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SUMMARY: A fast an accurate simulation tool for the permeability of textiles is 
presented, based on a finite difference discretisation of the Stokes equations. Results 
for single layer, multi layer and sheared models are discussed. The influence of intra-
yarn flow and periodic respectively wall boundary conditions are considered. 
Simulated permeability values are compared with experimental data. For the creation 
of the textile model the WiseTex software is used, which implements a generalised 
description of internal structure of textile reinforcements on the unit cell level. A 
finite difference Navier-Stokes solver, NaSt3DGP, was developed at the Institute for 
Numerical Simulation at the University of Bonn. The flow solver employs a Chorin 
projection on a staggered grid for the solution of the Navier-Stokes. In the staggered 
grid approach, the pressure is discretised at the centre of the cells, while the velocities 
are discretised on the edges. This discretisation leads to a strong coupling between 
pressure and velocities, and therefore avoids the occurrence of unphysical oscillations 
in the pressure. The experimental validation is performed with a highly automated 
central injection rig PIERS. 

KEYWORDS: Textile composite, Fabric/textiles, Permeability, Modelling 
  

INTRODUCTION 
Theoretical formulas for the calculation of the permeability of porous media such as 
textiles have been presented by several authors (Table 1).  

Table 1 Methods for prediction permeability of textiles 

Method Reference Comment 
Theoretical formulas 1, 2, 3 Inaccurate for realistic textiles 
FE modelling 4, 5, 6 Cumbersome meshing 
lattice Boltzmann modelling 7 No acceleration techniques available 
Grid2D 8 No validation for different kinds of textile 
Pore network model 9 No satisfactory validation 
Random walk methods 10 No satisfactory validation 

We present the results of a finite difference solver: it works on a regular grid but more 
acceleration techniques for the resulting partial differential system of equations are 
available than for the lattice Boltzmann method. For the creation of the textile model, 
we use the WiseTex software [11]. WiseTex implements a generalised description of 



 

the internal structure of textile reinforcements on the unit cell level. The WiseTex 
models are input for our permeability predicting software FlowTex. 

MATHEMATICAL MODEL 
The permeability tensor K is a geometric characteristic related to the structural 
features of the textile at several length scales. For a porous medium, the permeability 
tensor is defined by Darcy’s law 

 
with u = u(x, y, z) the fluid velocity, Re the Reynolds number, p = p(x, y, z) the 
pressure and <> denotes volume averaging. In case of a creeping, single-phase, 
isothermal, unidirectional saturated flow of a Newtonian fluid, the inter-yarn flow is 
described by the incompressible Navier-Stokes equations, 

 
Here γ denotes the boundary of the fluid and solid region and n the outward-pointing 
unit normal vector on γ. The first equation states the conservation of momentum, the 
second equation states the conservation of mass. For the Reynolds numbers we are 
dealing with, i.e. Re ≤ 1, the nonlinear convection term can be neglected. Since we are 
only interested in the steady state solution, the time derivative can be omitted. This 
results in the incompressible, steady Stokes equations, 

 
To determine the permeability from (1), the solution of (2) or (3) must be computed. 
Homogenisation of the Stokes equations in a porous medium yields Darcy’s law (1) 
on macro level and can be applied within the periodic domain of a textile. In [12] we 
show that solving these equations to simulate the fluid flow and then using Darcy’s 
law to calculate the permeability, results in the same numerical value as using the 
definition of K arising from homogenisation theory. 
Intra-yarn flow depends on the local permeability tensor of the yarn Kyarn (calculates 
using formulae [1,2,3]), and is described by the Brinkman equations [13] 

 
NUMERICAL APPROACH 

For flow simulations in the irregular geometry of a textile, we solve the Navier-Stokes 
equations (2) and the Stokes equations (3) numerically on a regular grid with a finite 
difference discretisation. To this end, the geometry of the yarns is first order 
approximated. An example of a textile geometry and its first order approximation is 
shown in Figure 1.  



 

 
Figure 1 A 2D-textile model (left) and its first order approximation on the grid (middle); 3D voxel 

geometry (right) 

Boundary conditions 
A boundary condition must be imposed between the yarn and fluid region. If we 
neglect the intra-yarn flow, the yarns are treated as impermeable. Each grid point is 
then either located in the fluid domain (’fluid points’) or in the solid yarn domain 
(’solid points’). At the boundaries between the fluid and the solid, no-slip boundary 
conditions are imposed. We use a second order discretisation of the Navier-Stokes 
equations, but since the geometry is approximated to first order, we cannot expect 
second order accuracy near the boundaries. Including a second order description of 
the geometry would not only lead to the geometry modelling problems that we avoid 
by using the finite difference method, but a second order approximation of the 
boundary would also impose additional numerical stability problems. Although using 
a first order approximation of the yarns means that fine meshes are required to obtain 
an accurate result, it is shown in the validation section that we obtain permeability 
values within an acceptable computation time. 
Boundary conditions must also be imposed on the boundary of the unit cell. In the XY 
direction it is obvious to use periodic boundary conditions because of the periodic 
structure of the textile. In the Z-direction however, both periodic and wall conditions 
can be justified: several layers of textile are put on top of each other in the mould, so 
periodic boundary conditions are acceptable. However, the mould is closed under 
pressure, and the thickness of the textile specimen may be to small to neglect the 
influence of the closed mould. Moreover, if several layers are put inside a mould, 
nesting of the layers is inevitable. If two layers nest, they form a closed layer between 
the other layers. In the validation section of this paper we show a comparison of the 
possible boundary conditions with experimental results. 
Solution of the Brinkman equations 
The Brinkman equations the same discretisation methods are used. They have to be 
solved in the yarn points if we take intra-yarn flow into account. We solve the 
Brinkman equations on the whole domain with ||Ktow|| = ∞, i.e. the Stokes equations, 
at fluid points while for yarns ||Ktow|| is typically 10−4 ≤ ||Ktow|| ≤ 10−7 . 
Implementation 
A finite difference Navier-Stokes solver, NaSt3DGP, was developed at the Institute 
for Numerical Simulation at the University of Bonn [14, 15]. The flow solver employs 
a Chorin projection method on a staggered grid for the solution of the Navier-Stokes 
equations. In the staggered grid approach, the pressure is discretised at the centre of 
the cells, while the velocities are discretised on the side surfaces. This discretisation 
leads to a strong coupling between pressure and velocities, and therefore avoids the 
occurrence of unphysical oscillations in the pressure. From a numerical point of view, 



 

boundary conditions between the fluid and the solid region can be implemented in 
two ways: 
• boundary values are set explicitly in the solid cells which are bordered by fluid cells;  

• the boundary conditions are included in the equation to be solved in the boundary 
points in the fluid region. 
NaSt3DGP sets the boundary values explicitly. On a staggered grid, this leads to the 
requirement that a solid point must be bordered by at least one other solid point in 
each direction. When the solid region forms very fine structures, as is the case for 
random fibre assemblies, e.g. non-wovens, this constraint leads to a very fine mesh 
(finer than required to capture the geometry itself and to obtain a sufficiently accurate 
solution).  
The extension of NaSt3DGP towards a finite difference Stokes solver additionally 
uses the PETSc library [23] to solve the resulting system of discretised equations. 
Here, the discretisation has been realised on a collocated grid, i.e. all the unknowns 
are discretised in the centre of the cell, and includes the boundary conditions into the 
discrete system matrix. 

EXPERIMENTAL SETUP 
The experimental prediction of the permeability on the majority of the textiles 
presented, is performed with a highly automated central injection rig, called PIERS 
set-up. This PIERS (Permeability Identification using Electrical Resistance Sensors) 
set-up consists of a mould cavity with two sensor plates, each containing 60 electrical 
sensors. After placing the reinforcement and closing the mould, the test fluid can be 
injected. This is done centrally in the reinforcement through a hole in the middle of 
the lower sensor plate. While the flow front propagates through the reinforcement, the 
fluid flow makes contact with the electrical sensors. Since an electrical conductive 
fluid is used, the wetting of these DC-resistance sensors will change their electrical 
resistance. This variation is registered and hence an arrival time for the sensors can be 
stored. From this data, the experimentally determined permeability is computed with 
an inverse method [16]. 

VALIDATION 
In this section our computations are validated against experimental results. 
Experimental verification of computational methods for the simulation of textile 
permeability is often missing in other papers on this subject. We demonstrate that our 
method is a general approach, valid for several types of textile structures. This is an 
important difference with other permeability predicting methods which rely on the 
structure of the textile. For example, special methods for the prediction of the 
permeability of non-crimp fabrics are presented in [17]. 
Textile modelling 
The methods and techniques to desing the used woven textiles and non crimp fabrics 
are explained in [11]. The multi-layered models, with or without nesting, are 
described in [18].  

The geometrical description of internal structure of non-woven material is based on 
the following data:  

• Fibre volume fraction of the material;  

• Fibre geometrical (diameter, linear density) and mechanical properties;  

• Distribution of the fibre length;  

• Fibre orientation distribution, given as 2nd order orientation tensor;  



 

• Fibre waviness. expressed as random combination of two harmonics.  
The geometrical model uses these parameters of the individual fibres and creates a 
random fibrous assembly via a hierarchy of modelled objects:  

• Straight fibre, characterised by fibre properties, length and orientation  

• Curved fibre, modelled as consisting of several straight intervals, and characterised 
by fibre properties, total length, averaged orientation of the intervals and shape of the 
fibre, generated using the given waviness parameters  

• Random realisation of an assembly of a given number of (curved or straight) fibres.  
The boundaries of the unit cell of the material (where all the centres of gravity of the 
fibres are randomly placed) are calculated based on the given fibre volume fraction 
and thickness of the non-woven fabric. The given number of fibres is randomly 
generated by the model according to the given distributions of length, orientation and 
waviness of the fibres. In the case of non-woven fabric (as opposed to bulk material) 
the orientation is corrected to fit all the fibres inside the given thickness of the fabric. 
The random realisation of non-woven assembly is considered periodic; the degree of 
stochastisity included in the description is regulated by the number of the fibres in the 
assembly. 

Experimental validation 
Figure 2 presents experimental and numerical results for two non crimp fabrics, a bi-
axial and a quadri-axial. On the bi-axial structure, three institutes performed the 
experiments: MTM (K.U.Leuven), EPFL (Lausanne) and Ecole des Mines (Douai). 
The non crimp fabric has a dense structure which results in a high influence of the 
intra-yarn flow. For the quadriaxial non crimp fabric the computed permeability 
without Brinkman flow is 5.3E−04, which is a large underestimation of the 
experimental permeability). 
 

 
Figure 2 Experimental and numerical data of non crimp fabrics 

For two woven fabrics Table 3 presents a picture of the textile model and the 
parameter details. The computed permeabilities of the MonoFilament Fabric (MFF) 
and the Plain Woven Fabric (PWF) are depictured in Figure 3. For both textiles two 
results with different volume fraction Vf are presented. For the low Vf, the 
computation was performed on a single layer model with wall boundary conditions. 
Although the experiments are performed on several layers, periodic boundary 



 

conditions yield an overestimation of the permeability as the layers will nest and form 
a wall around the other layers. The high Vf result is obtained by modelling a three 
layered model with maximal nesting. Then, the middle part of the model, where the 
nesting actually occurs, is extruded, and wall conditions are imposed. 

Table 2 Parameters of woven fabrics 

 
Figure 3 also presents the results for a non woven random mat. Unfortunately for this 
random structure no detailed information is available. However, given a certain Vf and 
a diameter of the fibres taken from an available picture, the geometry is approximated 
as good as possible, and the computed permeability values are close to the 
experimentaly obtained values. The computed value is an average of computations on 
five random structures. 

 
Figure 3 Experimental and numerical data of the PWF, MFF and the random mat 



 

Influence of shear 
WiseTex allows the modelling of shear on the textile [19]. The sheared unit cell has 
however, no orthogonal repeat. This means that the periodic boundary conditions of 
the simulation software have to be put parallel to the direction of shear, and not, like 
in the original case, parallel to the orthogonal system axis. We have adapted our 
simulation software in order to compute the permeability in a sheared unit cell. To 
validate the results, we compare the computations with analytical formulas from Lai 
and Young [20] – Figure 4. 
 

 
Figure 4 Sheared MMF fabric: (a) The components of the permeability tensor as function of the system 

rotation angle, (b) the direction of the principal axis as function of shear angle; (c) the anisotropy 

Computation time 
The Navier-Stokes solver uses time stepping to reach the steady state solution in 
which we are interested. This time stepping procedure can be performed implicitly or 
explicitly. If implicit time stepping is used, the stability criterion is less restrictive and 
larger time steps can be taken which results in a faster solution (Table 4). The Stokes 
solver computes the steady state solution directly, and is substantially faster than the 
time stepping methods. For a fine grid, dx = 0.02mm, the solver only needs 
approximately one minute. 

Table 3 Permeability values and computation time for a single layer model with XYZ periodic 
boundary conditions of the MFF 

 
 

CONCLUSIONS 
In this paper a general approach for the computation of the permeability of textiles 
was presented. Solving the Stokes equations with a finite difference discretisation on 
a regular grid has the advantage that the solver can be used for any kind of textile 
structure without meshing problems. Although methods designed for specific textiles 
may lead to a faster solution, they only work for that specific structure and have to be 
redeveloped for new textiles. Moreover, fast and reliable solvers for PDE’s are used 
in our permeability simulations.  
For different textiles experimental validation was presented: for non crimp fabrics, 
woven fabrics and a random mat. Computations on a single layer model with periodic 



 

boundary conditions result in a small over estimation of the experimental value, as 
nesting is neglected. Therefore multi layered models are to be used in the simulations, 
and wall conditions are be imposed. For textiles with a high volume fraction, intra-
yarn flow has an important influence on the permeability value. The micro flow is 
accounted for by solving the Brinkman equations. Not only nesting, boundary 
conditions and intra-yarn flow influence the permeability, also the shear of the 
specimen plays an important role. Our method is able to model shear and compute the 
permeability of the sheared models. 
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