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ABSTRACT
Whereas evolutionary computation usually solves problems from
scratch, organisms evolve under changing environments and pos-
sess flexibility, adapting from being good at one task to being good
at a related task. There is abundant evidence that there are gen-
eral properties that promote flexibility in nature, such as hierarchy,
modularity, exploratory behavior, and degeneracys or neutrality.

Our interest is to understand if such properties can also be identi-
fied for non-biological systems.We thus study if a controller evolved
by a genetic algorithm for one pole balancing task can be adapted
to a different pole balancing task, and if this saves training time
compared to evolving a new controller from scratch. Moreover, we
investigate how diversity and degeneracy in the controllers popula-
tion affect adaption efficiency by promoting high quality solutions
that are both structurally and behaviorally diverse, concluding that
it can potentially decrease the adaption cost.
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1 INTRODUCTION
We call a learning system flexible if it easily adapts from being good
at one task to being good at a related task and if it can cope with a
diversity of related tasks. Approaches that increase flexibility have
been intensively studied in machine learning (transfer learning [16],
∗also with Fraunhofer SCAI
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learning to learn [13]), but are less established in evolutionary
computation (evolutionary dynamic optimization [17], evolutionary
transfer optimization [12]). The theory of facilitated variation [5]
shows that high evolvability is the result of certain universal design
features of biological systems such as hierarchical organization,
modularity, weak regulatory linkage, and exploratory behavior, that
allow the organism to render small, random genetic changes into
complex, useful adaptions in its phenotpye.Work following this line
of reasoning applied in technical systems shows that modularity
and hierarchy can arise spontaneously under dynamically-changing
tasks and speed up adaption for new tasks [8]. Quality-diversity
optimization was used to let robots quickly adapt to a diversity of
task variations [3].

Further features contributing to evolvability are degeneracy and
neutral mutations [4, 14]. Degeneracy refers to systems that are
functionally equivalent in one environment but functionally differ-
ent in other environments, or system configurations with a similar
behavior but a different structure, and relates to the notion of neu-
trality in evolutionary computation [10]. Degenerate systems are
more robust, as mutations in a neutral space do not affect the sys-
tem‘s function, and more evolvable, as systems that perform the
same function can be located in different regions of a neutral space
and will thus respond differently to mutations [14].

The pole balancing problem is a well known control theory and
reinforcement learning benchmark where an agent has to learn to
balance a cart with a pole attached to it without letting the cart
or the poles move out of a pre-specified range [2]. The system is
composed of a cart of mass𝑚𝑐 and 𝑁 poles of masses𝑚𝑝1, . . . ,𝑚𝑝𝑁 ,
and lengths 𝑙𝑝1, . . . , 𝑙𝑝𝑁 . At each time step 𝑡 , a controller receives
as input the position of the cart in a track 𝑥 (𝑡), the velocity of the
cart ¤𝑥 (𝑡), the angular positions of the poles 𝜃𝑝1 (𝑡), . . . , 𝜃𝑝𝑁 (𝑡), and
the angular velocities of the poles ¤𝜃𝑝1 (𝑡), . . . , ¤𝜃𝑝𝑁 (𝑡), and outputs
a horizontal force 𝐹 (𝑡) to be applied to the cart. The simulation is
considered successful if the agent can keep the cart and the pole
within limits for 100,000 time steps.

Motivated by the line of work from biology on flexible systems,
we study the adaption of a controller by a genetic algorithm under
varying instances of the pole balancing problem [2], and analyze
how adapting a previously evolved solution to solve a new related
task decreases the learning cost, how we can measure the flexibility
of a system, and, inspired by exploration and degeneracy in bio-
logical systems flexibility, if diversity promotion combined with
exploration of the neutral space provide a decrease in adaption cost.
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2 METHODOLOGY
2.1 Measuring system flexibility
As our interest is to study the flexibility of a learning system and
we do not aim for improving on existing results, we consider the
basic pole balancing problem with one pole and choose 𝑛 different
values for the pole length, obtaining a task context T = {𝑇1, . . . ,𝑇𝑛}
of 𝑛 related learning tasks. Now we wonder if an agent that has
already learned a control law for one task, say 𝑇𝑖 , can exploit this
to learn another task, say 𝑇𝑗 , more quickly. As learning system we
consider the tuple 𝐿 = (𝐹𝑤 , 𝐴), where 𝐹𝑤 is the controller and 𝐴

some learning or adaption algorithm. Given a task𝑇 and a learning
system 𝐿, we denote the cost of 𝐿 to learn the task from scratch
by 𝑐0 (𝐿,𝑇 ). Now suppose we are given two tasks 𝑇1 and 𝑇2 and
the learning system has already learned the source task 𝑇1. Then,
we denote the cost to adapt the solution found for 𝑇1 to the target
task 𝑇2 by 𝑐ada (𝐿,𝑇1,𝑇2). We measure the flexibility of the learning
system in the given context by the cost it takes the system to adapt
solutions of source tasks to solutions of target tasks, either by the
worst-case adaption cost

𝑐worada (𝐿,T) = max
𝑇1≠𝑇2

𝑐ada (𝐿,𝑇1,𝑇2) . (1)

or by the average-case adaption cost given by

𝑐
avg
ada (𝐿,T) = 1

𝑛(𝑛 − 1)
∑︁
𝑇1≠𝑇2

𝑐ada (𝐿,𝑇1,𝑇2) . (2)

Note that the above definitions are not specific to evolutionary
algorithms but can be used for any learning systems, e.g., artificial
neural networks. We only have to provide measures for 𝑐0 and 𝑐ada
that are suitable for the considered learning system.

2.2 Adaption via Genetic Algorithm
There are many approaches that were successfully used in the liter-
ature to solve the pole balancing problem, including, for example,
the use of evolutionary algorithms and the evolution of neural net-
works [1]. It is known, however, see [2], that the problem setup
with only one pole can be solved by a linear neuron of the form

𝐹𝑤 (𝑡) = 𝐹𝑚 ∗ 𝑠𝑔𝑛
(
𝑤1𝑥 (𝑡) +𝑤2 ¤𝑥 (𝑡) +𝑤3𝜃 (𝑡) +𝑤4 ¤𝜃 (𝑡)

)
, (3)

where 𝑤 = (𝑤1,𝑤2,𝑤3,𝑤4) is the weight vector to be opti-
mized, 𝐹𝑚 is a constant force, and 𝑠𝑔𝑛 is the sign function that
outputs either −1 or +1. We use a Genetic Algorithm (GA) [15]
to optimize the weights in a population of linear neurons of this
form, where a candidate solution is a vector of four real-valued
weights, and the fitness value is the number of time steps for which
the resulting controller can keep the cartpole system within limits.
Single-point crossover can be used as usual, but for the mutation
we perform a random perturbation on the weights given a mutation
rate.

Suppose we have tasks 𝑇1 and 𝑇2, which correspond to differ-
ent pole lengths and with respective solutions 𝑆1 and 𝑆2. First, we
run the GA as normal on task 𝑇1 from scratch, using a randomly
initialized population. However, differently from the standard GA,
that would halt after finding the optimal solution, in our adaptive

scheme we keep searching after that until we complete the max-
imum number of generations. This way, we end up with a final
population of high quality solutions. We then load this population
as the initial population for the GA run for task 𝑇2. We use this
simple adaptive scheme as our flexibility baseline. For more com-
plex problems and larger populations, however, one may want to
store just a number of high quality solutions and/or initialize the
population only with a fraction of previous solutions. Moreover,
one can also choose to stop the search before the maximum number
of generations for longer runs. As learning and adaption costs we
employ theminimal Computational Effort (CE), which is an approxi-
mation for how many individual evaluations are needed for finding
the optimum with 99% probability [6]. The learning cost 𝑐0 (𝐿,𝑇 )
to solve task 𝑇 from scratch is the CE value over a number of runs,
and the adaption cost 𝑐ada (𝐿,𝑇1,𝑇2) for adapting a solution from
task 𝑇1 to task 𝑇2 is the CE value obtained when employing the
adaptive scheme described.

Based on the discussion on exploration and degeneracy con-
ferring flexibility to biological systems in section 1, besides the
flexibility baseline described above, we study the element of explo-
ration by promoting diversity in the GA populations, and degen-
eracy by promoting a population of solutions that are at the same
time optimal or near-optimal but diverse in respect to its structure
or behavior. Here, structural diversity refers to solutions with
different weights, and behavioral diversity to the actions a con-
troller takes within a simulation - the time series describing, at
each time step, if a force is applied to the right or to the left. For
structural diversity, we measure the Euclidean distance between
the chromosomes and define the structural diversity score of an
individual by its mean Euclidean distance to all other individuals in
the population. In large populations, one may want to sample only
a fraction of it. For behavioral diversity, we use the final state of a
simulation, which corresponds to the vector [𝑥, ¤𝑥, 𝜃, ¤𝜃 ] at the end of
a simulation. Then we again define the behavioral diversity score
by calculating the mean Euclidean distance to all other individuals
in the population. As we use a fixed initial state for the simulation,
the final state should not vary for the same controller and task.

To promote diverse individuals, we modify the tournament pro-
cedure in order to generate a non-parametric selection pressure
towards diverse solutions, inspired on a technique called Propor-
tional Tournament, previously used for promoting diversity and
fighting bloat [7], that selects individuals during tournament either
using fitness or some other metric, here structural or behavioral di-
versity, according to some probability. Instead of using a probability,
we select based on diversity when the fitness of individuals sampled
by the tournament is the same. Thus, tournament of size𝑇 samples
𝑇 individuals from the population and returns the most fit or, if all
have the same fitness, the most diverse according to our diversity
score. The diversity promotion strategy is used when evolving from
scratch. When adapting solutions, standard tournament is used.

3 EXPERIMENTS
3.1 Experimental setup
We compare the performances of evolving a population from scratch
for each task with adapting a solution from a previous task both
with and without diversity promotion. We implemented a GA using
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Python and for the pole balancing simulation we adapted the code
from the library Gym1. Gravity is −9.8𝑚/𝑠2, cart friction is 5 ∗ 10−4,
and pole friction is 2 ∗ 10−6 (equations from [1]). The full pole
length varies from 0.2 to 2.0 with a step of 0.2, resulting in 10 tasks.
The initial state is fixed as 𝑥 = 0, ¤𝑥 = 0, 𝜃 = 0, ¤𝜃 = 0. Remaining
parameters are the standard from Gym.

The GA population is initialized with weights drawn from a
uniform distribution in the range [−0.5, 0.5]. We use a population
size of 10 and run 10 generations, as it was enough to solve the
problem, and employ tournament selection with size 2, the smallest
possible given the population size. Standard one-point crossover is
applied to parents with a probability of 90% (standard value with
no influence on preliminary results). Mutation consists of adding
to a weight a value drawn from a uniform distribution in the range
[−0.1, 0.1], and is applied to each gene of the offspring with a
probability of 25%, so that in the average one gene will be mutated.
We use elitism of size 1.

3.2 Results and discussion
We show in Table 1-(top) our baseline adaption results. As the CE
metric for learning and adaption costs uses the number of gener-
ations, the minimum possible value here is 10 for one generation
given our population size of 10. Adapting a previous population
provides a good advantage that grows with how similar tasks are.
Finding solutions for shorter pole lengths using solutions from
longer pole lengths is more difficult, and the same is true for find-
ing solutions for longer pole lengths using solutions from shorter
pole lengths. As finding solutions for shorter pole lengths is more
difficult in general, this probably means that these solutions are in
more distant regions in the search space. Thus, moving from the
region where solutions for longer pole lengths are to the region
where solutions for shorter pole lengths are, and vice versa, is more
difficult than starting with a random population. We highlight these
pairs of tasks in Table 1 as our area of interest. In the average-case,
adapting a solution makes the learning system more flexible in the
given task context.

We summarize three points that we do not show here due to
space constraints: 1) We plotted all optimal solutions for two rep-
resentative tasks in the weights range from -5 to 5 by a step of
0.5, and found that there is a very high number of different weight
configurations that are optimal (highly degenerate search space),
which motivates the study of promotion of structural diversity for
improving adaption performance. 2) We plotted the actions of the
controllers above and found that all controllers have a very similar
behavior pattern. However, each sequence is unique, and behaviors
differ on average by 49,000 time steps, which leaves us the possi-
bility to explore the potential of promoting behavioral diversity.
3) When promoting diversity, we report that both structural and
behavioral diversity across generations is higher in comparison to
the baseline, although the increase is not dramatic.

When promoting structural diversity (Table 1-(middle)), there
is considerable improvement in adaption performance in compar-
ison to the baseline in the first area of interest (first two rows).
In total, structural diversity promotion improved adaption results
for 37 cases against 9 cases where it was worse than the baseline.

1https://gym.openai.com/

When promoting behavioral diversity (Table 1-(bottom)), adaption
results for both the first and second areas of interest (adaption from
shorter to longer poles) are mixed. In general, behavioral diversity
promotion led to more worse than better results, with 17 cases in
total where it improved adaption results compared to the baseline
against 28 where the result was worse. Based on that, making use
of degeneracy in optimal solutions to spread individuals in the fi-
nal population of source tasks in the search and behavior spaces
is potentially beneficial for improving the flexibility of a learning
system. As different pairs of source and target tasks have different
search spaces, it is possible that in some cases the region where
solutions were initially concentrated was better for adaption than
spreading them. It is possible that a procedure that better covers
the search and/or behavior space with high quality solutions is
able to overcome this difficulty. One specific concern with behav-
ioral diversity is that it is not guaranteed that two solutions with
different behaviors in a source task will also have a comparably
different behavior in the target task, as the sequence of actions is
first known during simulation. This could potentially be alleviated
by quality-diversity exploration using behavioral descriptors as,
e.g., in [3].

4 CONCLUSIONS AND FUTUREWORK
After systematically analyzing the pole balancing problem from
a system flexibility viewpoint, we found that adapting a previous
population helps to reduce training time for related learning tasks
in many situations, with an improvement on average proportional
to how similar tasks are. Moreover, diversity promotion making use
of degeneracy on the structural and behavioral levels is potentially
useful for improving system flexibility, but a better approach is nec-
essary for a more uniform improvement. We believe the questions
we addressed regarding flexibility, both in biological and learning
systems, can be interpreted on a higher level and transferred to
a broader range of problems. As future work, one can consider
more complex versions of the pole balancing benchmark as well as
benchmarks from other domains or real-world applications, further
develop the flexibility notions in a mathematical formal way, and
explore other elements of flexibility, also in other methods and do-
mains - graph-based Genetic Programming, for example, has innate
properties of modularity and neutrality/degeneracy [9], from which
Cartesian Genetic Programming has already been used to evolve
Neural Networks [11].
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