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In this paper, we deal with several aspects of the universal Frolov cubature
method, that is known to achieve optimal asymptotic convergence rates in
a broad range of function spaces. Even though every admissible lattice has
this favorable asymptotic behavior, there are significant differences concern-
ing the precise numerical behavior of the worst-case error. To this end, we
propose new generating polynomials that promise a significant reduction of
the integration error compared to the classical polynomials. Moreover, we
develop a new algorithm to enumerate the Frolov points from non-orthogonal
lattices for numerical cubature in the d-dimensional unit cube [0, 1]d. Finally,
we study Sobolev spaces with anisotropic mixed smoothness and compact
support in [0, 1]d and derive explicit formulas for their reproducing kernels.
This allows for the simulation of exact worst-case errors which numerically
validate our theoretical results.

1. Introduction

Many scientific approaches that are related to the treatment of real world phenomena
rely on the computation of integrals on high-dimensional domains which often cannot
be treated analytically. Examples include physics [4], computational finance [16], econo-
metrics [18] and machine learning [2, 7, 30]. In this paper, we aim for efficient and stable
numerical methods to approximately compute the integral

Id(f) :=

∫
[0,1]d

f(x) dx
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and give reliable error guarantees for a class Fd of d-variate functions. In fact, we are
particularly interested in the worst-case error

e(n, Fd) := sup
‖f‖Fd≤1

|Id(f)−Qdn(f)|, (1.1)

for special cubature formulas of type

Qdn(f) =
1

n

∑
k∈Zd

f(Ank), (1.2)

where An := n−1/dA is a suitable d× d-matrix with det(A) = 1. This type of cubature
rule has a long history going back to the 1970s, see Frolov [13]. In (1.2) the function
f is assumed to be supported on a bounded domain Ω such that only finitely many
summands contribute to the sum. Frolov noticed that the property

Nm(A) := inf
k∈Zd\{0}

∣∣∣ d∏
i=1

(Ak)i

∣∣∣ > 0 (1.3)

guarantees an optimal asymptotic worst-case behavior of (1.1) with respect to functions
with Lp-bounded mixed derivative of order r ∈ N supported in [0, 1]d. In this context,
optimality means that the worst-case error (1.1) can not be improved in the order sense
by any other cubature formula using the same number of points. Note, that in case
| detA| = 1 it can be shown that

n−1 |{k : Ank ∈ Ω}| → 1 (1.4)

for every set Ω with (Lebesgue) volume 1 [32].

Frolov showed that the set of matrices satisfying (1.3) is not empty. Moreover, he gave a
rather sophisticated number theoretic construction with a lot of potential for numerical
analysis, as we will see in this paper. Starting with the irreducible (over Q) polynomial

Pd(x) =
d∏
j=1

(x− 2j + 1)− 1 =
d∏
i=1

(x− ξi) (1.5)

he defined the Vandermonde matrix

V =


1 ξ1 · · · ξd−1

1

1 ξ2 · · · ξd−1
2

...
...

. . .
...

1 ξd · · · ξd−1
d

 ∈ GLd(R) . (1.6)

One reason for the increasing interest in Frolov’s cubature rule is certainly the fact that
once a good matrix (1.3) is fixed the integration nodes are simply given as the rescaled
image of the integer lattice points Zd under the matrix V . The method is therefore

2



comparably simple. Another striking aspect is a property which is sometimes called
universality. The method (1.2) is not designed for a specific class of functions Fd as it
is often the case for the commonly used quasi-Monte Carlo methods based on digital
nets. In other words, we do not need to incorporate any a priori knowledge about the
integrand (e.g. mixed or isotropic regularity etc.).

In this paper we are interested in an efficient implementation and the numerical perfor-
mance of different Frolov type cubature methods for functions on [0, 1]d. First of all,
this requires the efficient enumeration of Frolov lattice nodes in axis parallel boxes. It
turned out that this is a highly non-trivial task which has been already considered by
several authors [23], [24], [34] including three of the present ones. With a naive ap-
proach one may need to touch much more integer lattice points k ∈ Zd (overhead) to
check whether Ak ∈ [0, 1]d. This increases the runtime of an enumeration algorithm
drastically in high dimensions. Here, the chosen irreducible polynomial for (1.6) has a
significant effect. In [24] the authors observed that for d = 2m Chebyshev polynomials
lead to an orthogonal lattice and an equivalent (orthogonal) lattice representation matrix
with entries smaller than two in modulus. By exploiting rotational symmetry properties
the mentioned overhead can be reduced and the enumeration procedure is less costly.

This observation already indicated that the choice of the polynomials in (1.6) is crucial.
Unfortunately, Chebyshev polynomials and corresponding Vandermonde matrices (1.6)
only provide (1.3) if d = 2m. This has been shown for instance in Temlyakov [36]. The
question remains how to fill the gaps. The classical Frolov polynomials are inappropriate
in two respects. First, its roots spread in the range [−d, d] such that (1.6) gets highly
ill-conditioned. And secondly, although the lattice satisfies (1.3), the points are not
really “spaces filling” meaning that the points accumulate around a lower dimensional
manifold. This has a severe numerical impact for the worst-case error. In fact, the
asymptotic rate of convergence is optimal but the preasymptotic behavior is useless for
any practical issues.

One of the main contributions of the paper is the list of new improved generating poly-
nomials given in Section 3 below. We give polynomials which are optimized according to
the mentioned issues in dimensions d = 1, ..., 10, especially with a narrow distribution of
its roots. As already mentioned above Chebyshev polynomials itself are not irreducible
if d is not a power of two. However, they may provide admissible factors. This is the
main idea of the construction and works if d ∈ {2, 3, 4, 5, 6, 8, 9, 10}. As for the case
d = 7 a brute force search led to a polynomial with roots in (−2.25, 1.75).

Due to the mentioned universality of Frolov’s cubature rule, it is enough to fix the
matrix and the corresponding lattice once and for all. In fact, the point construction
does note depend on the respective framework. Therefore, it makes sense to generate
the lattice points in a preprocessing step and make them available for practitioners. Our
enumeration algorithm is similar to the one in [24] and extends to non-orthogonal lattices
by exploiting a QR-factorization, see Section 4. Based on the above list of polynomials
we generated a database of Frolov lattice nodes for dimensions up to d = 10 and N ≈ 106

points. The points are available for download and direct use on the website
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http://wissrech.ins.uni-bonn.de/research/software/frolov/

Having generated the cubature points we are now able to test the performance of various
Frolov methods for functions with bounded mixed (weak) derivative, i.e,

〈f (r), f (r)〉L2 = ‖f (r)‖22 <∞ . (1.7)

where r = (r1, ..., rd) ∈ Nd is a smoothness vector with integer components satisfying

r = r1 = ... = rν < rν+1 ≤ rν+2 ≤ ... ≤ rd . (1.8)

A natural assumption, see (1.2), is the restriction to functions f supported inside the
unit cube Ω = [0, 1]d satisfying (1.7). In this case the semi-norm (1.7) becomes a norm
and the corresponding space a Hilbert space which will be denoted with H̊r

mix .

The nowadays well-known worst-case error

e(n, H̊r
mix) � n−r(log n)(ν−1)r, (1.9)

has been established in many classical papers [13], [11, 12], [36], see also the more recent
papers [38] and [39] . Note, that we encounter another aspect of the universality property
for this particular framework of anisotropic mixed smoothness. When using for instance
a sparse grid approach (see e.g. Appendix A) for the numerical integration one has to
know which direction is “rough” in the above sense to adapt the sparse grid accordingly.
In fact, one samples more points in rough directions and less points in smoother direction.
Frolov’s method does not need this a priori information and behaves according to the
optimal rate of convergence given in (1.9).

We will again provide a streamlined and self-contained proof in Section 6 pointing ex-
plicitly on the dependence of the constants on the dimension d, since the rate of conver-
gence given by (1.9) completely hides this dependence. In fact, in case of one minimal
smoothness component in (1.8) even the logarithm disappears completely and we have
a pure polynomial rate as in the univariate setting. In Theorem 6.1 below we give a
worst-case error bound which shows the influence of the dimension d. In addition, the
result illustrates how the lattice invariants, like the polynomial discriminant DP and the
`∞-diameter of the smallest fundamental cell enter the error estimates.

Since H̊r
mix is embedded into the space of continuous functions a reproducing kernel exists

[1]. We use the approach of Wahba [40] as a starting point to derive its reproducing
kernel. Together with a standard correction procedure, cf. [3, Lem. 3, Thm. 11], we
derive an explicit formula given in Theorem 5.4 and (5.15) below. The reproducing
kernel is then being used to simulate the exact worst-case errors which represent the
norm of the error functional, i.e. its Riesz representer, which can be computed exactly.
This approach allows to gain insights into the true behavior of the constants that are
involved in the bounds for the integration error and usually only are estimated. Let
us emphasize once again that we simulate the worst-case error with respect to a whole
function class rather than testing the algorithm on a single prototype test function.
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Finally, in Section 7 we show the results of several numerical experiments. In the first
part of the experiment section we compare different well-known methods for numerical
integration in the reproducing kernel Hilbert space framework which we established in
Sections 5 and 6. In particular, we compare Frolov lattices based on different generating
polynomials, the classical Frolov polynomials and the improved polynomials from Sec-
tion 3. As one would expect, the numerical behavior of the respective worst-case errors
differ significantly for small n. Where the improved polynomials lead to a rather satisfac-
tory error decay, the classical method is numerically completely useless if the dimension
increases. Interestingly, in case d = 2 Frolov lattices according to the golden ratio poly-
nomial compete with the Fibonacci lattice rule. We also compare Frolov lattices and
sparse grids with respect to the numerical performance. Note, that the sparse grid cu-
bature method represents a further method which is able to benefit from higher (mixed)
smoothness. However, it is well known [9] that sparse grids show a worse behavior in
the logarithm compared to Frolov lattices. Our experiments validate this theoretical
fact. Among the considered methods (sparse grids, quasi-Monte Carlo) Frolov lattices
behave best in our setting. In addition, Frolov lattices do not have to be adapted to the
present anisotropy when considering anisotropic mixed smoothness. When considering
one minimal smoothness component (1.8) we observe the same pure polynomial rate
in different dimensions, only the constant differs. Note, that this effect would also be
present for sparse grids adapted to the smoothness vector, which one has to know in
advance.

Notation. As usual N denotes the natural numbers, Z denotes the integers, and R the
real numbers . The letter d is always reserved for the underlying dimension in Rd,Zd
etc. We denote with x · y the usual Euclidean inner product in Rd. For 0 < p ≤ ∞
we denote with | · |p and ‖ · ‖p the (d-dimensional) discrete `p-norm and the continuous
Lp-norm on R, respectively, where Bd

p denotes the respective unit ball in Rd. The
function (·)+ is given by max{·, 0}. With F we denote the Fourier transform given by
Ff(ξ) :=

∫
R f(x) exp(−2πix · ξ) dx for a function f ∈ L1(Rd) and ξ ∈ Rd. For two

sequences of real numbers an and bn we will write an . bn if there exists a constant
c > 0 such that an ≤ c bn for all n. We will write an � bn if an . bn and bn . an.
With GLd := GLd(R) we denote the group of invertible matrices over R, whereas SOd :=
SOd(R) denotes the group of orthogonal matrices over R with unit determinant. With
SLd(Z) we denote the group of invertible matrices over Z with unit determinant. The
notation D := diag(x1, ..., xd) with x = (x1, ..., xd) ∈ Rd refers to the diagonal matrix
D ∈ Rd×d with x at the diagonal. With gcd(a, b) we denote the greatest common divisor
of two positive integers a, b. And finally, by Z[x] we denote the ring of polynomials with
integer coefficients. Although we consider different generating matrices for admissible
lattices in the forthcoming, we do not specify the matrix in the denotation Qdn. This is,
because we will fix, for every dimension d under consideration, a matrix that is optimal
in a sense that will be explained later. To be precise, for a given dimension d, the matrix
A will be a multiple of the Vandermonde matrix as defined in Theorem 2.2 with the
specific polynomials (and roots) as given in Table 1.
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Figure 1: Equivalent lattice representations within the unit cube Ω = [−1/2, 1/2]2. The
highlighted lattice elements are the column vectors of the corresponding lattice
representation matrix.

2. Admissible lattices and their representation

For a matrix T ∈ GLd(R), we call {Tk : k ∈ Zd} = T (Zd) a (full-rank) lattice with
lattice representation matrix T .

For a matrix U ∈ SLd(Z), the matrices T and TU generate the same lattice, and it
can easily be shown that all possible lattice representations of T (Zd) are given this way.
Therefore, it makes sense to define the determinant of a lattice T (Zd) as |detT |. We want
to mention that for a given lattice, it is often preferred to have a lattice representation
matrix T = (t1| · · · |td) ∈ GLd(R) with column vectors t1, . . . , td ∈ Rd that are small
with respect to some norm, cf. Figure 1.

Crucial for the performance of the Frolov cubature formula (1.2) will be the notion of
admissibility which is settled in the following definition.

Definition 2.1 (Admissible lattice). A lattice T (Zd) is called admissible if

Nm(T ) := inf
k∈Zd\{0}

∣∣∣ d∏
i=1

(Tk)i

∣∣∣ > 0 (2.1)

holds true.

Figure 2 illustrates this property. In fact, lattice points different from 0 lie outside of a
hyperbolic cross with ’radius’ Nm(T ). Our construction of choice for admissible lattices
is given by the following procedure.
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Figure 2: Admissible lattice and hyperbolic cross.

Proposition 2.2. Let P (x) be a polynomial of degree d satisfying

• P has integer coefficients,

• P has leading coefficient 1,

• P is irreducible over Q,

• P has d different real roots ξ1, . . . , ξd .

The Vandermonde matrix

V =


1 ξ1 · · · ξd−1

1

1 ξ2 · · · ξd−1
2

...
...

. . .
...

1 ξd · · · ξd−1
d

 ∈ GLd(R) (2.2)

generates an admissible lattice V (Zd) with Nm(V ) = 1. Its determinant equals the
polynomial discriminant DP of P :

| detV | =
∏
k<l

|ξk − ξl| = DP . (2.3)

Moreover, it holds
Nm(V −>) = | detV |−2 = D−2

P . (2.4)

The necessary prequisites of P can be reformulated with concepts of algebraic number
theory: P is the minimal polynomial of an algebraic integer of order d. For the proof
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(a) P (x) = x2 − 17,
DP = 2

√
17

(b) P (x) = x2 − 8,
DP = 2

√
8

(c) P (x) = x2 − 3,
DP = 2

√
3

(d) P (x) = x2−x−1,
DP =

√
5

Figure 3: Lattices corresponding to different polynomials for d = 2. A small discriminant
correlates with a good distribution of lattice points.

of this statement we refer to [23], or [19] and [26] for a thorough introduction into the
theory of algebraic integers. The quantity (2.4) has a direct impact on the convergence
behavior of the Frolov cubature formula and we therefore are interested in polynomials
which maximize this quantity for a fixed d, i.e. have a small (or the smallest) polynomial
discriminant DP , cf. Figure 3.

Using Proposition 2.2, we obtain the lattice V (Zd) represented by a Vandermonde matrix
V . There are two problems with such matrices from the numerical point of view: First,
they have large column vectors and therefore a large condition number, and second, its
entries are of the form Vij = ξj−1

i for which the calculation gets unstable for increasing j.
However, we can bypass this problem using special polynomials, which will be discussed
in the next section.

Lemma 2.3. Let P be a polynomial which satisfies the prequisites in Proposition 2.2,
and has roots ξ1, . . . , ξd which lie in (−2, 2). Furthermore, let ω1, . . . , ωd ∈ (−1, 1) be
defined via the equation

2 cos(πωk) = ξk , k = 1, . . . , d .

The lattice V (Zd) generated by the associated Vandermonde matrix

V =


1 ξ1 · · · ξd−1

1

1 ξ2 · · · ξd−1
2

...
...

. . .
...

1 ξd · · · ξd−1
d

 ∈ GLd(R)

is also generated by the matrix T with

Tkl =

{
1 l = 1 ,

2 cos (π(l − 1)ωk) l = 2, . . . , d .

The resulting matrix T has entries in (−2, 2) that can be calculated in a numerically
stable way, which is optimal for our purposes. The proof is a straightforward application
of Euler’s identity and can be found in [23, 24].
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Finally, we specify our choice of the matricesA andAn used in Frolov’s cubature formula
(1.2) as

A = | detT |−1/dT , An = n−1/dA (2.5)

with T as in Lemma 2.3.

3. Improved generating polynomials

In this section, we consider polynomials which can be used to create admissible lattices.
We will call such polynomials admissible, i.e. a d-th order polynomial P is admissible
if it satisfies the prequisites of Proposition 2.2. At the end of this section, we provide a
list of admissible polynomials with small discriminant for d = 2, . . . , 10.

The study of Chebyshev Polynomials of the first and second kind provides us with a wide
range of admissible polynomials. The most important features are their real and pairwise
different roots, as well as the narrow distribution thereof. It is also quite fortunate to
us that the decomposition into irreducible factors is well-understood and can be stated
explicitly, see [31].

Definition 3.1. The Chebyshev Polynomials of the first kind Td(x) are defined recur-
sively via

T0(x) = 1,

T1(x) = x,

Td(x) = 2xTd−1(x)− Td−2(x), d ≥ 2 .

The Chebyshev Polynomials of the second kind Ud(x) are defined recursively via

U0(x) = 1,

U1(x) = 2x,

Ud(x) = 2xUd−1(x)− Ud−2(x), d ≥ 2 .

Lemma 3.2. The Chebyshev polynomial Td(x) has the roots

cos

(
π(2k − 1)

2d

)
, k = 1, . . . , d .

The Chebyshev polynomial Ud(x) has the roots

cos

(
πk

d+ 1

)
, k = 1, . . . , d .

The polynomials Td(x) and Ud(x) are not admissible since they do not have leading
coefficient 1. But they can be scaled appropriately to achieve this.
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Lemma 3.3. The scaled Chebyshev polynomials T̃d(x) = 2Td(x/2) and Ũd(x) = Ud(x/2)
have leading coefficient 1 and belong to Z[x]. The scaled Chebyshev polynomial T̃d(x) has
the roots

td,k = 2 cos

(
π(2k − 1)

2d

)
, k = 1, . . . , d .

The scaled Chebyshev polynomial Ũd(x) has the roots

ud,k = 2 cos

(
πk

d+ 1

)
, k = 1, . . . , d .

¿From this lemma it follows directly that irreducible factors of T̃d(x) and Ũd(x) are
admissible and have roots that lie in (−2, 2). As already stated above, [31] lists the
complete decomposition of Chebyshev Polynomials into irreducible factors, which we
reformulate for the scaled versions in the next lemma.

Lemma 3.4. For a fixed d > 1, we have

T̃d(x) =
∏
h

Dd,h(x) ,

where h ≤ d runs through all odd positive divisors of d and

Dd,h(x) =

d∏
k=1

gcd(2k−1,d)=h

(x− td,k)

are all irreducible. It also holds

Ũd(x) =
∏
h

Ed,h(x) ,

where h ≤ d runs through all positive divisors of 2d+ 2 and

Ed,h(x) =
d∏

k=1
gcd(k,2d+2)=h

(x− ud,k)

are all irreducible.

It has been shown in [36] that T̃d(x) is irreducible for d = 2m,m ∈ N and that the
corresponding lattice is orthogonal [24]. However, in this paper we are more interested
in the irreducible factors of Ũd(x), mainly for two reasons. First, it can be easily seen
that the irreducible factors of T̃d(x) have paired roots, i.e.

Dd,h(td,k) = 0⇒ Dd,h(td,d−k+1) = 0 .

This means that either Dd,h(x) = x or Dd,h(x) is a polynomial of even degree, limiting
the usefulness to our purposes. Second, it appears to be the case that the discriminant
of Ũd(x) is smaller than the discriminant of T̃d(x), which makes the factors of Ũd(x)
more attractive to us. The following lemma is a consequence of Lemma 3.4.
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Lemma 3.5. Let d > 1. If p = 2d+ 1 is a prime, the dth-order polynomial

E2d,2(x) =
d∏

k=1

(x− u2d,2k)

is admissible.

Proof. Consider the factorization of Ũ2d(x). We have 2(2d) + 2 = 4d+ 2 = 2p, therefore
we have for 1 ≤ k ≤ 2d

gcd(k, 2(2d) + 2) =

{
1 k odd

2 k even .

This implies that Ũ2d(x) = E2d,1(x)E2d,2(x), which both are of order d.

This simple rule covers the cases d ∈ {2, 3, 5, 6, 8, 9}. For the cases d = 4 and d = 10 we
also did find good factors.

Lemma 3.6. The polynomial E14,2(x) is of order 4 and admissible and the polynomial
E24,2(x) is of order 10 and admissible.

Proof. Both polynomials are admissible by definition, it remains to compute their order.
We first consider E14,2(x). Here, 2·14+2 = 30, and for 1 ≤ k ≤ 14 one has gcd(k, 30) = 2
if and only if k ∈ {2, 4, 8, 14}. Therefore, E14,2(x) is a polynomial of order 4. Now
consider E24,2(x). We have 2 · 24 + 2 = 50, and for 1 ≤ k ≤ 24 one has gcd(k, 50) = 2
if and only if k ∈ {2, 4, 6, 8, 12, 14, 16, 18, 22, 24}. Therefore, E24,2(x) is a polynomial of
order 10.

Unfortunately, the case d = 7 is not covered by the factorization of all Ũd(x) and T̃d(x).
However, using a numerical brute force approach, we found the following polynomial.

Lemma 3.7. The polynomial

P7(x) = x7 + x6 − 6x5 − 4x4 + 10x3 + 4x2 − 4x− 1

is of order 7 and admissible.

Proof. We have to prove that P7(x) is irreducible over Q. It has leading coefficient 1 and
coefficients in Z, therefore it is irreducible over Q if and only if it is irreducible over Z.
Here, we consider irreducibility over F2, which is a sufficient condition for irreducibility
over Z. In F2, one has

P7(x) ≡ x7 + x6 + 1 .

Assume that this polynomial is reducible. Because it has no roots in F2, it would have
to contain a factor of degree less then 4 which also has no root in F2. The possible
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candidates are therefore x2 + x + 1, x3 + x + 1 and x3 + x2 + 1. Doing a polynomial
division with these three polynomials, one finds that

x7 + x6 + 1 ≡ (x2 + x+ 1)(x5 + x3 + x2 + 1) +x

≡ (x3 + x+ 1)(x4 + x3 + x2) +x2 + 1

≡ (x3 + x2 + 1)(x4 + x+ 1) +x2 + x

and we have a contradiction. Therefore, P7(x) is irreducible over F2, and subsequently
also over Q.

Even though Lemma 2.3 is not applicable for this polynomial because its roots lie in
(−2.25, 1.75), they still lie close to each other, which results in a good polynomial dis-
criminant. Regarding the lattice representation issue in the d = 7 case, one has to
compute the Vandermonde matrix V explicitly (using an arbitrary precision data type
to avoid stability issues) and find a good lattice representation matrix T by means of a
lattice reduction algorithm, see for instance [25].

This completes our list of polynomials used for the dimensions 2 ≤ d ≤ 10. We attach
Table 1 collecting all polynomials and useful information.

4. Efficient enumeration of Frolov lattices in d-cubes

In this section we present an enumeration algorithm to determine the set of integration
points for the Frolov cubature formula. The approach is similar to the one in [24] for
orthogonal lattices, Here, we generalize the method for arbitrary lattices.

4.1. Enumeration of non-orthogonal Frolov lattices

We fix the integration domain Ω = [−1/2, 1/2]d and a lattice T (Zd) with lattice repre-
sentation matrix T . We are interested in the discrete set

N = Ω ∩ T (Zd) = {Tk ∈ Ω : k ∈ Zd} .

Our strategy is to consider a slightly larger set B ⊃ N which allows for explicit enumer-
ation in a straightforward way. We choose

B = B√d/2(0) ∩ T (Zd) =

{
Tk : ‖Tk‖22 ≤

d

4
,k ∈ Zd

}
.

Using the matrix decomposition
T = QR ,

13



Algorithm 1: Assemblation of the set N = Ω ∩ T (Zd).
Input:
Integration domain Ω = [−1/2, 1/2]d,
Lattice representation matrix T = QR

set N = ∅
set m = (0, . . . , 0)>

run assemble (N , d,m)

Function assemble (N , j,m)
if j ≥ 2 then

Determine the set
Kj = {kj ∈ Z : gj(0, . . . , 0, kj ,mj+1, . . . ,md) ≤ d

4 −
∑d

i=j+1 gi(m)}
forall kj ∈ Kj do

set mj = kj
assemble (N , j − 1,m)

set mj = 0

if j = 1 then

Determine the set K1 = {k1 ∈ Z : gj(k1,m2, . . . ,md) ≤ d
4 −

∑d
i=2 gi(m)}

forall k1 ∈ K1 do
set m1 = k1

if Tm ∈ Ω then
set N = N ∪ {Tm}

set m1 = 0

Output: Set of lattice points N

where Q is an orthogonal matrix and R is an upper triangular matrix, we can rewrite
this set as

B =

{
Tk : ‖Rk‖22 ≤

d

4
,k ∈ Zd

}
.

The function ‖R · ‖22 can be split up into additive parts

‖Rk‖22 =
d∑
i=1

gi(k)

gi(k) = (Rk)2
i , i = 1, . . . , d ,

and from the upper triangular structure of R it follows that gj(k) only depends on the
components kj , . . . , kd. For an integer vector k we therefore have

‖Rk‖22 ≤
d

4
⇐⇒ gj(k) ≤ d

4
−

d∑
i=j+1

gi(k) , j = 1, . . . , d . (4.1)
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Fixing the coordinates kj+1, . . . , kd results in explicitly solvable inequalities for kj , since
the right hand side is constant and the left hand side is a quadratic function in kj .
Therefore, the set N can be assembled with Algorithm 1.

This algorithm iterates over all elements of B, which determines the complexity that is
of order

vold

(
B√d/2(0)

)
/|detT | � 2d · |N | .

This is certainly true if the sets Kj appearing in the algorithm are all nonempty, and
this should be the case for a lattice with a small determinant and a good choice of its
representation matrix. The exponential dependence on d is of minor importance here;
Once the Frolov integration points are computed and stored, they can be reused for
numerical integration.

4.2. Numerical results

In Table 2 the running times for the enumeration of the Frolov lattice points in [0, 1]d

with Algorithm 1 are provided for dimensionalities d ∈ {2, 3, . . . , 9}. Firstly, we observe
that the number of points N converges to the scaling factor n, as n becomes large, cf.
(1.4).

Moreover, one can observe the linear runtime of the algorithm in terms of the number
of points N : If the number of points N is quadrupled, then also the required time
to assemble these 4N points is approximatively quadrupled. However, comparing the
runtimes for small d and large d, it is apparent that a dimension-dependent constant is
involved. This is analogous to the orthogonal setting for d = 2k, k ∈ N, as it was treated
in [24].

The resulting point sets for dimension d ∈ {2, 3, . . . , 10} are available for download at
http://wissrech.ins.uni-bonn.de/research/software/frolov/.

5. Compactly supported functions with bounded mixed
derivative in L2

5.1. Characterization of the space

We denote with S(Rd) the usual Schwartz space. Let r = (r1, ..., rd) ∈ Nd be a smooth-
ness vector with integer components. Then we define the semi-norm

‖ϕ‖2Hr
mix

:=
∑
e⊂[d]

∥∥∥(∏
i∈e

∂ri

∂xrii

)
ϕ
∥∥∥2

2
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Dim. d Scaling n Points N Time (s)

2 1024 1023 4.4e-05
2 4096 4093 0.000158
2 16384 16387 0.00053
2 65536 65533 0.002117
2 262144 262147 0.00823
2 1048576 1048575 0.096369

3 1024 1021 0.000105
3 4096 4093 0.000341
3 16384 16387 0.001213
3 65536 65537 0.004547
3 262144 262149 0.017474
3 1048576 1048581 0.114605

4 1024 1023 0.00024
4 4096 4103 0.000805
4 16384 16395 0.002844
4 65536 65551 0.010464
4 262144 262155 0.038923
4 1048576 1048579 0.248508

5 1024 1021 0.00061
5 4096 4093 0.002072
5 16384 16359 0.007013
5 65536 65533 0.025019
5 262144 262141 0.129366
5 1048576 1048591 0.473579

Dim. d Scaling n Points N Time (s)

6 1024 1005 0.00146
6 4096 4087 0.004961
6 16384 16401 0.016533
6 65536 65513 0.059226
6 262144 262161 0.241978
6 1048576 1048585 0.943112

7 1024 1009 0.003208
7 4096 4099 0.011418
7 16384 16383 0.039014
7 65536 65531 0.13972
7 262144 262117 0.513067
7 1048576 1048573 2.0007

8 1024 1029 0.007961
8 4096 4051 0.025833
8 16384 16441 0.094269
8 65536 65539 0.329561
8 262144 262207 1.20636
8 1048576 1048767 4.59066

9 1024 997 0.017742
9 4096 4035 0.066017
9 16384 16517 0.223132
9 65536 65557 0.76848
9 262144 262107 2.77068
9 1048576 1048631 10.4136

Table 2: Running times for the assemblation of Frolov cubature points in [0, 1]d.

where ‖ · ‖2 denotes the L2(Rd)-norm. Clearly this norm is induced by an inner product.
By Plancherel’s theorem together with well-known properties of the Fourier transform,
see (6.2) below, we may rewrite

‖ϕ‖Hr
mix

=
∥∥∥F−1

[( d∏
i=1

(1 + |2πξi|2ri)
)1/2
Fϕ(ξ)

]∥∥∥
2

=
∥∥∥( d∏

i=1

(1 + |2πξi|2ri)
)1/2
Fϕ(ξ)

∥∥∥
2

= ‖vr(ξ)Fϕ‖2 ,

(5.1)

where we define

vr(x) :=
( d∏
i=1

(1 + |2πxi|2ri)
)1/2

. (5.2)

Let now Ω be a bounded domain in Rd. We denote with C∞0 (Ω) the space of all infinitely
many times differentiable (real-valued) functions ϕ : Rd → R with suppϕ ⊂ Ω. Finally,
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we define the space

H̊r
mix(Ω) := C∞0 (Ω)

‖·‖Hr
mix (5.3)

by completion with respect to the norm ‖ ·‖Hr
mix

. As a consequence we get that H̊r
mix(Ω)

is a Hilbert space which consists of ri − 1 times continuously differentiable functions
(mixed in each component) on Rd which vanish on Rd \ Ω .

We will now consider a more specific situation. Let Ω = (0, 1)d. Then it holds

H̊r
mix := H̊r

mix([0, 1]d) = H̊r1([0, 1])⊗ · · · ⊗ H̊rd([0, 1]) (5.4)

in the sense of tensor products of Hilbert spaces, where H̊r = H̊ri([0, 1]) is the univariate
version of the above defined spaces. Functions in this class satisfy a left and a right
boundary condition, namely f (j)(0) = f (j)(1) = 0 for j = 0, ..., r − 1.

The first assertion in the following lemma is a direct consequence of Taylor’s theorem
and the homogeneous boundary condition of the function and all its derivatives. The
second one follows from (i) together with Hölder’s inequality.

Lemma 5.1. Let r ∈ Nd. (i) Every function ϕ ∈ C∞0 ((0, 1)d) admits the following
representation

ϕ(x1, ..., xd) =

∫ 1

0
· · ·
∫ 1

0
ϕ(r)(t1, ..., td)

d∏
i=1

(xi − ti)ri−1
+

(ri − 1)!
dt1...dtd .

(ii) Let e ⊂ [d]. Then∥∥∥(∏
i∈e

∂ri

∂xrii

)
ϕ
∥∥∥2

2
≤ ‖ϕ(r)‖22

∏
i∈e

1

[(ri − 1)!]2(2ri − 1)2ri

and therefore

‖ϕ‖2Hr
mix
≤ ‖ϕ(r)‖22

∑
e⊂[d]

∏
i∈e

1

[(ri − 1)!]2(2ri − 1)2ri
.

Remark 5.2. (a) Note, that the assertions in Lemma 5.1 hold true for any function
ϕ ∈ S(Rd) with suppϕ ⊂ Rd+ . We only need zero boundary values at 0.

(b) The previous lemma shows that the semi-norm ‖ · ‖H̊r
mix

induced by the bilinear form

〈ϕ,ψ〉H̊r
mix

:=

∫
[0,1]d

ϕ(r)(x)ψ(r)(x) dx (5.5)

is actually a norm on C∞0 ((0, 1)d) since the bilinear form is positive definite as a con-
sequence of (ii). Hence, we could have also used this semi-norm for the completion in
(5.3). As it turns out Lemma 5.1 and (5.5) are actually the key to derive the reproducing
kernel for the space H̊r

mix.
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(c) We have an explicit upper bound for the norm equivalence constant in (ii). Suppose
that we have a constant smoothness vector r = (r, ..., r) with r ∈ N . Then it holds

∑
e⊂[d]

∏
i∈e

1

[(ri − 1)!]2(2ri − 1)2ri
=

d∑
i=0

(
d

i

)( 1

[(r − 1)!]2(2r − 1)2r

)i
=
(

1 +
1

[(r − 1)!]2(2r − 1)2r

)d
.

(5.6)

Hence, if r = 1 the constant is bounded by (3/2)d, in case r = 2 we have (13/12)d and
in case r = 3 already (61/60)d .

5.2. The reproducing kernel of H̊r
mix

In the sequel we will identify the space H̊r
mix as a reproducing kernel Hilbert space. We

are looking for a kernel function K̊r
d (x,y) such that for every f ∈ H̊r

mix

〈f(·), K̊r
d (x, ·)〉H̊r

mix
= f(x) , x ∈ [0, 1]d .

To this end, we may derive the reproducing kernels of the univariate spaces H̊ri . The
reproducing kernel of the tensor product space (5.4) is then given by the point-wise
product of the univariate kernels

K̊r
d (x,y) =

d∏
`=1

K̊r
1(x`, y`). (5.7)

Therefore, the problem of computing K̊r
d (x,y) is reduced to the construction of K̊r

1 :
[0, 1]× [0, 1]→ R.

Let us first recall a general fact for Hilbert spaces and orthogonal sums. To this end, let
U := span{u0, . . . , ur−1} ⊂ H be an r-dimensional subspace of a Hilbert space H. Using
Gram-Schmidt orthogonalization, the orthogonal projection PU : H → U is given by

PU (f)(x) =
r−1∑
j=0

(
r−1∑
k=0

G−1
j,k · 〈f, uk〉H

)
uj , (5.8)

where the Gramian matrix G = (〈uj , uk〉H)r−1
j,k=0 ∈ Rr×r. Moreover, the projection onto

the orthogonal complement U⊥ = H	 U is PU⊥f = (Id− PU )f .

The next Lemma provides the necessary utilities to compute the reproducing kernel of
closed subspaces that are defined via homogeneous boundary conditions.

Lemma 5.3. Let HK be a RKHS with kernel K : [0, 1] × [0, 1] → R. Assuming that

K(x, ·) is r times weakly differentiable, let uj := K(0,j)(·, 1) := ∂j

∂yj
K(·, y)|y=1 for j =

0, . . . , r − 1 and U = span{u0, . . . , ur−1}. Then it holds that
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(i) For j = 0, . . . , r − 1, the Riesz representer of the functional f 7→ f (j)(1) in HK is
given by uj, i.e.

〈f, uj〉HK = f (j)(1) for all f ∈ HK .

(ii) The reproducing kernel KU⊥ of U⊥ ⊂ HK , i.e. the orthogonal complement of U
in HK , is given by

KU⊥(x, y) = PU⊥K(·, y)(x) = K(x, y)−
r−1∑
j=0

r−1∑
k=0

G−1
j,kuj(x)uk(y). (5.9)

(iii) It holds that
U⊥ = {f ∈ HK : f (j)(1) = 0, j = 0, . . . , r − 1}.

Proof. (i) is [3, Lem. 10] for the linear functional f 7→ f (j)(1) and (ii) follows by applying
[3, Thm. 11] to (5.8). Finally, regarding (iii) we note that it holds for all f ∈ U⊥ that

〈f, uj〉HK = 〈f,K(0,j)(·, 1)〉HK = f (j)(1) = 0.

We want to apply this machinery to H̊r with r ∈ N. The observation in Lemma 5.1
together with (5.5) gives rise to use the approach of Wahba [40, 1.2] as a starting point.
Let us define the kernel function

Kr
1(x, y) :=

∫ 1

0

(x− t)r−1
+

(r − 1)!
·

(y − t)r−1
+

(r − 1)!
dt , x, y ∈ [0, 1] . (5.10)

Then it is immediately clear from Lemma 5.1,(i) (and a straight-forward density argu-
ment) that

f(x) = 〈f(·),Kr
1(x, ·)〉H̊r , x ∈ [0, 1] .

Indeed, recall that the inner product 〈·, ·〉H̊r stems from (5.5) and that

(Kr
1)(0,r)(x, y) =

(x− y)r−1
+

(r − 1)!
.

It is possible to give an explicit formula for (5.10) by using that

Kr
1(x, y) :=

∫ min{x,y}

0

(x− t)r−1
+

(r − 1)!
·

(y − t)r−1
+

(r − 1)!
dt . (5.11)

Interpreting this as a Taylor remainder term we find

Kr
1(x, y) =

(−1)r

(2r − 1)!

[ 2r−1∑
k=r

(
2r − 1

k

)
(−min{x, y})k max{x, y}2r−1−k

]
. (5.12)
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Figure 4: Plots of the kernel K̊r
1 : [0, 1] × [0, 1] → R with smoothness r = 1 (left) and

smoothness r = 2 (right).

However, H̊r is a only a closed subspace of HKr
1

since the functions f ∈ HKr
1

may lack

the right boundary condition which is f (j)(1) = 0 if j = 0, ..., r − 1, whereas the left
boundary condition f (j)(0) = 0 if j = 0, ..., r − 1 is for free due to the construction. Let
us now apply the construction from Lemma 5.3 to Kr

1 to construct a reproducing kernel
K̊r

1 for the closed subspace H̊r .

First we compute the functions uj(·) = (Kr
1)(0,j)(·, 1) for j = 0, ..., r− 1 explicitly. Using

again the formula (5.10) we find

uj(x) =
( d
dy

)j ∫ min{x,y}

0

(x− t)r−1
+

(r − 1)!
·

(y − t)r−1
+

(r − 1)!
dt

∣∣∣∣
y=1

=

∫ x

0

(x− t)r−1
+

(r − 1)!
· (1− t)r−1−j

(r − 1− j)!
dt ,

(5.13)

where we used the well-known formula for the differentiation of integrals. Similar as
above in (5.11) we interpret this as a Taylor’s remainder term for a specific polynomial.
It is not hard to verify that this polynomial is given by

uj(x) =
(−1)r

(2r − 1− j)!

[ 2r−1−j∑
k=r

(
2r − 1− j

k

)
(−x)k

]
, j = 0, ..., r − 1 . (5.14)

Looking at the functions uj , j = 0, ..., r− 1, we see immediately that {xr, ..., x2r−1} is a
basis of their span. Hence we may use the system ũj(x) = xj+r/(j + r)! in (5.9) . This
gives the following representation for the kernel K̊r

1(x, y), namely

K̊r
1(x, y) = Kr

1(x, y)−
r−1∑
j=0

r−1∑
k=0

G−1
j,k

(j + r)!(k + r)!
xj+ryk+r , (5.15)
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where Kr
1(x, y) is given by (5.12) and

G =
( 1

j!k!(j + k + 1)

)
j=0,...,r−1
k=0,...,r−1

.

Let us give two examples. Putting r = 1 in (5.15) we have

K̊1
1 (x, y) = min{x, y} − xy, , x, y ∈ [0, 1] .

Furthermore, in case r = 2 we obtain

K̊2
1 (x, y) = K2

1 (x, y)− x2y2 + x2y3/2 + x3y2/2− x3y3/3 ,

where

K2
1 (x, y) =

1

2
min{x, y}2 max{x, y} − 1

6
min{x, y}3,

For r = 1, 2, 3 we obtain the associated Gramian matrices

(G1)−1 =
(
1
)

, (G2)−1 =

(
4 −6
−6 12

)
, (G3)−1 =

 9 −36 60
−36 192 −360
60 −360 720

 .

In the case d = 1 the kernels for r = 1 and r = 2 are depicted in Figure 4. The
smoothness can be observed along the diagonal x = y, where the kernel for r = 1
exhibits a kink.

Regarding the multivariate kernel, we have arrived at the following result.

Theorem 5.4. Given a smoothness vector r = (r1, r2, . . . , rd) ∈ Nd, the reproducing
kernel of the tensor product space H̊r

mix = H̊r1 ⊗ · · · ⊗ H̊rd is given by

K̊r
d(x,y) =

d∏
`=1

K̊r`
1 (x`, y`) (5.16)

=

d∏
`=1

(
Kr`

1 (x`, y`)−
r`−1∑
j=0

r`−1∑
k=0

(Gr`)−1
j,k(Kr`

1 )(0,j)(x`, 1) (Kr`
1 )(0,k)(y`, 1)

)
, (5.17)

where uj(x`) = (Kr`
1 )(0,j)(x`, 1) are given in (5.14) and (Gr`)−1 are given in (5.5).

The explicit expression for the reproducing kernel of H̊r
mix allows to compute the norms

of arbitrary bounded linear functionals L ∈ (H̊r
mix)?, since it holds

‖L‖(H̊r
mix)? = sup

‖f‖H̊r
mix
≤1
|L(f)| =

√
L(x)L(y)K̊r

d(x,y). (5.18)
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The right-hand side involves the application of the functional L to both components of
the kernel. We will use this in Section 7 for the simulation of worst-case integration errors
which can be rewritten as norms of certain functionals (7.1) involving the integration
functional L(f) = Id(f) =

∫
[0,1]d f(x) dx. In the sequel we will compute the norm and

its Riesz representer. We have

‖Id‖2(H̊r
mix)?

= sup
‖f‖H̊r

mix
≤1
|Id(f)|2 =

d∏
`=1

(∫ 1

0

∫ 1

0
K̊r`

1 (x`, y`) dx` dy`

)
(5.19)

where∫ 1

0

∫ 1

0
K̊r

1(x, y) dx dy =

∫ 1

0

∫ 1

0
Kr

1(x, y)−
r−1∑
j=0

r−1∑
k=0

G−1
j,k

(j + r)!(k + r)!
xj+ryk+r dx dy

=

∫ 1

0

∫ 1

0
Kr

1(x, y) dx dy −
r−1∑
j=0

r−1∑
k=0

G−1
j,k

(j + r + 1)!(k + r + 1)!

=
1

(r!)2(2r + 1)
−

r−1∑
j=0

r−1∑
k=0

G−1
j,k

(j + r + 1)!(k + r + 1)!
.

The last identity follows from the representation (5.11) and∫ 1

0

∫ 1

0
Kr

1(x, y) dx dy =

∫ 1

0

(∫ 1

0

∫ 1

0

(x− t)r−1
+

(r − 1)!

(y − t)r−1
+

(r − 1)!
dx dy

)
dt

=

∫ 1

0

(∫ 1

t

(x− t)r−1

(r − 1)!

∫ 1

t

(y − t)r−1

(r − 1)!
dx dy

)
dt

=

∫ 1

0

(
(1− t)r

r!

(1− t)r

r!

)
dt =

∫ 1

0

(1− t)2r

(r!)2
dt

=
1

(2r)!(2r + 1)
.

For the Riesz representer of f 7→
∫

[0,1]d f(x) dx = 〈f,RId〉H̊r
mix

it holds

RId(y) =

∫
[0,1]d

K̊r
d(x,y) dx =

d∏
`=1

(∫ 1

0
K̊r`

1 (x`, y`) dx`

)
, y = (y1, ..., yd) .

Clearly, we have∫ 1

0
K̊r`

1 (x, y) dx =

∫ 1

0
Kr`

1 (x, y)−
r−1∑
j=0

r−1∑
k=0

G−1
j,k

(j + r)!(k + r)!
xj+ryk+r dx .

A similar computation as above together with the identity∫ 1

0

(y − t)r−1
+

(r − 1)!

(1− t)r

r!
dt =

(−1)r

(2r)!

2r∑
k=r

(
2r

k

)
(−y)k
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(see the computation after (5.13)) leads to the following explicit formula∫ 1

0
K̊r`

1 (x, y) dx =
(−1)r

(2r)!

2r∑
k=r

(
2r

k

)
(−y)k −

r−1∑
j=0

r−1∑
k=0

G−1
j,k

(j + r + 1)!(k + r)!
yk+r . (5.20)

6. Worst-case error estimates with respect to H̊r
mix

In this section, we are interested in the behavior of the worst-case error

e(n, d, r) := sup
‖f‖H̊r

mix
≤1

∣∣∣Qdn(f)− Id(f)
∣∣∣ . (6.1)

of Frolov’s cubature rule Qdn with respect to the unit ball in the norm ‖ · ‖H̊r
mix

, see (5.5).

Recall that

Qdn(f) =
1

n

∑
k∈Zd

f(Ank),

where An = n−1/dA and A =
(
det(V )

)−1/d
V with V from Theorem 2.2. Let further

Bn = (An)−>

The main tool for analyzing (6.1) is Poisson’s summation formula. Let ϕ ∈ S(Rd) be a
multivariate Schwartz-function. With Fϕ we denote the Fourier transform

Fϕ(ξ) =

∫ ∞
−∞

ϕ(x) exp(−2πix · ξ) dx , ξ ∈ Rd . (6.2)

Then it holds ∑
m∈Zd

ϕ(x+m) =
∑
k∈Zd

Fϕ(k) exp(2πik · x)

with absolute convergence on both sides. The following consequence is of particular
importance. Let A : Rd → Rd be a regular matrix with detA 6= 0. Let further
B = A−> . Then we have

detA
∑

m∈Zd
ϕ(A(x+m)) =

∑
k∈Zd

Fϕ(Bk) exp(2πik · x) (6.3)

Let us finally mention the following special case by putting x = 0

detA
∑

m∈Zd
ϕ(Am) =

∑
k∈Zd

Fϕ(Bk) (6.4)

A more general variant (with respect to the regularity of the participating functions)
can be found in [39, Thm. 3.1, Cor. 3.2]

In this section we show the by now well-known upper bounds on the worst-case error of
Frolov’s cubature formula for the Sobolev spaces H̊r

mix. We give relatively short proofs
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here with special emphasis on the constants. In particular, we will see how the invariants
of the used lattice will affect the error estimates.

We will see that only two invariants will play a role in the upper bounds, which we want
to discuss shortly. For this note that the lattices under consideration are generated by
a multiple of a Vandermonde matrix V , which is defined via a generating polynomial
P as in Theorem 2.2. The first invariant is the determinant, or in other words the
discriminant of the generating polynomial

DP = det(V ).

For example, we know from Theorem 2.2 that Nm(V −>) = 1/D2
P .

The second invariant is
BP := min

U
‖V U‖∞, (6.5)

where the minimum is over all U ∈ SLd(Z). This constant is an upper bound for the
diameter (in `∞) of the “smallest” fundamental cell of the lattice. To see this, note that
every fundamental cell, i.e. a parallelepiped with corners on the lattice with no lattice
point in the interior, is of the form T ([0, 1]d), where T ∈ Rd×d is a generating matrix for
the lattice. Moreover, it is well-known that every generating matrix of the lattice that is
generated by V is of the form V U for some unimodular, integer-valued matrix U . We
will see that both, DP and BP , should be small to obtain a small upper bound on the
errors. This justifies the choice of the generating polynomials in the previous section.
Here is the main result of this section.

Theorem 6.1. Let r = (r1, . . . , rd) ∈ Nd and η := #{j : rj = r}. Then we have for any
f ∈ H̊r

mix∣∣∣Qdn(f)− Id(f)
∣∣∣

≤ C(d, η, r) ·max

{
DP ,

(2BP )d

n

}1/2(
DP

n

)r (
2 + log (n/DP )

)(η−1)/2
‖f‖H̊r

mix
,

(6.6)

where

C(d, η, r)

:= 2d+1
(

1− 2−2(r′−r)
)−(d−η)/2 (

1− 2(1−2r)
)−η/2∑

e⊂[d]

∏
i∈e

1

[(ri − 1)!]2(2ri − 1)2ri

1/2

with r′ := minj{rj : rj 6= r}.

Let us prove the following estimate first.
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Proposition 6.2. Let ϕ ∈ C∞0 ((0, 1)d). Then∣∣∣Qdn(ϕ)− Id(ϕ)
∣∣∣ ≤

√
M(An)

detBn

( ∑
k∈Zd\{0}

|vr(Bnk)|−2
)1/2
‖ϕ‖Hr

mix
, (6.7)

where

M(An) := min
U∈SLd(Z)

#
{
m ∈ Zd : UAn

(
m+ (0, 1)d

)
∩ [0, 1]d 6= ∅

}
, (6.8)

is the minimal number of fundamental cells of the integration lattice necessary to cover
the unit cube.

Proof. The above special case of Poisson’s summation formula (6.4) gives∣∣∣Qdn(ϕ)− Id(ϕ)
∣∣∣ =

∣∣∣ ∑
k∈Zd\{0}

Fϕ(Bnk)
∣∣∣

≤
( ∑

k∈Zd\{0}
vr(Bnk)−2

)1/2( ∑
k∈Zd

|vr(Bnk)Fϕ(Bnk)|2
)1/2 (6.9)

By the definition of vr we may rewrite

|vr(Bnk)Fϕ(Bnk)|2 =
∑
e⊂[d]

∣∣∣F[(∏
i∈e

∂ri

∂xrii

)
ϕ
]
(Bnk)

∣∣∣2
Using this for the second factor in (6.9) we find∑

k∈Zd
|vr(Bnk)Fϕ(Bnk)|2

=
∑
e⊂[d]

∫
[0,1]d

∣∣∣ ∑
k∈Zd

F
[(∏

i∈e

∂ri

∂xrii

)
ϕ
]
(Bnk) exp(2πik · x)

∣∣∣2 dx .
Now we apply Poisson’s summation formula in the form (6.3) to the integrand and find∑

k∈Zd
|vr(Bnk)Fϕ(Bnk)|2

= (detAn)2
∑
e⊂[d]

∫
[0,1]d

∣∣∣ ∑
m∈Zd

[(∏
i∈e

∂ri

∂xrii

)
ϕ
]
(An(x+m))

∣∣∣2 dx
≤ (detAn)2M(An)

∑
e⊂[d]

∑
m∈Zd

∫
[0,1]d

∣∣∣[(∏
i∈e

∂ri

∂xrii

)
ϕ
]
(An(x+m))

∣∣∣2 dx
= (detAn)M(An)

∑
e⊂[d]

∫
Rd

∣∣∣[(∏
i∈e

∂ri

∂xrii

)
ϕ
]
(y)
∣∣∣2 dy

=
M(An)

detBn
‖ϕ‖2Hr

mix
,

(6.10)
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where we used Hölder’s inequality and the fact that ϕ and all its partial derivatives have
compact support in (0, 1)d together with (6.8).

Remark 6.3. Let us comment on the number M(An). Clearly, all the fundamental
cells are contained in [−L(n, P ), 1 + L(n, P )]d with L(n, P ) := (DPn)−1/dBP and BP
from (6.5). Here, we used that An = (DPn)−1/dV . Therefore, M(An) is bounded by
the number of lattice points An(Zd) in this set. This number can be controlled by (6.11)
below, which will be also of some importance later. For a proof see e.g. [37, Lem. 5]. In
fact, for every axis-parallel box Ω ⊂ Rd and every T ∈ Rd×d we have

#
(
T (Zd) ∩ Ω

)
≤ vold(Ω)

Nm(T )
+ 1. (6.11)

With all the definitions from above and Nm(V ) = 1, we obtain that

M(An) ≤ nDP

(
1 +

2BP
(DPn)1/d

)d
+ 1 ≤ n 2d max

{
DP ,

(2BP )d

n

}
. (6.12)

We see that the bound of the second factor of the above error bound depends asymptot-
ically only on

√
DP (and the norm of f). However, for preasymptotic bounds also the

term B
d/2
P /
√
n plays an important role.

Proof. To finish the proof of Theorem 6.1 it remains to estimate the middle factor in
(6.7). In fact, the statement (6.6) then follows by a straight-forward density argument
recalling (5.3).

If r = (r, . . . , r) with r ∈ N0 is a constant smoothness vector, the following proof can
be found in several articles, see e.g. [36] or [38, p. 580]. Note, that it also works for
fractional r > 1/2, which is essentially shown in [39]. Although the optimal order of
convergence is known also in the non-constant case, we were not able to find a proof
with explicit constants. Therefore, we give it here. We assume without restriction that
r1 = · · · = rη < rη+1 ≤ · · · ≤ rd for some η ∈ {1, . . . , d}.

First, for m = (m1, . . . ,md) ∈ Nd0, we define the sets

ρ(m) := {x ∈ Rd : b2mj−1c ≤ |xj | < 2mj for j = 1, . . . , d}.

Note that
∏d
j=1 |xj | < 2‖m‖1 for all x ∈ ρ(m). Since Bn = n1/dB = (Dpn)1/d V −> we

have

Nm(Bn) = inf
k∈Zd\{0}

d∏
j=1

(Bnk)j =
n

Dp
.

This shows that |(Bn(Zd) \ 0) ∩ ρ(m)| = 0 for all m ∈ Nd0 with ‖m‖1 < Rn, where

Rn :=
⌈
log2

(
n/Dp

)⌉
.
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Moreover, for Bnk ∈ ρ(m), we have

ν∗,r(Bnk) ≥ νr(Bnk) ≥
d∏
j=1

max{1, 2πb2mj−1c}rj ≥ 2r1m1+···+rdmd .

Since ρ(m) is a union of 2d axis-parallel boxes each with volume less than 2‖m‖1 , (6.11)
implies that

∣∣Bn(Zd) ∩ ρ(m)
∣∣ ≤ 2d(Dp2

‖m‖1/n + 1) ≤ 2d+22‖m‖1−Rn if ‖m‖1 ≥ Rn.

Additionally, note that |{m ∈ Nη0 : ‖m‖1 = `}| =
(
η−1+`
η−1

)
. With r := r1 and r′ := rη+1,

we obtain∑
k∈Zd\0

|ν∗,r(Bnk)|−2 ≤
∑

m:‖m‖1≥Rn

∣∣∣Bn(Zd) ∩ ρ(m)
∣∣∣ 2−2r1m1−...−2rdmd

≤ 2d+2
∑

m:‖m‖1≥Rn
2‖m‖1−Rn 2−2r(m1+...+mη)−2r′(mη+1+...+md)

= 2d+2
∞∑

`=Rn

∑
m:‖m‖1=`

2‖m‖1−Rn 2−2r(m1+...+mη)−2r′(mη+1+...+md)

= 2d+2
∞∑

`=Rn

∑̀
`′=0

∑
m1,...,mη :∑η
j=1 mj=`−`′

∑
mη+1,...,md:∑d
j=η+1mj=`

′

2`−Rn 2−2r(`−`′)−2r′`′

= 2d+2
∞∑

`=Rn

∑̀
`′=0

(
η − 1 + `− `′

η − 1

)(
d− η − 1 + `′

d− η − 1

)
2`−Rn−2r` 2−2(r′−r)`′

≤ 2d+2
∞∑

`=Rn

(
η − 1 + `

η − 1

)
2`−Rn−2r`

∑̀
`′=0

(
d− η − 1 + `′

d− η − 1

)
2−2(r′−r)`′

In the last estimate we used that
(
k+`
k

)
≤
(
k+`+1
k

)
for every k, ` ∈ N. To bound the two

sums above we use the well-known binomial identity

∞∑
`=0

(
D + `

D

)
x` =

1

(1− x)D+1

as well as the bound (
D + `+R

D

)
≤
(
D + `

D

)
(1 +R)D

for D, `,R ∈ N and x ∈ C with |x| < 1. We obtain for the second sum that

∑̀
`′=0

(
d− η − 1 + `′

d− η − 1

)
2−2(r′−r)`′ ≤

(
1− 2−2(r′−r)

)−(d−η)
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and for the first sum that

∞∑
`=Rn

(
η − 1 + `

η − 1

)
2`−Rn−2r` =

∞∑
`=0

(
η − 1 + `+Rn

η − 1

)
2`−2r(`+Rn)

≤ 2−2rRn (1 +Rn)η−1
∞∑
`=0

(
η − 1 + `

η − 1

)
2(1−2r)`

= 2−2rRn (1 +Rn)η−1
(

1− 2(1−2r)
)−η

for r > 1/2. If we use log2

(
n/Dp

)
≤ Rn ≤ 1+log2

(
n/Dp

)
we finally obtain Theorem 6.1.

7. Numerical results: Exact worst-case errors in H̊r
mix

In Section 6 it has been shown that the Frolov method achieves the optimal rate of
convergence in Sobolev spaces with both, uniform and anisotropic mixed smoothness.
However, as we have seen in Section 3, there are different ways to choose the polynomi-
als, which significantly influence the numerical performance. Therefore, even though the
asymptotic convergence rate of all (admissible) Frolov cubature rules have the optimal
order O(N−r(logN)(d−1)/2) for uniform smoothness f , there might be huge constants
involved. In order to investigate the influence of different Frolov polynomials on the
preasymptotic behavior of the integration error, we use a well-known technique for re-
producing kernel Hilbert spaces to compute the worst-case error explicitly. This sup-
plements the theoretical bounds from Section 6. Moreover, we compare the worst-case
errors of Frolov cubature, the sparse grid method and quasi–Monte Carlo methods in
H̊r

mix.

7.1. Exact worst-case errors via reproducing kernels

The worst-case error of any linear cubature rule QN (f) =
∑N

i=1wif(xi) with prescribed
weights and nodes can be computed exactly via the norm of the error functionalRN (f) :=
Id(f)−QN (f), cf. Eq. (5.18). Applying RN to both components of the kernel K̊r

d (x,y),
the well-known formula for the (absolute) worst-case error is obtained, i.e

sup
‖f‖H̊r

mix
≤1
|RN (f)|2 =

∫
[0,1]d

∫
[0,1]d

K̊r
d (x,y) dx dy − 2

N∑
i=1

wi

∫
[0,1]d

K̊r
d (xi,y) dy

+

N∑
i=1

N∑
j=1

wiwjK̊
r
d (xi,xj).

(7.1)
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Figure 5: A Frolov lattice (left), an order-2 digital net (middle) and a zero boundary
sparse grid (right).

Often, (7.1) is normalized with respect to norm of Id in the dual-space (H̊r
mix)?, i.e. (7.1)

is divided by ‖Id‖(H̊r
mix)? = (

∫
[0,1]d

∫
[0,1]d K̊

r
d (x,y) dxdy)1/2, cf. (5.19). The resulting

quantity is called normalized worst-case error.

In order to evaluate (7.1) for an arbitrary given cubature rule we use the closed-form rep-
resentation of the kernel K̊r

d from Theorem 5.4 as well as the closed-form representation
of the Riesz-representer (5.20).

Besides Frolov cubature rules, we will consider the sparse grid construction, which goes
back to Smolyak [33], and also higher-order quasi–Monte Carlo integration [22]. Exam-
ples for the different point constructions are given in Figure 5. Their properties will be
discussed below.

The Frolov points are generated using our newly developed Algorithm 1. The resulting
points obtained by the improved polynomial construction can also be downloaded from
http://wissrech.ins.uni-bonn.de/research/software/frolov.

7.2. Uniform mixed smoothness

As a first step we compare worst-case errors for cubature formulas that are known to
work well in periodic Sobolev spaces, of which H̊r

mix is a subset. These are different Frolov
cubature rules, that are based on different choices of the generating polynomial. In the
following, ”Classical Frolov” will refer to the classical generating polynomial in (1.5),
while ”Improved Frolov” will refer to the lattices that are generated by the improved
polynomials from Section 3. Moreover, we consider the sparse grid method that is based
on the trapezoidal rule, see Appendix A. Due to the zero-boundary condition in H̊r,
all points with one component equal to zero are left out, cf. Figure 5.1 It achieves
a convergence rate of order O(N−r(logN)(d−1)(r+1/2)) in H̊r

mix, which is best possible

1This is similar to the open trapezoidal rule which, however, uses different weights, cf. [14].
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Figure 6: Worst-case errors for different cubature rules for uniform mixed smoothness
r = 2 in dimensional d = 2 (left) and dimension d = 4 (right).

for a sparse grid method, cf. Theorem A.1 below. As an example for a higher order
quasi–Monte Carlo method we use a digital net of order 2 that is obtained by interlacing
the digits of a (2d)-dimensional Niederreiter-Xing net. This is obtained by using the
implementation of Pirsic [29] of Xing-Niederreiter sequences [27] for rational places in
dimension 2d−1. These are known to yield smaller t-values than e.g. Sobol- or classical
Niederreiter-sequences [10]. Then, a 2d-dimensional digital net is obtained by employing
the sequence-to-net propagation rule, cf. [22, 28] for more details. It is known that order-
2 nets yield the optimal rate of convergence in periodic Sobolev spaces with bounded
mixed derivatives of order r < 2, see [20] and also [17], since H̊r

mix ⊂ Hr
mix(Td).

Moreover, in the bivariate setting we also consider the Fibonacci lattice, which is not just
known to be an order-optimal cubature rule for periodic Sobolev spaces with dominating
mixed smoothness [8], but also represents the best possible point set for quasi – Monte
Carlo intergation in this space, at least for small point numbers [21].

In the left-hand-side picture of Figure 6, the worst-case errors for smoothness r = 2
are computed in dimension d = 2. Clearly, the Frolov lattice based on the improved
polynomial performs best in H̊r

mix. Of similar quality is the Fibonacci lattice and the
classical Frolov lattice is slightly worse. The sparse grid also achieves the optimal main
rate of N−r, but it is known that the exponent of its logarithm is smoothness dependent.
This is also apparent in Figure 6, where the sparse grid has an asymptotic behavior that
is inferior to all the other considered methods. On the right-hand-side of Figure 6, the
worst-case errors for smoothness r = 2 are computed in dimension d = 4. Here, the
Fibonacci lattice is not considered. However, for all the other methods we note that
the picture does not change much, compared to the case d = 2. As before, the im-
proved Frolov method performs best and the classical Frolov obtains the same optimal
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asymptotic convergence rate but a substantially worse constant. This effect is now much
stronger than in the bivariate setting, i.e. the classical Frolov lattice has a worst-case
error that is about two magnitudes larger than the one of the improved Frolov lattice.
Moreover, the order-2 digital net seems to be competitive too, albeit with a substan-
tially larger constant and longer pre-asymptotic regime. Again, the worse logarithmic
exponent of the sparse grid method can be clearly observed.

In the Figures 8, 9 and 10 the influence of the dimensionality and the smoothness onto the
performance of the Frolov cubature method is considered in more detail. As an example
for a cubature method with a less than optimal complexity, the sparse grid method
is also included. Especially the classical construction suffers from a strong growth of
the constant as the dimensionality increases. Also, the pre-asymptotic regime seems to
last longer. This effect can so far not be thoroughly explained by the existing theory.
In dimension d = 7, the classical Frolov construction needs more than 106 points to
achieve the error level of the zero-algorithm, i.e. normalized worst-case error 1. Note
at this point, that all given errors are normalized worst-case errors, which can, for non
optimally weighted cubature rules, be substantially larger than 1. It is apparent that the
classical Frolov method is practically useless in dimension d ≥ 5, due to its unfavorable
pre-asymptotic behavior. Our new approach, however, shows a much better dependence
onto the dimensionality and certainly allows the treatment of moderate-dimensional
integrals from Sobolev spaces with dominating mixed smoothness of uniform type.

Moreover, we observe the universality of Frolov’s method, i.e. without adaption to the
respective parameters it achieves the best possible rate of convergence in every H̊r

mix,
r ∈ {1, 2, 3}.

7.3. Anisotropic mixed smoothness

It has been shown in Theorem 6.1 that in Sobolev spaces with dominating mixed smooth-
ness of different orders in each direction, only the lowest smoothness and associated
dimension enters the error estimate. In order to make this phenomenon visible from a
numerical perspective, we compute explicit worst-case errors in

H̊r
mix = H̊r1 ⊗ · · · ⊗ H̊rd ,

where r1 = r and r2 = r3 = · · · = rd = r+1. Then, Theorem 6.1 predicts that the worst-
case error asymptotically behaves like in the univariate setting, i.e. decays at a rate of
O(N−r). The question that is investigated in Figure 7 is how long it takes to overcome
the preasymptotic regime until this favorable convergence rate becomes visible.

On the left-hand-side of Figure 7, i.e. for r = 1, already with less than 3000 points
the Frolov method follows the asymptotic regime of N−1 in all the considered cases
d ∈ {2, 3, . . . , 7}.

In contrast, on the right-hand-side of Figure 7, i.e. for r = 2, the dimension seems to
have a much larger impact onto the length of the sub-optimal preasymptotic regime.
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Figure 7: Worst-case errors for uniform mixed smoothness in various dimensions. Left-
hand side: r1 = 1 and r2 = · · · = rd = 2. Left-hand side: r1 = 2 and
r2 = · · · = rd = 3.

For example, in d = 7 the N−2-rate becomes visible only when the number of points N
is larger than ≈ 105.

We remark that the sparse grid method is also able to deal with anisotropic mixed
smoothness vectors r = (r1, . . . , rd). Then, however, the construction needs to be ad-
justed to the smoothness vector which has to be known in advance, see [35, pp. 32,36,72],
the recent survey [8, Sect. 10.1] and the references therein. The resulting sparse grid
construction therefore is not a universal cubature formula.2

However, both plots in in Figure 7 were computed with the exact same set of Frolov
points, which automatically benefit from the anisotropic smoothness that is present in a
given integration problem, i.e. in this case r = 1 or r = 2. Therefore, it is not necessary
to estimate the smoothness of the integrand and tune the method appropriately.
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A. Appendix: Sparse grid cubature in Hr
mix(Td)

Let

QN (f) :=
N−1∑
j=0

1

N
f
( j
N

)
(A.1)

denote the uniformly weighted N -point trapezoidal rule. It is known that it achieves the
optimal rate of convergence N−r in the periodic Sobolev space Hr(T), r ∈ N (our proof
below also works for the univariate case). In order to obtain a multivariate integration
method we define the hierarchical quadrature rules

∆k := ∆k(Q) := Q2k −Q2k−1 for all k = 1, 2, . . . (A.2)

and ∆0 = Q1. Their tensor product is denoted by ∆k :=
⊗d

j=1 ∆kj , k ∈ Nd0. The sparse
grid cubature rule of level L ∈ N is then given by

QsgL :=
∑
|k|1≤L

∆k, (A.3)

with multi-indices k = (k1, . . . , kd) ∈ Nd0. The cubature rule QsgL uses

NL =
∑
|k|1≤L

d∏
j=1

2kj−1 = O(2L · Ld−1) (A.4)

function values combined with non-equal weights. The following theorem gives the well-
known error bound in Hr

mix(Td). For the convenience of the reader we will also give a
proof.

Theorem A.1. Consider the sparse grid cubature rule QsgL as it is defined in (A.2) and
(A.3) based on the univariate trapezoidal rule (A.1). The worst-case integration error of
QsgL in Hr

mix(Td) can be bounded by

sup
‖f‖Hr

mix
≤1

∣∣∣∣∣
∫

[0,1]d
f(x) dx−QsgL (f)

∣∣∣∣∣ � N−r(logN)(d−1)(r+1/2), (A.5)

where N = NL denotes the number of points used by QsgL .

Proof. The lower bound follows from [9, Thm. 5.2]. Note, that the lower bound also
holds true for the smaller space H̊r

mix(Td) since the constructed fooling functions also
belong to this space. For the upper bound we use the detour to sampling recovery. In the
recent paper [6, Thm. 4.7, 4.8, 5.13, 5.14] it has been observed that nested trigonometric
interpolation operators

I2k [f ](x) =
1

2k

2k−1∑
u=0

f
( u

2k

)
D1

2k

(
x− u

2k

)
, k = 0, 1, 2, ..., (A.6)
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based upon the modified (nested) Dirichlet kernel D1
2k

(x) := D2k−1(x)−e2πi2k−1x may be

used to characterize Hr
mix(Td). In fact, the tensor products ∆k(I), k ∈ Nd0, are defined

analogously to (A.2) using this time (A.6) (note that D1
1(x) ≡ 1). Then we have

‖f‖2Hr
mix
�
∑
k∈Nd0

22r|k|1‖∆k(I)[f ]‖22 . (A.7)

See also [5, Prop. 3.3] for the classical (non-nested) trigonometric interpolation. The
associated sparse grid interpolation operator IsgL is defined in the same way as above in
(A.3). Now we argue similar as in [5, Thm. 5.4]. Indeed, Hölder’s inequality together
with (A.7) gives

‖f − IsgL [f ]‖2 ≤
( ∑
|k|1>L

2−2|k|1r
)1/2

·
( ∑
|k|1>L

22r|k|1‖∆k(I)[f ]‖22
)1/2

≤ 2−rLL(d−1)/2‖f‖Hr
mix

.

(A.8)

Noting further that

QsgL (f) =

∫
[0,1]d

IsgL [f ](x) dx

we have by Hölder’s inequality and (A.8)∣∣∣ ∫
[0,1]d

f(x) dx−QsgL (f)
∣∣∣ ≤ ‖f − IsgL [f ]‖2 ≤ 2−rLL(d−1)/2‖f‖Hr

mix
,

see also [8, Rem. 8.9] . Finally, the bound (A.5) follows from (A.4) .

Remark A.2. The above multivariate cubature rule on the sparse grid uses a number of
nodes on the boundary of [0, 1]d which are not needed when dealing with functions from
H̊r

mix ⊂ Hr
mix(Td) . However, as already mentioned in the proof of Theorem A.1, with

respect to the asymptotic rate of convergence we can not do essentially better. However,
to do a fair cost comparison for the different methods considered in Section 7 we only
counted the interior nodes (see the diagrams above, e.g. Figure 6).
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Figure 8: Normalized worst-case errors for uniform smoothness parameter r = 1 in di-
mension d ∈ {2, 3, 4, 5, 6, 7} for different Frolov constructions and sparse grids.
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Figure 9: Normalized worst-case errors for uniform smoothness parameter r = 2 in di-
mension d ∈ {2, 3, 4, 5, 6, 7} for different Frolov constructions and sparse grids.
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Figure 10: Normalized worst-case errors for uniform smoothness parameter r = 3 in
dimension d ∈ {2, 3, 4, 5, 6, 7} for different Frolov constructions and sparse
grids.
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