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A GENERALIZED MULTISCALE FINITE ELEMENT METHOD
FOR POROELASTICITY PROBLEMS I: LINEAR PROBLEMS ∗

DONALD L. BROWN † AND MARIA VASILYEVA ‡

Abstract. In this paper, we consider the numerical solution of poroelasticity problems that
are of Biot type and develop a general algorithm for solving coupled systems. We discuss the
challenges associated with mechanics and flow problems in heterogeneous media. The two primary
issues being the multiscale nature of the media and the solutions of the fluid and mechanics
variables traditionally developed with separate grids and methods. For the numerical solution we
develop and implement a Generalized Multiscale Finite Element Method (GMsFEM) that solves
problem on a coarse grid by constructing local multiscale basis functions. The procedure begins
with construction of multiscale bases for both displacement and pressure in each coarse block.
Using a snapshot space and local spectral problems, we construct a basis of reduced dimension.
Finally, after multiplying by a multiscale partitions of unity, the multiscale basis is constructed
in the offline phase and the coarse grid problem then can be solved for arbitrary forcing and
boundary conditions. We implement this algorithm on two heterogenous media and compute
error between the multiscale solution with the fine-scale solutions. Randomized oversampling and
forcing strategies are also tested.

Key words. Generalized multiscale finite element method, poroelasticity problems
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1. Introduction. Problems of mechanics and flow in porous media have wide
ranging applications in many areas of science and engineering. Particularly in ge-
omechanical modeling and its applications to reservoir engineering for enhanced
production and environmental safety due to overburden subsidence and compaction
[16, 17]. One of the key challenges is the multiscale nature of the geomechanical
problems. Heterogeneity of reservoir properties should be accurately accounted in
the geomechanical model, and this requires a high resolution solve that adds many
degrees of freedom that can be computationally costly. Moroever, there are dis-
parate scales between the often relatively thin reservoir structure and the large
overburden surrounding the reservoir that adds more complexity to the simulation.
Therefore, we propose a multiscale method to attempt overcome some of these
challenges.

The basic mathematical structure of the poroelasticity models are usually cou-
pled equations for pressure and displacements known as Biot type models [21]. For
pressure, or flow equations, we have the parabolic equation Darcy equation with
a time dependent coupling to volumetric strain. The stress equation is the quasi-
static elasticity equations with a coupling to the pressure gradients as a forcing.
Poroelastic models of this type have been explored in the petroleum engineering
literature in the context of geomechanics for some time [18, 19, 9, 12] to name just
a few. There are noted issues that arise. The first being heterogeneities of the
reservoir and surrounding media add many complications to the effective simula-
tion due to complexity of scales. Moreover, development of flow and mechanics
simulation were often considered separately. Progress was made on this problem
by considering various coupling strategies [19]. However, in the instance that the
physics is not well understood a fully coupled scheme may be desired. This sepa-
ration of development from flow and mechanics methods adds the complication of
the computational grids not being the same in each regime. Some effort has been

∗This work was supported by RFBR (project N 15-31-20856)
† Institute for Numerical Simulation University of Bonn, Wegeler Strasse 6, 53115 Bonn, Ger-

many (donaldbrowdr@gmail.com)
‡ Institute of Mathematics and Informatics, North-Eastern Federal University, Yakutsk, Re-

public of Sakha (Yakutia), Russia, 677980 & Institute for Scientific Computation, Texas A&M
University, College Station, TX 77843-3368 (vasilyevadotmdotv@gmail.com)

1

mailto:donaldbrowdr@gmail.com
mailto:vasilyevadotmdotv@gmail.com


2 DONALD L. BROWN AND MARIA VASILYEVA

made in the improvements of gridding techniques between geomechanical and flow
calculations [20] and references therein.

As briefly noted before, typically for numerical solution of such coupled systems
time splitting schemes are often used. Various splitting techniques for poroelastic
equations have been explored and analyzed in the context of reservoir geomechanics
in [10, 11]. Also, in the context of poroelasticty and thermoelastic equations, various
splitting techniques have been analyzed and implemented [15]. The primary split-
ting techniques are the undrained, fixed-stress, and fully implicit. Due to observed
better errors, we will primarily consider the less computationally costly fixed-stress
splitting and the more robust, yet with a loss in some matrix sparsity, fully implicit
coupled approach.

Once the equations have been split in time we wish to resolve in space and
will utilize a multiscale method. There are many very effective multiscale frame-
works that have been developed in recent years. There are rigorous approaches
based on homogenization of partial differential equations, where effective equations
are derived based fine-scale equations at the microstructure level [8, 7]. However,
these approaches may have limited computational use and more practical multi-
scale methods are used. Examples include the Heterogeneous Multiscale Method
(HMM), where macro-scale equations on coarse-grids are solved while the effective
coefficients on the fine-scale are resolved at each coarse grid nodes [22, 23]. An
approach based on the Variational Multiscale Method (see [24]), where coarse-grid
quasi-interpolation operators are used to build an orthogonal splitting into a multi-
scale space and a fine-scale space [25]. Fine-scale space corrections are then localized
to create a computationally efficient scheme. In this paper, we will use the Gen-
eralized Multiscale Finite Element Method framework, which is a generalization of
the multiscale finite element method [2].

To efficiently solve these splitting schemes and overcome some of the challenges
of heterogenous reservoir properties and gridding issues between mechanics and
flow, we will develop a Generalized Multiscale Finite Element Method (GMsFEM)
[1]. Our GMsFEM has the advantage of being able to capture small scale features
from the heterogeneities into coarse-grid basis functions and offline spaces, as well
as having a unified computational grids for both mechanics and flow solves. The
offline multiscale basis construction may proceed in both fluid and mechanics in
parallel and both constructions are comparable. We proceed by first generating
a coarse-grid and in each grid block a local static problem with varying boundary
conditions is solved to construct the snapshot spaces. We then perform a dimension
reduction of the snapshot space by solving auxiliary eigenvalue problems. Taking
the corresponding smallest eigenpairs, and multiplying by a multiscale partition of
unity we are able to construct our offline basis. In this greatly reduced dimension
offline basis, the online solutions may be calculated for pressure and displacements
for any viable boundary condition or forcing.

The work is organized as follows. In Section 2 we provide the mathematical
background of the poroelasticity problem. We will introduce the Biot type model
and highlight where the heterogeneities primarily occur. In our formulation, the
computational domain will be entirely inside of the fluid filled, or reservoir, region.
However, coupling to regimes of pure elasticity to model the overburden are of course
possible. In Section 3, to outline the difficulties in full direct numerical simulation
we introduce the fine-scale discretizations using coupled and splitted schemes. Once
we split the porooelastic system we will be able to apply our multiscale method.
In Section 4, we present our GMsFEM algorithm and outline its construction pro-
cedure. We will use the offline multiscale basis functions to calculate accurately
pressure and displacements, at a reduced dimension and computational cost in the
online phase. Finally, numerical implementations are presented in Section 5. Using
the GMsFEM, we compare the multiscale solution to fine-scale solutions and give
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error estimates. We will present two different examples with varying coefficients.
Additionally, we will implement and discuss different strategies with oversampling
and randomized forcings to construct the multiscale spaces.

2. Problem formulation. We denote our computational domain Ω ⊂ Rd to
be a bounded Lipschitz region. We consider linear poroelasticity problem where we
wish to find a pressure p and displacements u satisfying

− div σ(u) + α grad(p) = 0 in Ω,(2.1a)

α
∂ div u

∂t
+

1

M

∂p

∂t
− div

(
k

ν
grad p

)
= f in Ω,(2.1b)

with initial condition for pressure p(x, 0) = p0.We write the boundary of the domain
into four sections ∂Ω = Γ1 ∪ Γ2 = Γ3 ∪ Γ4. We suppose the following boundary
conditions on each portion

σn = 0, x ∈ Γ1, u = u1, x ∈ Γ2,

and

−k
ν

∂p

∂n
= 0, x ∈ Γ3, p = p1, x ∈ Γ4.

Here the primary sources of the heterogeneities in the physical properties arise from
σ, the stress tensor and k, the permeability. We denote M to be the Biot modulus,
ν is the fluid viscosity, and α is the Biot-Willis fluid-solid coupling coefficient. Here,
f is a source term representing injection or production processes and n is the unit
normal to the boundary. Body forces, such as gravity, are neglected. In the case of
a linear elastic stress-strain constitutive relation we have that the stress tensor and
symmetric strain gradient may be expressed as

σ(u) = 2µε(u) + λdiv(u) I, ε(u) =
1

2

(
gradu+ graduT

)
,

where µ, λ are Lame coefficients, I is the identity tensor. In the case where the
media has heterogeneous material properties the coefficients µ and λ may be highly
variable.

The above poroelasticity problem (2.1a), assuming a linear elastic stress-strain
relation, can be written in operator matrix form:

Au+ αGp = 0,(2.2)
d

dt
(S p+ αDu) +Bp = f,(2.3)

where

Av = −µ∇2v − (λ+ µ) grad div v, Bp = − div

(
k

ν
grad p

)
,

and G and D are gradient and divergence operators and S = 1
M I.

3. Fine-Scale Discretization. We will now present splitting methods for
the above system in the context of solving the fine-scale approximation. This will
highlight the areas where we would like to utilize a multiscale method when solving
in the spatial variables due to the degrees of freedom required in resolving the
system. For approximating the numerical solution to (2.1) on fine-scale grid we use
a standard finite element method. We begin by giving the corresponding variational
form of the continuous problem written as

a(u, v) + g(p, v) = 0, for all v ∈ V̂ ,(3.1)

d

(
du

dt
, q

)
+ c

(
dp

dt
, q

)
+ b(p, q) = (f, q), for all q ∈ Q̂.(3.2)
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for u ∈ V , p ∈ Q where

V = {v ∈ [H1(Ω)]d : v(x) = u1, x ∈ Γ2}, Q = {q ∈ H1(Ω) : q(x) = p1, x ∈ Γ4},

and the test spaces with homogeneous boundary conditions are given by

V̂ = {v ∈ [H1(Ω)]d : v(x) = 0, x ∈ Γ2}, Q̂ = {q ∈ H1(Ω) : q(x) = 0, x ∈ Γ4}.

Here for bilinear and linear forms we have define

a(u, v) =

∫
Ω

σ(u) vdx, b(p, q) =

∫
Ω

(
k

ν
grad p, grad q

)
dx, c(p, q) =

∫
Ω

1

M
pq dx,

and

g(p, v) =

∫
Ω

α(grad p, v)dx, d(u, q) =

∫
Ω

α div u q dx, (f, q) =

∫
Ω

f q dx.

Here (·, ·) under the integrand denotes the standard inner product. In Section 5, we
will discretize the spaces using a fine-scale standard FEM and denote them Vh, Qh

and V̂h, Q̂h, h being the fine-grid size. The FEM using these spaces will serve as a
reference solution for our GMsFEM outlined in Section 4.

To solve the above system we first discretize in time. This discretization leads to
several possible couplings between time-steps and the two equations of prorelasticity.
We proceed by giving the coupled and so-called fixed-stress splitting [10, 15]. The
standard fully implicit finite-difference scheme, or coupled scheme, can be used for
the time-discretization and is given by

a(un+1, v) + g(pn+1, v) = 0,(3.3a)

d

(
un+1 − un

τ
, q

)
+ c

(
pn+1 − pn

τ
, q

)
+ b(pn+1, q) = (f, q),(3.3b)

with un = u(x, tn), pn = p(x, tn), where tn = nτ , n = 0, 1, ...,MT , MT τ = T and
τ > 0. For time discretization we can apply many different splitting techniques
which often occur in the literature.

Another we shall consider here is the fixed-stress splitting scheme

a(un+1, v) + g(pn+1, v) = 0,(3.4a)

d

(
un − un−1

τ
, q

)
+ s

(
pn+1 − pn

τ
, q

)
+ b(pn+1, q) = l(q),(3.4b)

where the variational form is re-written with

s(p, q) =

∫
Ω

(
1

M
+

α2

Kdr

)
p q dx, l(q) =

∫
Ω

(
f +

α2

Kdr

pn − pn−1

τ

)
q dx

and Kdr is the drained modulus

Kdr =
E(1− νp)

(1− 2νp)(1 + νp)
,

where νp is the Poisson ratio and E is the elastic modulus. When we utlize the
fixed-stress splitting scheme, first we solve pressure equation for pn+1 given data at
the previous time-steps. Then, passing this new pressure information, we return to
the quasi-static stress equation and calculate displacements at un+1.
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4. GMsFEM for Poroelasticity. In the GMsFEM presented here, we will
focus on the development in the fixed-stress splitting (3.4). We will however give
numerical examples from both coupling strategies. The fixed-stress splitting decou-
ples the flow and mechanics equations. We will first present the offline multiscale
basis construction in the fluid or pressure solve then its construction in the mechan-
ics or displacement calculation step. In this algorithm, due to the heterogeneities
arising primarily from the permeability k and the stress tensor σ(u), we will solve
local problems in each of the relevant portions of the variational form to construct
the offline multiscale spaces. We now outline the general procedure of the GMsFEM
algorithm.

The overall fine-scale model equations will be solved on a fine-grid using spaces
Vh, Qh and V̂h, Q̂h, and will act as our reference solutions. Once the fine-grid is
established we must introduce the concepts of coarse-grids and their relationships.
To this end, let T H be a standard conforming partition of the computational domain
Ω into finite elements. We refer to this partition as the coarse-grid and assume that
each coarse element is partitioned into a connected union of fine grid blocks. The
fine grid partition will be denoted by T h, and is by definition a refinement of the
coarse grid T H . We use {xi}Ni=1, where N is the number of coarse nodes, to denote
the vertices of the coarse mesh T H , and define the neighborhood of the node xi by

ωi =
∪
j

{
Kj ∈ T H |xi ∈ Kj

}
.

See Figure 1 for an illustration of neighborhoods and elements subordinated to

Fig. 1: Illustration of a coarse neighborhood and coarse element

the coarse discretization. We emphasize that the use of ωi is to denote a coarse
neighborhood, and we use K to denote a coarse element throughout the paper.

Boadly speaking, the GMsFEM algorithm consist of several steps:
• Step 1: Generate the coarse-grid, T H .
• Step 2: Construct the snapshot space, used to compute an offline space,

by solving many local problems on the fine-grid.
• Step 3: Construct a small dimensional offline space by performing di-

mension reduction in the space of local snapshots.
• Step 4: Use small dimensional offline space to find the solution of a

coarse-grid problem for any force term and/or boundary condition.
As noted previously, because coupled system of equations for poroelasticity

problems can be solved using splitting scheme, we can construct multisclate basis
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functions for pressure and displacements separately. We begin by considering the
pressure solve, then, the displacement solve.

4.1. Pressure Solve. Recall, for the numerical solution of pressure equation
on coarse grid we consider the continuous Galerkin (CG) formulation (3.4b) given
by

(4.1) s(
pn+1 − pn

τ
, q) + b(pn+1, q) = l(q)− d

(
un − un−1

τ
, q

)
, for all q ∈ Qoff,

where Qoff is used to denote the space spanned by multiscale basis functions ψωi

k ,
each of which is supported in ωi. The index k represents the numbering of these
multiscale basis functions. We will now show how to construct the offline multiscale
space Qoff. In turn, the CG solution of the form

p(x, t) =
∑
i,k

pik(t)ψ
ωi

k (x),

will be sought.
We begin by construction of a snapshot space V ω

snap. We use harmonic exten-
sions

b(ψω,snap
j , q) = 0 in ω,

ψω,snap
j = δhj (x) on ∂ω.

(4.2)

Here δhj (x) are defined by δhj (x) = δj,k, ∀j, k ∈ Jh(ωi), where Jh(ωi) denotes the
fine-grid boundary node on ∂ωi. For simplicity, we will omit the index i when there
is no ambiguity.

Let li be the number of functions in the snapshot space in the region ω, and
define

Qω
snap = span{ψsnap

j : 1 ≤ j ≤ li},

for each coarse subdomain ω. We denote the corresponding matrix of snapshot
functions to be

Rp
snap =

[
ψsnap
1 , . . . , ψsnap

li

]
.

To construct the offline space Qoff, we perform a dimension reduction of the
space of snapshots by using an auxiliary spectral decomposition. More precisely,
we solve the eigenvalue problem in the space of snapshots:

(4.3) BoffΨoff
k = λoff

k MoffΨoff
k ,

where

Boff = (Rp
snap)

TBRp
snap, Moff = (Rp

snap)
TMRp

snap,

where B and M denote fine scale matrices

Bij =

∫
Ω

(
k

ν
gradϕi, gradϕj

)
dx, Mij =

∫
Ω

k

ν
ϕiϕj dx.

Here, ϕi are fine-scale basis functions.
We then choose the smallest Nω,p

off eigenvalues from Eq. (4.3) and form the
corresponding eigenvectors in the space of snapshots by setting

ψoff
k =

li∑
j=1

Ψoff
kjψ

snap
j ,
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for k = 1, . . . , Nω,p
off , where Ψoff

kj are the coordinates of the vector ψoff
k . We denote

the span of this reduced space as Qω
off.

For construction of the offline space, to ensure the functions we construct form
an H1 conforming basis, we define multiscale partition of unity functions χi

b(χi, q) = 0 in K,(4.4)
χi = gi on ∂K,

for all K ∈ ω. Here gi is a continuous on K and is linear on each edge of ∂K.
We could choose gi to also be selected shape function, Neumann conditions, or
boundary conditions on larger domains in the context of oversampling.

Finally, we multiply the partition of unity functions by the eigenfunctions in
the offline space Qωi

off to construct the resulting basis functions

(4.5) ψi,k = χiψ
ωi,off
k for 1 ≤ i ≤ N and 1 ≤ k ≤ Nωi,p

off ,

where Nωi,p
off denotes the number of offline eigenvectors that are chosen for each

coarse node i. We note that the construction in Eq. (4.5) yields continuous basis
functions due to the multiplication of offline eigenvectors with the initial (continu-
ous) partition of unity. Next, we define the continuous Galerkin spectral multiscale
space as

(4.6) Qoff = span{ψi,k : 1 ≤ i ≤ N and 1 ≤ k ≤ Nωi,p
off }.

Using a single index notation, we may write Qoff = span{ψi}
Np

c
i=1, where Np

c =∑N
i=1N

ωi,p
off denotes the total number of basis functions in the spaces Qωi

off, for i =
1, . . . , N .

Denote the matrix

Rp =
[
ψ1, . . . , ψNp

c

]T
,

where ψi are used to denote the nodal values of each basis function defined on the
fine grid. Then, the variational form in (4.1) yields the following linear algebraic
system

(4.7) Qcp
n+1
c = Ycp

n
c ,

where

Qc = Rp(
1

Mτ
+B)(Rp)T , Yc = RpFp.

Here, Fp being the operator corresponding right hand side data from the previous
time step and pc denotes the coarse-scale nodal values of the discrete CG solution.
We also note that the operator matrix may be analogously used in order to project
coarse scale solutions onto the fine grid

pn+1 = (Rp)T pn+1
c .

4.2. Displacement Solve. We now suppose that we have solved for the fine-
grid pressure pn+1 by the GMsFEM pressure solve in the previous section. We must
now solve the mechanics equations (3.4a). Since the construction of the multiscale
offline space remains very similar in this setting, we will be a bit more brief on its
construction. Recall, for discretization of the displacements equation we rewrite
equation as follows

(4.8) Aun+1 = Fu,
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where Fu = −αGpn+1. The corresponding continuous Galerkin (CG) formulation
for displacements equations is given by:

(4.9) a(un+1, v) = (fu, v), for all v ∈ Voff,

where u(x, t) =
∑

i,k u
i
k(t)φ

ωi

k (x) and we construct the multiscale offline space Voff.
For construction of multiscale basis functions for displacements we use similar

algorithm that we used for pressure. For construction of a snapshot space V ω
snap we

solve following problem in ω

a(φω,snap
j , v) = 0 in ω,

φω,snap
j = δhj (x), on ∂ω.

(4.10)

Let li be the number of functions in the snapshot space in the region ω, and define

V ω
snap = span{φsnap

j : 1 ≤ j ≤ li},

for each coarse subdomain ω. Note we are using the same notation but with different
harmonic extensions. We denote the corresponding matrix of snapshot functions,
again with similar notation, to be

Ru
snap =

[
φsnap
1 , . . . , φsnap

li

]
.

Again, we perform a dimension reduction of the space of snapshots by using an
auxiliary spectral decomposition. We solve the eigenvalue problem in the space of
snapshots

(4.11) AoffΦoff
k = λoff

k NoffΦoff
k ,

where where

Aoff = (Ru
snap)

TARu
snap, Noff = (Ru

snap)
TNRu

snap,

where A and N denote fine scale matrices

Amn =

∫
Ω

(
2µε(φm) : ε(φn) + λdiv(φm) · div(φn)

)
,

and

Nmn =

∫
Ω

(λ+ 2µ)φm · φn.

Here, φi are fine-scale basis functions.
We then choose the smallest Nω,u

off eigenvalues from Eq. (4.11) and form the
corresponding eigenvectors in the space of snapshots by setting

φoff
k =

li∑
j=1

Φoff
kjφ

snap
j ,

for k = 1, . . . , Nω,u
off , where Φoff

kj are the coordinates of the vector φoff
k . We denote

the span of this reduced space as V ω
off.

For construciton of multiscale partition of unity functions for the mechanics
solve, we proceed as before and solve for all K ∈ ω

a(ξi, v) = 0 in K,(4.12)
ξi = gi on ∂K.(4.13)
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Here gi is a continuous function on K and is linear on each edge of ∂K. Finally, we
multiply the partition of unity functions by the eigenfunctions in the offline space
V ωi

off to construct the resulting basis functions

(4.14) φi,k = ξiφ
ωi,off
k for 1 ≤ i ≤ N and 1 ≤ k ≤ Nωi,u

off ,

where Nωi,u
off denotes the number of offline eigenvectors that are chosen for each

coarse node i. Next, we define the pectral multiscale space as

(4.15) Voff = span{φi,k : 1 ≤ i ≤ N and 1 ≤ k ≤ Nωi

off}.

Using a single index notation, we may write Voff = span{φi}
Nu

c
i=1, where Nu

c =∑N
i=1N

ωi,u
off denotes the total number of basis functions in the space V ωi

off , for all
i = 1, . . . , N .

And after construction Voff we denote the matrix

Ru =
[
φ1, . . . , ψNu

c

]T
,

where φi are used to denote the nodal values of each basis function defined on the
fine grid. Then, the variational form in (4.9) yields the following linear algebraic
system

(4.16) Acu
n+1
c = Fc,

where Ac = RuA(Ru)T , Fc = RuFu and

un+1 = (Ru)Tun+1
c .

5. Numerical Examples. In this section, we present numerical examples to
demonstrate the performance of the GMsFEM for computing the solution of the
poroelasticity problem in heterogenous domains. Although we presented the al-
gorithm in the fixed-stress splitting, we are able to apply the same offline spaces
(Qoff, Voff) as their construction remains the same in the fully coupled setting. How-
ever, in the coupled setting the equations (4.7) and (4.16) will no longer be decoupled
and must be solved simultaneously.

We will implement a single complicated geometry with contrasting parameter
values. We provide two cases one with lower contrast in elastic properties and
another with higher contrast. We present the algorithm applied to these heteroge-
nous coefficients in both the fully coupled and fixed stress time splittings. We give
the errors with varying multiscale basis functions and over time. We then will ap-
ply the GMsFEM method with oversampling and with snapshots with randomized
boundary conditions to obtain good accuracy, while having to solve fewer snapshot
solutions. The effects of higher contrast in properties will also be discussed.

5.1. GMsFEM Implementation. First, we take the computational domain
Ω as a unit square [0, 1]2, and set the source term f = 0 in (2.1). We utilize
heterogeneous coefficients that have different values in two subdomains. We denote
each region as subdomain 1 and 2, and use following coefficients: for the Biot
modulus we take M1 = 1.0,M2 = 10 and for permeability k1 = 10−3, k2 = 1 in
the two regions. For fluid viscosity we take ν = 1 and fluid-solid coupling constant
α = 0.9. For the elastic properties, we present results for two test cases. In Case 1,
the elastic modulus is given by E1 = 10, E2 = 1 in each respective subdomain and
in Case 2, we have E1 = 10, E2 = 10−3. The Poisson’s ratio is η = 0.22, and these
can be related to the parameters µi and λi, for i = 1, 2, via the relation

µi =
Ei

2(1 + η)
, λi =

Eiη

(1 + η)(1− 2η)
,
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Fig. 2: Coefficients subdomains. Red is the subdomain 1 and blue is the subdomain
2

in each subdomain. The subdomains for coefficients shown in Fig. 2, where the
background media in red is the subdomain 1, and isolated particles and strips in
blue are the subdomain 2.

As we have chosen f = 0 we must use boundary conditions to force flow and
mechanics. In these tests, we use following boundary conditions:

p = p1, x ∈ ΓT , p = p0, x ∈ ΓB ,
∂p

∂n
= 0, x ∈ ΓL ∪ ΓR,

and

ux = 0,
∂uy
∂y

= 0, x ∈ ΓL,
∂ux
∂x

= 0, uy = 0, x ∈ ΓB ,

and finally,

∂ux
∂x

= 0,
∂uy
∂y

= 0, x ∈ ΓT ∪ ΓR.

Here ΓL and ΓR are left and right boundaries, ΓT and ΓB are top and bottom
boundaries respectively. We set p0 = 0 and p1 = 1 to drive the flow, and thus, the
mechanics.

Fig. 3: Coarse and fine grids

In Fig. 3 we show the coarse and fine grids. The coarse grid consists of 36 nodes
and 50 triangle cells, and the fine mesh consists of 3721 nodes and 7200 triangle
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cells. The number of time steps is 20 and the maximal time being set at Tmax = 100.
As an initial condition for pressure we use p = p0. The reference solution computed
by using a standard FEM (linear basis functions for pressure and displacements) on
the fine grid and using a fully coupled scheme. The pressure and the displacement
fields for Case 1 on the fine-grid are presented on the left column of Fig. 4 - 5.

Fig. 4: The fine-scale and coarse-scale solutions of the pressure distribution for
T = 10 and 100 (from top to bottom) for case 1. The dimension of the fine-scale
solution is 11163 and the dimension of the coarse space is 864.

We test the fully coupled and fixed-stress splitting schemes. The errors will be
measured in weighted L2 and weighted H1 norm and semi-norm for pressure

∥ep∥L2(Ω) =

(∫
Ω

k

ν
(pf − pms)

2dx

)1/2

,

|ep|H1(Ω) =

(∫
Ω

(
k

ν
grad(pf − pms), grad(pf − pms)

)
dx

)1/2

,

and for displacements

∥eu∥L2(Ω) =

(∫
Ω

(λ+ 2µ)(uf − ums, uf − ums)dx

)1/2

,

|eu|H1(Ω) =

(∫
Ω

(σ(uf − ums), ε(uf − ums)) dx

)1/2

.

Here (uf , pf ) and (ums, pms) are fine-scale and coarse-scale using GMsFEM solu-
tions, respectively for pressure and displacements.
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Fig. 5: The fine-scale and coarse-scale solutions of the displacements ux and uy for
case 1. The dimension of the fine-scale solution is 11163 and the dimension of the
coarse space is 864.

Recall, we will use a few multiscale basis functions per each coarse node ωi, and
these number of coarse basis defines the problem size (dimension of offline spaces,
Qoff and Voff). We suppose that in each patch ωi we take the same number of
multiscale basis functions for pressure, Np

off = Nωi,p
off , for i = 1, · · · , N . Similarly for

displacements we take Nu
off = Nωi,u

off , for i = 1, · · · , N . Varying the basis functions
in both pressure and displacement multiscale spaces we recorded the errors at the
final times.

In Tables 1 and 2, we present the weighted L2 andH1 errors for Case 1 and Case
2 of the coefficients in geometry Fig. 2 using the fully coupled scheme. We compare
these to a fine-scale solution space with dimension 11163. In these tables, Np

off and
Nu

off are number of multiscale basis functions for each neighborhoods, the second
column show the dimension of the offline space, the next two columns present the
weighted L2 and H1 errors for pressure and last two columns show the weighted
L2 and H1 errors for displacements. We see that the errors in pressure remain
similar in both cases because the permeability parameters remain the same and the
change is in elastic properties between scenarios. In Case 2, pictured in Table 2, we
see great errors in displacements throughout when compared to Case 1 in Table 1
because the elastic properties in Case 2 have several orders of higher contrast. In
a similar setting, we consider the fixed-stress splitting. For Case 1 we present the
results in Table 3, the errors are very similar compared to the corresponding fully
coupled scheme. For Case 2 we present the errors in Table 4 and again see that
the errors are higher when compared to the lower contrast scenario. Comparing
these results with the Case 2 using the fully coupled scheme, presented in Table 2,
we see that both the pressure errors and displacement errors are much greater in
this sequential coupling. This disparity is particularly striking when few multiscale
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basis functions are used.
We also include plots over time of the error with respect to number of basis

functions used. We present the results from the fully coupled scheme. In Fig. 6 and
7 we show errors over time for Noff = Np

off = Nu
off = 4, 8, 12, and 16 multiscale basis

functions for each ωi Thus, the dimensions of offline spaces are 432, 864, 1296 and
1728, respectively. We observe that errors decrease as we increase the dimension of
the offline space as expected. We observe the errors in Fig. 6 are generally better
than the errors Fig. 7, again, due to the lower contrast in Case 1. We see that
in both cases most of the error vanished after the use of just 8 multiscale basis
functions. In general, the error remains stable in time with a slight decrease over
time.

Pressure errors Displacements errors
Np

off dim(Qoff, Voff) L2 H1 L2 H1

Nu
off = 2

2 216 0.06 0.08 0.06 0.13
Nu

off = 4
2 360 0.06 0.08 0.06 0.12
4 432 0.01 0.01 0.04 0.11

Nu
off = 8

2 648 0.06 0.08 0.02 0.06
4 720 0.01 0.01 0.01 0.03
8 864 0.0003 0.002 0.002 0.03

Nu
off = 12

2 936 0.06 0.08 0.02 0.05
4 1008 0.01 0.01 0.01 0.02
8 1152 0.0003 0.002 0.0009 0.01
12 1296 0.0001 0.001 0.0009 0.01

Nu
off = 16

2 1224 0.06 0.08 0.02 0.05
4 1296 0.01 0.01 0.01 0.01
8 1440 0.0003 0.002 0.0008 0.01
12 1584 0.0001 0.001 0.0007 0.01
16 1728 0.0001 0.0007 0.0007 0.01

Table 1: Numerical results for Case 1 using the fully coupled scheme.

5.2. GMsFEM with Randomized Oversampling. In this section we con-
sider the oversampling randomized algorithm proposed in [5]. In this algorithm,
instead of solving harmonic extensions (4.2 and 4.10) for each fine grid node on
the boundary, we solve a small number of harmonic extension local problems with
random boundary conditions. More precisely, we let

ψωi,rsnap
j = rj , x ∈ ∂ωi,

where rj are independent identical distributed standard Gaussian random vectors
on the fine grid nodes of the boundary. The advantage of this algorithm lies in the
fact that a much fewer number of snapshot basis functions are calculated, while
maintaining accuracy. In addition, we will use an oversampling strategy. This is
done to reduce the mismatching effects of boundary conditions imposed artificially
in the construction of snapshot basis functions. We will denote the extended coarse
grid neighborhood for t = 1, 2, . . . , by ω+

i = ωi + t. Here for example, ω+
i = ωi +1,
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Pressure errors Displacements errors
Np

off dim(Qoff, Voff) L2 H1 L2 H1

Nu
off = 2

2 216 0.06 0.08 0.25 0.26
Nu

off = 4
2 360 0.06 0.08 0.22 0.24
4 432 0.02 0.01 0.19 0.24

Nu
off = 8

2 648 0.06 0.08 0.08 0.13
4 720 0.02 0.01 0.01 0.08
8 864 0.001 0.002 0.01 0.08

Nu
off = 12

2 936 0.06 0.08 0.07 0.11
4 1008 0.02 0.01 0.02 0.04
8 1152 0.0003 0.002 0.004 0.03
12 1296 0.0001 0.001 0.004 0.03

Nu
off = 16

2 1224 0.06 0.08 0.07 0.11
4 1296 0.02 0.01 0.02 0.03
8 1440 0.0003 0.002 0.001 0.02
12 1584 0.0001 0.001 0.001 0.02
16 1728 0.0001 0.0006 0.001 0.02

Table 2: Numerical results for Case 2 using the fully coupled scheme.

Pressure errors Displacements errors
Np

off dim(Qoff, Voff) L2 H1 L2 H1

Nu
off = 2

2 216 0.06 0.08 0.06 0.13
Nu

off = 4
2 360 0.06 0.08 0.06 0.12
4 432 0.01 0.01 0.04 0.11

Nu
off = 8

2 648 0.06 0.08 0.02 0.06
4 720 0.01 0.01 0.01 0.03
8 864 0.0003 0.002 0.002 0.03

Nu
off = 12

2 936 0.06 0.08 0.02 0.05
4 1008 0.01 0.01 0.01 0.02
8 1152 0.0003 0.002 0.0009 0.01
12 1296 0.0001 0.001 0.0009 0.01

Nu
off = 16

2 1224 0.06 0.08 0.02 0.05
4 1296 0.01 0.01 0.01 0.01
8 1440 0.0003 0.002 0.0008 0.01
12 1584 0.0001 0.001 0.0007 0.01
16 1728 0.0001 0.0007 0.0007 0.01

Table 3: Numerical results for Case 1 using the fixed-stress scheme.
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Fig. 6: Weighted L2 are on the top and H1 are on the bottom. Errors for pressure
are on the left and displacements are on the right for Case 1 using the fully coupled
scheme.

would mean the coarse grid neighborhood plus all 1 layer of adjacent fine grida of
ωi, and so on.

In Fig. 8 and Fig. 9, we show the weighted L2 and H1 errors over time for
Case 1 and 2 using the randomized GMsFEM with oversampling using different
numbers of multiscale basis functions. The oversampled region ω+

i = ωi + 4 is
chosen, that is, the oversampled region contains an extra 4 fine grid cells layers
around ωi. Here, we use only the fully coupled scheme. We use a snapshot ratio
of 36% between the standard number of snapshots and the randomized algorithm.
Comparing results from Fig. 8, the randomized algorithm, to Fig. 6, the standard
GMsFEM, we observe that the randomized algorithm is slightly less accurate but
at the advantage of having less snapshot solutions required.

In Table 5 and 6 we investigate the effect of the oversampling ω+
i = ωi+ t as we

increase the number of fine grid extensions for t = 0, 2, 4 and 6. We present the data
of the randomized snapshots for last time step. We see that oversampling can help
to improve the results initially, but the improvements level off as large oversampling
domains do not give significant improvement in the solution accuracy. Again the
effects of the high contrast of Case 2 can be seen in the data as the oversampling
performs slightly worse than in the lower contrast regime.

6. Conclusion. Simulating poroelasticity is difficult due the complex hetero-
geneities and because of the complexity of gridding the flow and mechanics regimes
in such media. Therefor, in this paper we developed a Generalized Multiscale Fi-
nite Element Method for a linear poroelastic media. We first presented the general
poroelasticity framework of Biot and its subsequent solution by fixed stress time
splitting methods. Although fully coupled schemes are considered numerically, this
splitting lays the framework for the application of the GMsFEM to the decoupled
poroelastic equations. We then outline the construction of the multiscale spaces in
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Pressure errors Displacements errors
Np

off dim(Qoff, Voff) L2 H1 L2 H1

Nu
off = 2

2 216 0.30 0.26 0.45 0.46
Nu

off = 4
2 360 0.30 0.26 0.42 0.45
4 432 0.01 0.01 0.33 0.38

Nu
off = 8

2 648 0.30 0.25 0.36 0.48
4 720 0.006 0.01 0.04 0.15
8 864 0.001 0.006 0.04 0.15

Nu
off = 12

2 936 0.30 0.25 0.37 0.50
4 1008 0.006 0.01 0.007 0.06
8 1152 0.002 0.006 0.007 0.06
12 1296 0.001 0.004 0.007 0.06

Nu
off = 16

2 1224 0.30 0.25 0.38 0.50
4 1296 0.006 0.01 0.003 0.03
8 1440 0.002 0.006 0.002 0.02
12 1584 0.001 0.004 0.002 0.02
16 1728 0.0009 0.003 0.002 0.02

Table 4: Numerical results for Case 2 using the fixed-stress scheme.

pressure errors displacements errors
Noff L2 H1 L2 H1

without oversampling, ω+
i = ωi

4 0.05 0.04 0.16 0.22
8 0.05 0.03 0.16 0.21
12 0.02 0.02 0.16 0.21
16 0.004 0.01 0.15 0.21

with oversampling, ω+
i = ωi + 2

4 0.05 0.03 0.14 0.21
8 0.04 0.03 0.12 0.19
12 0.007 0.01 0.09 0.17
16 0.002 0.009 0.08 0.16

with oversampling, ω+
i = ωi + 4

4 0.05 0.03 0.09 0.17
8 0.04 0.02 0.06 0.14
12 0.006 0.01 0.04 0.11
16 0.001 0.008 0.02 0.08

with oversampling, ω+
i = ωi + 6

4 0.05 0.03 0.09 0.17
8 0.04 0.02 0.06 0.13
12 0.009 0.01 0.02 0.09
16 0.002 0.007 0.02 0.07

Table 5: Numerical tests for Case 1 using randomized GMsFEM with and without
oversampling for Noff = Nu

off = Np
off
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Fig. 7: Weighted L2 are on the top and H1 are on the bottom. Errors for pressure
are on the left and displacements are on the right for Case 2 using the fully coupled
scheme.

both fluid and mechanics regimes. The algorithm is then implemented on a single
geometry with two different cases of elastic parameters. We show the errors rela-
tive to the fine scale solution over time and with varying multiscale basis functions.
Finally, we implemented oversampling strategies and randomized boundary condi-
tions when solving for the snapshot space. As in cases of reservoir compaction, the
permeability may depend on pressure resulting in a nonlinear relation. In future
studies, we will develop a GMsFEM for such nonlinear poroelastic problems.
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pressure errors displacements errors
N L2 H1 L2 H1

without oversampling, ω+
i = ωi

4 0.05 0.04 0.36 0.31
8 0.05 0.03 0.35 0.31
12 0.02 0.02 0.34 0.31
16 0.006 0.01 0.34 0.31

with oversampling, ω+
i = ωi + 2

4 0.05 0.03 0.33 0.31
8 0.04 0.03 0.30 0.30
12 0.01 0.01 0.25 0.27
16 0.009 0.009 0.22 0.25

with oversampling, ω+
i = ωi + 4

4 0.05 0.03 0.28 0.29
8 0.03 0.02 0.19 0.24
12 0.007 0.01 0.11 0.20
16 0.002 0.008 0.07 0.15

with oversampling, ω+
i = ωi + 6

4 0.05 0.03 0.24 0.27
8 0.04 0.02 0.14 0.22
12 0.01 0.01 0.07 0.17
16 0.002 0.007 0.06 0.14

Table 6: Numerical tests for Case 2 using randomized GMsFEM with and without
oversampling for Noff = Nu

off = Np
off


