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ABSTRACT
Quality-Diversity offers powerful ideas to create diverse, high-
performing populations. Here, we investigate the capabilities these
ideas hold to solve exploration-hard single-objective problems, in
addition to creating diverse high-performing populations.

We find that MAP-Elites is well suited to overcome deceptive
reward structures, while an Elites-type approach with an unstruc-
tured, distance based container and extinction events can even
outperform it.

Furthermore, we analyse how the QD score, the standard evalu-
ation of MAP-Elites type algorithms, is not well suited to predict
the success of a configuration in solving a maze. This shows that
the exploration capacity is an entirely different dimension in which
QD algorithms can be utilized, evaluated, and improved on. It is a
dimension that does not currently seem to be covered, implicitly or
explicitly, by the current advances in the field.
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1 INTRODUCTION
Reinforcement learning (RL) offers a flexible framework that can
be applied to a variety of problems, including robotics, games, and
natural language processing. While its foundations lay in optimiza-
tion, it is often not necessary or even possible to find the optimal,
but rather just a viable solution to a given problem setup. One
can observe that the paradigm of optimization might even be a
hindrance in some setups, for example when the objective is not
suitably shaped for iterative improvement.
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Balancing exploration and exploitation is a well-known chal-
lenge in reinforcement learning settings and exploration-hard prob-
lems with sparse or deceptive reward structures are a notable subject
of ongoing research [5]. In sparse reward settings a reward occurs
at the end of a sequence of non-rewarding actions. In deceptive
reward settings, the reward landscape is rugged with local optima
that have a large area of attraction that can trap an optimization
algorithm.

Quality-Diversity (QD) algorithms emphasise finding a set of di-
verse solutions using the actual objective of the setup as a secondary
guidance. These algorithms generate large and diverse populations
to tackle the posed problem, but are typically less efficient. How-
ever, in exploration-hard settings they may be even more efficient
than single-objective optimization methods, as the deceptive pull of
the objective has less influence. Solving navigation tasks through
different mazes is a classic problem requiring extensive exploration,
that has been used to show just that [8].

In this paper, we study the capabilities of different approaches
to train deep neural networks that solve mazes interpreted as a
reinforcement learning problem with a deceptive reward structure.
Solving the maze measures how well these algorithms are able to
explore the solution space and avoid being trapped by local optima.

Thereby, we look at the potential of QD algorithms to solve such
single objective problems even more effectively than goal-oriented
algorithms. This potential may not be fully realized, because the
output of QD algorithms is generally evaluated by looking at the
whole population created and rarely reduced back to one solution.

We use a procedural generation of mazes to test learning algo-
rithms for a large numbers of setups. The optimization task is to
find a parametrization of a deep but relatively small neural network
with a fixed architecture that acts as a policy for solving the maze.
This provides a task that is complicated in exploration but relatively
simple in neuroevolution. By re-running a similar setup in large
numbers we can pick up even small performance differences in the
different approaches.

We compare an RL algorithm, an Evolutionary Strategy, a classic
MAP-Elites [9] (Multi-dimensional Archive of Phenotypic Elites)
approach and also present a grid-less, Voronoi-Elites [7] approach,
for which we include extinction events as a novel improvement.
Using the latter approach, we observe the best performance in
solving the maze and even get rid of the MAP-Elites requirement
of a low-dimensional, bounded, well-aligned behaviour space.

2 BACKGROUND AND RELATEDWORK
2.1 Quality-Diversity
Quality-Diversity encompasses a family of optimization algorithms
that aim to output a large collection of diverse, high-performing
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Figure 1: Starting position of six different maze setups with
increasing complexity

solutions, instead of one, best-performing solution. These solutions
are stored in a container, categorized by some function of their
observed behaviour, the behaviour characteristic (BC). New solu-
tions are developed through some evolutionary strategy. Cully and
Demiris [4] distinguish QD algorithms along the axes type of con-
tainer, selection of parents, and selection of offspring. MAP-Elites
[9] type algorithms with a fixed, grid-based archive have sparked
a lot of research and interest. MAP-Elites uses a distance measure
to divide the behaviour space into cells that contain a (best per-
forming) representative of the associated behaviour each. While
the definition of good performance is given by the optimization
problem, the definition of distance in behaviour space, i.e. what
makes a collection diverse, is not imminently clear and typically
handcrafted [3], [11].

2.2 Distinguishing Behaviour
The MAP-Elites setup requires an observation of behaviour, and
some measure of difference between behaviour. Generally a projec-
tion or transformation of the observed data is used, which is called
the behaviour descriptor or behaviour characteristic. This choice
is an important, human decision [11]. Especially the grid-based
approach of MAP-Elites requires a low-dimensional representation
of the behaviour space, but it can be scaled to higher dimensional
behaviour spaces as in Cluster- or CVT-Elites [14]. The behaviour
space itself is usually handcrafted, but can also be constructed
through dimension reduction or a secondary optimization. Grid-
free approaches aim at curiosity, surprise, or novelty scores. Cu-
riosity is associated with the idea of how useful of a stepping stone
a certain solution is for further solutions. Surprise, how well an
observing algorithm knows the data, and novelty how different the
observed data is to previously observed data [1].

2.3 Evaluating QD Algorithms
Reinforcement learning algorithms can be easily evaluated by the
peak performance reached, or by performance in relation to an ex-
pended resource, be it wall time, computational effort, or amount of
interaction with the environment. The definition of performance is

directly tied to the problem itself through the reward function. QD
algorithms generally underperform in these categories. Typically
the goal of QD algorithms is described by the QD Challenge, to find
an archive of both diverse and high-performing solutions. Its suc-
cess can be quantified by coverage of the behaviour space through
the solutions of this archive weighted by their respective perfor-
mance, the QD Score [4]. Clearly this is an advantageous technique
to generate a repertoire of behaviours, if that is the goal. Other
advantages are recognized but harder to measure: adaptability, i.e.
recovery for a damaged robot [3] or improved exploration, i.e. in
an environment with sparse or deceptive rewards [11].

2.4 Scaling to Complex Problems
Evolutionary search is not efficient in exploring the large parameter
space associated with deep neural networks, a problem that is
addressed by including gradient-based search [10] or exploiting
the potential for parallel search [2]. While we will discuss a simple
control problem with a complex reward structure, techniques exist
to lift the employed techniques to more complex control tasks.

3 METHOD
3.1 Soft Actor Critic
Soft Actor Critic (SAC) [6] is an off-policy reinforcement learning
algorithm that trains a stochastic policy. This randomness pro-
motes exploration. The influence of the stochastic element itself is
variable through the optimization process. We use the benchmark
implementation from stable-baselines3 [12].

3.2 Evolutionary Strategy with Novelty
Evolutionary Strategy with Novelty-Search and Reward (NSR-ES)
[2] is a representative of a Novelty Search with Local Competition
(NSLC), the second big branch of Quality-Diversity algorithms [4].
A small population of 5 agents is updated by progressively pick-
ing one agent, repeatedly adding noise to its parametrization, and
evaluating the change in incurred reward and novelty (difference
in behaviour) compared to other agents. A gradient-like step is
then applied to this agent, adding a weighted sum of the evaluated
noise-updates, with the weights according to either both novelty
and reward (NSR-ES), to only novelty (NS-ES) or only reward (ES).

3.3 MAP-Elites
We use the pyribs [13] implementation of MAP-Elites [9] as a base-
line. Here, we take the approach of an underlying genetic algorithm
with Gaussian noise added to the parameters of a random parent
to form a child organism. The MAP-Elites algorithm is varied over
the definition and meshing of the behaviour space, following the
idea of alignment of the behaviour characteristic with the goal [11].
A child organism is made a candidate for a bin by categorization
through a behaviour characteristic. If this bin is occupied by an-
other candidate, the candidate with better performance takes over
as representative for this bin.

3.4 Voronoi-Elites with Extinction Events
We utilize a 1-nearest-neighbour strategy to create a grid-free
Elites algorithm, also conceptualized as Voronoi-Elites [7]. Here,
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Algorithm 1 Voronoi-Elites with Extinction Events

Require: With 𝑁 normal population size, 𝑁̃ extinction popula-
tion size, 𝑑 distance measure, 𝑓 fitness function, 𝑛𝑒 extinction
frequency,𝑚𝑔 number of generations,𝑚𝑏 batch size, Gaussian
noise N(𝜇, 𝜎).

1: Initialize population container 𝑃 with 𝑁 random organisms.
2: for 𝑖 ∈ [1, ...,𝑚𝑔], 𝑗 ∈ [1, ...,𝑚𝑏 ] do
3: 𝑥 ← sample P + sample N(𝜇, 𝜎).
4: Add 𝑥 to 𝑃
5: while ( |𝑃 | > 𝑁 ) | (𝑖 mod 𝑛𝑒 = 0 & |𝑃 | > 𝑁̃ ) do
6: 𝑥,𝑦 ← argmin𝑥,𝑦∈𝑃,𝑥≠𝑦 𝑑 (𝑥,𝑦)
7: Remove argmin𝜉∈{𝑥,𝑦} 𝑓 (𝜉) from 𝑃

8: return 𝑃

an archive of fixed size holds a set of agents characterized by their
behaviour. The behaviour space comes equipped with a distance
measure. New organisms are created by randomly picking an organ-
ism in the archive and adding Gaussian noise to its parametrization.
It is then identified with their behaviour and added to the archive.
Whenever the archive has gotten bigger than its fixed size, the two
organisms closest in the behaviour space compete and the one with
lower performance is deleted from the archive.

We find that extinction events, a regular shrinking of the popula-
tion size, act as a catalyst for improved exploration in this setup.
The algorithm naturally induces a way to reduce the total size, by
progressively letting the closest organisms in the archive compete.
This improves the focus of the random search in the parameter
space to efficiently find a solution. It also introduces two additional
hyperparameters, the frequency of extinction events 𝑛𝑒 and smaller
population size during the extinction event 𝑁̃ , see algorithm 1.

4 EXPERIMENT
4.1 Deceptive Maze
All maze tasks are setup as a 6-by-6 Cartesian grid. Between any
grid cell may be a wall. The state-space is continuous as [0, 6]2. The
agent starts in the middle of cell (0, 0) and wins with 1 point when
getting anywhere in the cell (5, 5). There is always a way to the
goal. For every learning task, we normalize the state-space. The
action-space is [−0.5, 0.5]2, every action changing the state along
this vector. A wall in the path will stop any further movement in
this direction, but keeps intact any movement along it. The final
reward of an episode that is not won after 72 steps is defined as 1
minus the normalized linear distance to the goal: 1 − |𝑥goal−𝑥pos ||𝑥goal−𝑥start | .
This generates a deceptive trap with every cul-de-sac and makes
the reward of an episode defined only by the last observed state of
the episode.

4.2 Solving the Maze
We compare the different algorithms regarding their ability to over-
come the deceptive reward structure. The underlying optimization
problem is to find a parametrization of a feed-forward neural net
with two hidden layers of size 16 each. This architecture is fixed
for all learning tasks.

Table 1: Average mazes solved

Method BC % Solutions Avg. reward

SAC n/a 16.3 / 18.3 0.58
ES n/a 17.7 / 60 0.524
NS-ES last position 19.7 / 64.2 0.243
NSR-ES last position 21.9 / 63.5 0.481
ME last position 86.8 0.969

mean 87.8 0.974
direction 86.8 0.967

VE last position 94.2 0.991
mean 91.5 0.983

direction 89.5 0.973
full trajectory 90 0.981

We judge the success of the algorithms by their ability to solve
100 generated mazes, i.e. to find a solution that deterministically
moves the agent from start to goal. To better understand the Elites-
type algorithms, we also measure the QD score normalized by the
population size.

We represent non-Elites algorithms through soft-actor critic and
evolutionary search. These algorithms may see a solution once, but
they will not immediately keep this solution. We therefore give two
numbers in table 1: the number of mazes for which the algorithm
outputs a solution and the number of mazes for which the algorithm
sees a solution at any point. For Elites-type algorithms these are
identical.

For the Elites algorithms, we run the same experiment for several
behaviour characteristics (BC), which are functions of a rollout of
the agent: Last position the last state, full trajectory all the states
as a time series, mean the mean values of state and action over
time. The Euclidean distance of BCs of agents defines the distance
of those agents. Direction splits the rollout in 5 equally long parts
and encodes the dominant direction of movement, north, east, west,
or south. The distance between two agents is then defined as the
count of disagreements on those 5 parts.

Voronoi-Elites use population size 72, extinction frequency 20,
extinction population size 20. MAP-Elites use a regular Cartesian
grid, last position a 2-dimensional grid with 2304 cells, direction
a 5-dimensional grid with 1024 cells, mean a 4-dimensional grid
with 4096 cells. All use an initial Gaussian noise N(0, 1) to vary
the parameters of the parents, that act as the weights of the neural
network.

We run the learning process for 2000 generations with a batch
size of 100, observing 14.4M state-action pairs for both the ES and
the Elites algorithms. For the comparisonwith SAC, we run learning
for the same amount of timesteps. We repeat the experiment with
six different seeds and average over the results, totaling in 600 trials
for each method.

4.3 Results
MAP-Elites is well suited to overcome the deceptive reward and
solve themaze, while the gradient-basedmethods only see solutions
in less than two thirds of mazes. The pull of the gradient traps the
algorithms in local optima and prevents sufficient exploration.
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Figure 2: Comparison of Elites-type algorithms

Voronoi-Elites with extinction events improves the performance
of the MAP-Elites approach, see table 1 and figure 2. The most
successful runs of Voronoi-Elites leaves 4 mazes unsolved, the most
successful run of classic MAP-Elites leaves 10 unsolved. The BC
type influences the capability of the algorithm to solve the maze,
but the choice of underlying algorithm matters more.

The BC type does strongly affect the QD score. We find that
difference in performance of the different Elites-type algorithms is
not reflected in their respective QD scores, the prime evaluator of
QD algorithms, see also figure 2: The direction BC achieves a high
QD score, because it allows the solutions to clump nearer to the goal,
but performs worse or equally to the other BCs in actually solving
the mazes. MAP-Elites with the last position BC achieves the lowest
QD score, MAP-Elites with direction BC highest of MAP-Elites, but
both solve the same number of mazes. The 3 Voronoi-Elites with
QD scores in between the two, all solve more mazes.

The average score proves to be a similarly deceptive indicator,
when looking at SAC and the ES-algorithms: The NS-ES approach
finds significantly lower scoring organisms than SAC or ES but will
still return more solutions to the deceptive problem (see table 1).

5 DISCUSSION
We present a problem that on the one hand does not require a
complicated, very deep neural network and parametrization thereof,
but on the other hand features a reward landscape that is complex
within these boundaries. While gradient-based approaches are not
successful even if they feature some kind of exploration, we find
that MAP-Elites is well equipped to tackle this problem setup.

Voronoi-Elites with extinction events improves on the perfor-
mance. This is especially interesting, because these distance based
containers are somewhat overlooked in research [1]. The presented

algorithm simplifies the application, as the behaviour space now
need neither be low-dimensional nor bounded. However, extinction
events require two new hyperparameters, extinction frequency and
extinction population size, which need understanding and tuning.

We find that the ability to overcome deceptive reward structures
is not adequately measured by the conventional ways the success of
reinforcement learning or Quality-Diversity algorithms is measured.
The focus on the QD Challenge obfuscates the capability in single-
objective optimization. Since advances in MAP-Elites algorithms
are typically measured along QD scores, their potential to explore
and avoid local optima is generally not sufficiently measured. If
neither the QD score nor the performance regarding reward indicate
success in overcoming deceptive reward structures, how can an
algorithm even be tested in that regard?

Genetic algorithms are not considered an effective way to evolve
complex neural networks, and although it is difficult to extrapolate
the observed success of Elites-type algorithms to complex problems,
we conjecture that with a small base population and a grid-free
archive, other ways to generate offspring may be feasible.

Of special interest is the influence of the extinction events: If
its success can be replicated in other grid-free setups but also why
extinction events help finding a solution. Further analysis of the
phenomenon may give a deeper understanding of the strengths
and weaknesses of these algorithms with unstructured containers.
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