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OPTIMAL SCALING PARAMETERS FOR SPARSE GRID
DISCRETIZATIONS

M. GRIEBEL∗, A. HULLMANN∗, AND P. OSWALD‡

Abstract. We apply iterative subspace correction methods to elliptic PDE problems discretized
by generalized sparse grid systems. The involved subspace solvers are based on the combination of
all anisotropic full grid spaces that are contained in the sparse grid space. Their relative scaling is at
our disposal and has significant influence on the performance of the iterative solver. In this paper, we
follow three approaches to obtain close-to-optimal or even optimal scaling parameters of the subspace
solvers and thus of the overall subspace correction method. We employ a Linear Program that we
derive from the theory of additive subspace splittings, an algebraic transformation that produces
partially negative scaling parameters which result in improved asymptotic convergence properties,
and finally we use the OptiCom method as a variable non-linear preconditioner.

Key words. generalized sparse grids, additive Schwarz preconditioner, subspace splittings,
diagonal scaling, OptiCom, variable preconditioning

1. Introduction. In many large-scale numerical problems, e.g., the function
approximation in higher dimensions or the numerical solution of partial differential
equations, discretization techniques exploit specific a priori assumptions on the solu-
tion to increase efficiency. Especially for high dimensional problems, a conventional
discretization approach, which is based on isotropic uniform grids, is doomed due to
the curse of dimensionality [Bel61]. Then, sparse grid discretizations [BG04] are an
important way to circumvent this problem, at least to some extent, provided that ad-
ditional regularity conditions hold. This way, improved error decay rates with respect
to the required degrees of freedom are obtained which depend only logarithmically or,
in the best case, not at all on the dimension. Next, to guarantee overall efficiency, the
corresponding systems of discrete equations must be solved in a fast way. Normally,
some iterative method is employed which results in the need of preconditioning.

In this paper, our focus is on additive (sometimes coined “parallel” or “asyn-
chronous”) Schwarz preconditioners for generalized sparse grid discretizations of sym-
metric H-elliptic variational problems

a(u, v) = F (v) ∀ v ∈ H , (1.1)

where H is a Hilbert-space and F is a bounded linear functional on H. Equivalently,
the linear variational problem (1.1) can be cast as a quadratic minimization problem

φ(u)→ min
u∈H

with φ(u) :=
1

2
a(u, u)− F (u) .

Regular sparse grid spaces [Gri91, Zen91, Bun92a] have been around for a long
time for the efficient solution of PDEs. They can be described by a non-direct
sum of anisotropic full grid spaces. Other, more general sparse grids with differ-
ent sets of full grid spaces have been studied in [BG99, GK09, GH13] for deriving
theoretically optimal error bounds in various smoothness norms and classes. More-
over, in [GG03, Feu10, BG12] dimension-adaptive discretizations have been employed.
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2 M. GRIEBEL, A. HULLMANN AND P. OSWALD

These approaches can be summarized by the term ‘generalized sparse grid spaces’.
Finally, there are locally adapted sparse grid spaces [BG04, Feu10, Bun92b, Gri98].
They all have in common that they offer great flexibility in enriching the respective
discretization.

We apply a subspace correction method to (1.1), where the subspace solvers are
based on all the possible anisotropic full grid spaces that are contained in the sparse
grid space under consideration. Their relative scaling amounts to a diagonal scaling
of the operator matrix of the discretized system and is in principle at our disposal.

Our aim is now to find optimal or close-to-optimal scaling parameters. To this
end, we follow three different approaches: One is based on a Linear Program (LP) that
minimizes the relative splitting condition number with respect to a subspace splitting
based on orthogonal complement spaces. Here, we prove that, forHt-elliptic problems,
the best possible set of positive scaling parameters results in condition numbers that
grow by Θ(Jd−2), where J is the discretization level of the sparse grid and d is the
space dimension. The second method is based on the observation that negative scaling
parameters can still result in a positive definite operator on the sparse grid space, even
though this case is not covered by the classical theory of subspace splittings. With
an algebraic transformation that produces partially negative scaling parameters, we
obtain an optimal iterative scheme with error contraction rates that are bounded
independently of the level J and even independently of the dimension d in case of
the Laplacian. The third method is a variable non-linear preconditioner which, in
the general setting of subspace correction and domain decomposition methods, dates
back to [JN99]. In the context of data mining using sparse grids, it was independently
introduced in [Heg03, Gar06, HGC07]. This approach successively computes the best
possible scaling in every iteration step. We show that the cost of such an OptiCom
iteration step is log-linear with respect to the degrees of freedom if a fast matrix-vector
multiplication with the operator matrix is available. This is a significant improvement
over previous applications of OptiCom, which typically involved quadratic costs. We
also present conjugate gradient (CG) versions of all considered iteration schemes,
which shows that there is further cost reduction potential.

The remainder of the paper is organized as follows. In Section 2, we give a short
overview of space splitting theory and state the problem of finding sets of scaling
parameters in the associated subspace correction methods. In Section 3, we introduce
sparse grid discretizations and describe methods to find optimal scaling parameters
by an LP, an algebraic transformation and the OptiCom. In Section 4, we discuss
the efficient implementation of the described methods. In Section 5, we deal with
a standard H1

0 -elliptic Laplacian test problem in dimensions d ≤ 10 and present
convergence plots that support the theoretical findings from Section 3. Results of the
CG versions are also presented. We give some concluding remarks in Section 6.

2. Scaling parameters in subspace correction methods. In this section,
we first recall some facts about subspace correction methods [Xu92, Osw94] for solving
(1.1) in a Hilbert space H. Then, we slightly depart from this standard theory and
introduce scaling parameters for the subspace solvers. Finally, we discuss the optimal
choice of such scaling parameters in the general case.

2.1. Subspace splitting theory. Let Hi, i ∈ I, be auxiliary Hilbert spaces with
an at most countable index set I (if we discuss algorithmical issues, we silently assume
that I is finite). Each Hi carries a symmetric Hi-elliptic bilinear form bi(ui, vi),
writing {Hi; bi} indicates that we use this bilinear form as scalar product on Hi. In
general, the Hi, i ∈ I, are not assumed to be subspaces of H, and in order to relate
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them with H, we define bounded linear embedding operators Ri : Hi → H. We call
the formal decomposition

{H; a} =
∑
i∈I

Ri{Hi, bi} (2.1)

a stable space splitting if for any u ∈ H there is at least one H-converging represen-
tation of the form

u =
∑
i∈I

Rivi, vi ∈ Hi, i ∈ I , (2.2)

and

0 < λmin := inf
u∈H

a(u, u)

|||u|||2
≤ λmax := sup

u∈H

a(u, u)

|||u|||2
<∞ , (2.3)

where

|||u|||2 := inf
vi∈Hi: u=

∑
i∈I Rivi

∑
i∈I

bi(vi, vi) . (2.4)

The constants λmin and λmax are called lower and upper stability constants, and
κ := λmax/λmin is called the condition number of the space splitting (2.1), respectively.
It is easy to see that frames and fusion frames [CK04, Osw09] are special cases of this
definition, where a(·, ·) = (·, ·)H , the Hi are closed subspaces of H, the scalar products
bi(·, ·) = wi · (·, ·)V are modified by weights wi > 0, and the Ri denote the natural
embeddings Hi ⊂ H for i ∈ I. In the frame case, the Hi are one-dimensional spaces
and are spanned by individual frame elements. Specific examples of stable space
splittings related to sparse grid discretizations will be given in Section 3.

To formally define the core subspace correction methods associated with a stable
space splitting (2.1), we define the adjoint operators R∗i : H → Hi by

bi(R
∗
i u, vi) = a(u,Rivi) ∀ vi ∈ Hi , (2.5)

and eventually set Ti := RiR
∗
i : H → H, i ∈ I, and P =

∑
i∈I Ti.

The additive Schwarz method for (2.1) (also called parallel or asynchronous sub-
space correction method) is then given by the iteration

u(m+1) = u(m) + ω
∑
i∈I

Tie
(m) = u(m) + ωPe(m), m = 0, 1, . . . , (2.6)

where the single relaxation parameter ω > 0 is to be chosen appropriately and e(m) :=
u − u(m) denotes the current error. The essential work to be done is to compute all

u
(m)
i := R∗i e

(m) ∈ Hi by solving the subproblems

bi(u
(m)
i , vi) = a(u− u(m), Rivi)

= F (Rivi)− a(u(m), Rivi) ∀ vi ∈ Hi, i ∈ I .

The theoretically best value of ω is given by ω∗ = 2/(λmin +λmax), since the operator
P =

∑
i∈I Ti satisfies the identity

a(Pu, u) =
∑
i∈I

bi(R
∗
i u,R

∗
i u) = |||Pu|||2 .



4 M. GRIEBEL, A. HULLMANN AND P. OSWALD

Together with (2.3), this implies that λmin(P ) = λmin, λmax(P ) = λmax, and κ(P ) =
κ. Thus, the best possible error reduction factor in the energy norm for the linear
iteration (2.6) is given by

ρ := inf
ω>0
‖Id− ωP‖a = ‖Id− ω∗P‖a = 1− 2

1 + κ
. (2.7)

This simple result has appeared in many papers, see [Xu92, Osw94, GO95a].
Since in practice the value ω∗ is hardly accessible, one often determines in each

iteration the value

ω(m) =
a(Pe(m), e(m))

a(Pe(m), P e(m))
(2.8)

which corresponds to finding u(m+1) by solving the minimization problem

φ(u(m) + ω(m)Pe(m))→ min
ω(m)

,

or, equivalently, by minimizing the energy error

‖u− u(m) − ω(m)Pe(m)‖2a → min
ω(m)

(2.9)

with respect to the parameter ω(m) > 0. The iterative method with the parameter
choice ω(m) from (2.8) can also be interpreted as steepest descent method for the
quadratic minimization problem associated with the linear variational problem

a(Pu, v) = f(Pv) ∀ v ∈ H , (2.10)

which is a preconditioned version of (1.1). Consequently, since

‖e(m+1)‖a = ‖u− (u(m) + ω(m)Pe(m))‖a ≤ inf
ω>0
‖Id− ωP‖a‖e(m)‖a = ρ‖e(m)‖a ,

this method is as good as any linear method (2.6).
An alternative to the above additive Schwarz method is the multiplicative Schwarz

method (or synchronous subspace correction method), where in the n-th step only one
index i = i(n) ∈ I is picked, the corresponding subproblem is solved and used to
immediately update the iterate according to

u(n+1) = u(n) + ωTi(n)e(n), n = 0, 1, . . . . (2.11)

Here, various rules for choosing the next subproblem index i(n) (cyclic deterministic
rules, random choices, greedy pick, and their combinations), and block updates (in-
termediate between the additive and multiplicative versions) have been proposed, see
for example [GO12].

The convergence theory of multiplicative Schwarz methods is a bit more intricate.
Generally speaking they often are slightly faster than additive Schwarz methods (to
achieve a fair comparison, usually #I steps of the multiplicative method are com-
bined into one step). A potential drawback is that the multiplicative method is less
straightforward for parallelization. Since the focus of this paper is the choice of scaling
parameters in additive Schwarz methods, we do not want to go into detail but refer
to the literature, see [Xu92, Osw94, Osw09, GO95a, GO12, Gri94a, XZ02, Gri94b].
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2.2. Introducing multiple scaling parameters. From now on we slightly
depart from the above theory and ask the question if the introduction of individual
scaling parameters ωi offers additional improvements. Note that a similar question
has been discussed for frames in [KOPT13]. We keep the basic setup of given auxiliary
problems in {Hi, bi}, and consider the family of iterations

u(m+1) = u(m) +
∑
i∈I

ωiTie
(m) = u(m) + Pωe

(m), m = 0, 1, . . . , (2.12)

where Pω =
∑
i∈I ωiTi and ω stands from now on for a set of scaling parameters

(ωi)i∈I . Convergence of this linear iterative method is guaranteed if and only if Pω is
strictly positive definite (λmin(Pω) > 0) and λmax(Pω) < 2. We note that enforcing
the upper bound λmax(Pω) < 2 is not a major concern. For this, we can, at little
extra work, determine an additional relaxation parameter using the steepest descent
approach, and guarantee an error reduction of at least 1− 2/(1 + κ(Pω)). Thus, the
question about guaranteeing best convergence rates for (2.12) is essentially equivalent
to determining positive definite Pω with (close to) minimal condition numbers. To
this end, let Ω denote the family of all parameter sets ω such that Pω is bounded and
strictly positive definite. Then, the optimal error reduction rate ρ∗ can be expressed
as

ρ∗ = inf
ω∈Ω
‖Id− Pω‖a = 1− 2

1 + κ∗
, κ∗ = inf

ω∈Ω
κ(Pω) . (2.13)

Note that Ω may contain parameter sets with some negative or zero ωi. To cover such
situations, the theory of subspace correction methods based on stable space splittings
(2.1) is not of immediate help, as it can only deal with the case ωi > 0. Indeed,
the operator P associated with the space splitting (2.1) becomes Pω if the auxiliary
bilinear forms bi(ui, vi) are replaced by their weighted versions ω−1

i · bi(ui, vi), i ∈ I.
Thus, whenever the space splitting is stable, and 0 < ωmin ≤ ωi ≤ ωmax < ∞, the
space splitting with these modified auxiliary scalar products is also stable according
to (2.3), and satisfies

ωmin

ωmax
κ(P ) ≤ κ(Pω) ≤ ωmax

ωmin
κ(P ) .

For ωi > 0 and finite I, this rough estimate guarantees ω ∈ Ω, but does not help with
minimizing κ(Pω), nor with dealing with sets ω ∈ Ω which contain some negative ωi.

2.2.1. A priori choice of scaling parameters. We want to find a set ω∗ ∈ Ω
that realizes or at least comes close to the optimal error reduction rate (2.13), i.e.
ρ∗ = ρ(Pω∗) and κ∗ = κ(Pω∗), respectively.

Even though we do not believe that this leads to a practically useful approach
in this generality, we mention that the problem of finding ω∗ can be formulated as
semi-definite program (if H is finite dimensional, and I is finite). To this end, we set

A =

(
0 0
0 −Id

)
, Ai =

(
−Ti 0

0 Ti

)
, A′ =

(
Id 0
0 0

)
and minimize λ with respect to the vector of variables (ω, λ) subject to the constraint

A +
∑
i∈I

ωiAi + λA′ ≥ 0 , (2.14)
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where the inequality ≥ 0 means that the 2 × 2-matrix of operators on the left-hand
side of (2.14) needs to be positive semi-definite. For more information on semi-
definite programs, we refer the reader to [VB96]. The resulting set of weights ω∗

realizes the optimal error reduction rate (2.13). Indeed, if (ω̃, λ̃) is a minimizer of λ
satisfying (2.14), we have

κ∗ = λ̃, ω∗i =
2ω̃i

1 + λ̃
, i ∈ I .

In Section 3, we will tackle this problem for sparse grid discretizations in a less general
but more efficient way by incorporating knowledge on the tensor product structure of
sparse grid spaces and a norm equivalence (3.4).

2.2.2. Variable and non-linear choice of scaling parameters: OptiCom.
There is a nonlinear iterative method which generalizes the line search (2.9) of the
steepest descent method for (2.10), and provides a safe lower bound for the best
possible error reduction factor ρ∗ from (2.13). It was introduced in [JN99] and used
in the context of subspace correction methods for L2-data approximation with sparse
grids in [Heg03]. It was later called OptiCom [Gar06, HGC07]. In the following, we
essentially recall some general results and observations from [JN99]. We will apply
this approach to our sparse grid setting in Section 3.

The update formula of OptiCom is the same as in (2.12), i.e.,

u(m+1) = u(m) +
∑
i∈I

ω
(m)
i Tie

(m) = u(m) + Pω(m)e(m), m = 0, 1, . . . , (2.15)

however, the parameter set ω(m) = (ω
(m)
i )i∈I now depends on u(m): We obtain ω(m)

by solving the quadratic minimization problem

‖u− u(m) −
∑
i∈I

ω
(m)
i Tie

(m)‖2a → min
ω(m)

(2.16)

in each iteration step m. This is typically done by solving a system

Ã(m)ω(m) = b̃(m)

of linear equations, where the system matrix Ã(m) ∈ R#I×#I is positive semi-definite
with

(Ã(m))ij = a(Tie
(m), Tje

(m)) for i, j ∈ I

and the right-hand side b̃(m) ∈ R#I is given by

(b̃(m))i = a(e(m), Tie
(m)) = F (Tie

(m))− a(u(m), Tie
(m)) for i ∈ I .

The OptiCom iteration converges at least as fast as any stationary additive Schwarz
iteration, and thus provides a lower bound for the convergence rate of the latter. The
following theorem can also be found in [JN99].

Theorem 2.1. The error e(m) = u− u(m) of the OptiCom iteration (2.15) with
ω(m) from (2.16) for the space splitting (2.1) decays in energy norm according to

‖e(m+1)‖a ≤ ρ∗‖e(m)‖a, m ≥ 0 ,
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where ρ∗ is the optimal error reduction factor (2.13) for additive Schwarz methods
based on the same space splitting.

Proof. As above, denote by ω̃(m) the solution of the minimization problem (2.16).

Then e(m+1) = e(m) −
∑
i∈I ω̃

(m)
i Tie

(m), and, for any fixed parameter set ω, we have

‖e(m+1)‖a = ‖u− u(m) −
∑
i∈I

ω̃
(m)
i Tie

(m)‖a ≤ ‖e(m) −
∑
i∈I

ωiTie
(m)‖a

= ‖(I − Pω)e(m)‖a ≤ ‖I − Pω‖a‖e(m)‖a .

It remains to take the infimum over all ω ∈ Ω to get the claimed bound for the error
reduction factor of the OptiCom iteration.

To conclude this short subsection, we point to the CG version of OptiCom. It
could further reduce the dependence of the convergence estimates on the condition
of the additive Schwarz splitting from an average reduction factor per step of (1 −
O((κ∗)−1)) to (1−O((κ∗)−1/2)). Suppose that we have, starting from u(0) = u(−1) =

0, already computed u(1), . . . , u(m), and that ω(m) = (ω
(m)
i )i∈I and η(m) are to be

determined as solutions of the slightly modified minimization problem

‖u− u(m) −
∑
i∈I

ω
(m)
i Tie

(m) − η(m)(u(m) − u(m−1))‖2a → min
ω(m),η(m)

. (2.17)

Then,

u(m+1) = u(m) +
∑
i∈I

ω
(m)
i Tie

(m) + η(m)(u(m) − u(m−1)) (2.18)

realizes a CG-OptiCom iteration step. We note that, for fixed ω, solving the two-
parameter (τ (m) and η(m)) minimization problem

‖u− u(m) − τ (m)
∑
i∈I

Tie
(m) − η(m)(u(m) − u(m−1))‖2a → min

τ(m),η(m)
(2.19)

is equivalent to the usual PCG-iteration for solving (1.1) with a preconditioner derived
from the additive Schwarz operator Pω, thus the name CG-OptiCom. By including
the parameter set ω(m) into the minimization (2.17) we incorporate the scaling of the
subproblems. This makes the convergence analysis more difficult, since the precondi-
tioner is no longer fixed but changes from iteration to iteration. This difficulty was
discussed in a slightly different setting in [KL07]. Nevertheless, it is easy to see from
the proof of Theorem 2.1 (just set η(m) = 0) that the CG-OptiCom has at least the
same error reduction factor per step as the OptiCom. In [JN99] this version and other
CG variants of a variable preconditioner were presented, but no stronger convergence
estimates could be proven. However, the numerical experiments in Section 5 suggest
a still significant speed-up by using the CG-OptiCom (2.18) over the plain OptiCom,
i.e. the update (2.15) with the parameter set from (2.16).

3. Optimal scaling parameters for sparse grid discretizations. In Sec-
tion 2, we recalled the general theory of additive subspace correction methods and
introduced the scaling parameters. Now, we concentrate on sparse grid discretizations
of elliptic PDEs and discuss three approaches that produce optimal or close-to-optimal
scaling parameters and convergence rates.

Sparse grid discretizations assume a tensor product structure. Even though our
main examples are discretizations of standard elliptic boundary value problems on
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product domains in Rd, we want to develop our approach in a slightly more abstract
setting. More precisely, we assume that we have a Hilbert space V := V (1)⊗ . . .⊗V (d)

given as the tensor product of Hilbert spaces V (i) each of which is the closure of the
union of an increasing ladder of its nontrivial finite-dimensional subspaces

V
(i)
0 ⊂ V (i)

1 ⊂ . . . , i = 1, . . . , d . (3.1)

Introducing the orthogonal complement spaces W
(i)
l = V

(i)
l 	V (i) V

(i)
l−1 for l ≥ 1, and

setting W
(i)
0 := V

(i)
0 , we can obviously write V as the (·, ·)V -orthogonal (from now on

V -orthogonal) sum V =
⊕

l∈Nd Wl of the subspaces

Wl = W
(1)
l1
⊗ . . .⊗W (d)

ld
, l = (l1, . . . , ld) ∈ Nd . (3.2)

Similarly, any finite-dimensional space Vl = V
(1)
l1
⊗ . . . ⊗ V (d)

ld
⊂ V , l ∈ Nd, is the V -

orthogonal sum Vl =
⊕

k≤lWk, where the inequality k ≤ l is meant componentwise.
In what follows we assume that the positive definite bilinear form a(u, v) is well-

defined on all Vl, and that we can define the Hilbert space Ha as the a(·, ·)-closure of
span{Vl : l ∈ Nd}. Of course, for a computational treatment of the problem (1.1),
we have to restrict ourselves to finite-dimensional spaces. To this end, we define the
so-called generalized sparse grid spaces

VI :=
∑
l∈I

Vl ⊂ Ha , (3.3)

where the index set I ⊂ Nd describes the anisotropic full grid spaces Vl that are to be
included in the discretization. Note that the free choice of the index set I allows for
dimension-adaptivity, whereas space-adaptivity is not possible since the subspaces Vl
are either fully included or excluded by l ∈ I or l 6∈ I, respectively. Since Vk ⊂ Vl
whenever k ≤ l, we always silently assume that I satisfies the monotonicity condition
that l ∈ I and k ≤ l implies k ∈ I. Then it is easy to verify that

VI =
⊕
k∈I

Wk

can be written as V -orthogonal sum of the subspaces Wk with k ∈ I.
The basis for all further considerations in this paper is that we assume a set of

fixed positive weights βk,k ∈ Nd, and an equivalence of norms

‖u‖2Ha
'
∑
k∈Nd

βk‖wk‖2V , (3.4)

where wk ∈ Wk,k ∈ Nd, denote the components of the unique V -orthogonal decom-
position of u ∈ Ha, i.e., u =

∑
k∈Nd wk. In other words, we assume that

{Ha, a(·, ·)} =
∑
k∈Nd

{Wk, βk(·, ·)V } (3.5)

is a stable subspace splitting with a finite condition number denoted by κW . Note that
in (3.5) we have a decomposition of Ha into a direct sum of V -orthogonal subspaces,
which allows us to omit the trivial embedding operators RWk : Wk → Ha that corre-
spond to the Ri in (2.1) and (2.2).
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Of course, for any generalized sparse grid space VI ⊂ Ha, the norm equiva-
lence (3.4) implies an associated stable subspace splitting

{VI , a(·, ·)} =
∑
k∈I
{Wk, βk(·, ·)V } (3.6)

with condition numbers κWI uniformly bounded by κW . Thus, if #I <∞, we arrive at
subspace correction methods for solving (1.1) on generalized sparse grid spacesH = VI
with convergence rates that are uniform with respect to I. The computational cost
per step of these optimally converging methods essentially depend on the involved
subproblem solvers TWk : VI → Wk. Since Wk ⊂ H, we can write (2.5) for bi(·, ·) =
(·, ·)V directly in the form

(TWk u,wk)V = a(u,wk) ∀ wk ∈Wk .

Of course, we have to account for the βk-weights in (3.6), which is done in the update
step of the resulting subspace correction method

u(m+1) = u(m) + τ
∑
k∈I

ωWk TWk e(m), m = 0, 1, . . . (3.7)

by setting ωWk = β−1
k ,k ∈ I. Here, an appropriately selected relaxation parameter

τ > 0 guarantees convergence rates uniformly in I. Note that methods like steepest
descent or conjugate gradients do not need τ to be fixed a priori but instead determine
a parameter τ = τ (m) automatically in every iteration step m.

However, computing with the spaces Wk is often not as convenient as computing
with the original anisotropic full grid spaces Vl. This is why we now turn to the
splitting

{VI , a(·, ·)} =
∑
l∈I
{Vl, γl(·, ·)V } (3.8)

with positive weights γl, l ∈ I, which only needs subspace solvers TVl : VI → Vl ⊂ VI ,

(TVl u, vl)V = a(u, vl) ∀ vl ∈ Vl ,

that operate on full grid subspaces. The subspace correction method, which is based
on the V -splitting corresponding to (3.8), is then of the form

u(m+1) = u(m) + τ
∑
l∈I

ωVl T
V
l e

(m), m = 0, 1, . . . , (3.9)

with ωVl = γ−1
l . We then pose the question for γl-weights for a V -splitting based

method (3.9) such that the resulting convergence rates are competitive with the rates
of the W -splitting based method (3.7) for given βk,k ∈ I.

The described setup is motivated by the discretization of Ht-elliptic problems
by regular sparse grid spline spaces VJ over the d-dimensional unit cube, where the
defining index set

J =
{
l ∈ Nd : |l|1 ≤ J

}
(3.10)
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is of size Θ(Jd). The restriction on t is |t| < r + 3/2 if we use Cr spline spaces of
fixed degree m ≥ r + 1 over dyadic partitions of step-size 2−l as the building blocks

V
(i)
l . Then, the equivalence of norms (3.4) based on the W -splitting is given by

‖u‖2Ht '
∑
k∈Nd

22t|k|∞‖wk‖2L2
, |k|∞ = max

i=1,...,d
ki , (3.11)

where the wk ∈Wk,k ∈ Nd, denote the L2-orthogonal components of the function u ∈
Ht, see [Osw94] for such kind of results. This, of course, implies the W -splitting (3.5)
with βk = 22t|k|∞ ,k ∈ Nd. The resulting condition number κW is a uniform upper
bound for the splitting condition number κWI of (3.6) with I = J . We note that, for
some elliptic PDE problems with sums of tensor product operators as discussed for
instance in [GK09, GO95b], the βk-weights can be modified such that the splitting
condition number κW is independent of the dimension d (see [GH14] for the case
t = 1). We revisit this model problem in the next subsections as a possible application
and provide numerical experiments for the H1

0 -elliptic Laplace problem (the inclusion
of Dirichlet boundary conditions is not essential) with linear splines (r = 0, m = 1)
in Section 5.

In the following subsection, we present a method that explores the theory of
stable subspace splittings and shows how to determine (positive) γl-weights by solving
a linear optimization problem such that the condition number of the splitting is in
some sense minimal. We show that, in the Ht-elliptic case, the resulting condition
numbers are not bounded independently of the sparse grid level J or the dimension d,
but grow as Θ(Jd−2).

Then, in Subsection 3.2, we see that there is an algebraic transformation that
allows us to obtain optimal convergence rates, i.e., the same rates we would expect
from a W -splitting based method given the norm equivalence (3.4). To this end,
we have to circumvent the subspace splitting theory since partially negative scaling
parameters occur. We explicitly state for which sets of positive and negative scaling
parameters the resulting subspace splitting operator remains positive definite.

Finally, in Subsection 3.3, we apply the OptiCom from Subsection 2.2.2 to the
sparse grid discretization. The OptiCom delivers the best possible scaling (including
negative values) in each step of the iteration and results in a convergence that is at
least as good as any fixed choice of scaling parameters, unfortunately at the extra cost
of setting up and solving an auxiliary system of linear equations in every iteration step.
It is therefore not competitive if an explicit norm equivalence (3.4) and the algebraic
transformation is known. Nevertheless, the OptiCom does not take the detour via
the W -splitting (3.6) and poses a lower bound on the convergence rate that we can
achieve by optimizing fixed a-priori weights. So the OptiCom can be used to check
whether the fixed scaling parameters obtained by other methods are close-to-optimal.

3.1. Stable space splittings with positive scaling parameters. Now, we
want to determine weights γl > 0, l ∈ I, such that the splitting number κVI of (3.8)
is small. To this end, we take a detour: Instead of estimating κVI by comparing
a(u, u) = ‖u‖2a and the squared splitting norm

|||u|||2{γl}I ,V = inf
u=

∑
l∈I ul

∑
l∈I

γl‖ul‖2V (3.12)
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associated with (3.8) directly, we concentrate on comparing |||u|||2{γl}I ,V and the squared
splitting norm

|||u|||2{βk}I ,W =
∑
k∈I

βk‖wk‖2V , u =
∑
k∈I

wk, wk ∈Wk (3.13)

associated with (3.6). We define

0 < λWV
min := inf

u∈VI

|||u|||2{βk}I ,W

|||u|||2{γl}I ,V
≤ λWV

max := sup
u∈VI

|||u|||2{βk}I ,W

|||u|||2{γl}I ,V
<∞ ,

and try to minimize κWV
I := λWV

max/λ
WV
min which is the relative condition number be-

tween the two splittings∑
k∈I
{Wk, βk(·, ·)V } and

∑
l∈I
{Vl, γl(·, ·)V } (3.14)

based on the same underlying generalized sparse grid space VI . Since

a(u, u)

|||u|||2{γl}I ,V
=

a(u, u)

|||u|||2{βk}I ,W
·
|||u|||2{βk}I ,W

|||u|||2{γl}I ,V
,

we get an upper and lower estimate of the condition number κVI of (3.8) as

max(κWI /κ
WV
I , 1) ≤ κVI ≤ κWI κWV

I . (3.15)

Thus, under the assumption that an orthogonal splitting (3.6) (with a preferably low
κWI ) is available, the minimization of κWV

I results in tight upper and lower bounds
for κVI .

In the remainder of this subsection, we express κWV
I in explicit form as a function

of the parameters ωVl = γ−1
l ≥ 0, l ∈ I, which can then be minimized using an LP.

Note that we do not exclude the case ωVl = 0 (formally, this corresponds to γl =∞) for
which the corresponding subspaces Vl in (3.12) and thus the corresponding operators
TVl in (3.9) are “switched off”. As a first step, we express the norm |||u|||{γl}I ,V in
terms of V -orthogonal decompositions into the subspaces Wl.

Lemma 3.1. For weights γl, l ∈ I, and αk,k ∈ I, with

αk := (
∑
l≥k

γ−1
l )−1 for k ∈ I , (3.16)

the norm (3.12) is given by

|||u|||{γl}I ,V = |||u|||{αk}I ,W . (3.17)

Proof. We obtain the result by the following rearrangements

|||u|||2{γl}I ,V = inf
ul∈Vl,l∈I
u=

∑
l∈Iul

∑
l∈I

γl‖ul‖2V

= inf
wl,k∈Wk,l∈I,k≤l
u=

∑
l∈I,k≤lwl,k

∑
l∈I

γl
∑
k≤l
‖wl,k‖2V

= inf
wl,k∈Wk,k∈I,l≥k
u=

∑
k∈I,l≥kwl,k

∑
k∈I

∑
l≥k

γl‖wl,k‖2V ,
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where we first replaced each ul by its unique V-orthogonal decomposition ul =∑
k≤l wl,k with wl,k ∈ Wk, and then changed the order of summation. Note that

wk =
∑

l≥k wl,k must hold for all k ∈ I. Thus the infimum and the summation
over k commute, and we get

|||u|||2{γl}I ,V =
∑
k∈I

inf
wl,k∈Wl,l≥k
wk=

∑
l≥kwl,k

∑
l≥k

γl‖wl,k‖2V

=
∑
k∈I

(∑
l≥k

γ−1
l

)−1

‖wk‖2V . (3.18)

The equality (3.18) follows from solving a quadratic minimization problem, see also
[GO95b]. Note that we can conclude αl > 0 for all l ∈ I if γl is finite for at least all
maximal subspaces Vl in VI (i.e., those Vl for which Vl ⊂ Vk ⊂ VI implies k = l). But
this must be true for any splitting (3.8), which concludes the proof.

Lemma 3.1 says that the norm ||| · |||{γl}I ,V is also the norm of a weighted space

splitting of VI into V -orthogonal subspaces Wk with the αk-weights from (3.16). Since
W -splittings are direct sum splittings this means we can easily compute the splitting
condition number κWV

I between the V -splitting and the W -splitting in (3.14) by
directly comparing βk and αk for k ∈ I. The following theorem is therefore an
immediate consequence of Lemma 3.1.

Theorem 3.2. Let I be an index set, and consider the splittings in (3.14) with
weights (βk > 0)k∈I and (γl > 0)l∈I , where γl <∞ or ωVl = γ−1

l > 0 for at least all
maximal subspaces Vl in VI . Then, the best constants in the norm equivalence

λmin|||u|||2{γl}I ,V ≤ |||u|||
2
{βk}I ,W ≤ λmax|||u|||2{γl}I ,V ,

valid for any u =
∑

k∈I wk ∈ VI , where wk ∈Wk, k ∈ I, are given by

λmax = max
k∈I

βk
∑

l≥k
γ−1
l and λmin = min

k∈I
βk
∑

l≥k
γ−1
l .

In particular, it holds

κWV
I =

maxk∈I βk
∑

l≥kγ
−1
l

mink∈I βk
∑

l≥kγ
−1
l

. (3.19)

Now, we want to minimize κWV
I with respect to (γl)l∈I . To this end, we write

κWV
{γl}I instead of κWV

I to indicate the dependence of the condition number on the set
of γl-weights and state the following LP.

Lemma 3.3. We can formulate the problem of finding the optimal weights and
scaling parameters

(γ∗l )l∈I := arg min
(γl>0)l∈I

κWV
{γl}I with ωVl = γ−1

l , l ∈ I, (3.20)

as the LP

Minimize λ

subject to
∑
l≥k

ωVl ≥ β−1
k ∀ k ∈ I (3.21)

and β−1
k λ−

∑
l≥k

ωVl ≥ 0 ∀ k ∈ I (3.22)

and λ ≥ 0, ωVk ≥ 0 ∀ k ∈ I . (3.23)
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The vector of unknowns
(
λ, (ωVl )l∈I

)
of this LP is of size #I + 1 and the parameter

λ represents an upper bound for κWV
{γl}I .

Proof. Let us check that the above LP is indeed minimizing κWV
{γl}I . The inequality

constraints (3.21) are equivalent to

βk
∑

l≥k
γ−1
l ≥ 1, k ∈ I ,

which ensures that for any feasible vector the denominator of (3.19) is at least 1.
Moreover, the inequalities (3.21) imply that for any k ∈ I there is at least one l ≥ k
in I such that γl < ∞, i.e., feasible

(
λ, (ωVl )l∈I

)
create admissible weight sets such

that VI =
∑

l∈I
γl<∞

Vl. The other set of constraints (3.22) can be rewritten as

βk
∑

l≥k
γ−1
l ≤ λ , k ∈ I ,

which implies that for any feasible vector we guarantee λ ≥ κWV
{γl}I according to (3.19).

Altogether, this specifies an LP with non-empty feasibility set, and any optimal solu-
tion provides a set of weights (γ∗l )l∈I minimizing κWV

{γl}I .
The LP in Lemma 3.3 can be solved by one of the common LP algorithms. No

strongly polynomial-time algorithm is known [Sma98], but in our numerical experi-
ments the computational cost of solving the LP was negligible compared to solving
the variational problem (1.1).

We now return to our model problem from the beginning of the current Section 3.
In [GO94], a set of γl-weights for a regular sparse grid space splitting (i.e., (3.8)
with I = J from (3.10)) was constructed which resulted in a condition number
κVJ = O(Jd−2) for the special case of H1-elliptic problems discretized by linear splines.
Theorem 3.4 gives a similar result for general Ht-elliptic problems. Note that it is
asymptotically sharp, i.e., κVJ possesses a matching lower bound.

Theorem 3.4. Let d ≥ 2, and consider the discretization of a Ht-elliptic problem
with regular sparse grid spaces VJ based on Cr splines of degree m ≥ r + 1, where
0 < t < r + 3/2. We denote the condition number of the splitting (3.8) with I = J
and the set of weights (γl)l∈I by κV{γl}J . For optimal γl-weights, the condition number

κV{γl}J grows as Θ(Jd−2) in J , i.e., it holds

max(cJd−2, 1) ≤ inf
(γl>0)l∈J

κV{γl}J ≤ CJ
d−2

with constants 0 < c < C <∞ independently of J ≥ 1.
Proof. According to (3.15), it is sufficient to prove this result for the optimal value

of κWV
{γl}J of (3.14), where the underlying weights βk = 22t|k|∞ ,k ∈ J , originate from

the well-known norm equivalence (3.4) for Ht. To obtain upper and lower bounds, we
use the characterization of the optimal κWV

{γl}J via the LP in Lemma 3.3. The value

of λ associated with any feasible solution of the LP gives an upper bound for κWV
{γl}J .

We choose the set of weights (γl)l∈J from [GO94] to define the ωVl as follows:

ωVl =

 2−2t|l|∞ , |l|1 = J ,
2−2tl, l = (l, . . . , l), l = 0, . . . , bJ/dc ,
0, otherwise .

(3.24)

It is easy to check that, with this choice for the ωVl , the inequalities (3.21) are
automatically satisfied since, for any k ∈ J , there is a l ∈ J with l ≥ k such that
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ωVl = β−1
k . Indeed, if k := |k|∞ ≤ J/d, then l = (k, . . . , k) ∈ J will do, if k > J/d

then we can find a l ≥ k with |l|∞ = k, and |l|1 = J since k ≤ |k|1 ≤ J and dk > J .
The inequalities in (3.22) are satisfied by determining a suitable λ. To this end,

we have to bound the maximum of the quantities

λk := βk
∑

l∈J : l≥k
ωVl , k ∈ J .

Since βk = 22t|k|∞ depends on k = |k|∞ only, the maximum of the λk with the same
value k is obtained for k = (k, 0, . . . , 0). Thus, for each k = 0, . . . , J , we must ensure
that

λ ≥ λ(k,0,...,0) =

bJ/dc∑
l=k

22t(k−l) +

J∑
l=k

22t(k−l) ∑
l≥(k,0,...,0)
|l|1=J, |l|∞=l

1 .

The first sum stems from the ωVl > 0 with l = (l, . . . , l) ≥ (k, 0, . . . , 0) (if such indices
exists in J ), and is uniformly bounded with respect to k and J since t > 0. The
second sum stems from the remaining non-zero ωVl with l ≥ (k, 0, . . . , 0) and |l|1 = J ,
ordered by their value l := |l|∞ ≥ k. For a rough estimate of the counting sum,
observe that

{l ≥ (k, 0, . . . , 0) : |l|1 = J, |l|∞ = l} ⊂
d⋃
i=1

{l : li = l,
∑
j 6=i

lj = J − l} .

Thus, ∑
l≥(k,0,...,0)
|l|1=J, |l|∞=l

1 ≤ d ·#{n ∈ Nd−1 : |n|1 = J − l} ≤ C ′dJd−2

with C ′ independent of l, k, and J . This shows that the first and second sum to-
gether, and thus the maximum of the λk, are bounded by CJd−2, with a constant C
independent of k and J . As a consequence, we can always choose some λ ≤ CJ (d−2)

to arrive at a feasible vector
(
λ, (ωVl )l∈I

)
. This gives the desired upper bound.

A matching lower bound can be found from considering the corresponding dual
LP. To formulate it we use two vectors y = (yk)k∈J and z = (zk)k∈J associated
to (3.21) and (3.22), respectively. The dual problem then reads

Maximize
∑
k∈J

β−1
k yk (3.25)

subject to
∑
k∈J

β−1
k zk ≤ 1 (3.26)

and
∑
k≤l

yk ≤
∑
k≤l

zk ∀ l ∈ J (3.27)

and y, z ≥ 0 . (3.28)

All we have to do is to find a feasible pair of vectors for this dual LP and to evaluate
the target function on it. To this end, fix the smallest integer k ≥ J/2 and set

zk =

{
22tk, k = (k, 0, . . .) ,
0, otherwise ,

yk =

{
22tk, k = (k, k2, . . . , kd), |k|1 = J ,
0, otherwise .
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These vectors trivially fulfil (3.26) and (3.28). For (3.27) observe that
∑

k≤l yk con-

tains exactly one non-zero term (namely yk = 22tk if k = (k, k2, . . . , kd) satisfies
|k|1 = J and equals l). Since (k, 0, . . . , 0) ≤ l for such l, we have

22tk =
∑
k≤l

yk = z(k,0,...,0) =
∑
l≤k

zl .

For all other l, the inequality (3.27) is automatically valid since
∑

k≤l yk = 0.
Now, the value of the target functional for this feasible pair of vectors is∑

k∈J
β−1
k yk =

∑
k2+...+kd=J−k

1 ≥ c′(J − k)d−2 ≥ cJd−2 ,

where we have used the fact that, due to k ≥ J/2 for all k with yk = 22tk > 0, we
have |k|∞ = k, and thus β−1

k yk = 1. This proves the lower bound.

3.2. Algebraic transformations. In Subsection 3.1, we have seen that for
sparse grid discretizations of standard Ht-elliptic problems (t > 0) in dimensions
d ≥ 3, we cannot expect an optimal preconditioner derived from (3.8) using positive
weights only. We now present an alternative approach which results in an optimally
converging iterative scheme of the form (3.9) by allowing also negative relaxation
parameters ωVl , l ∈ I. For this, we need the V -orthogonal projectors QVl : VI → Vl
and QWk : VI →Wk with

(QVl u, vl)V = (u, vl)V ∀ vl ∈ Vl , and
(QWk u,wk)V = (u,wk)V ∀ wk ∈Wk ,

respectively. The following simple Lemma proves helpful for future considerations.
Lemma 3.5. For k ≤ l, we have QVk T

V
l = TVk and QWk TVl = TWk .

Proof. This immediately follows from

(QVk T
V
l u, vk)V = (TVl u, vk)V = a(u, vk) = (TVk u, vk)V ∀ vk ∈ Vk ,

and

(QWk TVl u,wk)V = (TVl u,wk)V = a(u,wk) = (TWk u,wk)V ∀ wk ∈Wk .

The following theorem gives a formula for rewriting the subspace correction
scheme based on a W -splitting (3.7) as a subspace correction method based on a
V -splitting (3.9).

Theorem 3.6. Given the operator Pω =
∑

l∈I ω
V
l T

V
l , we have

Pω =
∑
k∈I

ωWk TWk

if

ωVl =
∑

e∈{0,1}d
l+e∈I

(−1)|e|1ωWl+e . (3.29)
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Proof. Given the one-dimensional orthogonal projections QWl,i : V (i) → W
(i)
l and

QVl,i : V (i) → V
(i)
l for i = 1, . . . , d and l ∈ N, it is not hard to see that QWl,i =

QVl,i − QVl−1,i with QV−1,i := 0. Then, due to the tensor product structure of V , we
have for k ∈ I

QWk = QWk1,1 ⊗Q
W
k2,2 ⊗ · · · ⊗Q

W
kd,d

= (QVk1,1 −Q
V
k1−1,1)⊗ (QVk2,2 −Q

V
k2−1,2)⊗ · · · ⊗ (QVkd,d −Q

V
kd−1,d)

=
∑

e∈{0,1}d
k−e∈I

(−1)|e|1QVk−e ,

which is the classical combination formula [HGC07, GSZ92, BGRZ94, BGR94] for
projections based on tensor product scalar products. It carries over to the subspace
solvers by using Lemma 3.5 twice, i.e. we have

TWk = QWk TVk =
∑

e∈{0,1}d
k−e∈I

(−1)|e|1QVk−eT
V
k =

∑
e∈{0,1}d
k−e∈I

(−1)|e|1TVk−e .

Then we can easily write∑
k∈I

ωWk TWk =
∑
k∈I

ωWk
∑

e∈{0,1}d
k−e∈I

(−1)|e|1TVk−e =
∑
l∈I

( ∑
e∈{0,1}d
l+e∈I

(−1)|e|1ωWl+e

)
TVl .

Theorem 3.6 shows that our W -splitting based Schwarz operator can be expressed
using the operators TVl only. A similar idea was already used in [BPX90] for the full
grid case, i.e., when the underlying space splitting is based on spaces Vl := V(l,...,l).

Often, this case is benign because for scaling parameters ωWl = 2−2tl, typical for
Ht-elliptic problems with t > 0, we have

ωVl = ωWl − ωWl+1 = 2−2lt − 2−2t(l+1) = 2−2l(1− 2−2t) ' ωWl ,

which means that we do not need to form orthogonal complements at all, neither
implicitly nor explicitly. In our sparse grid case, the differences involve however 2d

terms, and we generally cannot expect ωWl ' ωVl to hold uniformly in l. Moreover,
negative ωVl are possible.

If we set ωWk = 1 for k ∈ I, Theorem 3.6 yields the standard combination
technique [GSZ92, BGRZ94, BGR94], a popular method for approximating sparse
grid solutions of, e.g. partial differential equations. Our case differs in the respect that
our subspace solvers are based on the auxiliary bilinear forms (·, ·)V instead of a(·, ·).
Furthermore, we have ωWk = β−1

k with βk that stem from the norm equivalence (3.4).
Finally, we do not stop after one iteration step but converge to the true sparse grid
solution.

As already mentioned in Subsection 2.2, it is crucial that the operator Pω is
positive definite. This is guaranteed for positive weights, but Theorem 3.6 suggests
that even some weights with partially negative weights may result in a positive definite
operator. We characterize these ω = (ωVl )l∈I by the following theorem.

Theorem 3.7. Given the operator Pω =
∑

l∈I ω
V
l T

V
l , we have

Pω =
∑
k∈I

ωWk TWk
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if

ωWk =
∑
l≥k

ωVl . (3.30)

It follows that Pω is positive definite if and only if∑
l≥k

ωVl > 0 ∀ k ∈ I . (3.31)

Proof. With Lemma 3.5, we get

Pω =
∑
l∈I

ωVl T
V
l =

∑
l∈I

ωVl
∑
k≤l

QWk TVl =
∑
l∈I

ωVl
∑
k≤l

TWk =
∑
k∈I

(∑
l≥k

ωVl

)
TWk

and thus

a(Pωu, u) =
∑
k∈I

(∑
l≥k

ωVl

)
a(TWk u, u) =

∑
k∈I

(∑
l≥k

ωVl

)
(TWk u, TWk u)V .

Now, if the scaling parameters ωVl satisfy (3.31) and if u 6= 0, it follows directly that
a(Pωu, u) > 0. Otherwise, if the condition (3.31) is violated for a k ∈ I, pick a
zk ∈Wk, zk 6= 0 and compute u ∈Wk ⊂ VI by

a(u,wk) = (zk, wk)V ∀ wk ∈Wk .

Then TWj u = δjkzk and a(Pωu, u) =
(∑

l≥k ω
V
l

)
(zk, zk)V ≤ 0, which concludes the

proof.
Let us now discuss whether the algebraic scaling parameters ωVl , l ∈ I, given

by (3.29) satisfy (3.31). Theorem 3.6 and Theorem 3.7 tell us that∑
k∈I

ωWk TWk =
∑
l∈I

ωVl T
V
l =

∑
k∈I

(
∑
l≥k

ωVl )TWk ,

so we see that
∑

l≥k ω
V
l = ωWk = β−1

k > 0 for all k ∈ I and (3.31) is satisfied.
The LP in Lemma 3.3 contains the condition (3.31) in (3.21), thus the positivity
constraints (3.23) for the ωVl , l ∈ I, are not necessary to obtain a positive definite
operator Pω. In fact, the set of scaling parameters (ωVl )l∈I proposed in (3.29) for
ωWk = β−1

k ,k ∈ I, would be a solution to the LP with λ = 1 if we could remove the
positivity constraints in (3.23). However, they are an integral part of the derivation
using the subspace splitting theory.

3.3. OptiCom. Finally, we turn to another method that chooses the scaling
parameters in a non-linear way in every single iteration step. Moreover, they are not
restricted to be positive and do not necessarily satisfy (3.31). In Subsection 2.2.2,
we gave a general description of how to find an optimal set of scaling parameters in
every iteration step by solving an auxiliary minimization problem. This description
largely followed [JN99] and was not confined to sparse grids. We now discuss aspects
that are specific to the sparse grid case. They are similar to those that arise in the
context of subspace correction methods for L2-data approximation with sparse grids
in the so-called OptiCom [Heg03, Gar06, HGC07].
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The minimization problem (2.16) reads in the context of sparse grid discretizations
as

‖u− u(m) −
∑
l∈I

ω
(m)
l TVl e

(m)‖2a → min
ω(m)

(3.32)

with ω(m) = (ω
(m)
l )l∈I , and leads in every iteration step m to a new system

Ã(m)ω(m) = b̃(m) , (3.33)

of linear equations. Here, the system matrix Ã(m) ∈ R#I×#I is positive semi-definite
with

(Ã(m))lk = a(TVk e
(m), TVl e

(m))

for l,k ∈ I, and the right-hand side b̃(m) ∈ R#I is given by

(b̃(m))l = a(e(m), TVl e
(m)) = F (TVl e

(m))− a(u(m), TVl e
(m))

for l ∈ I. Recall that the TVl e
(m) ∈ Vl, l ∈ I, are available from the subproblem solves.

The OptiCom performs the update step (3.9) with τ = 1 and ωVl = ω
(m)
l , l ∈ I,

from the system (3.33), which just corresponds to the minimization problem (3.32).
In contrast to that, the CG version of OptiCom associated with the minimization
problem (2.17) would enlarge the system (3.33) by the unknown η(m). This leads to
one additional entry on the right-hand side and one additional row and column of the
system matrix, which we indicate by the letter η. We have

(Ã(m))η,η = a(u(m) − u(m−1), u(m) − u(m−1)) ,

(b̃(m))η = a(u− u(m), u(m) − u(m−1)) ,

(Ã(m))η,l = a(TVl e
(m), u(m) − u(m−1)) ,

(Ã(m))l,η = a(u(m) − u(m−1), TVl e
(m))

for l ∈ I. In practice, we use a direct method to solve Ã(m)(ω(m), η(m)) = b̃(m).
In order to avoid problems with possibly singular system matrices, we use Tikhonov
regularization with a very small regularization parameter.

Note that the setup and solution of the auxiliary problem (3.32) or (3.33), re-
spectively, involves additional costs in every iteration step. If the number of scaling
parameters in ω(m) is moderate compared to the total number of degrees of freedom,
then the extra work of solving these linear problems can be tolerated. Of course,
the extreme case would be the space splitting into one-dimensional spaces (this is the
case of frame decompositions), which results in an “auxiliary” system (3.33) which
is as large as the original problem. In the sparse grid case, though, the number of
subspaces #I and the total number of degrees of freedom are well-balanced, as we
will see in the next section.

4. Implementation with a generating system. In this section, we describe
the implementation of our different sparse grid subspace correction methods on (Vl)l∈I
and discuss the computational complexity of one iteration step under the assumption
that the variational form a(·, ·) stems from a sum of tensor product operators, e.g.,
for reaction-diffusion systems with constant coefficients. This allows us to apply the
unidirectional principle [Bun92b, BZ96] in due course.
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We assume that the V
(i)
l in (3.1) can be discretized by dyadically refined linear

or higher-order splines with nl = Θ(2l) basis functions on level l. Then, the spaces Vl
have each a basis of d-variate local functions ψl,i, i ∈ χl, with

χl = {(i1, . . . , id) ∈ Nd : 1 ≤ ij ≤ nlj , j = 1, . . . , d} .

The number of degrees of freedom of Vl is nl := #χl =
∏d
j=1 nlj = Θ(2|l|1). For

representing elements in our generalized sparse grid space VI , we use the generating
system

ΨI =
⋃
l∈I
{ψl,i : i ∈ χl} .

It has several advantages and is preferred over constructing hierarchical or wavelet
bases in VI . As dimVl ' dimWl for all l, it follows that the total number of degrees
of freedoms associated with representations in the generating system ΨI is asymptot-
ically the same as dimVI and

NI := #ΨI =
∑
l∈I

nl = Θ
(∑

l∈I
2|l|1

)
.

We use NI and #I for evaluating the computational cost later on.
Our discretized system for solving (1.1) on VI reads

Ax = b ,

where A ∈ RNI×NI is a block-structured matrix with

(A)(l,i),(k,j) = a(ψk,j, ψl,i) ∀ i ∈ χl, j ∈ χk, l,k ∈ I ,

and b = (bl,i)i∈χl,l∈I ∈ RNI is a block-structured vector with

bl,i = F (ψl,i) ∀ i ∈ χl, l ∈ I .

We assume that a(·, ·) stems from a sum of tensor product operators and we can
thus use the unidirectional principle to compute the matrix vector product

y = Ax ⇐⇒ yl,i =
∑
k∈I

∑
j∈χk

a(ψk,j, ψl,i)xk,j ∀ i ∈ χl, l ∈ I

with a computational complexity that is linear in the number of degrees of free-
dom NI , cf. [Bun92b, BZ96, Zei11].

In the general theory presented in Section 2, we had some embedding operators
Ri : Hi → H. In the sparse grid case, we have not explicitly used them, because the
corresponding RVl : Vl → VI are simply the identity in the subspace case Vl ⊂ VI and
can be dropped from the notation. In the matrix-vector setting, we need however the
associated rectangular matrices Rl ∈ RNI×nl that act as the identity on coefficients
that belong to Vl, and pad all other entries with zeros. Now, let x(m) ∈ RNI be
the vector representing the current iterate u(m) in the generating system ΨI . The
corresponding residual is then given by

r(m) = b−Ax(m) = Ae(m) ,
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where e(m) := x − x(m) is the current error vector. The auxiliary variational prob-
lem (2.7) for the space Vl translates into

Mlx
(m)
l = RT

l (b−Ax(m)) = RT
l r

(m) ,

where Ml ∈ Rnl×nl is the mass matrix on the subspace Vl which in the linear spline
case is simply a d-fold Kronecker-product of tridiagonal matrices (or band-limited
matrices in the higher-order case), and can therefore be inverted with computational

costs of O(nl) operations. Having x
(m)
l , the vector representation of u

(m)
l = TVl e

(m) is

simply Rlx
(m)
l . Obviously, these tasks can be performed for all l ∈ I with total costs

of O(NI) operations. All we need to do now is to apply the appropriate scaling param-
eters. For the cases of the ad hoc chosen scaling parameters (3.24), see also [GO94],
LP-optimized scaling parameters (3.20), or algebraic scaling parameters (3.29), the
ωVl are given and fixed, and we can set

x(m+1) = τ (m)
∑
l∈I

ωVl Rlx
(m)
l + η(m)(x(m) − x(m−1)) (4.1)

with optimal τ (m) and η(m) = 0 for the steepest descent case, and optimal τ (m) and
η(m) for the conjugate gradient case. The computation of the optimal values τ (m)

or (τ (m), η(m)) associated with the minimization problem (2.19) leads to a 1× 1 and
2× 2 system of linear equations in the steepest descent and conjugate gradient case,
respectively. Setting up the system requires only a fixed number of matrix-vector
multiplications, which can be computed with O(NI) operations. The solution for
τ (m) or (τ (m), η(m)) can be done with costs of O(1), and the update step (4.1) is
linear in the number of degrees of freedom NI . Altogether, we arrive at a complexity
of the order O(NI). This holds for any generalized sparse grid space.

The OptiCom-approach is more intricate and additionally requires the setup and

solution of (3.33). Then we can perform our update step (4.1) with ωVl = ω
(m)
l and

τ (m) = 1, η(m) = 0 in the steepest descent case, or with τ (m) = 1 and η(m) obtained
from the solution of Ã(m)(ω(m), η(m)) = b̃(m) in the CG-OptiCom case.

We now discuss the additional computational cost associated with the use of
OptiCom. First note that

(Ã(m))lk = a(u
(m)
k , u

(m)
l ) =

〈
Rlx

(m)
l ,ARkx

(m)
k

〉
(4.2)

for all k, l ∈ I and that

(b̃(m))l = F (u
(m)
l )− a(u(m), u

(m)
l ) =

〈
Rlx

(m)
l ,b

〉
−
〈
Rlx

(m)
l ,Au(m)

〉
=
〈
Rlx

(m)
l , r(m)

〉
(4.3)

for all l ∈ I. Thus, for setting up the matrix Ã(m), we have to compute the matrix-

vector products ARkx
(m)
k for every k ∈ I. Then, the entries (Ã(m))lk are computed

by the scalar product with Rlx
(m)
l for all l ∈ I. As these scalar products need only

to be evaluated for coefficients that belong to the subspace Vl, the costs for all l ∈ I
together is O(NI) operations. The same argument applies to the entries (4.3) of the
right hand side. Thus, we arrive at costs of O(NI) operations for every k ∈ I, and
consequently O(#I · NI) operations in total for setting up the system (3.33). The
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same holds true for the CG version. Solving the system (3.33) by a direct method
needs O(#I3) operations. The subsequent update step (4.1) is again linear in NI .
So, the total costs of one OptiCom iteration are O(#I ·NI + #I3 +NI) operations.
Since for generalized sparse grid spaces #I � NI holds, we can conclude that the
total cost complexity of one iteration step is dominated by O(#I ·NI). This is by a
factor of #I more expensive than the costs for the fixed a-priori scaling parameters.

We will now be a little more specific and choose the regular sparse grid setting
I = J (3.10) for level J and dimension d. It is well-known that the dimension of a
regular sparse grid space grows as NJ = Θ(Jd−12J) and #J = Θ(Jd). This means
that the cost for one OptiCom iteration is O(Jd · Jd−12J) = O(J2d−12J), which is
log-linear in NJ , whereas the methods with fixed a-priori scaling parameters are only
linear in NJ .

In previous applications of OptiCom to sparse grids in data mining [Gar06], the
a(·, ·)-products of ul and uk with l 6= k are computed by first embedding ul and uk
into the much larger subspace Vmax(l,k) that contains both functions. This operation is
expensive and typically leads to quadratic costs. Nevertheless, it is hardly avoidable
since in that particular case the data-based energy norm a(·, ·) does not allow the
representation as a sum of tensor products, which is a necessary prerequisite of the
unidirectional principle. Our contribution is to show that we can achieve log-linear
costs rather than quadratic costs if a fast matrix-vector multiplication method like
the unidirectional principle is available.

5. Numerical experiments. In this section, we focus on the Poisson problem

−∆u = f (5.1)

on the open unit cube D = (0, 1)d with f ∈ L2(D) and zero boundary conditions
on ∂D. The weak formulation of (5.1) is a H1

0 (D)-elliptic variational problem of the
form (1.1), where

a(u, v) =

d∑
i=1

( ∂u
∂xi

,
∂v

∂xi

)
L2(D)

, F (u) = (f, u)L2(D) .

For (5.1), a discretization with linear C0 splines is sufficient. More precisely, for the

V
(i)
l in (3.1) we use linear spline spaces defined over dyadic partitions of step-size

2−(l+1) on [0, 1], with homogeneous boundary conditions at the boundary. Note here

that, in order to avoid trivial subspaces for l = 0, the step-size associated with V
(i)
l

is chosen as 2−(l+1) and not as 2−l. See Fig. 5.1 for an illustration in the one- and
two-dimensional cases.

Similar to the Ht-elliptic example discussed in Section 3, the norm equivalence

a(u, u) = ‖u‖2H1
0 (D) '

∑
k∈Nd

( d∑
i=1

22ki
)
‖wk‖2L2

, wk = QWk u, k ∈ Nd (5.2)

holds for H1
0 (D) and the above described linear spline spaces. Thus, we employ the

weights

βk =

d∑
i=1

22ki (5.3)
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L
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v
e
l

Fig. 5.1. The first four levels of a one-dimensional multilevel system on linear splines (left).
Two-dimensional tensorization and the regular sparse grid subspace (right)

in the following experiments. Since
∑d
i=1 22ki ' 22|k|∞ independently of k, this is

only a slight modification of the weights suggested by (3.11) for t = 1. However, this
choice leads to splitting condition numbers κW for (3.5), which are independent of
the space dimension d, cf. [GH14].

5.1. Splitting condition numbers. First, we compare the condition numbers
of the operators Pω associated with the linear iterative methods for the regular sparse
grid case (3.10) with different choices of parameter sets ω discussed above (OptiCom
and CG are nonlinear methods, and left out in this comparison). The results are
shown in Table 5.1. We see that the LP-optimized scaling parameters (3.20) lead to
condition numbers that are improved by a factor of up to 3 compared to the ad hoc
scaling parameters (3.24) proposed in [GO94], which shows that weight optimization
has a positive impact. However, for both scaling parameters, the condition numbers
are of the order Θ(Jd−2), and we can clearly observe their growth for increasing
J in dimensions d ≥ 3. Furthermore, we see that the W -splitting (3.6) with the
weights (5.3) leads to condition numbers that are bounded independently of J and
d. Moreover, they even decrease with rising dimension for sparse grids (this effect
is explained in [GH14]). This condition number is realized by the partially negative
scaling parameters ωVl that stem from the algebraic transformation (3.29) with ωWk =
β−1
k ,k ∈ J .

5.2. Iteration counts. Now, we solve the test problem (5.1) with a random
right-hand side f and a randomly initialized starting vector. We choose J = 10
and d = 4, and plot the reduction of the initial residual in the Euclidean norm
against the iteration count. Figure 5.2 shows the convergence of the V -splitting
based methods with ad hoc (3.24), LP-optimized (3.20) and algebraic (3.29) scaling
parameters as well as for OptiCom. Both the steepest descent approach and the
CG versions are considered. We observe that OptiCom is indeed always at least as
good as any linear method, but the graphs also show that the potential gain from
further optimizing the algebraic scaling parameters is quite limited. Furthermore,
the conjugate gradient approach works for all four methods and roughly halves the
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Table 5.1
Splitting condition numbers of the V -splittings with ad hoc and LP-optimized scaling parameters

and of the W -splitting for different dimensions d and levels J

V -splitting condition number κVJ with ad hoc scaling parameters (3.24)
d \ J 1 2 3 4 5 6 7 8 9 10

1 2.86 3.87 4.74 5.47 6.06 6.55 6.95 7.29 7.58 7.83
2 3.13 5.08 8.12 8.07 10.81 10.37 11.69 11.14
3 3.91 7.92 9.30 14.45 16.60 20.43
4 4.86 12.33 18.84 26.53 38.05
5 5.85 18.30 34.68 47.97
6 6.85 26.38 59.33 94.59
7 7.86 36.92 97.03 175.93
8 8.87 50.16 153.26
9 9.88 66.23 234.01
10 10.88 85.28 345.58

V -splitting condition number κVJ with LP-optimized scaling parameters (3.20)
d \ J 1 2 3 4 5 6 7 8 9 10

1 3.40 4.67 5.17 5.84 6.37 6.80 7.16 7.47 7.74 7.96
2 2.99 4.46 4.97 5.75 6.47 7.04 7.77 7.76
3 2.42 4.05 6.69 8.72 12.31 14.62
4 2.78 5.68 9.47 16.18 23.17
5 3.43 7.85 14.58 26.09
6 4.23 10.92 22.61 41.28
7 5.08 15.02 34.36 67.90
8 5.97 20.15 51.11
9 6.89 26.27 73.92
10 7.81 33.38 103.76

W -splitting condition number κWJ based on (3.6) with weights (5.3)
d \ J 1 2 3 4 5 6 7 8 9 10

1 3.40 4.67 5.17 5.84 6.37 6.80 7.16 7.47 7.74 7.96
2 2.99 4.46 5.06 5.65 6.20 6.65 7.04 7.36
3 2.71 4.28 5.00 5.49 6.06 6.53
4 2.51 4.12 4.94 5.35 5.95
5 2.36 3.97 4.88 5.23
6 2.24 3.83 4.82 5.17
7 2.15 3.71 4.77 5.15
8 2.07 3.60 4.71
9 2.00 3.50 4.66
10 1.94 3.41 4.61

number of necessary iterations (as it should). Furthermore, we see that the LP-
optimized scaling parameters are better than the ad hoc scaling parameters, however,
both methods converge very slowly. We investigate this effect further in the following
experiment, where we vary also J .

In Fig. 5.3 we observe that the residual reduction takes more steps for higher
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Fig. 5.2. Residual reduction with ad hoc scaling parameters, LP-optimized scaling parame-
ters, algebraic scaling parameters, and for OptiCom with the steepest descent method (left) and the
conjugate gradient extension (right) for J = 10 in dimension d = 4

values of J . However, we observe that the residual reduction rate ρ of the algebraic
scaling parameters appears to be bounded from above independently of J , whereas the
convergence rate of the LP-optimized scaling parameters deteriorates quickly. This is
in full agreement with our theory, recall that, according to Theorem 3.4, the growth
of the condition number of the underlying Pω is Θ(J2) for LP-optimized scaling
parameters in dimension d = 4.
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Fig. 5.3. Residual reduction with LP-optimized scaling parameters (left) and algebraic scaling
parameters (right) in dimension d = 4 for different values of J

One final experiment concerns the dimension-dependence of the proposed scaling
parameters. Figure 5.4 shows the residual reduction for J = 10 in the dimensions d =
1, . . . , 4. The convergence rates of the LP-optimized scaling parameters deteriorate
with dimension d ≥ 3, whereas, as remarked earlier, the condition numbers of the
W -splitting and thus the convergence rates of the algebraic scaling parameters are
bounded independently of the dimension. This is true for the specific, problem-
dependent weights (5.3) with our model problem (5.1), and generalizes to problems
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with a sum of tensor product operators similar to the Laplacian. For other weights
(such as the standard weights βk = 22|k|∞ for H1-problems), the d-independence is
lost.
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Fig. 5.4. Residual reduction with LP-optimized scaling parameters (left) and algebraic scaling
parameters (right) for J = 10 in dimensions d = 1, . . . , 4

6. Concluding remarks. To find close to optimal scaling parameters for ellip-
tic variational problems discretized by sparse grids, we used approaches based on the
theory of subspace splittings, on algebraic transformations and on a non-linear iter-
ative algorithm called OptiCom. It turned out that non-negative scaling parameters
are not the optimal choice. But admitting negative scaling parameters by an algebraic
transformation leads to low-cost, high-speed linear iterative schemes that scale well
with problem size J and dimension d. This approach is significantly cheaper than the
variable preconditioning of OptiCom but results in nearly the same convergence rates.
Moreover, it allows for a straightforward CG extension. It is noteworthy that the sub-
space correction method with algebraic scaling parameters has the same convergence
properties as one that is based on prewavelet bases, but works with implementations
of the operators TVl : VI → Vl ⊂ VI in the standard B-spline bases only. Under the
proper circumstances, this can be a non-intrusive way to use existing full grid codes
on Vl for l ∈ I in a sparse grid subspace correction method.
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