .
The discrete Gauss transform (DGT) is now defined as

G(ti) =
N

∑
j=1

f j · kh(ti,s j) i = 1, . . . ,M, (3)

with target points ti ∈ Rd , i = 1, . . . ,M, source points s j ∈ Rd and weight coeffi-
cients f j ∈ R, j = 1, . . . ,N. It is obtained from (2) via the sampling approximation
f (s) ' ∑

N
j=1 f jδ (s− s j) and subsequent evaluation at the discrete target points ti,

i = 1, . . . ,M. The discrete Gauss transform corresponds to

g = K · f (4)

with the M-vector g, gi = G(ti), the (M×N)-matrix K, Ki j = kh(ti,s j) and the N-
vector f, f j = f (s j). This matrix-vector multiplication involves O(N ·M) operations.

In 1991, GREENGARD and STRAIN [10] developed the “Fast Gauss Transform”
(FGT), a method for the rapid approximation of the discrete Gauss transform. The
algorithm is a variant of the fast multipole method introduced in [9]. Here, truncated
Hermite and Taylor expansions are used to break the entanglement of sources and
targets in (3). This way, the runtime complexity is reduced from O(N ·M) to O(N +
M). A uniform box structure allows to combine the contributions of nearby points
while employing moderate truncation bounds. The FGT (with an error estimate as
corrected in [2]) offers good performance in the case of dimensions up to three for
uniformly distributed source and target points and moderate values of the bandwidth
h. For higher-dimensional problems it however shows severe limitations since the
dimension enters exponentially into the order constant.

A novel approach, the “Improved Fast Gauss Transform” (IFGT), was presented
by YANG, DURAISWAMI and GUMEROV [18,23] in 2003. Its essential new ingredi-
ents are a different Taylor expansion — with a tighter error bound which is also fea-
sible for slightly higher dimensions — and an adaptive clustering scheme. Hence, the
IFGT provides a noticeable speed-up over the FGT in up to 10 dimensions for mod-
erate and high values of the bandwidth, but its performance is mediocre for problems
involving lower bandwidths.

A third algorithm for approximating the discrete Gauss transform, the “Dual-Tree
Fast Gauss Transform” (DFGT), was proposed by LEE, GRAY and MOORE [14,15]
in 2005. Here, two tree structures define a multi-level clustering of source and target
points, respectively. The trees are traversed simultaneously to calculate interactions
between node pairs, descending on finer levels to reduce the error. Furthermore, ex-
pansions of the FGT with improved truncation rules are used which allow for an
efficient evaluation also for low values of h and for datasets in up to 16 dimensions.
However, compared to direct computation the existing DFGT implementations suffer
from inferior performance for certain bandwidths and higher-dimensional data.

Altogether, there still is a lack of reliable and efficient algorithms when it comes
to problems with dimension d > 3 and general bandwidth h.

In this article we present a new approach for the fast approximation of the Gauss
transform based on the dual-tree method. Our “Optimized Fast Gauss Transform”
(OFGT) combines kd-trees with a refined error control mechanism and a modified

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 3

version of the IFGT series expansion. While the FGT and IFGT come with a time
complexity of O(f (d) · (N +M)) that rapidly gets worse than the direct computation
complexity O(d ·N ·M) for growing d and fixed N and M, our algorithm locally
selects the best approximation method in terms of costs ensuring a specified accuracy
ε . Computational results show excellent performance over the whole range of tested
bandwidth values h for real-world datasets of up to 10 dimensions and still show
competitive runtimes (with respect to direct computation) for up to 62 dimensions.

The remainder of this paper is organized as follows. In §2, we present our new
algorithm, including a detailed description of the tree structure, the error control
mechanism and the new series expansion. Section 3 provides a short overview of
the other approximation algorithms and highlights similarities and differences. An
in-depth discussion of the corresponding numerical results using both synthetic and
real-world data is given in §4. Final remarks in §5 conclude this paper.

2 The Optimized Fast Gauss Transform

First, we present the basic algorithmic structure in pseudocode. Details will be dis-
cussed in the following subsections. Table 1 introduces the main notations. In a first
step of the main program OFGT (compare Figure 1), a source and a target tree
are constructed from the source and target points, respectively, providing multi-level
clustering structures for the point sets. Here, the binary trees are perfectly balanced,
i.e. each inner node S has exactly two child nodes, S.l and S.r. After a proper ini-
tialization of the error control variables, the recursive procedure CONTRIB is in-
voked with the two tree roots containing all source and target points, respectively.
For a given node pair (S,T), this procedure approximates the associated source node
contribution GS(ti) = ∑s j∈S f j · kh(ti,s j) for all targets ti ∈ T by a specially chosen
local approximation method, or via recursion, deferring the task to the next finer
node level. Here, either a mean value approximation, a Taylor series expansion,
or direct computation is selected according to an error and cost estimation process
which ensures a locally optimal choice. Direct evaluation is only applied on leaf
level, when obviously the other approximation methods on coarser tree levels failed
to meet the required local cost and error criteria. Note that, for a prescribed precision
ε > 0, our algorithm computes an approximation G̃(ti) with the relative error bound∣∣G̃(ti)−G(ti)

∣∣≤ ε ·G(ti) for all ti.

Table 1 Symbols for the algorithmic descriptions.

N number of source points M number of target points

s j source point ∈Rd ti target point ∈Rd

f j ≥ 0 weight coefficient h > 0 bandwidth of Gaussian

S(k) source node T(k) target node

s∗(k) expansion center of S(k) t∗(k) expansion center of T(k)
FS weight sum of source node S α d-dimensional multi-index

R(S,T) local approx. error bound p order of series expansion

4 Michael Griebel, Daniel Wissel

OFGT(d,s j=1,...,N , ti=1,...,M , f j=1,...,N ,h,ε)
Input: dim. d, sources s j , targets ti, weights f j ≥ 0, bandwidth h > 0, prec. ε > 0
Purpose: for all ti=1,...,M calculate G̃(ti) with

∣∣G̃(ti)−G(ti)
∣∣≤ ε ·G(ti)

ConstructSourceTree(s j=1,...,N , f j=1,...,N)
ConstructTargetTree(ti=1,...,M)
InitErrorControl()
CONTRIB(SourceTree.Root,TargetTree.Root)

CONTRIB(S,T)
Input: source node S, target node T
Purpose: for all ti ∈ T update G̃(ti)← G̃(ti)+ G̃S(ti), where G̃S(ti) is computed either by one of three
approximation methods, or via recursion

if ErrorMean(S,T)≤ errorbound(S,T) then
MEAN(S,T)

else
if isLeaf(S) or isLeaf(T) then

DIRECT(S,T)
else

if costDirect(S,T)≤ costTaylor(S,T) or costChildren(S,T)≤ costTaylor(S,T) then
CONTRIB(S.l,T.l);CONTRIB(S.l,T.r)
CONTRIB(S.r,T.l);CONTRIB(S.r,T.r)

else
TAYLOR(S,T)

Fig. 1 Basic structure of the algorithm.

Let us remark that our algorithm is designed to work with arbitrary source and tar-
get points, but non-negative weight coefficients f j ≥ 0. The reason for this constraint
will be given later in the discussion of the error control mechanism.

2.1 Tree structure

Now we present the construction of the source tree and target tree for the s j (j =
1, . . . ,N) and ti (i = 1, . . . ,M). Figure 2 shows the algorithmic structure of the source
tree construction, the target tree is built analogously. In general, the nodes of our bi-
nary trees correspond to subsets of source points. The tree root corresponds to the set
of all points. The two child nodes S.l and S.r of an inner node S are constructed by
splitting the inner node’s point set into two disjoint subsets of (almost) equal size. To
this end, given all points of the current node S, the coordinate direction with maxi-
mum variance is determined. Then, the median of the components of this coordinate
direction is computed and used to split the points into two subsets, thus defining the
two child nodes. Nodes are left as leaves if they do not contain more than q points.
Here, q is a parameter of our method which we set as q = 30 throughout this paper.
This way, a perfectly balanced binary tree is built.

The entire construction process works with a single copy of all points; whenever
a node is split, its points are rearranged in the point array, and the respective array
bounds determine whether a point belongs to the left or the right child.

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 5

ConstructSourceTree(s j=1,...,N , f j=1,...,N)

Nodes[1]← Root←{s1, . . . ,sN}
maxLea f Size← 30
nLevels← dlog2 (N/maxLea f Size)e
nNodesPerLevel← 1
for l = 0, . . . ,nLevels−1 do

for n = 0, . . . ,nNodesPerLevel−1 do
DivideNode(nNodesPerLevel +n)

nNodesPerLevel← 2 ·nNodesPerLevel
for all S ∈ Nodes do

calcBoundingRectangle(S)
calcBoundingSphere(S)
FS← ∑s j∈S f j

DivideNode(n)

S← Nodes[n]
for d = 1, . . . ,dim do

variance[d]← Var
{

s j[d] | s j ∈ S
}

dcut ← argmaxd=1,...,dim {variance[d]}
med←median

{
s j[dcut] | s j ∈ S

}
Nodes[2n]← S.l←

{
s j ∈ S | s j[dcut]≤ med

}
Nodes[2n+1]← S.r←

{
s j ∈ S | s j[dcut]> med

}
Fig. 2 Construction of the source tree.

Furthermore, for each tree node, a hyperrectangle and a sphere are stored which
contain all points associated to the respective tree node. First, the minimal bounding
hyperrectangle is calculated; the center point of this hyperrectangle is then used to
calculate the minimal bounding sphere. Also, this point is used later as center for a
Taylor series expansion of the corresponding node (see subsection 2.6). Additionally,
the weight sums FS = ∑s j∈S f j are precalculated and stored for each node S of the
source tree.

2.2 Error control

We now present the error control mechanism of our algorithm in more detail. It guar-
antees the global relative error bound∣∣G̃(ti)−G(ti)

∣∣≤ ε ·G(ti) (5)

by limiting the local errors
∣∣G̃S(ti)−GS(ti)

∣∣ that originate from the local approxima-
tion methods. To this end, note that the recursive procedure CONTRIB adaptively
selects for a given target ti ∈ T some set S of source nodes which represents a disjoint
union of all source points. It then calculates the approximated Gaussian as

G̃(ti) = ∑
S∈S

G̃S(ti), (6)

6 Michael Griebel, Daniel Wissel

where each of the approximated source node contributions G̃S(ti) is determined by
one of the three different approximation methods. Now suppose that the particular
method for a certain source node S comes with a local error bound R(S,T), i.e.∣∣∣G̃S(ti)−GS(ti)

∣∣∣≤ R(S,T) (7)

for all ti ∈ T . We require this error bound to fulfill the condition

R(S,T)≤ ε ·Gmin
T ·FS/F, (8)

where Gmin
T = minti∈T G(ti), F = ∑

N
j=1 f j and FS = ∑s j∈S f j. Then, the relative global

error can be bounded from above via∣∣∣G̃(ti)−G(ti)
∣∣∣≤ ∑

S∈S

∣∣∣G̃S(ti)−GS(ti)
∣∣∣≤ ε ·Gmin

T ·∑
S∈S

FS/F ≤ ε ·G(ti) (9)

for all ti ∈ T .
For a viable algorithm, condition (8) needs to be modified in two ways. First

note that the Gmin
T depend on the exact solution and are therefore unknown. Since all

weights f j are non-negative, the solution vector is monotonically increasing during
its successive computation in the run of the algorithm, i.e. while summing up the
contributions. Its entries are thus always less than the exact solution. Hence, Gmin

T in
condition (8) can be replaced by G̃min

T = minti∈T G̃(ti), where G̃ shall here denote the
current solution vector for any actual state of our algorithm. Now, at the beginning we
have G̃ = 0, but we need good initial values for the G̃min

T . To this end (compare Figure
3), in a first step, the source leaf node S closest to T is determined for each leaf node T
of the target tree. Then, for each such pair (S,T), the source node contribution GS(ti)
is computed directly and these results are used to initialize G̃min

T for all leaf nodes T .

Finally, the values are propagated to all inner nodes via G̃min
T = min

{
G̃min

T.l , G̃
min
T.r

}
in

a bottom-up traversal of the target tree.

InitErrorControl()

for all target leaf nodes T do
find source leaf node S closest to T
for all ti ∈ T do

GS(ti)← ∑s j∈S f j · kh(ti,s j)

G̃min
T ←minti∈T GS(ti)

for all target inner nodes T do
bottom-up propagation of G̃min

T via G̃min
T ←min

{
G̃min

T.l , G̃
min
T.r

}
Fig. 3 Initialization of the error control variables.

The second modification to condition (8) aims at allowing larger local errors —
and thus faster approximations — while still meeting the specified global error bound.
Note that condition (8) assigns the fraction FS/F of the total error to the approximated
contribution of source node S. However, if the actual error R(S,T) of the respective

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 7

approximation method is smaller than the aimed maximal error ε ·G̃min
T ·FS/F , we can

allow larger errors in the contributions of other source nodes to the current target node
T without violating the global error bound. To this end, the unused error fractions for
a target node T are accumulated in the parameter Fsave

T , and condition (8) is refined
to

R(S,T)≤ errorbound(S,T) def
= ε · G̃min

T · (FS +Fsave
T)/F. (10)

At the beginning, Fsave
T is initialized with zero. In the recursive procedure, whenever

some approximation method for (S,T) is applied, condition (10) is fulfilled and Fsave
T

is modified as

Fsave
T ← Fsave

T +
{

FS−R(S,T) ·F/
(

ε · G̃min
T

)}
. (11)

The effect of this modification is as follows: If condition (10) holds also without
the term Fsave

T , the increment in (11) is non-negative and Fsave
T accumulates the cor-

responding unused fraction of the global error; in the other case, the increment is
negative and a portion of Fsave

T is now used to allow a larger local error which results
in a cheaper local approximation while still meeting the specified global error bound.

2.3 Recursive main routine

For a particular pair (S,T) of a source node S and target node T , the recursive
main procedure CONTRIB (see Figure 1) approximates the source node contribu-
tion GS(ti) = ∑s j∈S f j ·kh(ti,s j) for all targets ti ∈ T either by a specially chosen local
approximation method or by deferring the task to the next finer node level via four re-
cursive function calls. For this purpose, first the local error of the mean value method
is estimated (see subsection 2.4). The method is applied, if the estimated error under-
cuts the local error bound (defined above in (10)). Failing this, two basic cases are
distinguished. If the recursive routine has arrived at a leaf node, i.e. if at least one of
the nodes S or T is a leaf, direct computation is performed, since obviously the fast
approximation methods on coarser tree levels have failed to meet the required cost
and error criteria. In the second case, that is for two non-leaf nodes S and T , the local
costs of direct computation and Taylor series approximation, as well as the costs for
approximation on the next finer node level are estimated (details are given in subsec-
tion 2.7). If either direct computation or approximation on the finer level is estimated
to be cheaper than the Taylor approximation, we let the recursion continue, hoping
to find pairs of smaller tree nodes with more favorable approximation costs on finer
levels. In the other case, the Taylor series expansion is carried out.

Next, we discuss the details of the three different approximation methods, before
we finally present the cost functions and cost complexity estimations.

2.4 Mean value approximation

The mean value method calculates a single average value for all ti ∈ T given by

G̃S(ti) = FS ·
1
2

(
e−(δ min

ST /h)
2
+ e−(δ max

ST /h)
2
)
, (12)

8 Michael Griebel, Daniel Wissel

where δ min
ST and δ max

ST are lower and upper bounds on the distances between all sources
in S and all targets in T , i.e.

δ
min
ST ≤ dmin

ST
def
= min

{
‖s j− ti‖ | s j ∈ S, ti ∈ T

}
(13)

and

δ
max
ST ≥ dmax

ST
def
= max

{
‖s j− ti‖ | s j ∈ S, ti ∈ T

}
. (14)

The parameters δ min
ST and δ max

ST are determined for a given pair (S,T) by use of the re-
spective bounding hyperrectangles and bounding spheres associated with these nodes.
To this end, the maximal as well as the minimal distance between the two bounding
rectangles of node S and T are computed via basic geometric considerations. These
calculations involve an O(d) time complexity only. Likewise, the minimal and max-
imal distance between the two spheres are calculated. Altogether, we thus have two
lower and two upper distance bounds, the better of which is then assigned to δ min

ST and
δ max

ST in each case.
The corresponding local approximation error for the mean value method is obvi-

ously given by

R(S,T) = FS ·
1
2

(
e−(δ min

ST /h)
2
− e−(δ max

ST /h)
2
)
. (15)

Note here that for each of the three approximation methods, the error control variables
G̃min

T and Fsave
T are updated after the current contribution G̃S has been added to the

solution vector G̃ (compare Figure 4).
Altogether, the cost for the mean value approximation is of the order O(d+MT),

where MT is the number of points in the target node T .

ErrorMean(S,T)

δ min
ST ← lower bound on dmin

ST = min
{
‖s j− ti‖ | s j ∈ S, ti ∈ T

}
δ max

ST ← upper bound on dmax
ST = max

{
‖s j− ti‖ | s j ∈ S, ti ∈ T

}
return

{
FS · 1

2

(
e−(δ min

ST /h)
2
− e−(δ max

ST /h)
2
)}

MEAN(S,T)

G̃S = FS · 1
2

(
e−(δ min

ST /h)
2
+ e−(δ max

ST /h)
2
)

for all ti ∈ T do
G̃(ti)← G̃(ti)+ G̃S

G̃min
T ←minti∈T G̃(ti)

Fsave
T ← Fsave

T +FS−ErrorMean(S,T) ·F/
(

ε · G̃min
T

)
Fig. 4 Mean value approximation error and method.

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 9

2.5 Direct computation

If the other two approximation methods are not appropriate due to our error and cost
estimation, the source node contribution is directly computed via

GS(ti) = ∑
s j∈S

f j · e−‖ti−s j‖2/h2
(16)

for all ti ∈ T which results in a local error of R(S,T) = 0. The corresponding proce-
dure is given in Figure 5. As explained above, direct computation is only applied in
case that at least one of the nodes S and T is a leaf node of the respective tree. Given a
source node S with NS points and a target node T with MT points, the corresponding
cost complexity is O(d ·NS ·MT).

DIRECT(S,T)

for all ti ∈ T do
for all s j ∈ S do

G̃(ti)← G̃(ti)+ f j · kh(ti,s j)

G̃min
T ←minti∈T G̃(ti)

Fsave
T ← Fsave

T +FS

Fig. 5 Direct computation.

2.6 Taylor series expansion

The key method for the fast approximation is based on a Taylor series expansion.
Since the employed technique is similar to the multipole expansion [3], we stick to
the notion of moments and we use them to break the entanglement of source and
target points in the Gaussian kernel. For a source node S (with expansion center s∗)
and a target node T (with expansion center t∗), these moments are defined as

Mα(S,T) =
2|α|

α! ∑
s j∈S

f j · kh(s j,s∗) · e2(s j−s∗)(t∗−s∗)/h2
(

s j− s∗

h

)α

. (17)

The associated approximated local contributions G̃S(ti) are then given by

G̃S(ti) = ∑
|α|1<p

Mα(S,T) · kh(ti,s∗)
(

ti− t∗

h

)α

. (18)

Here, α = (α1, . . . ,αd) is a multi-index and | · |1 denotes the l1-norm. Due to the con-
dition |α|1 < p, the expansion consists of

(p−1+d
d

)
terms. The truncation parameter

10 Michael Griebel, Daniel Wissel

p is chosen locally for the particular node pair (S,T), i.e. p = p(S,T). Then, a local
error bound for the truncated expansion (18) is given by∥∥∥GS(ti)− G̃S(ti)

∥∥∥≤ R(S,T) def
= FS ·

1
p!

(
2rSrT

h2

)p

· e(rS+rT)
2/h2

, (19)

where rS = maxs j∈S ‖s j− s∗‖ and rT = maxti∈T ‖ti− t∗‖ are the radii of the nodes S
and T , respectively.

The procedure for the Taylor series approximation is presented in Figure 6. For a
source node S with NS points and a target node T with MT points, the complexity for
calculating the moments is O(

(p−1+d
d

)
·NS) and the complexity for the subsequent

evaluation of the G̃S(ti) is O(
(p−1+d

d

)
·MT).

TAYLOR(S,T)

s∗← center point of node S; rS← radius of node S
t∗← center point of node T ; rT ← radius of node T

choose smallest p such that FS · 1
p!

(
2rSrT

h2

)p
· e(rS+rT)

2/h2 ≤ ε · G̃min
T · (FS +Fsave

T)/F

for all α = (α1, . . . ,αd) with |α|1 < p do

Mα (S,T)← 2|α|
α! ∑s j∈S f j · kh(s j,s∗) · e2(s j−s∗)(t∗−s∗)/h2

(
s j−s∗

h

)α

for all ti ∈ T do
G̃(ti)← G̃(ti)+∑|α|1<p Mα (S,T) · kh(ti,s∗)

(
ti−t∗

h

)α

G̃min
T ←minti∈T G̃(ti)

Fig. 6 Taylor series approximation method.

We now give a short derivation of the presented series expansion, the moment
representation, and the local error bound (19). First, the Gaussian kernel kh(ti,s j) =

e−‖ti−s j‖2/h2
can be rewritten for any source node S with center s∗ and target node T

with center t∗ by inserting the term (s∗− s∗) and then the term (t∗− t∗) as

kh(ti,s j) = kh(ti,s∗) · kh(s j,s∗) · e2(s j−s∗)(ti−s∗)/h2
(20)

= kh(ti,s∗) · kh(s j,s∗) · e2(s j−s∗)(t∗−s∗)/h2 · e2(s j−s∗)(ti−t∗)/h2
.

Next, the last factor is expanded into a Taylor series yielding

e2(s j−s∗)(ti−t∗)/h2
= ∑

α≥0

2|α|

α!

(
s j− s∗

h

)α (ti− t∗

h

)α

. (21)

By interchanging the sums and using equations (20) and (21), the contribution GS(ti)
of the source node S can now be rewritten as

GS(ti) = ∑
s j∈S

f j · kh(ti,s j) = ∑
α≥0

Mα(S,T) · kh(ti,s∗)
(

ti− t∗

h

)α

,

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 11

with the moments Mα(S,T) as defined in (17). Truncating this series expansion with
|α|1 < p results in the approximation given by (18). To derive the associated error
bound (19), note that the Lagrange remainder of the Taylor series (21) truncated by
|α|1 < p is given by

Rp =
2p

p!

[(
s j− s∗

h

)
·
(

ti− t∗

h

)]p

e2θ(s j−s∗)(ti−t∗)/h2

with some θ ∈ (0,1). Using the Cauchy-Schwarz inequality this remainder can be
bounded via

Rp ≤
2p

p!

(
‖s j− s∗‖

h

)p(‖ti− t∗‖
h

)p

e2θ‖s j−s∗‖‖ti−t∗‖/h2

≤ 1
p!

(
2rSrT

h2

)p

e2‖s j−s∗‖‖ti−t∗‖/h2
,

since ‖s j− s∗‖ ≤ rS and ‖ti− t∗‖ ≤ rT . The local error can now be estimated by∣∣∣G̃S(ti)−GS(ti)
∣∣∣≤ ∑

s j∈S
f j · kh(ti,s∗)︸ ︷︷ ︸

(1)

·kh(s j,s∗)︸ ︷︷ ︸
(2)

·e2(s j−s∗)(t∗−s∗)/h2︸ ︷︷ ︸
(3)

· 1
p!

(
2rSrT

h2

)p

e2‖s j−s∗‖‖ti−t∗‖/h2︸ ︷︷ ︸
(4)

.

Next, we derive a bound for the product (1) · (2) · (3) · (4). To this end, term (1) is
rewritten as

kh(ti,s∗) = e−‖ti−s∗‖2/h2
= e−‖(ti−t∗)+(t∗−s∗)‖2/h2

= kh(ti, t∗) · kh(t∗,s∗) · e−2(ti−t∗)(t∗−s∗)/h2
.

Thus we have (1) · (2) · (4) =

= e−2(ti−t∗)(t∗−s∗)/h2︸ ︷︷ ︸
(5)

·kh(t∗,s∗)︸ ︷︷ ︸
(6)

·kh(ti, t∗) · kh(s j,s∗) · e2‖s j−s∗‖‖ti−t∗‖/h2︸ ︷︷ ︸
≤1

.

To bound the remaining product (3) · (5) · (6), we combine terms (3) and (5), and
also insert the factor 1 = kh(s j − s∗, ti − t∗) · e‖(s j−s∗)−(ti−t∗)‖2/h2

. Then, we obtain
(3) · (5) · (6) =

= e2((s j−s∗)−(ti−t∗))(t∗−s∗)/h2 · kh(t∗,s∗) · kh(s j− s∗, ti− t∗)︸ ︷︷ ︸
≤1

·e‖(s j−s∗)−(ti−t∗)‖2/h2
.

Using the triangle inequality, we can bound the last factor via

e‖(s j−s∗)−(ti−t∗)‖2/h2 ≤ e(‖s j−s∗‖+‖ti−t∗‖)
2
/h2
≤ e(rS+rT)

2/h2
,

which yields the final local error bound∣∣∣G̃S(ti)−GS(ti)
∣∣∣≤ FS ·

1
p!

(
2rSrT

h2

)p

· e(rS+rT)
2/h2

as presented in (19).

12 Michael Griebel, Daniel Wissel

2.7 Complexity

We now shortly discuss the cost complexity of the different steps involved in our algo-
rithm. The two tree structures are built in a total time complexity of O(d ·N · log2 N)
and O(d ·M · log2 M), respectively. For this purpose, note that the calculation of the
variance and the median in the node splitting procedure as well as the construc-
tion of the bounding elements can be done in linear time with respect to the num-
ber of points and the dimension. Since the trees are perfectly balanced, we get the
above time complexity. Furthermore, we achieve a minimal memory complexity of
O(d ·N) +O(d ·M), since only a single copy of all points is stored for each tree.
The nodes just hold their respective array bounds, the center point, the data of the
bounding elements, and the source weight sum.

The initialization of the error control variables G̃min
T (see Figure 3) induces costs

of O(d ·M · q), where q = 30 is the maximal number of points in each source leaf
node.

Next, let us consider the costs for the different approximation methods for a given
source node S with NS points and target node T with MT points. Regarding the mean
value method (Figure 4), the above distance estimates δ min

ST and δ max
ST are determined

in O(d) time using the precalculated node bounding elements. The solution variables
G̃(ti) for all ti ∈ T are then updated in O(MT) time. Direct computation obviously
results in a cost complexity of O(d ·NS ·MT).

Furthermore, the Taylor series approximation first requires to fix the smallest p =
p(S,T) that satisfies

R(S,T) = FS ·
1
p!

(
2rSrT

h2

)p

· e(rS+rT)
2/h2 ≤ ε · G̃min

T · (FS +Fsave
T)/F, (22)

see (10) and (19). Given this p which crucially depends on the respective tree node
radii rS and rT , the total time complexity for calculating the moments and summing
up the contributions is O(

(p−1+d
d

)
· (NS +MT)).

Note that the cost functions in the recursive procedure CONTRIB (Figure 1) rep-
resent adapted versions of these complexity estimations. In particular, the costs for the
children of the pair (S,T) are determined by considering all four child node pairs on
the next finer tree level. For each such pair, the minimum of the costs for direct com-
putation and the costs for Taylor approximation is calculated. These minima then add
up to the total costs on the finer tree level. The purpose of this entire estimation pro-
cess is to find that combination of interacting nodes which is locally optimal in terms
of cost complexity. Altogether, the preprocessing (including tree construction and er-
ror control initialization) requires O(d ·N · log2 N)+O(d ·M · log2 M) costs. Note that
it is independent of the bandwidth h and the accuracy ε . The recursive main part guar-
antees a local best-case runtime of min{O(d ·NS ·MT),O(

(p−1+d
d

)
·(NS+MT))}. This

results in a global worst-case estimation of min{O(d ·N ·M),O(
(p−1+d

d

)
· (N+M))}

with p = max(S,T) {p(S,T)}. Naturally, the runtimes are much more favorable in
practice. Moreover they also depend on the local structure of the considered data.

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 13

3 Feature comparison with other algorithms

In this section we give a quick overview of the main features of the other three Gauss
transform approximation algorithms, i.e. the Fast Gauss Transform, the Improved
Fast Gauss Transform, and the Dual-Tree Fast Gauss Transform.

The Fast Gauss Transform [10] employs a uniform subdivision of the unit hy-
percube into smaller hypercubes called “boxes” of sidelength

√
2rh with some pos-

itive r ≤ 1
2 . Source and target points are clustered in the same way. Contributions

of far-field source boxes are omitted, near-field contributions are approximated via
certain different series expansions based on multi-dimensional Hermite functions.
The number of boxes is proportional to O(h−d), and the series expansions require
O(pd · (N +M)) operations. Hence, the FGT is not a good choice for dimensions
d > 3 nor small bandwidths h.

The Improved Fast Gauss Transform [23] treats the target points individually
without arranging them in clusters, while the source points are partitioned by a non-
hierarchical scheme called farthest-point clustering. Again, contributions of far-field
source clusters are omitted, while the near-field contributions are approximated via
a Taylor series expansion similar to the one employed in our algorithm. The corre-
sponding local error bound is given by

R(S) = FS ·
1
p!

(
2rSrn

h2

)p

(23)

with the cluster radius rS = maxs j∈S ‖s j− s∗‖ and the so-called cluster cutoff radius
rn ≥ ‖ti− s∗‖ for all targets ti interacting with the source cluster S. In general, the
local error bound (19) of our series expansion results more often in smaller truncation
bounds p, since the radii rS and rT get smaller for tree nodes of deeper levels. The
farthest-point clustering requires a reasonable choice of the maximum cluster radius
or, alternatively, the number of clusters K. For smaller bandwidth h the clustering
costs of O(d ·N ·K) increase, since a larger number of clusters is needed to guarantee
the error bounds. In general, the IFGT does not offer good performance for small
bandwidths.

The Dual-Tree Fast Gauss Transform [14] basically features the same tree struc-
ture and error control mechanism as described above in our OFGT algorithm. The
series approximations are modified FGT variants based on the Hermite functions.
The corresponding local error bound is given by

R(S) = FS ·
1√
p!

(√
2r1

h

)p

, (24)

where r1 = maxs j∈S ‖s j− s∗‖1 (see [21] for details). In experiments with real-world
data of up to 16 dimensions, the DFGT shows relatively good performance for a wide
range of bandwidths (see [14]). However, in some cases for dimensions 7 and higher,
it is considerably slower than direct computation.

Table 2 summarizes the main features of the three different algorithms. The Fast
Gauss Transform with a series expansion truncated via ‖α‖

∞
< p involves pd series

terms, while all other three methods with the truncation rule ‖α‖1 < p only require

14 Michael Griebel, Daniel Wissel

Table 2 Features of the different algorithms.

FGT Improved FGT Dual-Tree FGT our algorithm

clustering uniform grid farthest-point cl. dual-tree dual-tree

series expans. Hermite function power function Hermite function power function

series terms pd (p−1+d
d

) (p−1+d
d

) (p−1+d
d

)
series error

1
(1− r)d ·

d−1

∑
k=0

(
d
k

)
·

(1− rp)k
(

rp
√

p!

)d−k

1
p!

(
2rSrn

h2

)p 1√
p!

(√
2r1

h

)p
1
p!

(
2rSrT

h2

)p

·

e(rS+rT)
2/h2

global error absolute absolute relative relative

prerequisites s j, ti ∈ [0,1]d – f j ≥ 0 f j ≥ 0

(p−1+d
d

)
series terms. Thus, for dimensions d > 3, the FGT is clearly inferior in terms

of costs. Furthermore, our algorithm combines the best features of both the Improved
FGT and the Dual-Tree FGT. It comes with a simple Taylor series expansion which
allows for an efficient estimation of the local approximation costs. The corresponding
error bound for a series truncated via ‖α‖1 < p is of order O

(
(p!)−1

)
— instead of

O
(
(p!)−

1
2
)

as for the Dual-Tree FGT — and decreases for smaller node radii rS and
rT . Like the DFGT, our method features a relative error estimate. Furthermore, the
tree structures yield an improved behavior for the whole range of bandwidths h. This
will be shown in detail in the following section.

4 Numerical results

We now present empirical results of our new algorithm using synthetic as well as real-
world data and compare them to those obtained by direct evaluation. The synthetic
datasets comprise uniformly distributed points in the hypercube [0,1]d as well as clus-
tered data sampled from multiple d-variate normal distributions. The data are gener-
ated by the MT19937 “Mersenne Twister” random number generator [16] which pro-
duces equidistributed samples in high-dimensional spaces. Furthermore, we choose
different real-world datasets with up to 62 dimensions. Their features are given in
Table 3. Here, the data are coordinate-wise shifted and scaled to fit into [0,1]d . For
our experiments we select the first 50,000 samples of each dataset. To get lower-
dimensional data, we reduce the respective datasets by taking only the first few coor-
dinates. For example, cMo3 denotes the dataset consisting of the first 3 coordinates
of the first 50,000 points of the corelMoments dataset.

Note that the exponential function provided by the GNU ISO C++ Library 4.4.3
comes with a runtime anomaly that causes above-average evaluation times for input
values in [−748,−708], see Figure 7. For this reason, in our implementations, we
employ the modification

my exp(x) def
= {0 | x≤−708, exp(x) | otherwise} ,

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 15

Table 3 Real-world datasets.

name dim. # data area repository
acoustic 50 78823 vehicle sensors LIBSVM Data
bio 62 208506 biol. image features Signal Compression Lab, UCSB
codrna 8 59535 RNA sequence LIBSVM Data
corelHisto 32 68040 image features UCI Machine Learning Rep.
corelMoments 9 68040 image features UCI Machine Learning Rep.
corelTexture 16 68040 image features UCI Machine Learning Rep.
covtype 55 581012 forestry UCI Machine Learning Rep.
galaxy 21 184211 astronomy Dep. of Astronomy, UMass
shuttle 9 58000 NASA log data UCI Machine Learning Rep.

which does not affect the actual results of the exp-function for double precision but
has a positive effect on its runtime. The code is compiled with the GNU C++ Com-
piler 4.4.3 using the optimization flag -O6 and is run on an Intel Xeon W3520 @
2.67GHz. Runtimes are given in seconds and include the time for the tree construction
of the OFGT. For each test run, the source and target points coincide (thus N = M),
the f j are uniformly distributed in [0,1], and the kernel bandwidth h is varied within
the range [10−4,102]. Unless stated otherwise, the relative precision of the OFGT is
fixed as ε = 10−6.

−800 −700 −600
0

2

4

x

ru
nt

im
e

(s
ec

.)

runtime for 107 evaluations of exp(x)

Fig. 7 Runtime anomaly of the exponential function exp(x) provided in cmath of the GNU ISO C++
Library 4.4.3 for varying x ∈ [−800,−600]. For each evaluation point x0, we generate 107 random points
in the interval [x0−5,x0 +5]. Then, we sum up the exponentials of all these points and measure the time
for the whole process. This experiment is repeated three times and the average runtime is presented here.

4.1 Influence of the kernel bandwidth

As a preliminary experiment, we study the dependency of our algorithm on the band-
width h. So far, in the theoretical complexities given in subsection 2.7, we did not con-
sider the influence of h. However, the practical runtimes heavily depend on it. The rea-
son for this behavior can be seen by analyzing the kernel matrix K, Ki j = e−‖si−s j‖2/h2

16 Michael Griebel, Daniel Wissel

for the two degenerate cases h→ 0 and h→ ∞. In the first case, K tends to the iden-
tity matrix while in the second case, K tends to a singular matrix with Ki j = 1 for all
i, j. Hence, for very small bandwidths, the OFGT algorithm approximates the Gauss
transform basically via direct evaluations for the nearest-neighbors and some far-field
approximations for few lower-level nodes which contain the majority of the sources.
For very large bandwidths on the other hand, the contributions of all sources are
efficiently combined in a single Taylor series expansion. Finally, for moderate band-
widths, the algorithm locally switches between the different approximation methods
and falls back to direct evaluation in the worst case. Table 4 gives empirical evi-
dence for this behavior of our algorithm. It shows the number of applications of
the three different evaluation methods for experiments with the 5-dimensional uni-
form dataset and the 9-dimensional shuttle dataset, both with a relative precision of
ε = 10−6. Here, the worst case occurs for the uniform data with h = 0.5, where all
source–target interactions are computed via direct evaluation in the 20482 pairs of
tree leaves, each of which contains about 30 points. Moreover, the series expansion is
applied in the uniform case only for h > 0.5, which results in a dramatic drop of the
runtimes. For the real-world data, Taylor expansion is applied already for h≥ 0.025,
the maximal runtime is considerably smaller, and the decrease in runtimes for in-
creasing bandwidth is much smoother. Altogether, the performance strongly depends
on the respective h.

Table 4 OFGT runtimes (of) for ε = 10−6 and number of applications of the three evaluation methods:
mean value approximation (#m), Taylor expansion (#t) and direct evaluation (#d).

uniform, d = 5, N = 50,000 shuttle, d = 9, N = 50,000
h of #m #t #d of #m #t #d
0.0001 0.11 11842 0 2448 2.39 3739837 0 33669
0.001 0.17 72120 0 8569 1.48 678050 0 37619
0.01 1.39 276368 0 121937 10.17 291702 0 352639
0.025 5.84 250332 0 224950 32.26 487718 615 1138856
0.05 10.40 365126 0 403598 67.01 590377 12818 2235853
0.1 39.73 677978 0 1568648 63.70 94041 119547 1280971
0.25 103.78 52009 0 4142064 27.33 556 100299 283836
0.5 105.08 0 0 4194304 13.38 0 29785 52356
1 6.79 0 1024 0 5.04 0 6959 5276
2.5 0.41 0 1 0 3.90 0 1 0
5 0.20 0 1 0 0.45 0 1 0

4.2 Uniform data

Now, we consider the case of uniform data in more detail. To this end, let us point
out that uniform data is the worst-case scenario in terms of algorithmic performance,
since the tree structure can neither detect any far-out clusters that allow to utilize
the mean value method nor clusters with particularly small radii that allow a Taylor

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 17

approximation with small truncation parameter p. Moreover, uniformly distributed
data in higher dimensions d � 10 are uncommon and rather meaningless in most
areas of data mining.

The runtimes of empirical tests with uniformly distributed data can be found in
Figure 8 and Table 5. The two different runtime regimes of the direct computation
(low bandwidths vs. average and high bandwidths) result from our my exp-function.
However this behavior is common for any efficient implementation of the exponential
function. Interestingly, the runtimes for 2, 3, and 4 dimensions hardly differ, which
could be explained by dominating costs of the exp-function (as opposed to basic
arithmetic operations) or caching effects.

10−3 10−1 101
0

50

100 N = 50,000

h

ru
nt

im
e

(s
ec

.)

dc 2 dc 3 dc 4
of 2 of 3 of 4

10−3 10−1 101
0

50

100

150 N = 50,000

h

dc 5 dc 10 dc 20
of 5 of 10 of 20

10−3 10−1 101
0

500

1,000

1,500 N = 200,000

h

ru
nt

im
e

(s
ec

.)

dc 2 dc 3 dc 4
of 2 of 3 of 4

10−3 10−1 101
0

1,000

2,000
N = 200,000

h

dc 5 dc 10 dc 20
of 5 of 10 of 20

Fig. 8 Runtimes of direct computation (dc) and the OFGT (of) with ε = 10−6 for uniform data in dimen-
sions d = 2,3,4 (left) and d = 5,10,20 (right) with 50,000 (top) and 200,000 points (bottom).

The runtimes of the OFGT algorithm undercut these of the direct variant by sev-
eral orders of magnitude in dimensions up to 3 for all tested bandwidths. For higher
dimensional uniform data, the Taylor series approximation with O(

(p−1+d
d

)
· (NS +

MT)) costs gets less efficient compared to direct evaluation with O(d ·NS ·MT) costs.
Consequently, while the OFGT is still very fast for low and high bandwidths, the run-
times for an increasingly broader range of bandwidths approach those of direct com-

18 Michael Griebel, Daniel Wissel

putation, starting at dimension 4 for 50,000 points and at dimension 5 for 200,000
points. If a lower precision (see Table 5 for ε = 10−2) is acceptable, this effect is less
severe. Note that in case the OFGT falls back to the direct method for all source–
target interactions, the corresponding runtimes are slightly (up to 7%) higher than
direct computation due to the computational overhead of the tree structure.

Table 5 Runtimes of direct computation (dc) and the OFGT (of) with ε = 10−2,10−6,10−10 for uniform
data (50,000 points) of different dimensions from 1 to 20. Wherever the OFGT fails to outperform the
direct version, results are in bold type.

setting\h 0.001 0.01 0.025 0.05 0.1 0.25 0.5 1 2.5 5 10 100
of−2 1 0.22 0.16 0.15 0.14 0.13 0.10 0.10 0.09 0.08 0.09 0.09 0.09
of−6 1 0.27 0.21 0.17 0.15 0.14 0.11 0.09 0.10 0.09 0.10 0.10 0.10
of−10 1 0.26 0.22 0.18 0.17 0.14 0.11 0.09 0.09 0.09 0.08 0.09 0.08
dc 1 19.6 63.2 86.3 90.1 90.2 90.3 88.8 89.4 90.4 88.6 89.0 87.7
of−2 2 0.33 1.08 1.67 1.56 1.01 0.35 0.16 0.11 0.10 0.10 0.09 0.09
of−6 2 0.34 1.56 3.12 2.66 1.84 0.43 0.18 0.12 0.10 0.09 0.10 0.10
of−10 2 0.34 1.93 5.37 4.33 2.69 0.52 0.20 0.12 0.09 0.09 0.09 0.08
dc 2 15.7 37.9 82.1 95.0 94.9 94.6 94.7 95.2 95.2 94.1 94.6 93.2
of−2 3 0.16 1.13 2.52 5.64 14.1 5.75 1.02 0.19 0.12 0.11 0.11 0.11
of−6 3 0.17 1.19 3.25 9.58 29.4 9.62 1.48 0.28 0.15 0.12 0.12 0.11
of−10 3 0.16 1.33 4.46 13.3 42.2 16.5 2.21 0.35 0.17 0.12 0.11 0.10
dc 3 17.4 24.7 70.8 96.3 96.1 95.9 95.8 95.9 96.9 96.4 96.6 94.5
of−2 4 0.13 1.59 2.59 7.01 18.3 51.5 3.48 0.58 0.14 0.12 0.12 0.11
of−6 4 0.16 1.72 3.22 10.1 33.1 99.1 10.2 1.19 0.20 0.15 0.12 0.11
of−10 4 0.17 1.78 5.16 14.1 46.2 102 29.7 2.91 0.32 0.20 0.15 0.12
dc 4 19.7 22.1 58.0 97.4 97.6 97.2 97.1 97.2 95.9 95.7 95.7 95.8
of−2 5 0.12 1.18 4.98 8.99 24.5 80.8 39.3 1.84 0.19 0.13 0.12 0.11
of−6 5 0.17 1.39 5.84 10.4 39.7 104 105 6.79 0.41 0.20 0.15 0.13
of−10 5 0.18 1.57 7.10 17.6 55.4 107 107 21.7 0.79 0.33 0.2 0.14
dc 5 21.4 22.1 46.4 99.9 101 101 101 101 101 101 101 100
of−2 10 0.22 2.35 10.5 57.0 113 122 123 123 3.21 0.32 0.23 0.17
of−6 10 0.25 2.86 14.2 67.4 121 122 122 122 122 1.97 0.63 0.19
of−10 10 0.25 3.84 17.1 76.0 121 122 122 122 121 15.1 1.32 0.21
dc 10 33.9 33.9 35.1 96.5 115 115 115 115 115 115 115 114
of−2 20 0.59 10.9 38.9 66.1 152 151 151 152 150 8.64 0.54 0.27
of−6 20 0.72 15.4 48.4 68.3 149 149 150 150 151 151 8.71 0.31
of−10 20 0.85 19.6 54.6 68.6 147 148 147 149 152 148 158 0.57
dc 20 64.6 64.6 64.6 70 148 148 148 148 148 147 147 146

4.3 Clustered data

Next, we evaluate runtime results for clustered data. For a given dimension d, we fix
50 random center points, uniformly distributed in [0,1]d . For each center µ , 103 data
points are sampled from the d-variate normal distribution

p(x) =
1

(2π)
d
2 σ

exp

(
−‖x−µ‖2

2σ2

)

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 19

with variance σ = 0.01. The runtime results for different dimensions are shown in
Figure 9. Obviously, the performance of the OFGT compared to direct computation
is much better than for uniformly distributed data. For up to 4 dimensions, the fast
variant yields a speedup factor of at least 10. For d = 10, the worst-case bandwidth
of h = 0.5 results in a speedup of 2, while for d = 20, the OFGT still outperforms the
direct variant clearly for the whole range of bandwidths. Naturally, the above choice
of the variance σ = 0.01 in the normal distribution is crucial to yield tree nodes with
small associated radii. Consider for example the d-dimensional sphere with radius rd
containing 90% of the samples of the above normal distribution. While the respective
radii grow moderately with dimension (r2 ≈ 0.022, r5 ≈ 0.031, r20 ≈ 0.054), the
volumes of the associated spheres rapidly decrease to zero (vol2(r2) ≈ 1.52×10−3,
vol5(r5)≈ 1.51×10−7, vol20(r20)≈ 1.15×10−27). This effect — called the “empty
space phenomenon” — is of course well-known, see e.g. [20].

10−3 10−1 101
0

50

100

h

ru
nt

im
e

(s
ec

.)

dc 2 dc 3 dc 4
of 2 of 3 of 4

10−3 10−1 101
0

50

100

150

h

dc 5 dc 10 dc 20
of 5 of 10 of 20

Fig. 9 Runtimes of direct computation (dc) and the OFGT (of) with ε = 10−6 for 50 clusters of 103

normally distributed points each (with variance σ = 0.01) in dimensions d = 2,3,4 (left) and d = 5,10,20
(right).

4.4 Real-world data

The runtime results for real-world datasets (Figure 10 and Table 6) basically have
similar characteristics as the results for synthetic data. The overall performance is
clearly better than for uniform data and only slightly worse than for the clustered data.
For all tested datasets up to 6 dimensions and also the 9-dimensional shuttle data, the
OFGT rigorously outperforms the direct variant for the whole range of bandwidths.
For the datasets of dimensions of 16 or higher, the OFGT is still fast for low and
high bandwidths, and it achieves roughly the same runtime as direct computation for
a wider range of average bandwidths.

The reason for the better performance here than for uniform data is of course the
inherent structure of most real-world data. While for uniformly distributed data the
dual-tree approach has no essential advantage over an adequately sized regular grid

20 Michael Griebel, Daniel Wissel

10−3 10−1 101
0

50

100

h

ru
nt

im
e

(s
ec

.)

dc cMo3 dc cTe4 dc bio6
of cMo3 of cTe4 of bio6

10−3 10−1 101
0

100

200

h

dc shu9 dc gal21 dc aco50
of shu9 of gal21 of aco50

Fig. 10 Runtimes of direct computation and the OFGT for real-world datasets (50,000 points) corelMo-
ments (d = 3), corelTexture (d = 4), bio (d = 6) (left) and shuttle (d = 9), galaxy (d = 21), acoustic
(d = 50) (right).

as used by the FGT algorithm, the local patterns in real-world data generally result in
smaller tree node radii, hence the faster Taylor series approximation can be applied
more often.

Finally, in Table 6, we present some more runtime results of the OFGT for differ-
ent relative precisions ε = 10−2,10−6,10−10. These figures show that performance
can be improved significantly at the expense of lower precision. On the other hand, if
higher precision is required, runtimes increase but never get perceptibly higher than
that of direct computation.

5 Conclusions

The newly proposed Optimized Fast Gauss Transform seeks to combine the advan-
tages of all previously existing fast Gauss approximation methods based on Hermite
or Taylor expansions. It comes with a refined Taylor series expansion and a better
cost estimation. Numerical experiments demonstrate that the runtime performance
crucially depends on the bandwidth.

For uniformly distributed data, our algorithm provides speedup factors of up to
100 for three- or lower-dimensional problems; similar performance is achieved in
higher-dimensional settings for low and high bandwidths. However, the higher the
dimension, the wider the range of average bandwidths gets where our method can no
longer outperform direct computation. Note here that this effect is even more severe
for the other existing fast Gauss transforms.

For highly clustered data, our algorithm takes advantage of its tree structure, and
the fast series approximation can be applied more often. Thus, speedup factors of 10
to 100 are achieved for up to five-dimensional data for all tested bandwidths. Even
for d = 20, our OFGT is always faster than the direct method.

Real-world datasets generally yield performance results which are between those
for uniform data and for clustered data. The tree structures can exploit intrinsic low-

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 21

Table 6 Runtimes of direct computation (dc) and OFGT (of) for real-world data of different dimensions.

setting \ h 0.001 0.01 0.025 0.05 0.1 0.25 0.5 1 2.5 5 10 100
of−2 cMo3 0.48 2.62 7.12 8.42 4.20 1.13 0.33 0.16 0.11 0.11 0.11 0.10
of−6 cMo3 0.51 3.81 12.0 20.2 11.4 2.40 0.65 0.24 0.13 0.12 0.11 0.12
of−10 cMo3 0.50 4.88 16.3 33.6 21.0 4.02 1.10 0.36 0.17 0.13 0.11 0.10
dc cMo3 18.7 55.2 91.3 97.4 97.8 97.2 96.6 96.0 95.8 95.9 96.5 92.9
of−2 cTe4 3.63 10.6 5.14 2.11 0.69 0.63 0.24 0.17 0.15 0.13 0.13 0.12
of−6 cTe4 4.94 23.7 13.4 5.94 1.92 0.79 0.40 0.22 0.17 0.15 0.14 0.12
of−10 cTe4 5.90 38.4 25.4 12.3 4.40 1.64 0.77 0.33 0.21 0.18 0.15 0.12
dc cTe4 47.5 91.1 96.4 97.7 97.8 97.8 97.7 97.6 97.3 97.1 97.1 96.8
of−2 aco5 0.80 5.17 10.4 16.6 25.4 50.4 24.7 1.39 0.18 0.14 0.13 0.13
of−6 aco5 0.89 6.12 12.9 21.5 38.2 88.0 52.5 6.19 0.33 0.17 0.14 0.12
of−10 aco5 0.98 7.15 15.2 25.5 49.4 101 80.2 28.5 0.58 0.25 0.20 0.14
dc aco5 22.9 39.0 71.0 103 103 103 103 103 103 102 103 102
of−2 bio6 1.16 11.6 25.8 42.9 41.4 9.63 1.88 0.47 0.16 0.14 0.14 0.13
of−6 bio6 1.26 15.6 36.6 61.6 88.9 30.3 7.00 2.01 0.30 0.22 0.18 0.14
of−10 bio6 1.33 18.8 43.6 71.9 100 76.1 21.6 4.67 0.90 0.29 0.21 0.14
dc bio6 26.3 75.9 106 106 106 106 106 106 105 105 106 105
of−2 cod8 0.75 5.38 14.8 30.3 46.1 70.2 65.7 5.93 1.10 0.23 0.20 0.17
of−6 cod8 0.77 6.72 20.4 39.5 53.7 111 114 58.7 3.06 0.62 0.28 0.17
of−10 cod8 0.80 8.10 25.2 44.9 59.8 115 115 115 19.6 2.77 0.60 0.19
dc cod8 28.9 44.0 71.2 109 110 110 110 110 109 109 109 109
of−2 shu9 1.45 6.50 17.0 24.0 21.8 9.49 3.85 1.55 0.44 0.19 0.17 0.15
of−6 shu9 1.48 10.2 32.3 67.0 63.7 27.3 13.4 5.04 3.90 0.45 0.27 0.16
of−10 shu9 1.53 13.6 43.9 89.3 108 69.0 35.2 16.9 5.60 1.83 0.92 0.20
dc shu9 36.2 105 115 115 115 115 115 116 116 115 115 114
of−2 cov10 0.30 1.81 5.01 11.3 27.7 83.0 116 22.5 1.39 0.34 0.23 0.18
of−6 cov10 0.32 2.06 6.65 16.6 44.8 118 122 124 12.9 1.36 0.61 0.18
of−10cov10 0.35 2.32 8.25 21.9 60.3 122 122 122 106 9.74 1.34 0.22
dc cov10 34.3 36.8 65.3 115 116 116 116 116 116 115 115 114
of−2 cTe16 0.98 10.8 28.1 49.4 74.5 114 61.1 10.5 1.59 0.92 0.46 0.23
of−6 cTe16 1.11 14.0 37.3 64.7 97.1 133 137 126 17.2 3.71 1.36 0.26
of−10cTe16 1.20 17.0 44.6 75.0 110 136 138 138 130 34.0 7.66 0.38
dc cTe16 52.8 100 132 141 142 138 136 139 136 134 134 133
of−2 gal21 4.92 6.96 11.5 19.3 36.2 61.0 114 151 24.1 2.12 0.58 0.28
of−6 gal21 4.94 7.34 13.6 25.1 45.5 80.4 149 150 149 56.6 10.8 0.30
of−10 gal21 4.91 7.62 15.7 30.2 52.5 122 151 152 151 151 131 0.56
dc gal21 67.3 69.5 93.6 128 151 152 152 152 152 151 149 148
of−2 cHi32 2.09 9.76 28.2 61.7 112 167 180 178 119 31.5 5.78 0.39
of−6 cHi32 2.47 11.0 37.8 81.0 138 179 180 180 179 177 92.9 0.81
of−10cHi32 2.79 12.3 46.6 96.3 157 184 183 183 183 183 182 6.60
dc cHi32 103 106 169 192 191 187 186 185 185 185 184 183
of−2 aco50 1.99 11.9 24.6 53.0 108 204 231 230 212 157 6.31 0.56
of−6 aco50 2.28 13.8 29.3 65.6 138 229 230 230 230 233 241 0.75
of−10 aco50 2.61 15.5 33.9 78.1 163 234 234 234 234 231 232 32.1
dc aco50 153 158 170 235 239 239 239 239 238 237 237 235
of−2 bio62 4.71 22.6 57.5 103 152 201 232 259 201 21.7 7.23 0.69
of−6 bio62 5.73 25.9 68.9 120 171 224 256 264 264 269 263 1.49
of−10 bio62 6.78 29.6 79.6 135 186 241 269 269 269 273 268 16.8
dc bio62 197 195 227 260 277 278 278 278 277 276 276 273

22 Michael Griebel, Daniel Wissel

dimensional features and allow for a more frequent application of the fast approxi-
mation methods. Thus, problems of dimensions up to 9 can be efficiently treated for
arbitrary bandwidths, while for considerably higher dimensions, similar limitations
as with uniform data are present.

The current algorithm can directly be applied to bandwidth selection in kernel
density estimation, where all weight coefficients are positive constants. This has al-
ready been demonstrated for the Improved Fast Gauss Transform in [17]. Note here
that the restriction to non-negative weights f j is no general obstacle, but can be cir-
cumvented using various approaches. The most straightforward variant is to split f
into f+ and f−, padded with zeros accordingly, to run our algorithm twice, and to
combine the two results properly. Another option is to add a sufficiently large con-
stant c to f to make all entries non-negative, to compute the transform for both, c · 1
and f + c · 1, and to combine the two results in the end. Here, stability and error
control may be an issue, though.

Without the restriction to non-negative weights, our method can also be utilized
to solve linear systems K · x = b with the Gaussian kernel matrix Ki j = kh(si,s j)
within e.g. a preconditioned conjugate gradient method. This will allow us to tackle
further applications like for example Gaussian process regression or regularized least-
squares classification.

Note that other approaches have recently been proposed for the approximation of
the Gauss transform. TAUSCH and WECKIEWICZ [19] use Chebyshev expansions to
approximate the solution globally via a single series expansion. The corresponding
time complexity is O(

(p+1+d
d

)
· (N +M)), where p is the associated series truncation

parameter. KUNIS et al. [12,13] introduce another variant based on the nonequispaced
Fast Fourier Transform and demonstrate competitive results in 1 and 2 dimensions.
An in-depth performance analysis of these algorithms in higher dimensions is how-
ever still to be done.

In the end, let us remark that profound concentration effects may occur when deal-
ing with high-dimensional problems, see [11]. Then, the Euclidean distance and the
Gaussian kernel might necessarily no longer be an appropriate choice. It is presently
unclear if alternatives like the so-called p-Gaussian kernel k(t,s) = e−‖t−s‖p/hp

as
suggested in [8] are really remedying the problem. On the other hand, real-world
high-dimensional data almost surely possess intrinsic low-dimensional structures and
manifolds for which concentration may pose no longer a problem. Moreover, a vir-
tually uniformly distributed dataset in high dimensions is of no major interest in the
praxis of data mining. In the ideal case, an algorithm dealing with high-dimensional
data should exploit lower-dimensional patterns even without explicitly recovering
these, and the curse of dimensionality should only be present with respect to the in-
trinsic lower dimension, but not with respect to the nominal dimension. Furthermore,
it should fall back to methods with linear complexity with respect to the dimension, if
no intrinsic structure is present. The basic framework of our OFGT algorithm partly
features this behavior and even allows for further improvements in this direction.

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions 23

References

1. Ayyagari, V.R., Boughorbel, F., Koschan, A., Abidi, M.A.: A new method for automatic 3D face
registration. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 3, p. 119 (2005)

2. Baxter, B.J.C., Roussos, G.: A new error estimate of the fast Gauss transform. SIAM J. Sci. Comput.
24(1), 257–259 (2002)

3. Beatson, R., Greengard, L.: A short course on fast multipole methods. In: Wavelets, Multilevel Meth-
ods and Elliptic PDEs, pp. 1–37. Oxford University Press (1997)

4. Boughorbel, F., Koschan, A., Abidi, M.: A new multi-sensor registration technique for three-
dimensional scene modeling with application to unmanned vehicle mobility enhancement. In: Un-
manned Ground Veh. Technol. VII (SPIE Conf. Proc.), vol. 5804, pp. 174–181 (2005)

5. Broadie, M., Yamamoto, Y.: Application of the fast Gauss transform to option pricing. Manag. Sci.
49(8), 1071–1088 (2003)

6. Broadie, M., Yamamoto, Y.: A double-exponential fast Gauss transform algorithm for pricing discrete
path-dependent options. Oper. Res. 53(5), 764–779 (2005)

7. Elgammal, A., Duraiswami, R., Davis, L.S.: Efficient kernel density estimation using the fast Gauss
transform with applications to color modeling and tracking. IEEE Trans. Pattern Anal. Mach. Intell.
25(11), 1499–1504 (2003)

8. Franois, D., Wertz, V., Verleysen, M.: About the locality of kernels in high-dimensional spaces. In:
Proc. Int. Symp. Appl. Stoch. Models Data Anal. (ASMDA), vol. 8, pp. 238–245 (2005)

9. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comp. Phys. 73(2), 325–348
(1987)

10. Greengard, L., Strain, J.: The fast Gauss transform. SIAM J. Sci. Stat. Comput. 12(1), 79–94 (1991)
11. Hegland, M., Pestov, V.: Additive models in high dimensions. In: Proc. 12th Comput. Tech. Appl.

Conf. (CTAC-2004), ANZIAM J., vol. 46, pp. C1205–C1221 (2005)
12. Keiner, J., Kunis, S., Potts, D.: Fast summation of radial functions on the sphere. Comput. 78, 1–15

(2006)
13. Kunis, S.: Nonequispaced FFT: Generalisation and Inversion. Shaker (2006)
14. Lee, D., Gray, A.: Faster Gaussian summation: theory and experiment. In: Proc. 22nd Annu. Conf.

Uncertain. Artif. Intell. (UAI-06). AUAI Press, Arlington (2006)
15. Lee, D., Gray, A., Moore, A.: Dual-tree fast Gauss transforms. Adv. Neural Inf. Process. Syst. 18,

747–754 (2006)
16. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform

pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)
17. Raykar, V.C., Duraiswami, R.: Very fast optimal bandwidth selection for univariate kernel density

estimation. Tech. Rep. CS-TR-4774, Dep. Comput. Sci., Univ. Maryland, Coll. Park (2005)
18. Raykar, V.C., Yang, C., Duraiswami, R., Gumerov, N.A.: Fast computation of sums of Gaussians in

high dimensions. Tech. Rep. CS-TR-4767, Dep. Comput. Sci., Univ. Maryland, Coll. Park (2005)
19. Tausch, J., Weckiewicz, A.: Multidimensional fast Gauss transforms by Chebyshev expansions. SIAM

J. Sci. Comput. 31, 3547–3565 (2009)
20. Verleysen, M.: Learning high-dimensional data. In: Limit. Future Trends Neural Comput., 3, vol. 186,

pp. 141–162 (2003)
21. Wissel, D.: The discrete Gauss transform – fast approximation algorithms and applications in high

dimensions. Diploma thesis, Inst. Numer. Simul., Univ. Bonn (2008)
22. Yang, C., Duraiswami, R., Davis, L.: Efficient kernel machines using the improved fast Gauss trans-

form. In: Adv. Neural Inf. Process. Syst., vol. 17, pp. 1561–1568. MIT Press (2004)
23. Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L.: Improved fast Gauss transform and efficient

kernel density estimation. In: Proc. 9th IEEE Int. Conf. Comput. Vis., vol. 1, pp. 664–671 (2003)

